
Enabling the Next Generation of
Multi-Region Applications with CockroachDB

Nathan VanBenschoten
Arul Ajmani, Marcus Gartner
Andrei Matei, Aayush Shah

Cockroach Labs

Irfan Sharif, Alexander Shraer
Adam Storm, Rebecca Taft
Oliver Tan, Andy Woods

Cockroach Labs

Peyton Walters
University of Pennsylvania

ABSTRACT

A database service is required to meet the consistency, performance,

and availability goals of modern applications serving a global user-

base. Configuring a database deployed across multiple regions such

that it fulfils these goals requires significant expertise. In this paper,

we describe how CockroachDB makes this easy for developers by

providing a high-level declarative syntax that allows expressing

data access locality and availability goals through SQL statements.

These high-level goals are then mapped to database configuration,

replica placement, and data partitioning decisions. We show how all

layers of the database, from the SQL Optimizer to Replication, were

enhanced to support multi-region workloads. We also describe a

new Transaction Management protocol that enables local, strongly

consistent reads from any database replica. Finally, the paper in-

cludes an extensive evaluation demonstrating that CockroachDB’s

new declarative SQL syntax for multi-region clusters is easy to

use and supports a variety of configuration options with different

performance tradeoffs to benefit a variety of workloads. We also

show that throughput scales linearly with the number of regions,

and the new Transaction Management protocol reduces tail latency

by over 10x compared to prior approaches.

CCS CONCEPTS

· Information systems → Data management systems; Paral-

lel and distributed DBMSs; Database query processing; Database

transaction processing; Distributed database transactions.

KEYWORDS

multi-region database, geo-distributed database, global transaction,

locality optimized search, survivability

ACM Reference Format:

NathanVanBenschoten, Arul Ajmani,Marcus Gartner, AndreiMatei, Aayush

Shah, Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver

Tan, Andy Woods, and Peyton Walters. 2022. Enabling the Next Genera-

tion of Multi-Region Applications with CockroachDB. In Proceedings of the

2022 International Conference on Management of Data (SIGMOD ’22), June

12ś17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3514221.3526053

This work is licensed under a Creative Commons
Attribution-ShareAlike International 4.0 License.

SIGMOD ’22, June 12ś17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9249-5/22/06.
https://doi.org/10.1145/3514221.3526053

1 INTRODUCTION

Today’s economy is increasingly dominated by multi-national com-

panies. Their global nature is placing new demands on their tech-

nology stack and exposing architectural flaws. The database layer

is no exception, and developers are finding that the requirements of

global applications cannot be met by traditional databases confined

to a single geographic region without compromising on perfor-

mance, availability, or compliance. High cross-region latencies [16]

cause a severe performance penalty when data is served from re-

mote regions. Natural disasters, hardware and software failures,

and misconfigurations have caused data center and region-wide

failures, and have made it clear that relying on a single data center

to store and serve application state is likely to result in service un-

availability or data loss. Finally, privacy regulations like GDPR [54]

place strict requirements on where data can and cannot reside.

Consequently, companies are turning to multi-region database

technologies. Ensuring low latency, high availability, and compli-

ance with regulations using most multi-region commercial offer-

ings, however, is extremely challenging. The challenges stem from

the fact that these offerings do not provide useful abstractions that

make these concepts easy to reason about and simple to deploy.

Instead, they require database administrators and application de-

velopers to become experts in multi-region database concepts and

tuning. For example, deploying a geo-distributed database typically

requires reasoning about the performance and availability implica-

tions of data placement and configuration decisions, both during

normal operation and in failure modes. Developers also often need

to modify their applications in sophisticated ways to efficiently use

a geo-distributed database. First, if the database is not region-aware,

developers have to include this awareness in their application, or

else suffer cross-region latencies on every query. Second, some ven-

dors only support a limited form of transactions [30, 61] or lower

consistency levels [44], forcing developers to find workarounds and

handle data anomalies at the application level [62].

In this work, we introduce new multi-region abstractions that

are built into CockroachDB (abbrev. CRDB) as first-class citizens:

• Regions ś geographic regions where data should be placed

(e.g., close to concentrations of active clients and/or based on

domiciling regulations). Each REGION contains one or more

ZONEs (i.e., availability zones), which in turn contain nodes in

the cluster. Each table may use any subset of the regions.

• Table locality ś the expected access pattern for a table, denot-

ing whether rows in the table will be accessed primarily from

a single region (REGIONAL) or from all (GLOBAL). This controls

which portions of the geographically distributed database are

optimized for access from a given region while maintaining

the abstraction of a single logical database.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2312

https://doi.org/10.1145/3514221.3526053
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3514221.3526053
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3526053&domain=pdf&date_stamp=2022-06-11

• Survivability goal ś the types of failures that can occur with-

out rendering the data unavailable (we currently support sur-

viving either a ZONE or full REGION failure).

These abstractions are supported in CRDB with a new SQL syntax

that integrates seamlessly with existing SQL DDL statements, mak-

ing it easier for developers to build global applications. Additionally,

because these concepts are first-class citizens, CRDB can leverage

them to optimize performance while meeting availability require-

ments. For example, locality awareness enables the optimizer to

efficiently support global uniqueness constraints in geo-partitioned

REGIONAL tables and plan queries that avoid visiting remote regions.

CRDB also utilizes different transaction management protocols that

are optimized for different table access patterns, including a novel

protocol for GLOBAL tables that supports low-latency consistent

reads from all regions. To use a multi-region CRDB cluster, develop-

ers need not change their application but only select the appropriate

regions, table localities, and survivability goals for their database.

Power-users can further hand-tune configurations beyond the ones

we currently support out-of-the-box.

In summary, the contributions of this paper are:

• New SQL syntax that dramatically simplifies multi-region data-

base deployments by distilling a vast design space of possible

configurations into selection of regions, survivability goals,

and table locality. Sections 2 and 3 describe the SQL syntax

and resulting database configuration decisions, respectively.

• Innovations in the SQL Query optimizer such as support for

global uniqueness constraints and efficient queries on geo-

partitioned data (Section 4).

• A detailed description of our implementation of serializable

read-only transactions on historical data that operate locally

on any replica’s state (Section 5).

• A novel global transaction protocol that enables serializable

transactions that observe the latest written data for each key

from any replica with local latency (Section 6).

• We evaluate CRDB with two industry standard benchmarks

(TPC-C and YCSB) that have been modified to support a multi-

region workload. We show that no DML changes and only

minimal DDL changes are needed, and the resulting perfor-

mance exceeds that of previous approaches (Section 7).

1.1 A Motivating Example

To make the challenges addressed by this paper concrete, consider

a ride-sharing application from a fictional company called movr.

Fig. 1a shows two tables from movr’s database schema. Fig. 1b

shows some of the challenges associated with converting them to

multi-region using a traditional DBMS, as the company expands its

operation within the US and internationally. Sharding can allow for

low-latency access and data domiciling support for the users table,

but the schema must be modified to add a partitioning column since

no natural partitioning column exists in this case. The application

logic and DML must also be modified to use this new column. Fur-

thermore, the database can no longer enforce the uniqueness of

email addresses without compromising on performance and com-

pliance1. Moreover, while partitioning is a viable (but problematic)

option for users, it does not make sense for the promo_codes table,

1Most databases enforce uniqueness constraints with unique indexes. However, parti-
tioning columns must be part of the index key. Therefore, enforcing a unique constraint

(a) Single-region application. Global unique constraints and full schema flexi-
bility are supported with high performance.

(b) Traditionalmulti-region application. (1) Partitioning columnmust be added.
(2) Application must be modified to use new column. (3) Global unique con-
straints can’t be enforced. (4) Accessing tables without locality performs poorly.

(c) Multi-region application with CockroachDB. Tables designated as REGIONAL
or GLOBAL. No other changes from single-region required.

Figure 1: Adapting an application to be multi-region

which has no locality of access. With traditional approaches, there

is no way to perform low-latency reads of the promo_codes table

from all regions while also guaranteeing strong consistency. Finally,

depending on the chosen replication strategy, the database could

lose data and/or availability if a region suffers an outage.

Fig. 1c shows that these problems are addressed by CRDB. movr

can retain the performance, flexible schema design, and operational

simplicity of their single-node deployment by simply selecting

appropriate table localities.

2 ABSTRACTIONS AND DECLARATIVE SQL

Multi-region capabilities have historically required developers and

operators to control underlying primitives like replica placement

imperatively. CRDB has extended SQL to allow users to declara-

tively set database regions, survival goals, and table localities. This

section describes these abstractions and the corresponding SQL.

2.1 Region and Zone Management

Conceptually, a multi-region cluster is any cluster with nodes in

two or more geographic regions, where each region has one or more

zones. In practice, regions and zones are simply strings assigned to

each node at startup with the locality command line flag:

that does not include the partitioning columns requires forgoing partitioning and losing
the associated performance and domiciling benefits.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2313

cockroach start \

--locality=region=us-east-1,zone=us-east-1b # ...

The cluster regions are the union of all node regions, and a region’s

zones are the union of all node zones in the region. Nodes can be

added or removed from the cluster at any time, so the regions and

zones in a cluster are dynamic. This information is persisted in

CRDB and can be retrieved via the SHOW REGIONS command.

A single multi-region CRDB cluster can have several databases,

each using a different subset of the cluster regions. To create a

multi-region database, users need only choose a PRIMARY region

and optionally specify additional regions. For example:

CREATE DATABASE movr PRIMARY REGION "us-east1" REGIONS "us-west1",

"europe-west1";

ALTER DATABASE movr ADD REGION "australia-southeast1";

ALTER DATABASE movr DROP REGION "us-west1";

Database regions are maintained in a special ENUM SQL data

type called crdb_internal_region, updated whenever regions

are added or removed from the database. It serves as the source

of truth for other CRDB components to know which regions are

available. All regions in CRDB can host leaseholder (i.e., primary)

replicas. A PRIMARY region merely serves as the default region for

data placement when an alternative region has not been specified.

2.2 Survivability goals

By default, CRDB guarantees ZONE survivability, provided the data-

base has nodes in three or more zones. This ensures base-level

fault-tolerance with minimal impact on read and write latency.

