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ABSTRACT

Due to the rising concerns on privacy protection, how to build
machine learning (ML) models over different data sources with
security guarantees is gaining more popularity. Vertical federated
learning (VFL) describes such a case where ML models are built
upon the private data of different participated parties that own
disjoint features for the same set of instances, which fits many
real-world collaborative tasks. Nevertheless, we find that existing
solutions for VFL either support limited kinds of input features or
suffer from potential data leakage during the federated execution.
To this end, this paper aims to investigate both the functionality
and security of ML modes in the VFL scenario.

To be specific, we introduce BlindFL, a novel framework for
VFL training and inference. First, to address the functionality of
VFL models, we propose the federated source layers to unite the
data from different parties. Various kinds of features can be sup-
ported efficiently by the federated source layers, including dense,
sparse, numerical, and categorical features. Second, we carefully
analyze the security during the federated execution and formalize
the privacy requirements. Based on the analysis, we devise secure
and accurate algorithm protocols, and further prove the security
guarantees under the ideal-real simulation paradigm. Extensive ex-
periments show that BlindFL supports diverse datasets and models
efficiently whilst achieves robust privacy guarantees.
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Figure 1: An illustration of vertical federated learning (VFL).

Two parties own disjoint features but have overlapping in-

stances. Privacy-preserving techniques are utilized to pro-

tect the data in each party.
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1 INTRODUCTION

Background and Motivation. In recent years, following the ex-
plosive surge of data volume and the remarkable success of machine
learning (ML) in the whole world, more and more enterprises are
thirsty to collect tremendous user data, such as media data, text
messages, and daily locations, to build better ML models. Mean-
while, it leads to the increasingly notorious abuse of personal data
or even illegal leakage of individual privacy. Thus, the society has
raised a growing attention to the protection of data privacy and the
supervision on the potential risks to data leakage. Enormous lawful
regulations have been established to protect the individual pri-
vacy [1, 2, 65]. Consequently, many enterprises are now restricted
from collecting a great deal of data for ML tasks.

Owing to such a dilemma of “data shortage”, researchers and
data scientists are interested in building ML models with the data
of different parties (typically, enterprises or organizations) on the
basis of zero data leakage for each individual party. Specifically, a
new paradigm called Federated Learning (FL) [33, 34, 37, 45, 69, 74]
conveys a possibility to train ML models over multiple data sources
that are physically distributed with privacy preservation. In this
work, we consider the vertical FL (VFL) scenario. As illustrated
in Figure 1, two participated parties own disjoint features (a.k.a.
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attributes) but overlap on some instances (a.k.a. samples). The over-
lapping instances together form a virtually joint dataset, which is
vertically partitioned into two parties. Party B further holds the
ground truth labels. VFL inputs the virtually joint dataset and out-
puts a federated model that is trained collaboratively.

Our industrial partner runs popular social apps and is able to
gather rich user data and precise user profiling. Many collaborators
wish to improve the ML ability of their tasks with the help of the
data of our industrial partner, such as a Fintech company that hopes
to build a more powerful risk model, or an E-commerce company
that wishes to make more accurate recommendation1. To this end,
VFL is a good fit for such kind of cross-enterprise collaboration.

To be formal, the goal of VFL is to unite the features of Party A

and Party B, which are denoted as 𝑋𝐴, 𝑋𝐵 , respectively, to learn a
federated model that fits the target labels 𝑦 in Party B, without any
privacy leakage of data in both parties. In this work, we focus on
tabular data since it is rare for an image or a sentence to be split and
distributed into different parties. Most importantly, the federated
model should achieve comparable performance (e.g., accuracy, loss)
as the non-federated model trained on collocated datasets.

Challenges. We find that the existing VFL solutions can be cat-
egorized into two different lines according to how the private fea-
tures are processed. Nevertheless, the two existing paradigms have
complementary strengths and drawbacks.

The first line of works [22, 26, 48, 49] leverages secure multi-
party computation (MPC) [76] techniques, such as homomorphic
encryption (HE) and secret sharing (SS), to achieve intact privacy
guarantees. Typically, they utilize the data outsourcing technique,
which is widely used in database services [24, 60], and outsource
the datasets to non-colluding servers for ML training or inference.
To maintain privacy, all feature values are turned into HE or SS
variables when outsourcing so that the servers cannot know the
original values. However, such an approach does not fit many real-
world datasets. We provide two examples that secretly share fea-
tures onto two servers in Figure 2. First, for high-dimensional and
sparse datasets, the outsourced features become fully dense since
the non-zero feature indexes are also private. It prevents us from
sparsifying the computation, leading to a performance hazard when
the sparsity is high. Second, for categorical features, the embedding
lookup operation requires knowing the exact categorical values.
However, performing lookup operations on the outsourced values
is invalid. As a result, although these MPC-based methods have
promising security guarantees, the data outsourcing nature is not
suitable for sparse and/or categorical features.

Another line of works follows the split learning paradigm [28, 36,
62, 64, 75, 78, 81], which does not outsource the original datasets so
that sparse and categorical features can be handled well. Typically,
each party maintains a bottom model in plaintext that extracts the
forward activations (a.k.a. hidden representations) using its own
private features. The activations of all parties will be exchanged
and fed into a top model to make predictions. (See Section 2 for
more details.) Nevertheless, the values generated in the bottom
models are released in plaintext and would cause data leakage. For

1Formally speaking, there can be more than one Party A’s. However, most cross-
enterprise collaboration follows the two-party setting. Furthermore, our work can be
easily generalized to more Party A’s. Thus, we only describe the case of only one Party
A for simplicity, whilst discuss the multi-party setting in our appendix.

Table 1:Comparison of differentworks in terms of (i) whether they

are suitable for these types of features; (ii) whether they have prov-

able security guarantees under the ideal-real simulation paradigm.

Paradigm & How

Features are Processed

Supported Features

Security

Guarantees

Numerical
Categorical

Dense Sparse

MPC-based
(Data Outsourcing) ✓ ✓

Split Learning
(Local Bottom Model) ✓ ✓ ✓

BlindFL (this work)
(Federated Source Layer) ✓ ✓ ✓ ✓

instance, Figure 2 illustrates a simple example for logistic regression.
Although Party A cannot get access to Party B’s data, it can still
infer the labels accurately by analyzing 𝑋𝐴𝑊𝐴 , because the bottom
model (i.e.,𝑊𝐴) is managed by Party A. Undoubtedly, such data
leakage is forbidden and even illegal in real-world applications. As
we will analyze in Section 3, although these works are more flexible
to support sparse and/or categorical features, such a design of local
bottommodels cannot provide provable security guarantees like the
MPC-based methods, and thus there exist potential safety hazards.

Summary of Contributions. As shown in Table 1, the afore-
mentioned paradigms either support limited feature types or fail
to convey promising security guarantees. Motivated by this, we
develop a novel VFL framework, namely BlindFL (pronounced as
“blindfold”), to address these challenges. The major contributions
of our work are summarized as follows.

Proposal of BlindFL.Wepropose BlindFL, a brand new frame-
work for VFL training and inference. BlindFL keeps the private
datasets inside each party without outsourcing and unites the fea-
tures by an important component called “federated source layer”.
By doing so, BlindFL can support various kinds of input features,
including dense, sparse, numerical, and categorical features, whilst
achieves security guarantees in the meantime. BlindFL has been
deployed in many productive applications of our industrial partner.

Analysis of Privacy Requirements. We anatomize the pri-
vacy requirements of VFL training and inference thoroughly. To
be specific, we present a comprehensive analysis of the informa-
tiveness of all kinds of values generated in the learning process,
including forward activations, backward derivatives, model weights,
and model gradients, i.e., how it would cause leakage once they
are obtained by a party. Upon the analysis, we formulate several
privacy requirements — the detailed contents that each party must
not get access to during the execution. These privacy requirements
shed light on how to judge whether a federated algorithm is secure
or not and provide a template to design new algorithm protocols.

Design of Algorithm Protocols. Based on the privacy require-
ments, we devise the federated source layers, the basic building
blocks to unite the features from different data sources. The feder-
ated source layer leverages the HE and SS techniques to accomplish
the aforementioned privacy requirements throughout the algorithm
protocols. Two kinds of federated source layers, namely MatMul
and Embed-MatMul, are designed for numerical features and cate-
gorical features, respectively. We further prove that our algorithm
protocols are secure in the presence of semi-honest adversaries
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Figure 2: Limitations of existing paradigms. Left-most and middle: Data outsourcing is not suitable for sparse and/or categor-

ical features (illustrated by two examples that secretly share features). Right-most: A simple example of logistic regression

following the split learning paradigm. Party A can infer the labels accurately since the bottom model (i.e.,𝑊𝐴) is accessible.

that can corrupt up to one party under the ideal-real paradigm.
With these two kinds of source layers, BlindFL is able to support
various kinds of features and build diverse VFL models, including
generalized linear models (GLMs) and neural networks (NNs).

Experimental Evaluation. Comprehensive experiments are
conducted to evaluate the effectiveness of BlindFL. First, empirical
results show that BlindFL is more robust against the semi-honest
adversaries and protects the data privacy well. Second, our work
outperforms the existing works over 50× in terms of running speed
and supports much larger scale of datasets. Third, extensive experi-
ments on a wide range of datasets and models prove that BlindFL
achieves comparable model performance as non-federated learning
on collocated datasets, verifying its lossless property.

2 PRELIMINARIES

In this section, we briefly introduce the preliminary literature re-
lated to our work. For the sake of simplicity, in the rest of the paper,
we use the symbol “⋄” to represent an arbitrary party and “⋄̄” to
represent the other party, respectively.

2.1 Common ML Ops for Input Features

Given a dataset ⟨𝑋,𝑦⟩ and a loss function 𝑓 , where𝑋 is the features
and 𝑦 is the labels, our goal is to learn a model 𝜃 that predicts
𝑦 for 𝑋 and minimizes the loss 𝑓 (𝑦,𝑦). The most prevailing way
to solve such a supervised ML problem is to use the first-order
gradient optimization, typically, the mini-batch stochastic gradient
descent (SGD) and its variants. In each iteration, a mini-batch of
instances ⟨𝑋 (𝐵) , 𝑦 (𝐵) ⟩ is sampled to calculate the model gradients
∇𝜃 = 𝜕𝑓 (𝑦 (𝐵) ,𝑦̂ (𝐵) )/𝜕𝜃 and the model weights are updated via 𝜃 =

𝜃 − 𝜂∇𝜃 , where 𝜂 is the learning rate (a.k.a. step size). In the rest of
the paper, we omit the superscript (𝐵) for simplicity.

MatrixMultiplication.Matrixmultiplication is one of themost
common operations inML. Given themodel weights𝑊 ∈ R𝐼𝑁×𝑂𝑈𝑇 ,
where 𝐼𝑁 ,𝑂𝑈𝑇 are the input and output dimensionalities, it com-
putes 𝑍 = 𝑋𝑊 in the forward propagation, which are also known
as the forward activations. The subsequent modules will take as
input 𝑍 to perform their forward propagation routines. During the
backward propagation, the backward derivatives ∇𝑍 = 𝜕𝑓/𝜕𝑍 are
propagated from the subsequent modules and the model gradients

are computed as ∇𝑊 = 𝑋𝑇∇𝑍 according to the chain rule.
Embedding Lookup. For categorical features, applying the ma-

trix multiplication is not a common choice in ML since the ordering
of categorical values should not matter. In contrast, an embedding

table is usually learned for the categorical inputs2. In this work, the
embedding table is denoted as𝑄 . During the forward period, an em-
bedding lookup operation 𝐸 = lkup(𝑄,𝑋 ) queries the embedding
entries given the categorical indices. The backward propagation
computes the model gradients as ∇𝑄 = lkup_bw(∇𝐸,𝑋 ). Embed-
ding lookup is usually followed by a matrix multiplication, which
outputs 𝑍 = 𝐸𝑊 given the model weights𝑊 .

2.2 Privacy-Preserving Techniques

Security is a widely studied area to protect private data from any ad-
versaries. In this work, we adopt twowell-known privacy-preserving
techniques — homomorphic encryption and secret sharing — to
derive our federated algorithms.

Homomorphic Encryption.Homomorphic encryption (HE) [15,
56] describes the cryptographic methods that allow arithmetic com-
putation in the space of ciphers. There are different kinds of HE,
such as fully HE, somewhat HE, additive HE, and multiplicative
HE [11, 14, 21, 53, 57].

In this work, we focus on additive HE. For instance, Paillier cryp-
tosystem [53] is a well-known additive HE method and has been
used in many FL algorithms [10, 19, 25, 71, 75]. Paillier cryptosys-
tem initializes with a key pair ⟨𝑝𝑘, 𝑠𝑘⟩. The public key 𝑝𝑘 is utilized
in encryption and can be made public to the other party, whilst
the secret key (a.k.a. private key) 𝑠𝑘 is for decryption and must be
kept secret. Given values 𝑢, 𝑣 , Paillier cryptosystem supports the
following types of operations:
⊲ Encryption: Enc(𝑣, 𝑝𝑘) = ⟦𝑣⟧;
⊲ Decryption: Dec(⟦𝑣⟧, 𝑠𝑘) = 𝑣 ;
⊲ Homomorphic addition: ⟦𝑢⟧ + ⟦𝑣⟧ = ⟦𝑢 + 𝑣⟧;
⊲ Scalar addition: ⟦𝑢⟧ + 𝑣 = ⟦𝑢⟧ + Enc(𝑣, 𝑝𝑘) = ⟦𝑢 + 𝑣⟧;
⊲ Scalar multiplication: 𝑢⟦𝑣⟧ = ⟦𝑢𝑣⟧.

In the rest of the paper, we assume both parties have generated
their own key pairs and exchanged the public keys on initialization.
Thus, we omit 𝑝𝑘 or 𝑠𝑘 and denote ⟦𝑣⟧⋄ as a cipher corresponding
to the 𝑠𝑘 of Party ⋄.

Secret Sharing. As another powerful privacy-preserving tech-
nique, secret sharing (SS) [12, 48, 54, 58, 70] breaks a value into
pieces of sharing and distributes them to different parties so that
none of the parties knows the exact value. For instance, if Party ⋄
wishes to secretly share a value 𝑣 , it randomly generates its own
2Feature engineering techniques such as one-hot encoding or frequency encoding can
also be applied to the categorical features, however, we do not discuss them in this
work since they are orthogonal.



Algorithm 1: The procedure to transform an HE variable
⟦𝑣⟧ into an SS variable ⟨𝜙, 𝑣 − 𝜙⟩. 𝑣 is a scalar or a tensor.
1 Function HE2SS(⟦𝑣⟧⋄̄ = 𝑁𝑜𝑛𝑒):
2 if ⟦𝑣⟧⋄̄ is None then // Party ⋄̄ that owns 𝑠𝑘⋄̄
3 Receive ⟦𝑣 − 𝜙⟧⋄̄ and decrypt; return 𝑣 − 𝜙
4 else // Party ⋄ that does not own 𝑠𝑘⋄̄
5 Randomly generate 𝜙 with the same shape of ⟦𝑣⟧⋄̄
6 Send ⟦𝑣 − 𝜙⟧⋄̄ = ⟦𝑣⟧⋄̄ − 𝜙 ; return 𝜙

piece of sharing 𝑣⋄ and sends the other piece 𝑣 ⋄̄ = 𝑣 − 𝑣⋄ to Party ⋄̄.
Whenever a party wishes to restore an SS variable, it receives the
other piece of sharing and simply adds the two pieces together.

In this work, we focus on two-party additive SS. Given two SS
variables ⟨𝑣𝐴, 𝑣𝐵⟩, ⟨𝑢𝐴, 𝑢𝐵⟩, the addition arithmetic can be executed
locally as ⟨𝑢𝐴 + 𝑣𝐴, 𝑢𝐵 + 𝑣𝐵⟩. A common way to multiply two SS
variables is based on the Beaver triplets. However, each triplet can
only be used once and it is time-consuming to generate. We refer
interested readers to [5, 55] for more details.

It is worthy to note that HE and SS variables can be transformed
easily. For instance, we can transform an HE variable to SS variable
via Algorithm 1. Moreover, the operations on HE or SS variables
can be easily vectorized. For instance, the matrix multiplication
⟦𝑍⟧ = 𝑋⟦𝑌⟧ is achieved by letting ⟦𝑍𝑖 𝑗⟧ =

∑
𝑘 𝑋𝑖𝑘⟦𝑌𝑘 𝑗⟧.

Security model. Like many previous works [19, 49, 66, 67, 71],
we consider the semi-honest (a.k.a. honest-but-curious) security
model, where all parties honestly execute the protocols, whilst the
curious parties try to analyze the others’ data through any informa-
tion obtained during the protocols. We assume that a polynomial-
time adversary can corrupt one of the two parties during the ex-
ecution. When analyzing our protocols, we follow the ideal-real
paradigm, which is defined as follows.

Definition 2.1. ([23, 41]) Let Π be a real-world protocol and F be
an ideal functionality. We say Π securely realizes F if for every ad-
versary A attacking the real interaction, there exist a probabilistic
polynomial-time simulator S attacking the ideal interaction, such
that any environment on any input cannot tell apart the real inter-
action from the ideal interaction, except with negligible probability
(in the security parameter 𝜅).

2.3 ML over Different Data Sources

Under the VFL setting, training data come from different sources.
The most challenging problem is how to build ML models over
different data sources to achieve comparable model performance as
non-federated learning on collocated data, whist guarantee the data
privacy of each participated party meanwhile. A series of works
are developed to tackle this problem. We divide them into two
categories according to how they process the features.

MPC-based solutions (data outsourcing). The first kind of
works outsources the data of all parties to one ormore non-colluding
servers for ML training or inference. Before data outsourcing, they
transform the feature values into HE or SS variables and lever-
age the arithmetic properties to perform ML ops. For instance,
SecureML [49] secretly shares the features and models onto two
servers. Then the matrix multiplication is performed as ⟨𝑋 ⟩⟨𝑊 ⟩.

Features Features

Top Model
!𝒚 Labels

Loss

Party BParty A

BottomBBottomA

𝒁𝑨 𝒁𝑩

Features Features

Top Model
𝛁!𝒚
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Party BParty A

BottomBBottomA

𝛁𝒁𝑨 𝛁𝒁𝑩

Figure 3: The bottom-to-top architecture of split learning.

Similarly, there are also works that encrypt and send the features
to a single server, and utilize the arithmetic properties of HE to
carry out the computation [22, 26]. With the help of the HE and
SS techniques, none of the servers can reveal the original values,
hence these works usually achieve provable security guarantees
under the ideal-real paradigm. To apply these works under the VFL
setting, we can let each party work as one server and outsource the
features among the parties for ML computation.

Split learning (local bottom models). The second category
follows the split learning paradigm [62, 64]. As shown in Figure 3,
each party holds its own data rather than outsourcing. Each party
is associated with a bottom model that works as the feature ex-
tractor. Party B further manages a top model that makes the final
predictions. The forward activations 𝑍𝐴 and backward derivatives
∇𝑍𝐴 are exchanged between the parties. With such a design of
bottom models, split learning is very flexible to support various
kinds of features. For instance, to support sparse matrix multiplica-
tion, the bottom model of Party ⋄ computes 𝑋⋄𝑊⋄ using sparsified
computation, where𝑊⋄ is the model weights, and the top model
of Party B aggregates 𝑍 = 𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 . To support categorical
features, each party manages an embedding table in the bottom
model and performs the lookup operation locally. Thus, several
VFL algorithms are proposed in such a pattern [28, 36, 75, 78, 81].

3 ANATOMY OF EXISTING PARADIGMS

In this section, we anatomize the existing paradigms from the per-
spective of supported features and security guarantees, respectively.

The MPC-based solutions. We first consider the MPC-based
solutions, which outsource the features using privacy-preserving
techniques to carry out the ML computation.

Supported features. As introduced in Section 1, data outsourc-
ing is not suitable for sparse and/or categorical features. On the one
hand, sparse datasets will become fully dense, since the outsourced
variables should not reveal whether the original values are zeroes or
not. On the other hand, after the categorical values are transformed
into HE or SS variables, the embedding lookup operation cannot
be performed. However, many ML tasks adopt feature engineer-
ing techniques such as hashing, quantile binning, and Cartesian
product, which make many real-world datasets high-dimensional
and sparse. In addition, categorical features are also widely used
in practical applications to learn latent representation for better
model performance. Therefore, these outsourcing-based solutions
are not suitable for many real-world datasets.
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Security guarantees. Despite the aforementioned limitations,
the MPC-based solutions usually achieve very promising security
guarantees. For instance, SecureML [49] securely realizes the ideal
functionality of ML training in the presence of semi-honest ad-
versaries. As a result, methods in this line have a strong privacy
preservation ability.

Split learning. Next, we consider the methods in the split learn-
ing paradigm, where each party is able to process the features
locally via a bottom model.

Supported features. Compared with the outsourcing-based
methods, split learning is more suitable for sparse and/or categori-
cal features since all data are kept local inside each party. During
the ML tasks, each party can easily identify whether a feature value
is zero or perform the lookup operation given a categorical value.

Security guarantees. Since the features are visible to the owner
party, it is an intuitive idea to let each party process its own fea-
tures locally and only share the intermediate results between parties.
However, although the raw data are not exposed directly, the inter-
mediate results are also informative and would cause severe data
leakage. To be specific, we identify two kinds of leakage:
⊲ Label leakage. On the one hand, since Party A owns the bottom
model, it is able to compute𝑍𝐴 individually, which would leak the
labels. Take Figure 2 as an example. Party A can steal the labels
by analyzing 𝑍𝐴 = 𝑋𝐴𝑊𝐴 with high confidence. Many existing
works are vulnerable to this problem [25, 75, 78]. On the other
hand, as analyzed by Li et al. [36] and verified by our experiments,
the backward derivatives∇𝑍𝐴 can reveal almost all training labels.
The essential idea is that logistic loss produces opposite directions
for different labels, so the directions of derivatives reflect the label
information inevitably.

⊲ Party A’s feature leakage. Since the forward activations 𝑍𝐴 are
originated from 𝑋𝐴 and independent from 𝑋𝐵 , Party B can ana-
lyze a certain level of feature similarities of 𝑋𝐴 . In other words,
if the features of two instances 𝑋

(𝑖 )
𝐴

, 𝑋
( 𝑗 )
𝐴

are very similar, the
corresponding activations 𝑍 (𝑖 )

𝐴
, 𝑍
( 𝑗 )
𝐵

would also be very close.
With the hope of avoiding data leakage, some of the existing works
try to enhance privacy via MPC techniques such as HE and SS [75,
81]. Nevertheless, these works fail to address all the leakage cases.
For instance, Yang et al. [75] propose to encrypt the derivatives in
the backward propagation to avoid the label leakage from deriva-
tives. However, they do not consider the label leakage from 𝑍𝐴 =

𝑋𝐴𝑊𝐴 as shown in Figure 2. Thus, Party A can still make accurate
guesses on the labels.