CRDB additionally offers REGION survivability that ensures avail-

ability for reads and writes, even if an entire region goes down. This

comes at a cost: write latency is increased by at least the round-trip

time to the nearest region. Read performance is unaffected.

Survivability goals are set as follows:

ALTER DATABASE movr SURVIVE REGION FAILURE;

ALTER DATABASE movr SURVIVE ZONE FAILURE;

2.3 Table Locality Configuration

Every table in a multi-region database has a table locality setting,

which is REGIONAL BY TABLE, REGIONAL BY ROW, or GLOBAL. This

is specified with straightforward SQL:

CREATE TABLE west_coast_users (...) LOCALITY REGIONAL BY TABLE

IN "us-west1";

CREATE TABLE users (...) LOCALITY REGIONAL BY ROW;

ALTER TABLE promo_codes SET LOCALITY GLOBAL;

Rows in REGIONAL tables are optimized for low-latency reads and

writes from a łhomež region (configured at either the table or row

level), while rows in GLOBAL tables are optimized for low-latency

reads from all regions, at the expense of slower writes.

2.3.1 Regional by Table. This locality represents the case where all

rows in the table are primarily accessed from the same home region,

and therefore there is no need for partitioning across regions (data

may still be split across nodes within the same region). REGIONAL

BY TABLE in the PRIMARY region is the default locality for all tables

in a multi-region database if not otherwise specified.

2.3.2 Regional by Row. In tables with REGIONAL BY ROW locality,

individual rows are optimized for access from different regions.

This setting divides a table and all of its indexes into partitions,

with each partition optimized for access from a different region.

That region is specified at the row level in an ENUM column of

type crdb_internal_region (see Section 2.1), which constrains

its possible values to the set of configured database regions.

Automatic Partitioning. By default, the partitioning column is

a system-provided hidden column called crdb_region, which de-

faults to the region in which an INSERT request originated. Users

can also manually update the column (as a hidden column it is

invisible to SELECT * queries but is accessible by name).

It is also possible to change the value of this column automati-

cally (called automatic rehoming) based on the origin of UPDATEs

modifying the row. In effect, rows are re-partitioned to the regions

in which they are most recently written to. This is disabled by de-

fault since it could lead to thrashing for some workloads. In the

future, we plan to make the feature adaptive in order to minimize

rehoming, e.g., by using cost-based modeling [3, 6, 7, 57].

Although the crdb_region column is created automatically, it

is equivalent to a normal SQL column that simply uses a default

value computed from a built-in function provided by CRDB:

ALTER TABLE users ADD COLUMN crdb_region crdb_internal_region

NOT VISIBLE NOT NULL DEFAULT gateway_region();

If automatic rehoming is enabled, the column is created with an

additional ON UPDATE rehome_row() clause.

Computed Partitioning. Automatic partitioning allows migrat-

ing applications to multiple regions without modifying them to be

aware of regions. However, some applications may already include

the concept of data locality or have a logical partitioning column.

These applications can still use REGIONAL BY ROW, e.g., to take

advantage of automatic zone configurations for partition place-

ment, but can define crdb_region as a computed column based on

existing column(s). For example:

crdb_region crdb_internal_region AS (CASE WHEN state = 'CA'

THEN 'us-west1' ELSE 'us-east1' END) STORED

This allows CRDB to perform queries within a single region, ensur-

ing predictable performance, whenever the determinant column(s)

(state in this case) are specified in the WHERE clause.

Users can further customize the partitioning column to have any

name, constraint, and default value of their choosing, as long as it

has type crdb_internal_region. For example, a user might add

a foreign key constraint with an ON UPDATE CASCADE clause to

ensure rows in a child table stay collocated with their parent.

2.3.3 Global. Tables with GLOBAL locality optimize for low-latency,

strongly consistent reads from every region, at the expense of

increasedwrite latencies (Section 6). They are useful for read-mostly

data that cannot be partitioned by locality. A common use-case is

rarely updated reference data that needs to be read from all regions.

When strongly consistent reads are not required, stale reads on

REGIONAL tables (Section 5.3) also provide region-local latencies,

without increasing write latencies. However, stale reads without

cross-region coordination are not always possible. For example,

a read-write transaction cannot use such reads, because it must

ensure consistency between its reads and its writes to enforce seri-

alizable isolation. Similarly, foreign key validation requires strongly

consistent reads of the parent table when the child is updated.

GLOBAL tables are essential for good performance in these cases. In

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2314

particular, users of REGIONAL BY ROW tables expect region-local

latency, but a transaction writing to a REGIONAL BY ROW table and

reading other tables is only guaranteed to be local if the other tables

are GLOBAL. As a result, a common pattern is to have a REGIONAL

BY ROW facts table referencing multiple GLOBAL dimension tables.

2.4 Schema changes

Whenever a new multi-region table is created or converted from

one locality type to another or a multi-region database is altered,

an online schema change is initiated. As described in [60, Section

5.4], CRDB performs schema changes with no downtime.

2.4.1 Adding/Dropping regions to/from a database. Adding or drop-

ping a region is equivalent to adding or removing a value in the

crdb_internal_region ENUM. Dropping a region involves added

complexity to validate that no row in a REGIONAL BY ROW table has

its region value set to that region.2 During validation, the value

of the region being dropped is marked as READ ONLY on the ENUM,

meaning no query can write that value. Bymarking the region value

as READ ONLY, validation can occur without disrupting foreground

traffic. If validation succeeds, the region is successfully removed.

If it fails, the operation is rolled back. This mechanism ensures

all-or-nothing semantics for dropping regions.

2.4.2 Altering table localities. Altering to a REGIONAL BY TABLE

or GLOBAL table simply implies a metadata operation followed by a

zone configuration change (see Section 3.2). Altering to a REGIONAL

BY ROW table additionally requires prefixing each index with the

hidden region column. This operation is implemented by building

a new index with the new column set, and once it is backfilled,

swapping it with the old. As with other schema changes in CRDB,

this process can be completed while the table is online.

2.5 A note on usability

An important feature of CRDB’s multi-region abstractions, in addi-

tion to making complex concepts easier to reason about, is that they

prevent users from mistakenly using anti-patterns by combining

lower level building blocks in such a way that they will perform

poorly. For example, queries over partitioned tables will likely per-

form poorly if secondary indexes are not partitioned in the same

way as the primary index. This partitioning is done automatically

in REGIONAL BY ROW tables, so users cannot make this error.

Today, users could still get poor performance if they select re-

gions far from most clients or choose the wrong table locality for

their workload. In future work, we hope to make these features even

easier to use by letting the database automatically detect optimal

regions and table localities based on the workload.

3 PLACEMENT CONFIGURATION

The high-level concepts and SQL described in the previous section

specify policies governing data placement across the cluster. These

policies are enforced over Ranges using lower level building blocks

called zone configurations that existed in older versions of CRDB.

This section introduces these primitives and explains how they are

used to support survivability goals and table localities.

2Because the region column serves as a partitioning key for REGIONAL BY ROW tables,
this validation is inexpensive and does not require scanning every row.

3.1 Background: Ranges and replicas

Data in CRDB is logically stored in a monolithic, ordered key-value

store. The keyspace is divided into contiguous Ranges, each repli-

cated using a separate Raft [49] group. Read leases, implemented

on top of Raft, allow avoiding consensus round-trips for reads. Raft

leaders are usually also leaseholders for the Range. Since leasehold-

ers can serve reads locally, a client’s proximity to a leaseholder

dictates read latencies for that Range (with exceptions for GLOBAL

tables (Section 6) and stale reads over REGIONAL tables (Section 5.3)).

Writes, on the other hand, have to be acknowledged by a quorum

of voting replicas and hence voter placement affects write latencies.

Non-voting replicas (see Section 5.2) do not affect write latency.

3.2 Background: Zone configurations

Users can specify placement constraints on individual schema

objects (databases, tables, and indexes) through zone configura-

tions [37]. Listing 1 shows some recently introduced control knobs

for the number and placement of voting and non-voting replicas.

// The difference between num_replicas and num_voters

// determines the number of non-voting replicas.

num_voters = <int>

num_replicas = <int>

// constraints applies to both voting and non-voting

// replicas. It fixes a replica count per-region,

// allowing the remainder to be placed freely.

// voter_constraints is similar but for voters only.

constraints = {

+region=<string>: <int>,

+region=<string>: <int>,

+region=<string>: <int>,

...

}

voter_constraints = {+region=<string>: <int>, ... }

// lease_preferences pins the leaseholder to a specific

// region, allowing for consistent reads from within.

lease_preferences = [[+region=<string>]]

Listing 1: Zone configuration fields

CRDB guarantees that replicas will be spread across independent

failure domains (i.e. localities) while satisfying constraints. It also

tries to maximize the number of localities targeted; candidates are

assigned a diversity score such that nodes that do not share localities

with already placed replicas are ranked higher.

Zone configurations grant users fine-grained control over their

data. The syntax is burdensome, however, when translating higher

level requirements (e.g., łthe table must survive whole region fail-

uresž, or łthe database must be able to serve stale reads locally in

any of its regionsž) into low-level configuration primitives.

3.3 Automatic zone configurations

Table localities described in Section 2 are automatically translated

into zone configurations that dictate data placement. REGIONAL BY

TABLE and GLOBAL tables are assigned one zone configuration per

table, and REGIONAL BY ROW tables have one zone configuration

per partition (i.e., per region). The specific configuration depends

on the home region and survivability goal.

3.3.1 Home region. We define the home region of a table or parti-

tion to be the region where all leaseholders of its Ranges are placed.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2315

For GLOBAL tables, this is the PRIMARY region of the database, while

for REGIONAL BY TABLE and REGIONAL BY ROW, it matches the

region of the table or row, respectively. The home region informs

leaseholder and voter placement; the number of voters in the home

region varies based on the survivability goal.

3.3.2 Zone survivability. Databases configured to survive zone

failures are automatically set up to have 3 voting replicas for every

Range, all in the home region. Within the region, CRDB ensures

that replicas are spread across availability zones. Since all voting

replicas are constrained to the home region, achieving consensus

on writes does not require crossing region boundaries.

To support low-latency reads from other regions, one non-voting

replica is placed in each non-home region. A database with 𝑁 re-

gions configured with ZONE survivability will have 3 voting replicas

and (𝑁 − 1) non-voting replicas.

3.3.3 Region survivability. Databases can only be configured to

survive a region failure if they contain at least 3 regions. With

REGION survivability, we use 5 voters with 2 in the home region.

This ensures that the home region has two possible candidates

for the leaseholder, which allows for fast reads from within the

home region with minimal disruption even if one node fails. A

database with 𝑁 regions configured with REGION survivability will

have𝑚𝑎𝑥 (2 + (𝑁 − 1), 𝑛𝑢𝑚_𝑣𝑜𝑡𝑒𝑟𝑠) replicas with at least 1 replica

in each region to ensure stale reads can be served from all regions.

3.3.4 Placement Restricted. ZONE survival databases can option-

ally be configured using the PLACEMENT RESTRICTED modifier to

support data domiciling requirements, such as those required by

GDPR [54]. When configured, no replicas (voting or non-voting)

belonging to REGIONAL BY TABLE or REGIONAL BY ROW tables are

placed outside the home region. As a result, reads (stale or other-

wise) cannot be served locally from regions other than the home

region. PLACEMENT RESTRICTED does not affect GLOBAL tables and

cannot be configured in conjunction with REGION survivability. The

lack of REGION survivability with PLACEMENT RESTRICTED is the

main restriction around its use, and can only be overcome by direct

user modification of the underlying zone configurations.

4 LOCALITY-AWARE SQL OPTIMIZATION

Effective use of REGIONAL BY ROW tables requires an awareness of

regions during query planning to avoid cross-region latencies. This

section describes how the SQL optimizer accounts for locality dur-

ing planning and also supports enforcing global unique constraints.

4.1 Enforcing Unique Constraints

Nearly all databases rely on indexes to enforce unique constraints

instead of performing expensive full table scans. Therefore, parti-

tioned databases can usually only enforce uniqueness at the parti-

tion level. This may be unacceptable for an application; in the movr

example (see Fig. 1), they relied on the database enforcing global

uniqueness of email. Forgoing partitioning, even if only for the

unique column, is also undesirable since it would hamper perfor-

mance and might not be compatible with domiciling requirements.

In REGIONAL BY ROW tables, indexes are implicitly partitioned

by region, but CRDB can enforce globally unique constraints that

do not include the partitioning column. This is achieved with con-

straint checks that run after an INSERT or UPDATE statement as

part of the same transaction. To perform the checks, the optimizer

uses an efficient join algorithm executing one point lookup in the

partitioned unique index for each region containing data. To avoid

incurring cross-region latencies, the optimizer omits these checks

whenever it is safe to do so. Users can also help in several ways:

(1) Use a UUID type for the unique column and let the system

generate values with DEFAULT gen_random_uuid(). Since the

probability of UUID collisions with this function is negligible,

no uniqueness checks are performed by default (they can still

be enabled with a cluster setting).

(2) Explicitly include crdb_region in the uniqueness constraint

definition. This is the best approach if an application only

requires uniqueness for a column per region. For example,

UNIQUE (crdb_region, col) creates an explicitly partitioned

unique index, guaranteeing that col is unique per region.

(3) Define crdb_region as a computed column dependent on the

unique column(s). In this way, the relevant unique columns

become part of the partitioning scheme, and hence uniqueness

within a partition implies global uniqueness [51].

Although enforcing global uniqueness can increase the latency

of some INSERTs and UPDATEs, it allows CRDB to maintain the

integrity of global UNIQUE constraints while keeping all data for a

given row in a single region. As we describe next, it also enables

querying a unique index with region-local latency.

4.2 Locality Optimized Search

Locality Optimized Search (LOS) is an optimization that is possible

when a user is searching for a row that is known to be unique, but its

specific location is unknown. For example, SELECT * FROM users

WHERE email = ‘some-email’ does not specify the region where

‘some-email’ is located, but it is guaranteed to return at most one

row since email is known to be unique. CRDB takes advantage

of this fact by searching for the row in the local region first. If

the row is found, there is no need to fan out to remote regions,

since no more rows will be returned. Assuming data is generally

accessed from the same region where it was originally inserted (or

later rehomed to), this strategy can result in low latency for many

queries, including both SELECTs and UPDATEs.

LOS can be generalized to any finite number of rows as long

as the maximum number is known. This is useful when there is a

LIMIT clause or the WHERE condition uses an IN expression with a

unique column rather than an equality expression. LOS can also

be used for joins in which rows from the left side of the join are

used to look up into a partitioned index on the right side. If the

maximum number of results for each lookup is known, the join

may be able to avoid visiting remote nodes.

In upcoming releases, we plan to further improve the locality

awareness of the optimizer and make better cost-based decisions

about when to apply these optimizations. For example, we may be

able to make use of foreign-key relationships between REGIONAL

BY ROW tables and GLOBAL tables to infer a query’s target region and

avoid visiting other regions [23]. To better inform the optimizer’s

cost model, we plan to use the measured latency between regions.

To our knowledge, CRDB is the only DBMS available today that

natively supports global UNIQUE constraints over partitioned tables

that exclude the partitioning column(s). Thus, it is also the only

DBMS that can leverage these constraints for query optimization.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2316

5 LOW-LATENCY STALE READS

To support low-latency reads from all regions, we enhanced CRDB’s

replication layer. Building on the already-supported follower reads

functionality (Section 5.1), we added support for non-voting replicas

(Section 5.2) and new forms of stale reads (Section 5.3).

5.1 Background: Follower reads

As reviewed in Section 3.1, the leaseholder of a Range is the only

replica allowed to serve up-to-date reads andwrites. Non-leaseholder

replicas can serve read-only queries on a sufficiently old MVCC

snapshot. These operations, called follower reads, were previously

introduced in [60, Section 3.5]; this section expands on them.

Follower reads provide two benefits. First, they reduce latency

for reads of data from geographical locations that are distant from

that data’s leaseholder but near one of its follower replicas. Second,

they balance read traffic across the replicas. Follower reads are used

for explicitly requested stale reads (Section 5.3), for long-running

transactions, and for global transactions (Section 6).

CRDB is a serializable timestamp-based MVCC system, so a

read with timestamp 𝑇 needs to reflect all overlapping writes with

timestamps 𝑇 ′ ≤ 𝑇 . Therefore, a non-leaseholder replica (i.e. a

follower) can perform a read at a given timestamp 𝑇 iff:

(1) No future writes can invalidate the read retroactively. The fol-

lower needs a guarantee that no new writes will be committed

to the Range at MVCC timestamps 𝑇 ′ ≤ 𝑇 .

(2) It has all the data necessary to serve the read. The follower

needs to have applied the prefix of the Raft log that can contain

writes at MVCC timestamps 𝑇 ′ ≤ 𝑇 .

CRDB transactions are assigned a read timestamp and a write

timestamp (a provisional commit timestamp) when they start. A

transaction’s read timestamp identifies the MVCC snapshot that the

transaction will read. The provisional commit timestamp dictates

the MVCC timestamps of values written by the transaction, thus

controlling which other reading transactions will observe those

values. A transaction can run for an arbitrarily long time, so its

provisional commit timestamp can get arbitrarily old unless the

transaction encounters conflicts with other readers, writers, or with

closed timestamps (see below). Non-conflicting transactions can

commit out of timestamp order. Thus, to ensure condition 1) above,

a mechanism is needed to prevent a (follower) read at timestamp 𝑇

from being invalidated by a future write at a timestamp 𝑇 ′ ≤ 𝑇 .

5.1.1 Closed timestamps. The two conditions are ensured through

the closed timestamps mechanism. A closed timestamp is a promise

made by the leaseholder that it will not accept new writes at or

below that MVCC timestamp (thus łclosingž it). These promises

are serialized into the Range’s replication stream by piggy-backing

onto Raft commands. When a follower applies a command carry-

ing a closed timestamp 𝑇 , it knows that there will not be further

commands writing at or below 𝑇 . Going forward, the follower can

start serving follower reads for timestamps ≤ 𝑇 .

Closed timestamps are tracked independently by each Range. By

default, leaseholders close timestamps that are 3 seconds old. This

is recent enough to facilitate follower reads with minimal staleness

but not so recent so as to interact with most read-write transactions.

Since newwrites below a closed timestamp are not allowed, long-

running read-write transactions (i.e. transactions that have been

running for long enough that their provisional commit timestamp

has been closed by some Ranges they are writing to by the time

those writes are served by their respective leaseholder) are forced

to increase their provisional commit timestamp, which necessitates

a Read Refresh ([60, Section 3.4]) on commit. However, provisional

writes that have already been evaluated by a Range before that

Range closes a timestamp are unaffected by the closing, even if

their provisional timestamps are below the closing timestamp. This

allows long-running transaction to commit without validating prior

writes, but this also means that a closed timestamp does not guar-

antee that no intent value (and thus also exclusive lock) exists at

lower MVCC timestamps. As a result, while reading at a timestamp

below the closed timestamp, a follower might run into an exclusive

lock. If this happens, the read blocks while it is redirected to the

leaseholder to engage in conflict resolution. As such, the condition

for a read 𝑟 to be served on a follower is that 𝑟 ’s timestamp 𝑇𝑟 is

≤ 𝑇𝑐𝑙𝑜𝑠𝑒𝑑 and is < 𝑇𝑖𝑛𝑡𝑒𝑛𝑡 for any intent stored on a key read by 𝑟 .

5.2 Non-voting replicas

The ability to serve low-latency reads from follower replicas in a

Range provides a strong motivation to spread the replicas as wide as

possible. However, spreading replicas across many distant regions

has a cost in terms of consensus latency, as a majority of the replicas

are required to vote on each write to the Range.

To decouple read and write latency, CRDB recently introduced

the concept of non-voting replicas. These replicas receive Raft log

entries (and thus also closed timestamps) and can serve follower

reads. They do not, however, vote in consensus decisions and hence

do not impact write latency. For tables in multi-region databases,

CRDB places a voting or non-voting replica in every region so that

clients in all regions can benefit from low-latency follower reads.

5.3 Stale reads

A long-running transaction leverages follower reads when its times-

tamp becomes older than the closed timestamps of ranges it reads

from. CRDB also lets clients directly invoke stale, read-only trans-

actions. Such transactions come in two forms, configured through

a special AS OF SYSTEM TIME query modifier: exact staleness and

bounded staleness. Stale reads operate on a stale MVCC snapshot,

corresponding to the read timestamp. The snapshot reflects a prefix

of updates and is transactionally-consistent (includes all of a trans-

action’s writes or none of them). Conceptually, these transactions

are ordered (w.r.t. other transactions) based on their timestamp.