There are also methods that try to add random noises to perturb
these sensitive values. For instance, Li et al. [36] propose to protect
the labels by adding noises to∇𝑍𝐴 . Nevertheless, we do not consider
thesemethods in this work for three reasons. First, there is a tradeoff
between protection ability and model quality. When strong privacy
is required, the model accuracy will be harmed significantly. Second,
these methods cannot provide a formal security guarantee like the
MPC-based ones, which is expected in our work. Third, to the best
of our knowledge, there is no such method that addresses all these
leakage cases together.

In fact, the root cause of such potential data leakage is the design
of local bottom models. For instance, as long as Party A owns the
bottom model, it is able to compute 𝑍𝐴 anyway, leading to label
leakage. To this end, the design of local bottom models cannot
provide security guarantees under the ideal-real paradigm. How to
build VFL models on non-outsourced data with provable security
guarantees needs careful re-investigation.

Our solution. In order to support various kinds of features
and guarantee privacy preservation in the meantime, this work
draws the strengths of both categories. First, our work does not
outsource the original datasets. In contrast, we follow the split
learning paradigm to keep the private data inside each party. Second,
we develop the federated source layers to collaboratively process the
features of all parties. Unlike the bottom models, each party is not
able to process the features individually in our design. Furthermore,
our federated source layers achieve provable security guarantees.
Putting them together, our work enjoys the flexibility to support
various kinds of features whilst being privacy preserving.

4 OVERVIEW AND PRIVACY FORMULATION

4.1 Overview

Figure 4 depicts the overview of BlindFL, which can be decoupled
into two parts. First, the federated source layer works as the basic
building block that unites the features of both parties. Given the out-
put of the source layer, denoted as𝑍 , a non-federated sub-module in
Party B, namely the top model, plays the role of classifier/predictor3.

3The top model can also be a federated module. However, a non-federated top model
is more common in practice to address efficiency. Therefore, this work mainly focuses



During the backward process, Party B computes the loss function
via the final predictions and ground truth labels, and then back
propagates along the top model to obtain the backward derivatives
∇𝑍 . Finally, a federated procedure will be executed to update the
model weights of the source layer. It is worthy to note that our
framework differs from the model architecture of split learning. Our
source layer requires all parties to collaboratively execute the learn-
ing process and outputs only the aggregated results, i.e., 𝑍 . Whilst
in split learning, each party can process the features individually
and obtain the unaggregated values from its bottom model.

In practice, since the top model can be an arbitrary sub-module
that minimizes the loss between predictions and labels, we concen-
trate on the source layers. Specifically, we consider two kinds of
source layers in this work for different types of input features.

The first kind of source layers, namely MatMul, aims at the nu-
merical feature values and computes a matrix multiplication in the
forward propagation, i.e., 𝑍 = 𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 , where𝑊𝐴,𝑊𝐵 are
the model weights for Party A and Party B, respectively. During the
backward propagation, a federated procedure is executed to update
𝑊⋄ by the model gradients ∇𝑊⋄ = 𝑋𝑇

⋄ ∇𝑍 for each party.
For categorical features, we devise a more complex source layer

called Embed-MatMul that fuses the embedding lookup operation
and matrix multiplication, i.e., 𝑍 = 𝐸𝐴𝑊𝐴 + 𝐸𝐵𝑊𝐵 , where 𝐸⋄ =

lkup(𝑄⋄, 𝑋⋄) is the lookup operation given the embedding table
𝑄⋄. During the federated backward propagation, the backward
derivatives and model gradients are computed as

∇𝑊⋄ = 𝐸𝑇⋄∇𝑍, ∇𝐸⋄ = ∇𝑍𝑊𝑇
⋄ , ∇𝑄⋄ = lkup_bw(∇𝐸⋄, 𝑋⋄).

With these two kinds of source layers, we can derive various VFL
models, including generalized linear models and neural networks.
For instance, for logistic regression (LR), there is a MatMul source
layer with 𝑂𝑈𝑇 = 1, whilst the top model adds the bias term and
computes the sigmoid function, i.e.,𝑦 = sigmoid((𝑋𝐴𝑊𝐴+𝑋𝐵𝑊𝐵)+
𝑏𝑖𝑎𝑠). For another example, as shown in Figure 5, the wide and deep
(WDL) model [9] consists of two source layers, one for the sparse,
numerical features and the other for the categorical fields.

4.2 Privacy to Matter

As discussed in Section 3, although datasets are kept local inside
each party, the values generated in the learning process are also in-
formative and would cause data leakage. Thus, before stepping into
the design and analysis of the proposed source layers, we would like
to discuss the privacy of all kinds of values, including forward acti-
vations, backward derivatives, model weights, and model gradients,
respectively. In particular, we wish to conclude several guidelines
about what contents must not be accessible to a specific party.

Privacy of forward activations. Undoubtedly, forward activa-
tions have a strong relationship to the ground truth labels since they
are learned to fit the labels. For instance, as illustrated in Figure 2,
in the MatMul source layer, 𝑋𝐴𝑊𝐴 can be directly used to make
predictions on the labels, so Party A should have zero knowledge
of them. Consequently, we make the requirement that 1○ Party A is

not allowed to obtain any forward activations. However, as we have
analyzed in Section 3, since several existing VFL solutions fail to

on non-federated top models whilst discusses how to adapt our federated source layers
to federated top models in our appendix.

fulfill this requirement, Party A can easily reveal a large fraction of
labels, dampening the significance of privacy preservation.

In addition to labels, forward activations inevitably contain sen-
sitive feature information since they are originated from features.
As aforementioned, Party A is already prohibited from obtaining
any forward activations, so we only need to consider whether Party
B could guess the features of Party A via forward activations. We
divide forward activations into three kinds: (i) those solely depen-
dent on 𝑋𝐴 (e.g., 𝐸𝐴, 𝑋𝐴𝑊𝐴), (ii) those dependent on both 𝑋𝐴, 𝑋𝐵

(e.g., 𝑍,𝑦), and (iii) those solely dependent on 𝑋𝐵 (e.g., 𝐸𝐵, 𝑋𝐵𝑊𝐵 ).
For the first kind, as discussed in Section 3, we notice that they
would disclose a certain level of feature similarity between different
instances. For instance, in the Embed-MatMul layer, once Party B

obtains 𝐸𝐴 , it realizes whether two instances are equal on some
categorical fields by comparing the embedding entries. Therefore,
in order to protect the features, 2○ we forbid any forward activations

that are solely dependent on the features of Party A to be disclosed

to Party B. The second kind aggregates 𝑋𝐴, 𝑋𝐵 for the top model.
Since the goal of VFL is to output the inference results to Party

B, they should be accessible4. Furthermore, when we analyze the
security guarantees of our work in Section 5.3 and Section 6.3, we
will formally prove that these values will not reveal the private
data of Party A. For the third kind, since they are independent on
𝑋𝐴 , we do not make strict requirements. Instead, we will analyze
whether they violate Req 2○ under specific scenarios. For instance,
as we will discuss in Section 5 and Section 6, because Party B can
derive 𝑋𝐴𝑊𝐴 (or 𝐸𝐴𝑊𝐴) if it gets access to 𝑋𝐵𝑊𝐵 (or 𝐸𝐵𝑊𝐵 ), we
will restrict Party B from obtaining these forward activations to
ensure the privacy of 𝑋𝐴 when designing our source layers.

Privacy of backward derivatives. Similarly, in order to avoid
the leakage to labels, 3○ Party A is prohibited from accessing any

backward derivatives, e.g., ∇𝑍,∇𝐸𝐴 , since they are originated from
the ground truth labels and prediction outputs. In Section 7, we will
empirically show that backward derivatives can disclose almost all
labels to Party A, which makes the privacy preservation in vain.
Therefore, Req 3○ is vital for designing the VFL algorithms.

Although it is non-trivial to precisely extract the relevance be-
tween backward derivatives and features, we can define the secu-
rity of backward derivatives according to forward activations. In
fact, backward derivatives depicts the differences between forward
activations and the ideal optimum. Thus, their informativeness
regarding features bind together. Motivated as such, we make a
symmetric requirement that 4○ if any forward activations are solely

dependent on the features of Party A, then the corresponding backward

derivatives should also be kept secret from Party B as well.
Privacy of model weights and model gradients. Although

seemingly irrelevant to features or labels, the privacy of models
is also meaningful. For one thing, given the fact that the values
of model weights depict the feature importance upon the learning
tasks, it will cause a leakage once a party knows the model infor-
mation of the other party. For another, model gradients could cause
leakage as discussed in recent studies [20, 83]. Although these leak-
ages sound to be task-specific, we still make a tough requirement
that 5○ the model weights and gradients must be be hidden from the

4As described in Section 4.1, our work can adapt to federated top models, where the
second kind of forward aggregations are inaccessible. Thus, we focus on the federated
source layer in this work and do not restrict Party B from them.



Table 2: Summary of the restrictions for MatMul, i.e., the contents

that each party must not get access to.

Party A Party B

Model 𝑊𝐴,𝑊𝐵

Forward 𝑍,𝑋𝐴𝑊𝐴, 𝑋𝐵𝑊𝐵 𝑋𝐴𝑊𝐴, 𝑋𝐵𝑊𝐵

Backward ∇𝑍, ∇𝑊𝐴, ∇𝑊𝐵 ∇𝑊𝐴

other party, including the signs and magnitudes of all coordinates, in
order to avoid the potential risk of privacy leakage from models.
Furthermore, 6○ we do not allow Party A to obtain the model weights

or gradients of its own, even if the sign or magnitude of each coor-

dinate. Otherwise, Party A would infer the labels by analyzing its
own feature contributions via the signs or magnitudes.

Obviously, our privacy requirements address the possible leakage
in split learning as discussed in Section 3. They provide us with
a template to derive the specific restrictions of each party when
designing the federated source layers in Section 5 and Section 6.

5 MATMUL FEDERATED SOURCE LAYER

Since matrix multiplication is one of the most essential arithmetics
in ML, deriving a safe and accurate federated MatMul layer is vital
to the VFL paradigm.

5.1 Anatomy of Privacy Requirements

To achieve promising privacy guarantees, we follow the analysis
in Section 4.2 to derive what kinds of values would cause data
leakage and make restrictions on them, i.e., these values should not
be accessible to specific parties. We summarize the restrictions in
Table 2 and discuss the reasons below:
⊲ First, to avoid label leakage, Party A must not get access to for-
ward activations 𝑍 , 𝑋𝐴𝑊𝐴 , 𝑋𝐵𝑊𝐵 , backward derivatives ∇𝑍 ,
model weights, and model gradients of its own 𝑊𝐴,∇𝑊𝐴 , as
analyzed in Req 1○ 3○ 6○.

⊲ Second, as analyzed in Req 2○, to avoid Party A’s feature leakage,
Party B must not get access to 𝑋𝐴𝑊𝐴 , since they are merely the
linear transformation of 𝑋𝐴 , which would reveal a certain level
of feature similarities. In fact, as 𝑍 = 𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 , this also
implies Party B must not get access to 𝑋𝐵𝑊𝐵 and𝑊𝐵 .

⊲ Finally, as analyzed in Req 5○, we should restrict each party
from obtaining the model weights or gradients of the other party
𝑊⋄̄,∇𝑊⋄̄.

Revisiting these restrictions, it is worthy to note that the existing
split learning based approaches are insecure since the bottom mod-
els are typically𝑊𝐴,𝑊𝐵 . It gives us a lesson that although features
can be maintained locally, we shall not let each party directly learn
a bottom model to process the feature individually. In the following
subsections, we describe our algorithm protocol for the MatMul
source layer and analyze the security guarantees.

5.2 Algorithm Protocol

The protocol of our MatMul source layer is presented in Figure 6
and the details are walked through below.

Initialization. To begin with, since both parties must not get
access to the model weights, we follow the MPC-based methods to

Enc ∇𝑍 and Send ∇𝑍 !∇𝑊" ! = 𝑋"# ∇𝑍 !

∇𝑊" − 𝜙 = HE2SS()𝜙 = HE2SS( ∇𝑊" !)

Update 𝑈! by ∇𝑊! = 𝑋!#∇𝑍
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Figure 6: Our MatMul source layer. All cross-party transmis-

sion (red arrows) are protected by HE or SS.

leverage the SS technique to break model weights onto both parties.
To be specific, we secretly share the model weights by𝑊⋄ = 𝑈⋄+𝑉⋄,
where𝑈⋄ and 𝑉⋄ are held by different parties so that none of them
knows what𝑊⋄ exactly is. To achieve this goal, on initialization,
Party A initializes 𝑈𝐴 for itself and 𝑉𝐵 for Party B (left hand side
of Line 1-2). Furthermore, the encrypted version ⟦𝑉𝐵⟧𝐴 is sent to
Party B for future use (Line 3). Party B executes a symmetric routine
to initialize𝑈𝐵,𝑉𝐴 .

Forward propagation. Since the model weights are secretly
shared, the results are also broken into four parts, i.e., 𝑍 = 𝑋𝐴𝑈𝐴 +
𝑋𝐴𝑉𝐴 +𝑋𝐵𝑈𝐵 +𝑋𝐵𝑉𝐵 . Among them,𝑋⋄𝑈⋄ can be computed by one
party alone, whilst 𝑋⋄𝑉⋄ requires decryption. To be specific, there
are three steps in the forward propagation. Since the first two steps
are symmetric in both parties, we only describe those in Party A.
(1) (Line 5-6) Party A computes ⟦𝑋𝐴𝑉𝐴⟧𝐵 and transforms it into

an SS variable ⟨𝜀𝐴, 𝑋𝐴𝑉𝐴 − 𝜀𝐴⟩; receives and decrypts the piece
of sharing 𝑋𝐵𝑉𝐵 − 𝜀𝐵 from Party B.

(2) (Line 7) Party A computes 𝑍 ′
𝐴
= 𝑋𝐴𝑈𝐴 + 𝜀𝐴 + (𝑋𝐵𝑉𝐵 − 𝜀𝐵).

(3) (Line 8) Finally, Party B sums into 𝑍 = 𝑍 ′
𝐴
+ 𝑍 ′

𝐵
.

It is worthy to note that all the random obfuscation values (𝜀𝐴, 𝜀𝐵 )
are eliminated to achieve the lossless property, i.e.,

𝑍 = (𝑋𝐴𝑈𝐴 + 𝜀𝐴 + (𝑋𝐵𝑉𝐵 − 𝜀𝐵)) + (𝑋𝐵𝑈𝐵 + 𝜀𝐵 + (𝑋𝐴𝑉𝐴 − 𝜀𝐴))
= 𝑋𝐴𝑈𝐴 + 𝑋𝐴𝑉𝐴 + 𝑋𝐵𝑈𝐵 + 𝑋𝐵𝑉𝐵 = 𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 .

Backward propagation. For Party B, the model gradients can
be computed via ∇𝑊𝐵 = 𝑋𝑇

𝐵
∇𝑍 (right hand side of Line 11). For

Party A, we have to leverage the power of HE and SS since 𝑋𝐴 and
∇𝑍 are kept secret by different parties. To be specific, we first send
Party A the encrypted derivatives ⟦∇𝑍⟧𝐵 to compute the encrypted
model gradients ⟦∇𝑊𝐴⟧𝐵 , which will then be transformed into the
SS variable ⟨𝜙,∇𝑊𝐴 − 𝜙⟩ (Line 9-10). Furthermore, to prohibit any
party from obtaining ∇𝑊𝐴 in plaintext, we do not restore the SS
variable. Instead, we update the secretly shared model weights



Table 3: Summary of the restrictions for Embed-MatMul, i.e., the con-
tents that each party must not get access to.

Party A Party B

Model 𝑊𝐴,𝑊𝐵,𝑄𝐴,𝑄𝐵

Forward 𝑍, 𝐸𝐴, 𝐸𝐵, 𝐸𝐴𝑊𝐴, 𝐸𝐵𝑊𝐵 𝐸𝐴, 𝐸𝐵, 𝐸𝐴𝑊𝐴, 𝐸𝐵𝑊𝐵

Backward ∇𝑍, ∇𝐸𝐴, ∇𝐸𝐵
∇𝑊𝐴, ∇𝑊𝐵, ∇𝑄𝐴, ∇𝑄𝐵

∇𝐸𝐴, ∇𝐸𝐵
∇𝑊𝐴, ∇𝑄𝐴, ∇𝑄𝐵

𝑈𝐴,𝑉𝐴 in a complementary way (Line 11-12), i.e.,

(𝑈𝐴 − 𝜂𝜙) + (𝑉𝐴 − 𝜂 (∇𝑊𝐴 − 𝜙)) ⇔𝑊𝐴 − 𝜂∇𝑊𝐴 .

Consequently, the algorithm accurately updates𝑊𝐴 whilst guaran-
tees that none of the parties gets access to ∇𝑊𝐴 .

5.3 Security Analysis

Obviously, our protocol in Figure 6 satisfies all the requirements
in Table 2. All the informative values such as 𝑋⋄𝑈⋄, 𝑋⋄𝑉⋄,∇𝑍 are
protected by either HE or SS. Moreover, the protocol is lossless
— both the forward outputs and backward updates are accurate.
To be formal, we identify two ideal functionalities FMatMulFw and
FMatMulBw for the forward and backward propagation, respectively.
In FMatMulFw, each party inputs its own mini-batch data (𝑋⋄) and
the secretly shared and/or encrypted models (𝑈⋄, ⟦𝑉⋄⟧⋄̄). Party
A outputs nothing whilst Party B outputs 𝑍 . In FMatMulBw, each
party inputs its own mini-batch data and the secretly shared and/or
encrypted models, and Party B further inputs ∇𝑍 . Then, each party
outputs the updated models. Given these ideal functionalities, we
provide the security guarantees of our MatMul source layer below.

Theorem 5.1. The protocol of MatMul source layer securely real-

izes the ideal functionalities FMatMulFw and FMatMulBw in the presence

of a semi-honest adversary that can corrupt one party.

Since the models are secretly shared and/or encrypted, they are
secure in essence. However, recall that when the top model is non-
federated, Party B obtains the input 𝑍 and the output ∇𝑍 of the top
model, whose security is not analyzed by Theorem 5.1. To this end,
we present Theorem 5.2.

Theorem 5.2. Given 𝑍,∇𝑍 in the MatMul source layer, there are
infinite possible values for 𝑋𝐴, 𝑋𝐴𝑊𝐴 .

Due to the space constraint, we defer the proofs to our appendix.
Furthermore, we also analyze the security guarantees when the
source layer is followed by a federated top model in our appendix.

6 EMBED-MATMUL FEDERATED SOURCE LAYER

To handle categorical features, a federated source layer that sup-
ports embedding lookup is desired. In this section, we introduce
the Embed-MatMul source layer.

6.1 Anatomy of Privacy Requirements

Similarly, we first derive the restrictions according to our analy-
sis in Section 4.2. Table 3 summarizes these restrictions and the
corresponding reasons are discussed below.
⊲ First, the restrictions listed in Table 2 should also be applied here.
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Figure 7: Our Embed-MatMul source layer. All cross-party

transmission (red arrows) are protected by HE or SS.

⊲ Second, in order to avoid label leakage, Party A must not get ac-
cess to all forward activations (𝑍, 𝐸𝐴, 𝐸𝐵, 𝐸𝐴𝑊𝐴, 𝐸𝐵𝑊𝐵 ), all back-
ward derivatives (∇𝑍,∇𝐸𝐴,∇𝐸𝐵 ), and the model weights and
model gradients of its own (𝑊𝐴, 𝑄𝐴,∇𝑊𝐴,∇𝑄𝐴).

⊲ Third, to avoid feature leakage, Party B must not get access to
𝐸𝐴, 𝐸𝐴𝑊𝐴 , since they are originated from 𝑋𝐴 . As 𝑍 = 𝐸𝐴𝑊𝐴 +
𝐸𝐵𝑊𝐵 , we should also prohibit Party B from obtaining 𝐸𝐵𝑊𝐵 .

⊲ Finally, it is worthy to note that we further prohibit Party B

from obtaining the values related to its own embedding table, i.e.,
𝑄𝐵, 𝐸𝐵,∇𝐸𝐵 . The reason is that since ∇𝐸𝐵 = ∇𝑍𝑊𝑇

𝐵
, it is possible

for Party B to infer𝑊𝐵 once it gets access to those values. Hence,
we make these strong restrictions to ensure the security.

According to the above discussion, both parties are not allowed to
obtain their ownmodel weights, i.e.,𝑄⋄,𝑊⋄. Again, this is contradic-
tory to the design of bottom models in split learning. Consequently,



we desiderate a new protocol for our Embed-MatMul source layer
with promising security guarantees.

6.2 Algorithm Protocol

Considering that both parties must not get access to the embedding
tables, we apply SS to the embedding tables similarly, i.e., 𝑄⋄ =

𝑆⋄ + 𝑇⋄, where 𝑆⋄ and 𝑇⋄ are managed by different parties. As a
result, the embedding entires are also broken into two parts, i.e.,
𝐸⋄ = lkup(𝑄⋄, 𝑋⋄) = lkup(𝑆⋄, 𝑋⋄) + lkup(𝑇⋄, 𝑋⋄). Therefore, each
party cannot obtain 𝐸⋄ alone since it has zero knowledge on𝑇⋄. We
present our Embed-Matmul federated source layer in Figure 7 and
describe the sketch of routines below.

Initialization. Similar to the MatMul source layer, Party A pre-
pares 𝑆𝐴,𝑈𝐴 for itself and 𝑇𝐵,𝑉𝐵 for Party B, Then the encrypted
SS pieces ⟦𝑇𝐵⟧𝐴 , ⟦𝑈𝐴⟧𝐴 , ⟦𝑉𝐵⟧𝐴 are sent to Party B for future use.
Party B executes a symmetric routine.

Forward propagation.We divide the forward process into two
stages, for Embed and MatMul, respectively.

The first stage retrieves the secretly shared embedding entries.
Since embedding lookup requires the exact values of𝑋⋄, we perform
the lookup operation over the encrypted table ⟦𝑇⋄⟧⋄̄ in each party
and convert it into an SS variable (Line 5-6). Finally, by combining
with the lookup results on the rest piece 𝑆⋄, we successfully break
the embedding entries in an SS manner, i.e., ⟨𝜓⋄, 𝐸⋄ −𝜓⋄⟩ (Line 7).