Unlike normal transactions, stale reads do not use uncertainty in-

tervals (see Section 6.1) and thus their timestamp cannot change.

5.3.1 Background: Exact staleness reads. Exact staleness reads were

introduced previously in [60, Section 3.5]. They accept a static,

user-specified read timestamp. The transaction will read an MVCC

snapshot corresponding to that exact timestamp. For example:

SELECT * FROM t AS OF SYSTEM TIME '2021-01-02 03:04:05'

SELECT * FROM t AS OF SYSTEM TIME '-30s'

If the requested timestamp is old enough, i.e., below the Range’s

closed timestamp and below the timestamp of any conflicting in-

tents, the read can be served from a follower replica. Otherwise, the

query is redirected to the leaseholder. In the future, we might ex-

plore an adaptive approach where we attempt to wait locally before

communicating with the leaseholder, especially across regions.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2317

5.3.2 Bounded staleness reads. Bounded staleness reads are a fea-

ture introduced recently. They use a dynamic, system-determined

timestamp, subject to a user-provided staleness bound. Compared

to exact staleness reads, the flexibility to choose the timestamp

dynamically increases the chance that the query is served by a

nearby replica without blocking and with minimal staleness. As a

result, bounded staleness reads can improve read availability and

provide more reliable latency. For example:

SELECT * FROM t AS OF SYSTEM TIME

with_min_timestamp('2021-01-02 03:04:05')

SELECT * FROM t AS OF SYSTEM TIME with_max_staleness('30s')

In exchange for this dynamism, bounded staleness reads are

marginally more expensive than exact staleness reads. The imple-

mentation of bounded staleness reads involves an extra timestamp

negotiation phase, where the system is given a read set and deter-

mines the highest timestamp at which these keys can be served

by nearby replicas without blocking. As described in Section 5.1.1,

intents can exist below the closed timestamp, so this negotiation

involves taking the minimum of the closed timestamps and the

timestamps of any conflicting intents across the touched Ranges. If

this calculation yields a timestamp that is below the query’s stal-

eness bound, the transaction either is routed to the leaseholder,

using the staleness bound as a read timestamp, or returns an error

(depending on a user-specified parameter).

6 GLOBAL TRANSACTIONS

GLOBAL tables are meant for read-heavy data replicated across mul-

tiple regions, with little or no locality of access. To minimize cross-

region communication and coordination, GLOBAL tables leverage

time delays rather than communication to resolve conflicts between

readers and any concurrent writers, and enable strongly-consistent

low-latency reads that can be served locally by any replica.

To achieve this, GLOBAL tables rely on a novel transaction man-

agement protocol we call global transactions. Intuitively, these trans-

actions łwrite into the futurež by scheduling their writes to take

effect at a future timestamp, as well as generate future-time closed

timestamps (see Section 5.1.1). This scheduled time is chosen such

that by the time it becomes łpresent-timež, the transaction has likely

released its locks, replication has propagated the updated data, and

present hybrid logical clock (HLC) time is already closed on all

replicas. This allows any replica, not just the leaseholder, to serve

present-time reads locally using a regular transaction timestamp.

Such strongly-consistent reads can execute as part of read-only or

read-write transactions, and do not usually block on writers’ locks.

The price for these globally fast consistent reads is that transactions

that write to GLOBAL tables have increased commit latency.

6.1 Background: Uncertainty Intervals

CRDB guarantees serializability for transactions and linearizabil-

ity for reads and writes at the level of a single key. Linearizability

ensures that operations appear to take place in some total order con-

sistent with their real-time order. In other words, a read operation 𝑟 ,

invoked after a write𝑤 (on the same key) completes, observes the

value written by𝑤 or newer. To achieve this, CRDB relies on loose

clock synchronization and the concept of an uncertainty interval Ð

a time window following a read’s timestamp within which the read-

ing transaction cannot make real-time ordering guarantees. The

duration of uncertainty intervals is configured as the maximum

tolerated clock skew between any two nodes, max_clock_offset.

When reading from a leaseholder, a reader that encounters a provi-

sional or committed write to the same key within its uncertainty

interval is forced to ratchet up its timestamp and perform an un-

certainty refresh ś checking whether the values previously read by

the transaction remain unchanged at the newer timestamp. If the

values have changed, the reader must restart; in any case, the upper

bound of the uncertainty interval does not change.

Uncertainty intervals ensure that the relative order of times-

tamps used by conflicting transactions that touch the same keys

respects real-time order. Leaseholders use these timestamps to en-

force serializability by blocking reads on the completion of writes

to the same key with a timestamp equal to or lower than the read.

Leaseholders also advance the timestamp of writes above the times-

tamp of any previously served reads or refreshes on the same key,

preventing writes from invalidating a read’s result after it completes.

More details can be found in [60, Section 3.3].

6.2 Future-time transactions

Normal transactions in CRDB start with a timestamp assigned from

the transaction coordinator’s HLC. As the transaction proceeds this

timestamp may be ratcheted up, but never exceeds present time by

more than max_clock_offset. To serve strongly-consistent reads

from non-leaseholder replicas, CRDB now also supports future-time

transactions. To our knowledge, it is the first DBMS to do so.

Future-time writes are initially invisible to present-time readers.

To preserve linearizability (and read your writes) the coordinator

delays completion of a write operation (i.e., its acknowledgement to

the client) until its HLC advances beyond the transaction’s commit

timestamp. At that point, no other clock in the system lags the

commit timestamp by more than the maximum tolerated clock

skew, hence every new read is guaranteed to observe the write

through the uncertainly interval mechanism described above. This

period of time, called commit wait, is a variation of a similarly-

named stage present in Google Spanner [28, Section 4.1.3]. Unlike

in Spanner, the transaction coordinator does not wait for all other

clocks to advance beyond the commit timestamp, only for its local

clock to do so. CRDB performs this wait concurrently with releasing

locks, instead of holding locks for the duration of the commit wait

as in Spanner’s case. This is key to minimizing the amount of time

a lock can be observed by a reader and cause it to block.

Because present-time is closed on GLOBAL tables, in the absence

of conflicting writes, present-time reads can be served immediately

by any replica. In cases of contention on the same key, however, the

uncertainty interval rules apply: a read operation 𝑟 encountering a

write𝑤 (to the same key) with a higher timestamp but within 𝑟 ’s

uncertainty interval must observe the written value by bumping its

read timestamp to𝑤 ’s timestamp and performing an uncertainty

refresh. However, unlike with present-time writes, the existence of

a future-time write 𝑤 does not guarantee that all other clocks in

the system are within max_clock_offset from𝑤 ’s timestamp. As

a result, if the system were to allow 𝑟 to observe the value written

by𝑤 and immediately complete, a subsequent read 𝑟 ′ performed

on a node with a slower clock may fail to observe𝑤 in violation of

linearizability (in any total order of operations,𝑤 appears before 𝑟

since 𝑟 returns its written value, and 𝑟 appears before 𝑟 ′ because of

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2318

non-blocking duration

commit wait

commit wait

UPDATE global_table ...;

SELECT ... FROM
global_table;

SELECT ... FROM
global_table;

async replication &
closed timestamp

Reader client

Reader gateway

Follower
3

1

2

4

Leaseholder

Writer gateway

Writer client

uncertainty window

commit timestamp

uncertainty window

Figure 2: A global transaction (top) and two consistent (non-stale)

follower reads (bottom). Time advances from left to right.

real-time order, but 𝑟 ′ fails to observe𝑤). The solution is similar to

that of writes ś if𝑤 was written with a future timestamp, 𝑟 must

not only perform an uncertainty refresh using𝑤 ’s timestamp, but

must also commit wait before completing, until the local HLC of 𝑟 ’s

transaction coordinator advances beyond𝑤 ’s commit timestamp.

This ensures that when 𝑟 completes, all observed values are within

the uncertainty interval of every node in the system, and any newly

invoked read is also guaranteed to observe them.

The delay length for a reader of a GLOBAL table encountering

conflicting writes depends on whether the writes are committed. If

a writing transaction has run for long enough that its locks are still

held at the local replica by the time the writes enter the reader’s

uncertainty window, then the reader blocks on its locks. However,

if the writing transaction has already committed and its locks have

been removed (the expected common case), the reader is delayed

by at most max_clock_offset due to the commit wait described

above. Using modern clock synchronization techniques [1, 31, 40],

max_clock_offset can be driven well below cross-region network

latency. In contrast, approaches to negotiate the atomic visibility

of writes and to provide linearizable reads that are locking-based

[20, 60], leasing-based [14, 47], or invalidation-based [34, 35] use

communication to coordinate between reads and writes, leading to

high read tail latency in the presence of read/write contention.

Fig. 2 depicts the typical flow of a global transaction and its in-

teraction with present-time follower reads. A writing client (on the

top) communicates with a transaction coordinator (gateway) which,

in turn, communicates with the leaseholder of the relevant Range

(1). The write is assigned a future MVCC timestamp and replicates

to all replicas. The commit is only acknowledged to the client after

commit wait, i.e., when the write’s timestamp has become łcurrentž

w.r.t. the coordinator’s local clock (2). A reading client (on the bot-

tom) performs two reads, in two different transactions. They are

both served by a nearby follower replica. The first read runs quickly

and doesn’t see the recently-written value because its timestamp is

below the write timestamp (3). The timestamp of the second read is

also lower than the write’s, but this time the write falls within the

reader’s uncertainty window and forces the reader to observe the

value. The read bumps its timestamp (which now becomes a future

timestamp), performs an uncertainty restart and then commit waits

until the timestamp becomes current at its coordinator (4).

6.2.1 Closing timestamps in the future. To enable strongly-consistent

present-time reads from any follower, the leaseholder must close

time far enough in the future that when the closed timestamp notifi-

cation propagates to all follower replicas, the timestamp should still

be ahead of present time. Consequently, this propagation latency is

factored into the chosen closed timestamp, and can be estimated as

the sum of Raft consensus latency, 𝐿𝑟𝑎𝑓 𝑡 , and Raft full replication

latency, 𝐿𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 . The former accounts for the time it takes a Raft

group to vote and achieve consensus on a new log entry, typically 1

RTT to the nearest quorum of voting replicas from the leaseholder.