The second stage performs two matrix multiplication, i.e.,

(Line 8) 𝑍 ′1,𝐴 + 𝑍
′
1,𝐵 = 𝜓𝐴 (𝑈𝐴 +𝑉𝐴) +𝜓𝐵 (𝑈𝐵 +𝑉𝐵),

(Line 9) 𝑍 ′2,𝐴 + 𝑍
′
2,𝐵 = (𝐸𝐵 −𝜓𝐵) (𝑉𝐵 +𝑈𝐵) + (𝐸𝐴 −𝜓𝐴) (𝑉𝐴 +𝑈𝐴),

using the same routine in the forward propagation of our MatMul
layer (Figure 6). Finally, the forward outputs can be computed via
𝑍 = 𝑍 ′1,𝐴 + 𝑍

′
1,𝐵 + 𝑍

′
2,𝐴 + 𝑍

′
2,𝐵 = 𝐸𝐴𝑊𝐴 + 𝐸𝐵𝑊𝐵 (Line 10-11).

Backward propagation. Next, we describe the backward pro-
cess, which is also made up of two stages.

The first stage takes in charge of the backward process of MatMul,
which updates model weights𝑊⋄ by ∇𝑊⋄ = 𝐸𝑇⋄∇𝑍 . Similar to the
backward process of the MatMul source layer, Party B encrypts ∇𝑍
to protect the labels (Line 12). Upon receiving ⟦∇𝑍⟧𝐵 , Party A

computes ⟦𝜓𝑇
𝐴
∇𝑍⟧𝐵 via homomorphic arithmetics, which is then

transformed into an SS variable, i.e., ⟨𝜙,𝜓𝑇
𝐴
∇𝑍 − 𝜙⟩ (Line 13). By

computing (𝐸𝐴−𝜓𝐴)𝑇∇𝑍 + (𝜓𝑇𝐴∇𝑍 −𝜙) = ∇𝑊𝐴−𝜙 in Party B (Line
14), we secretly share ∇𝑊𝐴 onto both parties, i.e., ⟨𝜙,∇𝑊𝐴 − 𝜙⟩. A
similar routine works for ∇𝑊𝐵 as well (Line 15-16). Consequently,
none of the parties gets access to ∇𝑊𝐴 or ∇𝑊𝐵 , which obeys Table 3
so that the model weights can be updated accurately without any
information leakage.

The second stage is for the embedding tables. Since the backward
operation lkup_bw(·, ·) requires to know the exact values of𝑋⋄, we
determine to perform it over the encrypted backward derivatives
⟦𝐸⋄⟧⋄̄. Therefore, both parties first compute ⟦∇𝐸𝐴⟧𝐵, ⟦∇𝐸𝐵⟧𝐴 via
homomorphic arithmetics, respectively (Line 21), and then performs
the backward operation ⟦∇𝑄⋄⟧⋄̄ = lkup_bw(⟦𝐸⋄⟧⋄̄, 𝑋⋄), which is
eventually transformed into SS variables i.e., ⟨𝜌⋄,∇𝑄⋄ − 𝜌⋄⟩ (Line
22-23). Finally, the secretly shared embedding tables are updated in
the SS manner (Line 24-26).

class MatMulOpB(torch.autograd.Function):
... # defines MatMulFw and MatMulBw of Party B

class MatMulSourceB(FederatedModule):
def __init__(self, in_A, in_B, out):

super(MatMulSourceB, self).__init__()
U_B, enc_V_B, V_A = ... # initialization
# federated parameters will be registered to 
# the federated module automatically
self.W_A = FederatedParameter(V_A)
self.W_B = FederatedParameter(U_B, enc_V_B)

def forward(self, X_B):
return MatMulOpB.apply(...)

# user-defined LR model of Party B
class LRPartyB(FederatedModule):

def __init__(self, in_A, in_B, out):
super(LRPartyB, self).__init__()
self.source = MatMulSourceB(in_A, in_B, out)
self.bias = torch.nn.Parameter(torch.zeros(out))

def forward(self, X_B):
return self.source(X_B) + self.bias

# training routine of Party B
data_loader = ... # Data preparation
model = LRPartyB(...)
criterion = torch.nn.BCEWithLogitsLoss()
fed_optimizer = FederatedSGD(...)
for X_B, y in data_loader:

output = model(X_B) # forward propagation
fed_optimizer.zero_grad()
loss = criterion(output, y)
loss.backward() # backward propagation
fed_optimizer.step() # update paramters
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Figure 8: Code snippets of the LR algorithm in BlindFL.

6.3 Security Analysis

Indisputably, our protocol in Figure 7 accomplishes all the privacy
requirements in Table 3 and the results are lossless as well. To be
formal, we identify two ideal functionalities FEmbedMatMulFw and
FEmbedMatMulBw for the forward and backward propagation, respec-
tively. In FEmbedMatMulFw, each party inputs the private mini-batch
data (𝑋⋄) and the secretly shared and/or encrypted models (e.g.,
𝑆⋄, ⟦𝑉⋄⟧⋄̄). Party A outputs nothing whilst Party B outputs 𝑍 . In
FEmbedMatMulFw, each party inputs the private mini-batch data and
the secretly shared and/or encrypted models, and Party B further
inputs ∇𝑍 . Then, each party outputs the updated models. Then, We
present the security guarantees of our Embed-MatMul source layer
in Theorem 6.1.

Theorem 6.1. The protocol of Embed-MatMul source layer se-

curely realizes the ideal functionalitiesFEmbedMatMulFw andFEmbedMatMulBw
in the presence of a semi-honest adversary that can corrupt one party.

Again, we further analyze the security of 𝑍,∇𝑍 since they are
released to Party B when the top model is non-federated, which is
given in Theorem 6.2.

Theorem 6.2. Given 𝑍,∇𝑍 in the Embed-MatMul source layer,

there are infinite possible values for 𝑋𝐴, 𝑄𝐴,𝑊𝐴, 𝐸𝐴, 𝐸𝐴𝑊𝐴 .

The proofs are deferred to the appendix due to the space con-
straint, where we further analyze the security when a federated
top model follows our Embed-MatMul source layer.



7 IMPLEMENTATION AND EVALUATION

7.1 Implementation and Experimental Setup

Implementation. We implement BlindFL on top of PyTorch and
the GMP library to be efficient and user-friendly.

Cryptography Acceleration.We employ the GMP library to de-
velop an efficient library for the Paillier cryptosystem and support
high-performance parallel processing with OpenMP. To vectorize
the homomorphic operations, we introduce an abstraction called
CryptoTensor, which supports fruitful primitives for both dense
and sparse computation of encrypted tensors such as matrix multi-
plication and scatter addition.

PyTorch Integration. As shown in Figure 8, BlindFL follows
the API-style of PyTorch to be user-friendly. The forward and
backward procedures of federated source layers are implemented
as autograd operations to achieve automatic differentiation. All
models are derived from FederatedModule, a wrapper for PyTorch
Module that automatically registers the FederatedParameter (e.g.,
𝑈⋄,𝑉⋄). The training routines are the same as non-federated learn-
ing, except that we define a FederatedOptimizer to update the
secretly shared model weights. BlindFL has been integrated into
the productive pipelines of our industrial partner and deployed to
many real-world collaborative applications.

Experimental Setup. All experiments are conducted on two
servers equipped with 96 cores, 375GB of RAM, and 10Gbps of
network bandwidth. For each experiment, we make five runs and
report the mean and standard deviation.

Models. Since features should be partitioned under the VFL
setting, whilst an image or a sentence would not be split and owned
by different parties, the inputs of VFL models are usually tabular
datasets rather than image or text datasets. Thus, we do not conduct
experiments on CV or NLP models in this work. To be specific, We
conduct experiments on five widely-used models, which are LR,
multinomial LR (MLR), MLP, WDL [9], and DLRM [50].

Datasets. As listed in Table 4, we use six public datasets5 and
one industrial advertising dataset. We evenly divide the features
for the two parties. Since we focus on the algorithm protocols, we
assume datasets are already aligned by the private set intersection
(PSI) technique [8, 13, 16], which is a general data preprocessing
in VFL [74]. In Section 8, we will discuss how to extend our work
when datasets cannot be aligned by PSI.

Protocols. As we will show in Section 7.4, BlindFL achieves
comparable model performance as non-federated learning on collo-
cated datasets. Thus, we use the same set of hyper-parameters with
learning rate as 0.05, batch size as 128, and embedding dimension
as 8. For each model, we train for 10 epochs with momentum SGD,
where the momentum value is set as 0.9.

7.2 Privacy Preservation

We first conduct experiments to empirically evaluate the robustness
of privacy preservation of our work. Since the MPC-based methods
can achieve provable security guarantees, we only compare with
the split learning based methods in this section.

Protection for ForwardActivations.As discussed in Section 4.2,
once Party A gets access to the activations, there is a potential label

5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Table 4: Description of datasets used in our experiments.

Dataset

#Instances

(train/test)

#Features &

Avg #nnz

#Classes

a9a 32K/16K 123, 14 2
w8a 50K/15K 300, 12 2

connect-4 50K/17K 126, 42 3
news20 16K/4K 62K, 80 20
higgs 8M/3M 28, 28 2

avazu-app 13M/2M 1M, 14 2
industry 100M/8M 10M, 12 2
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the SS pieces (𝑈𝐴, 𝑆𝐴) on the same coordinate.

leakage. However, many existing works allow Party A to manage
𝑊𝐴 when implementing the LR or MLR models [25, 75, 78]. To em-
pirically evaluate the leakage problem, we implement LR and MLR
following the split learning paradigm and try to see how accurate
it will be if Party A predicts the labels via 𝑋𝐴𝑊𝐴 . For our work, we
let Party A predict with 𝑋𝐴𝑈𝐴 . The results are shown in Figure 9.

When Party A owns𝑊𝐴 , although the AUC or accuracy metrics
of predicting with 𝑋𝐴𝑊𝐴 are lower than those of predicting with
𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 , it is still unsatisfactory — Party A is able to make
accurate predictions for a large portion of data. For instance, Party

 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets


A predicting with 𝑋𝐴𝑊𝐴 on the w8a dataset achieves around 0.9
of AUC on the testing set, which is only 0.06 lower than that of
predicting with 𝑋𝐴𝑊𝐴 + 𝑋𝐵𝑊𝐵 . In contrast, by using our MatMul
source layer (Figure 6), the predictions with 𝑋𝐴𝑈𝐴 are purely ran-
dom guesses (the AUC metric is around 0.5). It proves that the label
information can be protected from the forward activations well
with our MatMul source layer since we do not allow Party A to
manage a local bottom model.

Readers might wonder the necessity of applying SS to model gra-
dients. In other words, if we have already sheltered model weights
via𝑊𝐴 = 𝑈𝐴 +𝑉𝐴 on initialization, can we let Party A get access to
∇𝑊𝐴 and update 𝑈𝐴 directly, rather than updating both 𝑈𝐴,𝑉𝐴 in
the SS manner? To answer this question, we conduct experiments
where𝑊𝐴 is secretly shared on initialization but Party A updates𝑈𝐴

via ∇𝑊𝐴 . Furthermore, we amplify the scale of𝑉𝐴 to better obscure
𝑊𝐴 from Party A. Nevertheless, as shown in Figure 9, even though
the model weights are secretly shared on initialization, Party A can
still obtain accurate predictions. Increasing the scale of 𝑉𝐴 is of
no use given the slight drop in the AUC/accuracy metrics. This is
reasonable because if 𝑉𝐴 keeps unchanged throughout the training
phase, we can assume E[𝑋𝐴𝑉𝐴] = 𝐶 , where 𝐶 is some constant,
hence we have E[𝑋𝐴𝑈𝐴] = E[𝑋𝐴𝑊𝐴] −𝐶 . As a result, Party A is
still capable of making biased predictions, which inevitably leads
to the label leakage.

To conclude, compared with the existing works that follow the
local bottom model design, BlindFL is robust to any kind of ad-
versaries that try to learn the private data via forward activations,
thanks to our federated source layers.

Protection for Backward Derivatives. As discussed in Sec-
tion 4.2, the backward derivatives are very informative and would
leak the training labels. To verify this, we implement the WDL
model following the split learning paradigm, i.e., Party A owns
the embedding table 𝑄𝐴 in the bottom model and obtains ∇𝐸𝐴
in the backward propagation, which is done in several existing
works [28, 36, 81]. Then, we let Party A predicts the labels via ∇𝐸𝐴 .

The results in Figure 10 reveals a horrible fact — Party A accu-
rately predicts the labels of almost the entire training datasets via
the derivatives ∇𝐸𝐴 . Undoubtedly, this disobeys the goal of privacy
preservation. Although it focuses on the training data, Party A

could fit a new model with 𝑋𝐴 and the leaked labels, and utilize the
new model to make predictions for more data, leading to a more
severe level of label leakage. Moreover, we note that this method
attacks successfully regardless of how far ∇𝐸𝐴 are away from the
labels (i.e., the number of hidden layers between the embedding
table and the loss function).

Theoretically speaking, for binary-classification tasks, the back-
ward derivatives for positive and negative instances ought to have
opposite directions since they contribute oppositely to the model.
Thus, Party A can utilize this property and compute the cosine
similarity of two derivatives to see whether they have an opposite
direction. By doing so, Party A achieves an incredible success rate.
It gives us a lesson that any algorithms allowing Party A to obtain
any backward derivatives would be vulnerable from label leakage.

On the contrary, we thoroughly analyze the security of backward
derivatives and propose corresponding privacy requirements to
forbid data leakage from backward derivatives. For instance, in our
Embed-MatMul source layer, Party A does not own the embedding

Table 5: Averaged training time cost of onemini-batch (in seconds).

We only record the time cost ofmatrixmultiplication for a fair com-

parison. The standard deviation for all numbers are smaller than

10% of the mean. SecureML without client aided fails to support the

high-dimensional datasets news20, avazu-app, and industry.

Dataset &

Sparsity

Model

Time Cost/Batch (in seconds)

BlindFL SecureML

SecureML

(Client-aided)

a9a (88.72%) LR 0.018 0.567 0.003
w8a (96.12%) LR 0.021 1.214 0.016

connect-4 (66.67%) MLP 1.114 5.703 0.008
higgs (Dense) LR 0.066 0.178 0.002
news20 (99.87%) MLR 1.817 > 1800 0.364

avazu-app (99.99%) LR 0.038 OOM 4.727
industry (99.99%) LR 0.034 OOM 47.083

table in plaintext and only gets access to the encrypted derivatives
⟦∇𝐸𝐴⟧𝐵 , so BlindFL is robust to any adversaries that try to peek
the private data through backward derivatives.

Protection for Models. As we have discussed in Section 4.2,
the magnitudes or signs of model weights or gradients express
the feature importance upon the learning tasks, so we forbid the
models to be obtained. To achieve this goal, we expect the SS pieces
of model weights and gradients do not reveal the magnitudes or
signs of the ground truth values.

To illustrate the effectiveness of our protection for models, we
plot the values of SS pieces and the ground truth values in Figure 11.
Due to the space constraints, we only plot the model weights𝑊𝐴, 𝑆𝐴
and the sharing pieces 𝑈𝐴, 𝑄𝐴 , whilst similar results are observed
for other model weights and gradients. Figure 11 shows that the
difference on each coordinate is random and sufficiently large so
that both the magnitudes or signs of the ground truth values are
inaccessible. As a result, each party cannot infer any information
by analyzing the feature importance.

7.3 Efficiency

Apart from BlindFL, the MPC-based methods can also achieve
robust security guarantees via data outsourcing. However, unlike
these methods, our work is able to utilize the sparsity of features to
speed up the computation. To verify this, we conduct experiments
to compare the efficiency of BlindFL and the existing MPC-based
counterparts. In particular, we consider SecureML [49], which se-
cretly shares the model weights and feature values via ABY [12],
and performs matrix multiplication with the help of Beaver triplets.
Moreover, as introduced by Mohassel and Zhang [49], SecureML
has a client-aided variant that offloads the generation of Beaver
triplets to a non-colluding third party so that no cryptographic
operation will be involved in the ML tasks. We compare BlindFL
with both variants of SecureML in terms of the training time cost.
Furthermore, we only record the time cost of matrix multiplication
and exclude that of non-linear activation functions (e.g., Sigmoid,
ReLU) for a fair comparison. The results are given in Table 5.

BlindFL vs. SecureML. We first discuss the performance with-
out client aided on different kinds of datasets, respectively.

First, although SecureML can support the low-dimensional and
sparse datasets, i.e., the a9a, w8a, and connect-4 datasets, it cannot
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Figure 12: Training loss in terms of iterations and testing AUC or accuracy metrics. The standard deviation for all evaluation

metrics are smaller than 5% of the mean. The model performance of BlindFL is comparable to that of non-federated learning

on collocated datasets, and better than that of non-federated learning on Party B’s features only.

take the sparsity into account, leading to umpteenth redundant com-
putations on the zero values. On the contrary, by keeping the data
inside each party, BlindFL supports sparse matrix multiplication
and therefore outperforms SecureML by a large extent. Further-
more, BlindFL gains more improvements when the datasets are
sparser, and can be over 50× faster than SecureML.

Second, for the higgs dataset, which is low-dimensional and
dense, the gap between BlindFL and SecureML is smaller since
there are no zero values. Nevertheless, our work still performs
better and gives about 5× of acceleration. The reason is that we
keep an encrypted version of ⟦𝑉⋄⟧⋄̄ on Party ⋄ to reduce an extra
communication round, whilst SecureML needs to generate new
Beaver triplets for each iteration. Thus, our MatMul source layer
also supports dense features well.

Third, SecureML fails to support the news20, avazu-app, and
industry datasets due to their high dimensionalities (either fails to
accomplish the computation within a reasonable time or runs out
of memory). In contrast, BlindFL handles these high-dimensional
and sparse datasets well since we do not need to store or process
the zero values. To the best of our knowledge, none of the existing
works are able to support such a scale of datasets whilst guarantee
promising privacy.

BlindFL vs. Client-aided SecureML.The client-aided SecureML
runs much faster when the dimensionality is not high as no cryptog-
raphy operations are needed, whilst BlindFL cannot be accelerated
in this way. Nevertheless, for the avazu-app and industry datasets,
which are extremely high-dimensional and sparse, BlindFL outper-
forms the client-aided SecureML. This is reasonable since SecureML
has to process all the dimensions whilst BlindFL only needs to
consider the non-zero ones. Furthermore, since there is no such
a non-colluding third party in practice, the MPC-based methods
would be even slower. As a result, BlindFL is more suitable for the
sparse datasets in real-world VFL applications.

To summarize, BlindFL can outperform the MPC-based coun-
terparts by an order of magnitude on sparse datasets and supports
datasets with higher dimensionalities. Moreover, as we will illus-
trate in Section 7.4, BlindFL can also support the embedding lookup

operation for categorical inputs, whilst there are no MPC-based
methods that are designed for the embedding lookup operations to
the best of knowledge. As a result, BlindFL is more powerful as it
gains much better efficiency and functionality.

Scalability. In general, the time cost of the federated source
layers dominates the total running time since the cryptography op-
erations are time-expensive whilst the top model is a non-federated
module. Thus, the running time of our work is proportional to the
output dimensionality of the source layer, and does not change sig-
nificantly w.r.t. the number of layers. Due to the space constraint,
we defer the experimental results in our appendix and do not discuss
the details here.

7.4 Model Ability

As introduced in Section 1, the VFL models are expected to be
lossless, i.e., the performance of VFLmodels should be (i) better than
non-federated learning on the features of Party B only (denoted as
NonFed-Party B); and (ii) comparable to non-federated learning on
collocated features of both parties (denoted as NonFed-collocated).
To assess the lossless property of BlindFL, we conduct experiments
on extensive datasets and models and show the results in Figure 12.

On all experiments, the convergence of BlindFL is consistent to
that of NonFed-collocated and is better than that of NonFed-Party
B. The evaluation metrics on testing sets have similar observations
as well — the testing AUC or accuracy metrics of BlindFL and
NonFed-collocated are comparable, which are better than those of
NonFed-Party B with the help of the extra features from Party A.
The experimental results verify the lossless property of BlindFL.
In practice, it is forbidden to collect the data from different parties
together for ML training or inference. As a result, BlindFL is more
superior as it unites the features in different parties to enhance the
model ability whilst guarantees the data privacy of all parties.

Summary.To conclude, BlindFL outperforms the existingworks
by providing more robust privacy guarantees and faster running
speed. Furthermore, BlindFL achieves comparable model ability
as collocated learning for a variety of models and datasets. Conse-
quently, BlindFL is a good fit for a wide range of VFL applications.
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Vertical FL (VFL). With the ever-evolving concerns on data pri-
vacy, how to build ML models over different data sources with
privacy preservation s gaining more popularity. VFL considers the
case where different parties jointly train ML models over the parti-
tioned features, which fits numerous real-world cross-enterprise
collaborations [10, 19, 71, 74, 75]. We categorize the existing works
into two lines based on how they process the private features.

The MPC-based methods. Since cryptographic methods can
deliver promising security guarantees, it is a straightforward idea
to apply them to the private data directly. A number of works
encrypt features via HE and feed the encrypted features to ML
models [4, 22, 26, 63, 77]. To perform both addition and multipli-
cation, these works adopt somewhat HE or fully HE, which are
extremely time-consuming. Other works adopt SS to protect the
data. Bogdanov et al. [6] proposed a data analysis framework based
on additive SS. Makri et al. [43] trained the support vector machine
models for image classification. SecureML [49] supports various
ML models via the ABY scheme [12]. ABY3 [48] extends ABY to the
three-party scenarios. SecureNN [66, 67] optimizes for three-party
neural networks. Nevertheless, although these works convey con-
siderable privacy guarantees, the generic MPC framework involves
sophisticated protocols and time-consuming computation primi-
tives to achieve zero knowledge disclosure. Worse still, outsourcing
the datasets is not suitable for sparse or categorical features.

Split learning. Rather than data outsourcing, the split learn-
ing paradigm [62, 64] keeps the private data inside each party and
leverages a local bottom model to process the features. Many VFL
algorithms are designed in this way [28, 36, 75, 78, 81]. Since fea-
tures are visible to the owner party, it is very flexible to support
various kinds of features. However, as discussed in Section 3, the
design of local bottom models faces several data leakage problems
and fails to convey provable security guarantees. Although some ex-
isting works try to apply some cryptography operations to enhance
privacy, they still suffer from data leakage. For instance, Yang et al.
[75] tried to avoid label leakage from derivatives via HE and SS.
However, Party B can still infer the labels as depicted in Figure 2. In
addition, noisy perturbation (or differential privacy) is also utilized
to blur the intermediate results [36]. Nevertheless, adding noises
inevitably affects the model accuracy. In practice, it is non-trivial
to figure out a suitable amount of noises that conveys considerable
security whilst produces desirable model accuracy. Furthermore, all
these works cannot provide security guarantees under the ideal-real
paradigm as the MPC-based methods.