This RTT depends on the survivability goal and is typically in the

range of 2−5𝑚𝑠 for ZONE survival and 20−30𝑚𝑠 for REGION survival.

𝐿𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 accounts for the time it takes a committed log entry to

reach all members of the Raft group, and is roughly equivalent to the

one-way delay between the leaseholder of a Range and its furthest

follower. In a multi-region cluster, this is typically 100 − 125𝑚𝑠 .

In order to serve strongly-consistent reads and commit wait only

when a conflicting write is observed within a read’s uncertainty

interval, all timestamps within the interval should be closed; this

ensures that no new writes can appear within the interval. Hence,

the size of uncertainty intervals must also be factored in. Added

together, a leaseholder must close time at least 𝐿𝑟𝑎𝑓 𝑡 + 𝐿𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 +

max_clock_offset in the future. Note that this duration directly

impacts a writer’s potential commit wait time, but does not affect

commit wait duration for readers, which is always capped at max_-

clock_offset, the size of the reader’s uncertainty interval.

While this provides a good estimate, replication and processing

delays occasionally occur. If a read’s uncertainty interval is not

fully closed, the read is redirected to the leaseholder. We intend to

make this policy adaptive, so that the read could choose to wait for

a sufficiently large closed timestamp to reach the local replica.

Finally, we explain how CRDB assigns a timestamp to global

transactions. Initially, the timestamp is assigned by the transaction

coordinator. Each Range in CRDB maintains a closed timestamp

target, calculated based on the estimate described above if it is

part of a GLOBAL table. When a write is sent to the leaseholder

of a Range, the transaction’s timestamp is advanced immediately

past the closed timestamp target of the Range. The target is then

attached to the write’s log entry as the next closed timestamp. The

adjusted timestamp is passed back to the transaction coordinator.

If multiple Ranges are involved, the final commit timestamp will

be the maximum returned timestamp, across all Ranges. If the com-

mit timestamp is bumped during the transaction’s lifetime, global

transactions use the usual CRDB mechanism of refreshing their

read sets. Conflicts between global transactions are also handled

using the regular CRDB blocking mechanisms.

6.2.2 Write and Read Availability. Committing global transactions

requires a quorum of voting replicas to be available. Strongly-

consistent read availability depends on the replica serving the read

being in regular communication with the leaseholder, which in turn

must be connected to a quorum of voting replicas to publish closed

timestamps. Partitioned replicas may still serve stale reads.

6.2.3 Behavior under clock skew. The single-key linearizability

property of global transactions relies on clocks in the cluster being

synchronized within max_clock_offset, the size of transaction un-

certainty intervals. If a node’s clock is slow enough, the timestamp

of a previously-committed write could be outside the uncertainty

interval of a read transaction coordinated by this node, allowing

for a stale read. This is possible with any transaction in CRDB (see

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2319

1

10

100

1000

Reads from
primary region

Reads from non
primary region

Writes from
primary region

Writes from non
primary region

L
at

en
cy

 (
m

s)

Global Regional (Latest) Regional (Stale)

Figure 3: Transaction latency for REGIONAL and GLOBAL tables.

UE UW EW AN AS

us-east1 - 63 87 155 198

us-west1 - 132 90 156

europe-west2 - 222 274

asia-northeast1 - 113

australia-southeast1 -

Table 1: Inter-region round-trip times in milliseconds [11].

[60, section 4.3]). Similarly to other kinds of transactions, isola-

tion does not rely on clock synchronization, and therefore CRDB’s

serializability guarantees are not impacted by clock skew.

7 EVALUATION

This section evaluates the multi-region capabilities of CRDB. We

first quantify the tradeoffs between REGIONAL and GLOBAL tables.

Then we perform a deeper dive into the performance of REGIONAL

BY ROW and GLOBAL tables, as most of the novel technical contribu-

tions are in support of those table types. We also test the scalability

of the system with increasing numbers of regions, and evaluate the

ease of use of the new SQL constructs. All experiments are run on

Google Cloud Platform (GCP) [32] and use ZONE survivability.

7.1 Tradeoffs between REGIONAL and GLOBAL

To quantify the performance tradeoffs for REGIONAL and GLOBAL

tables, we consider the following types of transactions:

(1) Global: fresh reads and writes in a GLOBAL table

(2) Regional (Latest): fresh reads and writes in a REGIONAL table

(3) Regional (Stale): reads in a REGIONAL tablew/ bounded-staleness

We use max_clock_offset 250𝑚𝑠 , the default value currently

used in CRDB Dedicated [22]. The REGIONAL table uses locality

REGIONAL BY TABLE IN PRIMARY REGION.

7.1.1 The Workload. We run a CRDB cluster with nodes located

in 5 regions. Each region hosts 3 CRDB nodes and 10 clients, which

are all run on GCP n2-standard-4 instances. The round-trip times

between regions are summarized in Table 1. We use the YCSB-

A [27] benchmark with 1:1 ratio of reads to writes. Each client

performs single-key reads and writes with keys drawn from a Zipf

distribution. All five regions are added to the database and us-east is

designated as PRIMARY, which holds leaseholders for the REGIONAL

BY TABLE and GLOBAL tables. Each table is populated with 100k keys.

Finally, each client sends 50k queries to a collocated CRDB node in

a closed loop, for a total of 2.5 million requests per experiment.

7.1.2 Results. Fig. 3 shows the latency of each transaction type

when requests originate from the PRIMARY region, where all lease-

holders are located, as well as when requests originate from a

non-PRIMARY region. Boxes represent the interquartile range (𝐼𝑄𝑅),

and whiskers are length 1.5 ∗ 𝐼𝑄𝑅. As can be seen, GLOBAL tables

enable fast reads (< 3𝑚𝑠) from anywhere, at the expense of slower

writes (500− 600𝑚𝑠). REGIONAL tables support fast reads and writes

(< 3𝑚𝑠) from the leaseholder’s local region, at the expense of slower

remote reads and writes (100 − 200𝑚𝑠). If stale reads are acceptable,

remote reads of REGIONAL tables can be served in < 3𝑚𝑠 .

7.2 Performance of REGIONAL BY ROW

To evaluate REGIONAL BY ROW tables, we use nine n1-standard-4

GCP instances deployed across three regions (us-east1, europe-

west2, and asia-northeast1), running YCSB-B (95% reads, 5% up-

dates) or YCSB-D (95% reads, 5% inserts) with a uniform key dis-

tribution for 10 minutes. We configure clients with a łlocality of

accessž value, corresponding to the percentage of operations ac-

cessing rows that were originally homed in the client’s local region.

In other systems [19, 39, 46, 50, 60, 61] (including legacy CRDB),

optimizing tables with locality of access entails manual partition-

ing ś an inflexible scheme potentially requiring both schema and

application modifications. Since the manual partitioning method

uses the primary key to derive the partition, it results in predictable

performance and can serve as our baseline (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒).

7.2.1 Region-Aware Optimizations. We evaluate the utility of lo-

cality optimized search (LOS) and auto-rehoming for REGIONAL BY

ROW tables with three variants:

(1) 𝑈𝑛𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 : without LOS or auto-rehoming

(2) 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 : with LOS but no auto-rehoming

(3) 𝑅𝑒ℎ𝑜𝑚𝑖𝑛𝑔: with both LOS and auto-rehoming

Fig. 4a captures a YCSB-B workload with 95% and 50% locality

of access, with clients accessing a disjoint set of keys. YCSB-B

only performs updates to non-key columns, so there’s no need for

uniqueness checks. Since 𝑈𝑛𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 does not use LOS, it fans

out to all regions on every operation (read or write), exhibiting high

latencies (150-200ms). 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 maintains local latencies for both

reads and writes, using LOS to avoid region hops until necessary. It

is only slightly slower than 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 which can skip the local search

step for remote accesses. The uncontended access lets 𝑅𝑒ℎ𝑜𝑚𝑖𝑛𝑔

re-home all remote rows into the local region, effectively staying

in the local latency regime.

7.2.2 Uniqueness constraint checks. Section 4.1 describes howunique-

ness constraint checks can be omitted if crdb_region is computed

from the unique columns. This helps avoid an additional region

hop for INSERTs or UPDATEs to the primary key. We demonstrate

this in Fig. 4b running YCSB-D per region with 100% access locality.

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 computes crdb_region from the primary key (making

it part of of the partitioning scheme), 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 defaults crdb_re-

gion to the region where the INSERT originated, and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is

a manually partitioned table. We observe local latency INSERTs

for 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 since it avoids uniqueness constraint checks, unlike

𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 (the three spikes correspond to the three pairwise inter-

region RTTs). 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 is identical to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 but with better

ergonomics (no schema/application changes needed) ś an ideal

option when the region can be inferred from existing columns.

7.2.3 Performance with contention. To evaluate automatic rehom-

ing under contention, we run YCSB-B from all regions with 50%

locality of access with all remote accesses targeting a shared range

of keys. We vary the number of contending clients (𝑐 = {1, 2, 3}),

and compare against 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 where data is not re-homed.

Fig. 4c shows the results. When uncontended (𝑅𝑒ℎ𝑜𝑚𝑖𝑛𝑔𝑐=1), we

see a single local latency band for reads and writes as all remote

data is re-homed to the client’s region. With increased contention

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2320

(a) Locality optimized search and automatic rehoming
with different access localities.

(b) Impact of uniqueness constraint checks
and computed regions.

(c) Latency profiles of auto-rehoming under contention

Figure 4: Violin plots [48] for the latency distr. of reads (SELECT) and writes (UPDATE in (a) and (c), INSERT in (b)). The left

and right half of each plot corresponds to reads and writes respectively; lower and upper halves to local and remote accesses.

(𝑅𝑒ℎ𝑜𝑚𝑖𝑛𝑔𝑐={2,3}), the remote data is less likely to be homed in the

local region, causing thrashing. At the limit we approach 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 ,

where remote data accesses always cross a region boundary.