Data alignment assumption. Although most of the VFL algo-
rithms assume the instances of different parties have been aligned
via the PSI technique [8, 13, 16], there are also works that focus
on the cases where data cannot be aligned due to stronger privacy
requirements [42, 61]. However, our work can be extended to these
cases easily. For instance, Liu et al. [42] proposed that only Party

B can obtain the intersection whilst Party A cannot. Then, for in-
stances outside the intersection, Party B sets their derivatives as
zeros so that model gradients will not be affected. This method
can be applied to our work by tweaking Line 9 of Figure 6 and
Line 12 of Figure 7. For another example, in [61], both parties can
only obtain the union instead of intersection. Then, they propose

to generate synthetic features and labels for instances outside the
intersection. Obviously, this technique can also be integrated with
our work during the data preprocessing phase.

Reconstruction-based inference attacks.There are alsomany
works that try to break the privacy of MLmodels via more advanced
attacks. For instance, membership inference attacks (MIAs) [27, 59]
try to infer whether an instance was used to train a given model.
However, in our work, since the federated source layers are not
released in plaintext, none of the parties (or any other attackers)
can apply MIAs to attack the models. Deep leakage from gradi-
ents (DLG) is also a popular kind of attack methods [20, 83] which
recover the private data from model gradients. However, model
gradients are not disclosed to others in our algorithm protocol.

Horizontal FL (HFL). Besides VFL, HFL [33, 34, 45] is also one
of the most popular fields of FL, where all parties have disjoint
instance sets for the same features, i.e., the datasets are horizontally
partitioned. There has been a wide range of works studying HFL [7,
35, 38]. The most essential privacy-preserving technique in this
field is differential privacy (DP) [3, 68], which is adopted to obscure
the model weights or gradients so that the individual data become
indistinguishable. Our work differs from these works in objection
since we consider the VFL scenario.

Other related studies. Beyond FL, there is also an arousing
interest in various kinds of federated computing. For instance, the
private set intersection technique [8, 13, 16] secretly extracts and
aligns the joint set of private tables in different parties. Apart from
the “join” operation, many other operations over private databases
are studied [29, 40, 82]. Achieving privacy preservation from the
hardware perspective is also a popular topic. With the help of the
trusted execution environments (TEEs) such as Intel SGX and AMD
memory encryption [32, 44], we can get rid of umpteenth expensive
cryptographic arithmetics when implementing privacy-preserving
ML algorithms [52]. Nevertheless, the available memory for TEE
is too small to support a large data volume and it requires extra
hardware supports.

9 CONCLUSION AND FUTURE DIRECTIONS

This work proposed BlindFL, a brand new VFL framework. To
address the functionality of VFL models, we designed the federated
source layers to unite the data from different data sources. To pro-
tect data privacy, we analyzed the privacy requirements in-depth
and carefully devised safe and accurate algorithm protocols. Exper-
imental results show that BlindFL is able to support various kinds
of features efficiently and achieve promising privacy guarantees.

Beyond this work, we wish to strengthen BlindFL in two direc-
tions. First, it is worthy to study how to extract feature interactions
between parties to support more ML models (e.g., factorization
machines). Second, how to apply adaptive optimizers (e.g., Adam)
to secretly shared model gradients is also an interesting topic. We
will leave the exploration of these topics as our future works.
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A SECURITY ANALYSIS

In this section, we provide the definition of our ideal functionalities
and proofs for the theorems in Section 5.3 and Section 6.3.

A.1 Proofs for Section 5.3

Theorem 5.1. The protocol of MatMul source layer securely realizes

the ideal functionalities FMatMulFw and FMatMulBw in the presence of a

semi-honest adversary that can corrupt one party.

Proof. We formally provide the definition and prove the se-
curity of the two idea functionalities in Lemma A.1 and A.2, re-
spectively. Putting them together, we complete the proof for Theo-
rem 5.1. □

Forward propagation of the MatMul source layer FMatMulFw
Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared and/or encrypted mod-
els𝑈𝐴, ⟦𝑉𝐴⟧𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , secretly shared and/or encrypted mod-
els𝑈𝐵, ⟦𝑉𝐵⟧𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs nothing;
⊲ Party B outputs 𝑍 = 𝑋𝐴𝑊𝐴 +𝑋𝐵𝑊𝐵 , where𝑊⋄ = 𝑈⋄ +𝑉⋄.

LemmaA.1. The protocolΠMatMulFw in Line 5-8 of Figure 6 securely

realizes FMatMulFw in the presence of a semi-honest adversary that can

corrupt one party.

Proof. First, Party A only receives one message by invoking
the ΠHE2SS protocol (Line 6), whilst the other values are computed
locally. Therefore, the view of Party A can be perfectly simulated
by simulating the FHE2SS functionality as discussed in Lemma A.5.

Second, Party B receives two messages in the protocol (Line
5 and Line 8). Similarly, the first message can be simulated by
simulating the FHE2SS functionality. Denote the simulated versions
of 𝑋𝐴𝑉𝐴 − 𝜀𝐴 and 𝜀𝐵 are (𝑋𝐴𝑉𝐴 − 𝜀𝐴)∗ and 𝜀∗𝐵 , respectively. Then,
we can simulate the second message, i.e. 𝑍 ′

𝐴
, by computing 𝑍 ′∗

𝐴
=

𝑍 −𝑍 ′∗
𝐵
, where 𝑍 ′∗

𝐵
= 𝑋𝐵𝑈𝐵 + 𝜀∗𝐵 + (𝑋𝐴𝑉𝐴 − 𝜀𝐴)∗. Since both 𝑍 ′𝐴 (or

𝑍 ′
𝐵
) and 𝑍 ′∗

𝐴
(or 𝑍 ′∗

𝐵
) represent one piece of sharing of the output 𝑍 ,

they have the same probability distribution. As a result, we perfectly
simulate the view of Party B. □

Backward propagation of the MatMul source layer FMatMulBw
Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared and/or encrypted mod-
els𝑈𝐴, ⟦𝑉𝐴⟧𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , derivatives ∇𝑍 , secretly shared and/or
encrypted models𝑈𝐵, ⟦𝑉𝐵⟧𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝜙 ;
⊲ Party B outputs ∇𝑊𝐴 − 𝜙, ∇𝑊𝐵 , where ∇𝑊⋄ = 𝑋𝑇

⋄ ∇𝑍 .

Lemma A.2. The protocol ΠMatMulBw in Line 9-12 of Figure 6 se-

curely realizes FMatMulBw in the presence of a semi-honest adversary

that can corrupt one party.

Proof. First, Party A receives two messages, which are ⟦∇𝑍⟧𝐵
(Line 9) and ⟦∇𝑊𝐴 − 𝜙⟧𝐵 (Line 12). We construct a simulator that

randomly picks plaintexts ∇𝑍 ∗, (∇𝑊𝐴 − 𝜙)∗ and encrypts them
using 𝑝𝑘𝐵 to obtain ⟦∇𝑍 ∗⟧𝐵, ⟦(∇𝑊𝐴 − 𝜙)∗⟧. Since ∇𝑍 is the input
and∇𝑊𝐴−𝜙 is one piece of random secret,∇𝑍 ∗ (or (∇𝑊𝐴−𝜙)∗) and
∇𝑍 (or ∇𝑊𝐴 − 𝜙) share the same probability distribution. Further-
more, without Party B’s secret key 𝑠𝑘𝐵 , the ciphertexts ⟦∇𝑍⟧𝐵 (or
⟦∇𝑊𝐴 − 𝜙⟧) and ⟦∇𝑍 ∗⟧𝐵 (or ⟦(∇𝑊𝐴 − 𝜙)∗⟧) are computationally
indistinguishable from the perspective of Party A. The other values
in the view of Party A are computed locally. For instance, the sim-
ulator can simulate ⟦𝑊𝐴⟧𝐵 by computing ⟦𝑊 ∗

𝐴
⟧𝐵 = 𝑋𝑇

𝐴
⟦∇𝑍 ∗⟧𝐵 .

Again, they are computationally indistinguishable from the perspec-
tive of Party A. Consequently, the view of Party A can be simulated
perfectly.

Second, Party B only receives one messages by invoking the
ΠHE2SS protocol (Line 10), whilst the other values are computed
locally. Therefore, the view of Party B can be perfectly simulated by
simulating the FHE2SS functionality as discussed in Lemma A.5. □

Theorem 5.2. Given 𝑍,∇𝑍 in the MatMul source layer, there are
infinite possible values for 𝑋𝐴,𝑊𝐴, 𝑋𝐴𝑊𝐴 .

Proof. First, we consider the linear equation 𝑍 = 𝑍𝐴 + 𝑍𝐵
where 𝑍𝐴 = 𝑋𝐴𝑊𝐴, 𝑍𝐵 = 𝑋𝐵𝑊𝐵 . With only 𝑍 ∈ R𝐵𝑆×𝑂𝑈𝑇 be-
ing known to Party B, there are 𝐵𝑆 ×𝑂𝑈𝑇 known values in total.
However, since both 𝑍𝐴, 𝑍𝐵 are unknown, which make up to be
2 × 𝐵𝑆 × 𝑂𝑈𝑇 variables in the equation. As a result, there must
be infinite possible solution to the equation, which means there
are infinite possible values for 𝑍𝐴 = 𝑋𝐴𝑊𝐴 . Then, for any possible
𝑋𝐴𝑊𝐴 , given an arbitrary invertible matrix 𝑀 ∈ R𝐼𝑁𝐴×𝐼𝑁𝐴 , we
have (𝑋𝐴𝑀

−1) (𝑀𝑊𝐴) = 𝑋𝐴𝑊𝐴 . Consequently, there are infinite
possible values for 𝑋𝐴,𝑊𝐴 , since both 𝑋𝐴𝑊𝐴 and𝑀 are arbitrary.

For ∇𝑍 , since it is computed locally on Party B, no extra infor-
mation related to 𝑋𝐴,𝑊𝐴, 𝑋𝐴𝑊𝐴 are provided. Thus, there are still
infinite possible values for 𝑋𝐴,𝑊𝐴, 𝑋𝐴𝑊𝐴 . □

A.2 Proofs for Section 6.3

Theorem 6.1. The protocol of Embed-MatMul source layer securely
realizes the ideal functionalities FEmbedMatMulFw and FEmbedMatMulBw
in the presence of a semi-honest adversary that can corrupt one party.