7.3 Performance of GLOBAL Tables

To evaluate the performance of GLOBAL tables, we use the same

workload described in Section 7.1.1, but we also test deployments

of CRDB configured with different values for max_clock_offset

(the maximum tolerated HLC clock skew between nodes) in order

to explore its effect on the latency of global transactions. We test

the following values of max_clock_offset:

(1) 250ms: CRDB Dedicated’s current default (See Section 7.1)

(2) 50ms: CRDB Dedicated’s potential default in the future

(3) 10ms: possible with custom hardware like Spanner’s [28]
7.3.1 Baselines. Our primary baseline is Duplicate Indexes [38],

CRDB’s previous approach for low-latency consistent reads from

all regions. This method creates a separate secondary index per

region containing every column. One replica of each index is pinned

to its designated region as the leaseholder, and reads in each region

are served using the local index. This approach is similar to the one

used by Megastore [14] and Quorum Leases [47].

We also include the Regional (Latest) and Regional (Stale) experi-

ments from Section 7.1 as additional baselines for reference.
7.3.2 Results. The cumulative distribution of latencies is presented

in Fig. 5. Results are separate for reads and writes, and each result

is presented twice, first with a focus on the full latency distribution

and second with a focus on tail latency.
Read performance. Below the 90%-ile, read latencies are low (<

3𝑚𝑠) for all configurations with the exception of Regional (Latest),

for which all reads must be routed to the leaseholder, so 80% of

reads are remote and we see a step in latency at each quintile (one

per region). Low latencies are expected for the other configurations,

as the skewed distribution of the workload enables most reads to

avoid contention, thus allowing replicas to serve reads locally.

In the tail, read latencies diverge. The Regional (Stale) configura-

tion provides reliable tail latency (< 5𝑚𝑠) because stale reads are

served locally. Reads on GLOBAL tables incur a penalty as they begin

to observe read-write contention and require a commit wait. With

bigger max_clock_offset, reads have bigger uncertainty intervals,

so a bigger fraction observe writes in their uncertainty intervals and

must commit wait. The duration of the wait can also increase since

it is bounded by max_clock_offset. Reads on duplicate indexes

also incur a penalty when read-write contention occurs. In this case,

0.00

0.25

0.50

0.75

1.00

1 10 100 1000
Read Latency (ms)

C
D

F
0.00

0.25

0.50

0.75

1.00

10 100 1000 10000
Write Latency (ms)

C
D

F

0.000

0.900

0.990

0.999

1 10 100 1000
Read Tail Latency (ms)

C
D

F

0.000

0.900

0.990

0.999

10 100 1000 10000
Write Tail Latency (ms)

C
D

F
Global (10ms)
Global (50ms)

Global (250ms)
Duplicate Indexes

Regional (Latest)
Regional (Stale)

Figure 5: CDFs of reads and write latencies with different

schema configurations, with stale reads as a baseline. Global

tables are shown with three settings for max_clock_offset.

contention materializes as reads waiting on conflicting write trans-

actions to complete their atomic commit protocol across regions.

This reliance of duplicate indexes on WAN communication to guar-

antee consistency leads to unbounded tail read latency. In contrast,

GLOBAL tables rely on clock synchronization for consistency, and

therefore read latency is bounded by max_clock_offset.

Write performance. Write latency varies significantly between

configurations. REGIONAL performs the best, with a step in latency

at each quintile, and the first 20% benefiting from region-local

latency. Write latency for GLOBAL tables is higher (250 − 600𝑚𝑠 ,

depending on max_clock_offset), as writes perform commit wait.

With duplicate indexes, all writes are routed to the primary in-

dex leaseholder, then fanned out to the secondary indexes in each

region. In the common case (below the 90%-ile), these multiple

WAN hops lead to a similar write latency to that of GLOBAL tables

(200 − 500𝑚𝑠). In the tail, however, latency for writes to duplicate

indexes spikes to more than 10 seconds. This is because transac-

tions must wait for the slowest index write in the furthest remote

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2321

4996

12533

32621
97.1 97.5 98.3

0

10,000

20,000

30,000

0

20

40

60

80

100

4 10 26
Regions

M
ax

im
u
m

 t
p
m

C

E
fficien

cy

Efficiency Max tpmC

Figure 6: Scalability of multi-region TPC-C

DDL statements required for multi-region operations
movr TPC-C YCSB

Operation Bef. Aft. Bef. Aft. Bef. Aft.

New multi-region schema 28 12 44 18 5 1
Converting single-region schema 28 14 44 20 5 1
Adding a region 15 1 20 1 2 1
Dropping a region 9 1 11 1 2 1

Table 2: DDL statements needed formulti-region schema op-

erations before (Bef.) and after (Aft.) the new syntax

region to complete. Furthermore, in the presence of write-write

contention, contended writes must queue and wait for earlier writes

to complete before proceeding. In contrast, GLOBAL write latency is

bounded by 𝐿𝑟𝑎𝑓 𝑡 + 𝐿𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + max_clock_offset (Section 6.2.1)

and contending writers are able to commit wait concurrently.

7.4 Scalability

We evaluate the scalability of multi-region CRDB by running TPC-

C against a cluster spread across 4, 10 and 26 regions on GCP. Each

region uses 3 n1-standard-4 machines and 100 warehouses. We start

with 4 regions in North America (a cross-continental configuration),

then add 6 in Europe and Asia (a global cluster with only 3 regions

in each continent), and finally employ all but 2 of the 28 GCP

supported regions, limited only by hardware shortages (a global

cluster with the maximum number of regions in each continent).

As shown in Fig. 6 the performance scales linearly as regions

are added to the cluster, staying above 97% efficiency (as defined by

TPC-C) in all configurations. The TPC-C schema was updated to

leverage multi-region abstractions. The items table is configured

to use the GLOBAL table locality as its data is never updated after

the initial import. The remaining eight tables use the REGIONAL BY

ROW locality with region computed from the warehouse ID.

For the 10 region experiment, p50 latencies varied from 27.3𝑚𝑠

to 37.7𝑚𝑠 and p90 latencies from 109.1𝑚𝑠 to 285.2𝑚𝑠 across regions,

showing that requests do not cross regions in the common case (only

the 10% of new-order transactions that access remote warehouses

do so). We also verified that PLACEMENT DEFAULT (with non-voters

in all regions) did not increase latency compared to PLACEMENT

RESTRICTED; p50 latencies for the latter varied from 26.2 − 35.7𝑚𝑠 ,

while p90 latencies varied from 125.8 − 268.4𝑚𝑠 .

7.5 Ease of use

This section shows that it is possible to convert a single-region

application to a high-performingmulti-region application andmake

additional configuration changes with minimal effort.

7.5.1 Converting applications to use multiple regions. We convert

movr [24], the application used as an example in earlier sections,

to a multi-region application across 3 regions. The DDL changes

to do so are captured in Table 2. promo_codes maps to the GLOBAL

configuration, the rest map to REGIONAL BY ROW. To convert the

application to be multi-region, we need 12 DDL statements when

creating a fresh schema (1 CREATE DATABASE, 1 for each of the 6 ta-

bles with the specific LOCALITY, and 5 for computed columns trans-

lating city to a crdb_region enum). Only 2 additional statements

are needed to convert a single-region movr application (regions are

added using ALTER DATABASE ... ADD REGION).

Doing this manually with earlier CRDB versions required 28

statements (for a new schema or to convert an existing one) to

manually specify partitioning, zone configurations, and duplicate

indexes for each table, all to achieve the same functionality. Adding

or dropping a new region with the new syntax requires only a single

statement. Table 2 shows similar results for the TPC-C [25] and

YCSB [52] schema. The reduced syntax makes it less error prone,

all without requiring any DML changes on the application side.

7.5.2 User Feedback. To gain additional insight, we consulted with

users of CRDBwho have adopted the newmulti-region abstractions.

They noted that the abstractions reduced complexity, making oper-

ations easier and making it easier to educate engineers on the team.

Some had tried to build similar abstractions previously at the appli-

cation layer, and appreciated that this was no longer needed. We

have seen adoption from all company sizes (e.g., growth, commer-

cial, enterprise), industries (e.g., finance, insurance, entertainment,

logistics, marketing), and business models (e.g., B2B, B2C).

An example of a real workload that is using these abstractions is

a personalized assistant application that uses CRDB to store global

IoT device and user data. It has three regions across the US and Asia.

Devices stay in their region, and need to write events fast (using

REGIONAL BY ROW with ZONE survival). Meanwhile, users move

around, and need fast reads everywhere (using GLOBAL tables).

One piece of constructive feedback we have received is the need

to support additional data domiciling use cases beyond those sup-

ported by PLACEMENT RESTRICTED. We are continuing to refine our

abstractions in this area. In future releases we plan to allow users to

express more complex failover relationships between regions and

link data to multiple eligible regions. This will enable applications

requiring data domiciling to take advantage of features such as

non-voting replicas and the ability to survive region failures.

7.6 Summary

Section 7.1 confirms that GLOBAL tables are ideal for read-mostly

workloads requiring fast reads from anywhere, while REGIONAL

tables are best when a workload has high locality of access or stale

reads are acceptable. Section 7.2 shows that REGIONAL BY ROW

tables perform as well as or better than the baseline partitioned

tables on SELECT and UPDATE queries thanks to locality optimized

search and auto-rehoming, but may incur cross-region latencies

on INSERTs if enforcing globally unique constraints. Section 7.3

demonstrates that GLOBAL tables and the baseline duplicate indexes

both support low-latency reads at the expense of slower writes,

but tail latency is bounded for GLOBAL tables, with a tighter bound

for smaller max_clock_offsets, while tail latency for duplicate

indexes is unbounded. Section 7.4 demonstrates that throughput

scales linearly as CRDB scales from 4 to 26 regions. Finally, Sec-

tion 7.5 shows that deploying a multi-region CRDB cluster requires

few DDL changes, and describes constructive feedback from users.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2322

8 RELATEDWORK

Geo-distributed consistency. The universal trade-offs between

consistency, availability, and latency in distributed databases are ex-

acerbatedwhen data is distributed geographically [2]. Some systems

[8, 45, 50] optimize for latency by using asynchronous replication

strategies with weak consistency models, at the risk of data cor-

ruption and security vulnerabilities [62]. Reads from local replicas

in Aurora global databases [10] can wait for the replica to catch

up to writes from the same session, however, these reads are not

strongly consistent because they are not guaranteed to see earlier

writes from other sessions [5]. Dynamo [9] and Cosmos [44] al-

low for strongly consistent reads and writes, but only within the

same region. In contrast to the systems mentioned, CRDB provides

strongly consistent reads and writes in all regions by default.

To provide low-latency reads from replicas, other systems such

as PNUTS [26] support stale reads that are consistently ordered but

may not reflect the most up-to-date state of the database. Spanner

[21] supports two types of low-latency, stale reads that can some-

times avoid cross-region communication: bounded staleness reads,

where reads see values that are not more stale than the given bound,

and exact staleness reads, where reads see a version of data at a

specific timestamp in the past. Similar to Spanner, CRDB supports

both bounded and exact staleness reads. While CRDB guarantees

that stale reads observe a consistent prefix of updates, other studies

proposed to make probabilistic consistency guarantees, serving an

operation locally after a wait period that minimizes inconsistencies

with high probability, for example based on the expected rate of

new updates [12] or their replication latency [13].

Other systems take advantage of locality of access to avoid cross-

region communication during reads and writes. FlightTracker [58]

pins data to the region where it is accessed so that quorums are

region-local. SLOG [55] utilizes the locality-of-access of data to

provide strongly-consistent transactions that avoid cross-region

communication, and it dynamically remasters data to different

regions as access patterns change over time. CRDB’s REGIONAL

BY ROW tables allow for low-latency, region-local transactions for

workloads that have locality-based access patterns.

Both Megastore [14] and CRDB’s deprecated duplicate indexes

[60] provide consistent, low-latency reads from all regions at the

cost of higher write latencies and significant write amplification.

Similarly, Citus [20] reference tables provide fast reads in all re-

gions that are consistent thanks to two-phase commits. Moraru et

al. [47] propose Paxos quorum leases which use existing communi-

cation patterns in Paxos-based systems to allow a subset of replicas

(lease holders) to perform low-latency, strongly consistent local

reads. To this end, all lease-holders must be included in every write

quorum and any lease-holder failure stalls writes until the lease

expires. CRDB’s global transactions, which power GLOBAL tables,

allow local consistent reads from any replica, without sacrificing

availability. Writes to GLOBAL tables succeed when any quorum of

voting replicas respond, not just a select subset.

Geo-distributed data placement. The placement of data in geo-

distributed databases is critical to minimize latency, balance load,

and comply with data location regulations. Several automatic data

placement strategies have been proposed with these goals in mind

[4, 7, 18, 29, 41, 43, 53, 56, 57, 63, 65]. Prior work has also sought

to devise data placement strategies that reduce cloud infrastruc-

ture costs [42, 64] and adhere to policy constraints [15, 33]. Other

systems, including previous versions of CRDB, require users to

imperatively configure the placement and type of each replica. The

declarative SQL abstractions presented in this paper allow users to

describe their multi-region needs, letting the system take care of

tedious replica type and placement decisions.

Some systems support user-configured row-level partitioning

where a shard key prefixes each index entry and determines the geo-

graphic placement of data [19, 39, 46, 50, 61]. Another approach is to

deploy multiple instances of a database, each optimized for different

access locality, and defer request routing, data sharding and place-

ment, global schema management and other orchestration to upper

layers of the stack [17, 59]. Usually, these systems forgo cross-shard

transactions, indexes, and global uniqueness constraints, and often

require that applications are aware of the details of the partitioning

scheme to ensure efficient data placement and query execution.

CRDB’s REGIONAL BY ROW tables support application-defined parti-

tioning schemes, but can also implicitly partition tables and indexes

across regions, and automatically place rows where they are ac-

cessed. To our knowledge, CRDB is the first database to support

global uniqueness constraints on row-level partitioned tables.

9 CONCLUSION AND OUTLOOK

This paper described the multi-region abstractions in CRDB that en-

able any developer to build a high performance global application.

To use CRDB’smulti-region abstractions, developers need only spec-

ify regions of operation and expected access patterns per table (and

optionally, domiciling restrictions and availability requirements

under failure). These abstractions are exposed through intuitive

SQL syntax, and supported by advances in the query optimizer

as well as the replication and transaction layers. We showed that

converting a single-region application to multiple regions requires

no application changes and minimal DDL changes. The abstractions

perform better than prior approaches to multi-region support.

The abstractions described in this paper are just the first step

toward truly democratizing multi-region application development.

We envision a future in which users only need to provide their

schema and queries; the database should infer the regions and access

patterns from the workload. Additionally, the cost of operating a

multi-region cluster today is prohibitive for some, as it requires

statically allocating compute and storage resources in multiple

regions. Future solutions must be affordable.

We believe the path forward involves supporting multi-region

applications in a serverless databaseś a pay-as-you-go system in

which users need not concern themselves with the number or lo-

cation of servers needed to serve their workload. We recently in-

troduced a multi-tenant single-region serverless offering [36], and

we are actively working to add multi-region support. Multi-tenant

multi-region serverless will not only make it possible for users to

avoid selecting regions and therefore reduce operational complex-

ity, it will also drastically reduce the cost of operating a multi-region

database due to the ability to share infrastructure costs across users.

Many challenges remain, though, such as how to track access pat-

terns with minimal overhead, and we encourage the research com-

munity to join us in finding solutions. We look forward to working

together to enable the future of multi-region applications.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2323

REFERENCES
[1] [n.d.]. chrony. https://chrony.tuxfamily.org/.
[2] Daniel Abadi. 2012. Consistency tradeoffs in modern distributed database system

design: CAP is only part of the story. Computer 45, 2 (2012), 37ś42.
[3] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast: Adap-

tive dynamic mastering for replicated systems. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1381ś1392.

[4] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. MorphoSys:
Automatic physical design metamorphosis for distributed database systems. Pro-
ceedings of the VLDB Endowment 13, 13 (2020), 3573ś3587.

[5] Steve Abraham. 2020. Building globally distributed MySQL appli-
cations using write forwarding in Amazon Aurora Global Database.
https://aws.amazon.com/blogs/database/building-globally-distributed-mysql-
applications-using-write-forwarding-in-amazon-aurora-global-database/.

[6] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, et al. 2016.
Slicer: Auto-sharding for datacenter applications. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 739ś753.

[7] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and
Habinder Bhogan. 2010. Volley: Automated data placement for geo-distributed
cloud services. (2010).

[8] Amazon. [n.d.]. Amazon RDS Read Replicas | Cloud Relational Database | Amazon
Web Services. https://aws.amazon.com/rds/features/read-replicas/.

[9] Amazon. [n.d.]. Global Tables: How It Works - Amazon DynamoDB.
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
globaltables_HowItWorks.html.

[10] Amazon. [n.d.]. Using Amazon Aurora global databases. https://docs.aws.amazon.
com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html.

[11] ATT Center for Virtualization at Southern Methodist University. 2021. Google
Cloud Inter-region latency and throughput. https://datastudio.google.com/u/0/
reporting/fc733b10-9744-4a72-a502-92290f608571/page/70YCB.

[12] Xiao Bai, Flavio P. Junqueira, and Adam Silberstein. 2013. Cache Refreshing for
Online Social News Feeds. In Proceedings of the 22nd ACM International Conference
on Information Knowledge Management (San Francisco, California, USA) (CIKM
’13). 787ś792.

[13] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. 2012. Probabilistically Bounded Staleness for Practical Partial
Quorums. Proc. VLDB Endow. 5, 8 (2012), 776ś787.

[14] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing scalable, highly available storage for interactive
services. (2011).

[15] Kaustubh Beedkar, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. Compli-
ant Geo-distributed Query Processing. (2021).

[16] BigBitBus. 2018. What is your ping, Google Cloud and Amazon AWS? https://
www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/.

[17] AirBnb Engineering Blog. [n.d.]. How we partitioned Airbnb’s main database
in two weeks. https://medium.com/airbnb-engineering/how-we-partitioned-
airbnb-s-main-database-in-two-weeks-55f7e006ff21.

[18] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2018. Adapting to
Access Locality via Live Data Migration in Globally Distributed Datastores. In
2018 IEEE International Conference on Big Data (Big Data). IEEE, 3321ś3330.

[19] Citus. [n.d.]. Choosing Distribution Column Ð Citus 10.2 Documentation. https:
//docs.citusdata.com/en/v10.2/sharding/data_modeling.html.

[20] Citus. [n.d.]. Concepts Ð Citus 10.2 documentation. https://docs.citusdata.com/
en/v10.2/get_started/concepts.html#type-2-reference-tables.

[21] Google Cloud. [n.d.]. Timestamp bounds | Cloud Spanner | Google Cloud. https:
//cloud.google.com/spanner/docs/timestamp-bounds.

[22] CockroachCloud. [n.d.]. https://www.cockroachlabs.com/product/
cockroachcloud.

[23] CockroachDB. [n.d.]. https://github.com/cockroachdb/cockroach/issues/69617.
[24] CockroachDB. [n.d.]. https://github.com/cockroachdb/cockroach/blob/

4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/movr/movr.go#
L308-L489.

[25] CockroachDB. [n.d.]. https://github.com/cockroachdb/cockroach/blob/
4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/tpcc/tpcc.go#L563-
L720.

[26] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of the
VLDB Endowment 1, 2 (2008), 1277ś1288.

[27] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143ś154.

[28] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (Hollywood, CA, USA) (OSDI’12). USENIXAssociation,
Berkeley, CA, USA, 251ś264. http://dl.acm.org/citation.cfm?id=2387880.2387905

[29] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2010. G-store: a scalable
data store for transactional multi key access in the cloud. In Proceedings of the
1st ACM Symposium on Cloud Computing. ACM, 163ś174.

[30] DataStax Documentation. [n.d.]. Apache Cassandra Lightweight Transactions.
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html.

[31] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2018. Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18). 81ś94.

[32] Google Cloud. 2021. Google Cloud Compute Engine. https://cloud.google.com/
compute.

[33] Sudarshan Kadambi, Jianjun Chen, Brian F Cooper, David Lomax, Raghu Ra-
makrishnan, Adam Silberstein, Erwin Tam, and Hector Garcia-Molina. 2011.
Where in the world is my data? Proceedings of the VLDB Endowment 4, 11 (2011),
1040ś1050.

[34] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. 2020. Hermes: A fast,
fault-tolerant and linearizable replication protocol. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems. 201ś217.

[35] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew
Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. 2021. Zeus: locality-aware distributed transactions. In Proceedings of the
Sixteenth European Conference on Computer Systems. 145ś161.

[36] Andy Kimball. 2021. How we built a forever-free serverless SQL database. (Octo-
ber 2021). https://www.cockroachlabs.com/blog/how-we-built-cockroachdb-
serverless/

[37] Cockroach Labs. [n.d.]. Configure Replication Zones. https://www.cockroachlabs.
com/docs/stable/configure-replication-zones.html.

[38] Cockroach Labs. [n.d.]. Duplicate Indexes Topology. https://www.cockroachlabs.
com/docs/v20.2/topology-duplicate-indexes.

[39] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35ś40.

[40] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild,
Dave Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati, Prashant Chandra,
et al. 2020. Sundial: Fault-tolerant clock synchronization for datacenters. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20). 1171ś1186.

[41] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Zhengkui
Wang. 2016. Towards a non-2pc transaction management in distributed database
systems. In Proceedings of the 2016 International Conference on Management of
Data. 1659ś1674.

[42] Guoxin Liu and Haiying Shen. 2017. Minimum-cost cloud storage service across
multiple cloud providers. IEEE/ACM Transactions on Networking (TON) 25, 4
(2017), 2498ś2513.

[43] Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and Solomon Garber. 2018.
NashDB: an end-to-end economic method for elastic database fragmentation,
replication, and provisioning. In Proceedings of the 2018 International Conference
on Management of Data. 1253ś1267.

[44] Microsoft. 2021. Consistency levels in Azure Cosmos DB | Microsoft
Docs. https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#
strong-consistency-and-multiple-write-regions.

[45] MongoDB. [n.d.]. Replication Ð MongoDB Manual. https://docs.mongodb.com/
manual/replication/.

[46] MongoDB. [n.d.]. Sharding Ð MongoDB Manual. https://docs.mongodb.com/
manual/sharding/.

[47] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2014. Paxos quorum
leases: Fast reads without sacrificing writes. In Proceedings of the ACM Symposium
on Cloud Computing (Seattle, WA, USA) (SOCC ’14). Association for Computing
Machinery, New York, NY, USA, 1ś13. https://doi.org/10.1145/2670979.2671001

[48] National Institute of Standards and Technology DataPlot. 2020. Violin Plot. https:
//www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/violplot.htm.

[49] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14).
305ś319.

[50] Oracle. [n.d.]. Oracle Sharding. https://www.oracle.com/a/tech/docs/sharding-
wp-12c.pdf.

[51] Glenn Norman Paulley. 2001. Exploiting functional dependence in query optimiza-
tion. Citeseer.

[52] Peyton Walters. [n.d.]. https://github.com/pawalt/cockroach/blob/
d838a72967b0a1518ccf7933814b6141960658a7/pkg/workload/ycsb/ycsb.
go#L239-L298.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2324

https://chrony.tuxfamily.org/
https://aws.amazon.com/blogs/database/building-globally-distributed-mysql-applications-using-write-forwarding-in-amazon-aurora-global-database/
https://aws.amazon.com/blogs/database/building-globally-distributed-mysql-applications-using-write-forwarding-in-amazon-aurora-global-database/
https://aws.amazon.com/rds/features/read-replicas/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://datastudio.google.com/u/0/reporting/fc733b10-9744-4a72-a502-92290f608571/page/70YCB
https://datastudio.google.com/u/0/reporting/fc733b10-9744-4a72-a502-92290f608571/page/70YCB
https://www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/
https://www.bigbitbus.com/2018/05/07/What-Is-Your-Ping-AWS-And-Google-Cloud/
https://medium.com/airbnb-engineering/how-we-partitioned-airbnb-s-main-database-in-two-weeks-55f7e006ff21
https://medium.com/airbnb-engineering/how-we-partitioned-airbnb-s-main-database-in-two-weeks-55f7e006ff21
https://docs.citusdata.com/en/v10.2/sharding/data_modeling.html
https://docs.citusdata.com/en/v10.2/sharding/data_modeling.html
https://docs.citusdata.com/en/v10.2/get_started/concepts.html#type-2-reference-tables
https://docs.citusdata.com/en/v10.2/get_started/concepts.html#type-2-reference-tables
https://cloud.google.com/spanner/docs/timestamp-bounds
https://cloud.google.com/spanner/docs/timestamp-bounds
https://www.cockroachlabs.com/product/cockroachcloud
https://www.cockroachlabs.com/product/cockroachcloud
https://github.com/cockroachdb/cockroach/issues/69617
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/movr/movr.go##L308-L489
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/movr/movr.go##L308-L489
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/movr/movr.go##L308-L489
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/tpcc/tpcc.go##L563-L720
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/tpcc/tpcc.go##L563-L720
https://github.com/cockroachdb/cockroach/blob/4021c7342f4ebb794f4176e2d3e10b913e5eeb58/pkg/workload/tpcc/tpcc.go##L563-L720
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html
https://cloud.google.com/compute
https://cloud.google.com/compute
https://www.cockroachlabs.com/blog/how-we-built-cockroachdb-serverless/
https://www.cockroachlabs.com/blog/how-we-built-cockroachdb-serverless/
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://www.cockroachlabs.com/docs/stable/configure-replication-zones.html
https://www.cockroachlabs.com/docs/v20.2/topology-duplicate-indexes
https://www.cockroachlabs.com/docs/v20.2/topology-duplicate-indexes
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#strong-consistency-and-multiple-write-regions
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#strong-consistency-and-multiple-write-regions
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://doi.org/10.1145/2670979.2671001
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/violplot.htm
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/violplot.htm
https://www.oracle.com/a/tech/docs/sharding-wp-12c.pdf
https://www.oracle.com/a/tech/docs/sharding-wp-12c.pdf
https://github.com/pawalt/cockroach/blob/d838a72967b0a1518ccf7933814b6141960658a7/pkg/workload/ycsb/ycsb.go##L239-L298
https://github.com/pawalt/cockroach/blob/d838a72967b0a1518ccf7933814b6141960658a7/pkg/workload/ycsb/ycsb.go##L239-L298
https://github.com/pawalt/cockroach/blob/d838a72967b0a1518ccf7933814b6141960658a7/pkg/workload/ycsb/ycsb.go##L239-L298

[53] Fan Ping, Jeong-Hyon Hwang, XiaoHu Li, Chris McConnell, and Rohini Vab-
balareddy. 2011. Wide area placement of data replicas for fast and highly available
data access. In Proceedings of the fourth international workshop on Data-intensive
distributed computing. ACM, 1ś8.

[54] General Data Protection Regulation. 2016. Regulation EU 2016/679 of the Eu-
ropean Parliament and of the Council of 27 April 2016. Official Journal of the
European Union (2016).

[55] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,
geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019),
1747ś1761.

[56] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-grained adaptive partitioning for
general database schemas. Proceedings of the VLDB Endowment 10, 4 (2016),
445ś456.

[57] Artyom Sharov, Alexander Shraer, Arif Merchant, andMurray Stokely. 2015. Take
me to your leader!: online optimization of distributed storage configurations.
Proceedings of the VLDB Endowment 8, 12 (2015), 1490ś1501.

[58] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig,
John Hugg, and Nathan Bronson. 2020. FlightTracker: Consistency across Read-
Optimized Online Stores at Facebook. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 407ś423.

[59] Alexander Shraer, Alexandre Aybes, Bryan Davis, Christos Chrysafis, Dave
Browning, Eric Krugler, Eric Stone, Harrison Chandler, Jacob Farkas, John
Quinn, Jonathan Ruben, Michael Ford, Mike McMahon, Nathan Williams, Nico-
las Favre-Felix, Nihar Sharma, Ori Herrnstadt, Paul Seligman, Raghav Pisolkar,

Scott Dugas, Scott Gray, Shirley Lu, Sytze Harkema, Valentin Kravtsov, Vanessa
Hong, Wan Ling Yih, and Yizuo Tian. 2018. CloudKit: Structured Storage
for Mobile Applications. Proc. VLDB Endow. 11, 5 (2018), 540ś552. https:
//doi.org/10.1145/3187009.3164138

[60] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493ś1509. https://doi.org/10.1145/3318464.3386134

[61] Vitess. [n.d.]. The Vitess Docs | Sharding. https://vitess.io/docs/reference/
features/sharding/.

[62] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-related attacks
on database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 5ś20.

[63] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. 1997. An adaptive data replication
algorithm. ACM Transactions on Database Systems (TODS) 22, 2 (1997), 255ś314.

[64] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V
Madhyastha. 2013. Spanstore: Cost-effective geo-replicated storage spanning
multiple cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 292ś308.

[65] Victor Zakhary, Faisal Nawab, Divy Agrawal, and Amr El Abbadi. 2018. Global-
Scale Placement of Transactional Data Stores.. In EDBT. 385ś396.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2325

https://doi.org/10.1145/3187009.3164138
https://doi.org/10.1145/3187009.3164138
https://doi.org/10.1145/3318464.3386134
https://vitess.io/docs/reference/features/sharding/
https://vitess.io/docs/reference/features/sharding/

	Abstract
	1 Introduction
	1.1 A Motivating Example

	2 Abstractions and Declarative SQL
	2.1 Region and Zone Management
	2.2 Survivability goals
	2.3 Table Locality Configuration
	2.4 Schema changes
	2.5 A note on usability

	3 Placement Configuration
	3.1 Background: Ranges and replicas
	3.2 Background: Zone configurations
	3.3 Automatic zone configurations

	4 Locality-Aware SQL Optimization
	4.1 Enforcing Unique Constraints
	4.2 Locality Optimized Search

	5 Low-Latency Stale Reads
	5.1 Background: Follower reads
	5.2 Non-voting replicas
	5.3 Stale reads

	6 Global Transactions
	6.1 Background: Uncertainty Intervals
	6.2 Future-time transactions

	7 Evaluation
	7.1 Tradeoffs between REGIONAL and GLOBAL
	7.2 Performance of REGIONAL BY ROW
	7.3 Performance of GLOBAL Tables
	7.4 Scalability
	7.5 Ease of use
	7.6 Summary

	8 Related Work
	9 Conclusion and Outlook
	References