Proof. We formally provide the definition and prove the se-
curity of the two idea functionalities in Lemma A.3 and A.4, re-
spectively. Putting them together, we complete the proof for Theo-
rem 6.1. □

Forward propagation of the Embed-MatMul source layer FEmbedMatMulFw
Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared and/or encrypted mod-
els 𝑆𝐴, ⟦𝑇𝐴⟧𝐵,𝑇𝐵,𝑈𝐴, ⟦𝑉𝐴⟧𝐵, ⟦𝑈𝐵⟧𝐵,𝑉𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , secretly shared and/or encrypted mod-
els 𝑆𝐵, ⟦𝑇𝐵⟧𝐴,𝑇𝐴,𝑈𝐵, ⟦𝑉𝐵⟧𝐴, ⟦𝑈𝐴⟧𝐴,𝑉𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs nothing;
⊲ Party B outputs𝑍 = 𝐸𝐴𝑊𝐴+𝐸𝐵𝑊𝐵 , where𝐸⋄ = lkup(𝑄⋄, 𝑋⋄),𝑄⋄ =
𝑆⋄ +𝑇⋄,𝑊⋄ = 𝑈⋄ +𝑉⋄.

Lemma A.3. The protocol ΠEmbedMatMulFw in Line 5-11 of Figure 7

securely realizes FEmbedMatMulFw in the presence of a semi-honest ad-

versary that can corrupt one party.



Proof. First, Party A receives three messages in total. In Line
6, Party A receives one message by the ΠHe2SS protocol. In Line
7-8, Party A invokes the MatMulFw routine twice, and each receives
one message by the ΠHE2SS protocol, as discussed in our proof of
Lemma A.1. Whilst all other values are computed locally. Obviously,
the view of Party A can be perfectly simulated by simulating the
FHE2SS functionality.

Second, Party B receives four messages in the protocol. Symmet-
rical as Party A, the first three messages are received via the ΠHe2SS

protocol. We can simulate these three messages by simulating the
FHE2SS functionality. The fourth message is received in Line 11.
Denote the simulated versions of 𝑍 ′1,𝐵 and 𝑍 ′2,𝐵 are 𝑍 ′∗1,𝐵 and 𝑍 ′∗2,𝐵 ,
respectively. Then, we can simulate the fourth message, i.e. 𝑍 ′

𝐴
,

by computing 𝑍 ′∗
𝐴

= 𝑍 − 𝑍 ′∗
𝐵
, where 𝑍 ′∗

𝐵
= 𝑍 ′∗1,𝐵 + 𝑍

′∗
2,𝐵 . Since both

𝑍 ′
𝐴
(or 𝑍 ′

𝐵
) and 𝑍 ′∗

𝐴
(or 𝑍 ′∗

𝐵
) represent one piece of sharing of the

output 𝑍 , they have the same probability distribution. As a result,
we perfectly simulate the view of Party B. □

Backward propagation of the Embed-MatMul source layer FEmbedMatMulBw
Inputs:

⊲ Party A inputs features𝑋𝐴 , secretly shared activations𝜓𝐴, 𝐸𝐵−𝜓𝐵 ,
secretly shared and/or encryptedmodels𝑆𝐴, ⟦𝑇𝐴⟧𝐵,𝑇𝐵,𝑈𝐴, ⟦𝑉𝐴⟧𝐵,
⟦𝑈𝐵⟧𝐵,𝑉𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , derivatives ∇𝑍 , secretly shared ac-
tivations 𝐸𝐴 −𝜓𝐴,𝜓𝐵 , secretly shared and/or encrypted models
𝑆𝐵, ⟦𝑇𝐵⟧𝐴,𝑇𝐴,𝑈𝐵, ⟦𝑉𝐵⟧𝐴, ⟦𝑈𝐴⟧𝐴,𝑉𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝜙, 𝜉, 𝜌𝐴, ∇𝑄𝐴 − 𝜌𝐵 ;
⊲ Party B outputs ∇𝑊𝐴 −𝜙, ∇𝑊𝐵 − 𝜉, ∇𝑄𝐴 − 𝜌𝐴, 𝜌𝐵 , where ∇𝑊⋄ =
𝐸𝑇⋄ ∇𝑍, ∇𝐸⋄ = ∇𝑍𝑊𝑇

⋄ , ∇𝑄⋄ = lkup_bw(∇𝐸⋄, 𝑋⋄) .

Lemma A.4. The protocol ΠEmbedMatMulBw in Line 12-26 of Figure 7

securely realizes FEmbedMatMulBw in the presence of a semi-honest ad-

versary that can corrupt one party.

Proof. First, Party A receives six messages, which are ⟦∇𝑍⟧𝐵 ,
⟦∇𝑍𝑉𝑇

𝐴
⟧𝐵 (Line 12), ⟦∇𝑊𝐴 − 𝜙⟧𝐵 (Line 18), ⟦∇𝑊𝐵 − 𝜉⟧𝐵 (Line 19),

∇𝑄𝐵 − 𝜌𝐵 (Line 23), and ⟦∇𝑄𝐴 − 𝜌𝐴⟧𝐵 (Line 25), respectively. For
∇𝑄𝐵 − 𝜌𝐵 , which is received from the ΠHE2SS protocol, we can
simulate this message by simulating the FHE2SS functionality as
discussed in Lemma A.5. For the other five messages, we construct
a simulator that randomly picks plaintexts ∇𝑍 ∗, (∇𝑍𝑉𝑇

𝐴
)∗ (∇𝑊𝐴 −

𝜙)∗, (∇𝑊𝐵 − 𝜉)∗, (∇𝑄𝐴 − 𝜌𝐴)∗ and encrypts them using 𝑝𝑘𝐵 to
obtain ⟦∇𝑍 ∗⟧𝐵 , ⟦(∇𝑍𝑉𝑇

𝐴
)∗⟧𝐵 , ⟦(∇𝑊𝐴 − 𝜙)∗⟧𝐵 , ⟦(∇𝑊𝐵 − 𝜉)∗⟧𝐵 ,

⟦(∇𝑄𝐴 − 𝜌𝐴)∗⟧𝐵 . Since ∇𝑍 is the input and𝑉𝐴 , ∇𝑊𝐴 −𝜙 , ∇𝑊𝐵 −𝜉 ,
∇𝑄𝐴−𝜌𝐴 are random secrets,∇𝑍 ∗ and∇𝑍 (or (∇𝑍𝑉𝑇

𝐴
)∗ and∇𝑍𝑉𝑇

𝐴
,

or (∇𝑊𝐴−𝜙)∗ and ∇𝑊𝐴−𝜙 , or (∇𝑊𝐵−𝜉)∗ and ∇𝑊𝐵−𝜉 , or (∇𝑄𝐴−
𝜌𝐴)∗ and∇𝑄𝐴−𝜌𝐴) share the same probability distribution. Further-
more, without Party B’s secret key 𝑠𝑘𝐵 , the ciphertexts ⟦∇𝑍 ∗⟧𝐵 and
⟦∇𝑍⟧𝐵 (or ⟦(∇𝑊𝐴 − 𝜙)∗⟧𝐵 and ⟦∇𝑊𝐴 − 𝜙⟧𝐵 , or ⟦(∇𝑊𝐵 − 𝜉)∗⟧𝐵
and ⟦∇𝑊𝐵 − 𝜉⟧𝐵 , or ⟦(∇𝑄𝐴 − 𝜌𝐴)∗⟧𝐵 and ⟦∇𝑄𝐴 − 𝜌𝐴⟧𝐵 ) are com-
putationally indistinguishable from the perspective of Party A.
The other values in the view of Party A are computed locally.
For instance, the simulator can simulate ⟦∇𝐸𝐴⟧𝐵 by computing
⟦∇𝐸∗

𝐴
⟧𝐵 = ⟦∇𝑍 ∗⟧𝐵𝑈𝑇

𝐴
+ ⟦(∇𝑍𝑉𝑇

𝐴
)∗⟧𝐵 . Again, they are computa-

tionally indistinguishable from the perspective of Party A. Conse-
quently, the view of Party A can be simulated perfectly.

For Party B, there are three messages received by invoking the
ΠHE2SS protocol (Line 13, 15, and 22), and three messages that are
ciphertexts of secrets (Line 17, 20, 26). For the first three messages,
we can simulate them by simulating the FHE2SS functionality. For
the last three messages, we simulate them in a similar way as simu-
lating those of Party A, i.e., by randomly picking ciphertexts and
encrypting them using 𝑝𝑘𝐴 . Again, since the messages are cipher-
texts of random secrets, the simulation shares the same probability
distribution as the original view and they are computationally in-
distinguishable from the perspective of Party B. As a result, the
simulator perfectly simulates the view of Party B. □

Theorem 5.2. Given 𝑍,∇𝑍 in the Embed-MatMul source layer,

there are infinite possible values for 𝑋𝐴, 𝑄𝐴,𝑊𝐴, 𝐸𝐴, 𝐸𝐴𝑊𝐴 .

Proof. First, we consider the linear equation 𝑍 = 𝑍𝐴 + 𝑍𝐵
where 𝑍𝐴 = 𝐸𝐴𝑊𝐴, 𝑍𝐵 = 𝐸𝐵𝑊𝐵 . With only 𝑍 ∈ R𝐵𝑆×𝑂𝑈𝑇 be-
ing known to Party B, there are 𝐵𝑆 ×𝑂𝑈𝑇 known values in total.
However, since both 𝑍𝐴, 𝑍𝐵 are unknown, which make up to be
2 × 𝐵𝑆 × 𝑂𝑈𝑇 variables in the equation. As a result, there must
be infinite possible solution to the equation, which means there
are infinite possible values for 𝑍𝐴 = 𝑋𝐴𝐸𝐴 . Then, for any possible
𝑋𝐴𝐸𝐴 , given an arbitrary invertible matrix 𝑀 ∈ R𝐼𝑁𝐴×𝐼𝑁𝐴 , we
have (𝐸𝐴𝑀−1) (𝑀𝑊𝐴) = 𝐸𝐴𝑊𝐴 . Consequently, there are infinite
possible values for 𝐸𝐴,𝑊𝐴 , since both 𝐸𝐴𝑊𝐴 and𝑀 are arbitrary.
Similarly, for any possible 𝐸𝐴 , there are also infinite possible values
for 𝑋𝐴, 𝑄𝐴 .

For ∇𝑍 , since it is computed locally on Party B, no extra infor-
mation related to 𝑋𝐴, 𝑄𝐴,𝑊𝐴, 𝐸𝐴, 𝐸𝐴𝑊𝐴 are provided. Thus, there
are still infinite possible values for 𝑋𝐴, 𝑄𝐴,𝑊𝐴, 𝐸𝐴, 𝐸𝐴𝑊𝐴 . □

A.3 Proofs for Common Sub-Routines

Algorithm 1 andAlgorthm 2 are two commonly used sub-routines in
our work. In this subsection, we prove that the algorithm protocols
securely realize the ideal functionalities as defined below.

Transformation from HE variables to SS variables FHE2SS
Inputs:

⊲ Party ⋄ inputs a ciphertext ⟦𝑣⟧⋄̄ and the other party’s public key
𝑝𝑘⋄̄;

⊲ Party ⋄̄ inputs the secret key 𝑠𝑘⋄̄.
Outputs:

⊲ Party ⋄ outputs a random value 𝜙 ;
⊲ Party ⋄̄ outputs 𝑣 − 𝜙 .

Lemma A.5. The protocol ΠHE2SS in Algorithm 1 securely realizes

FHE2SS in the presence of a semi-honest adversary that can corrupt

one party.

Proof. Since Party ⋄ receives no messages from Party ⋄̄, it is
easy to know that our protocol is secure against the corruption
of Party ⋄. Hence, we only need to discuss how to simulate the
view of Party ⋄̄. To do so, the simulator encrypts 𝑣 − 𝜙 with 𝑝𝑘𝐵 to
obtain ⟦𝑣 − 𝜙⟧∗⋄̄. Here we differentiate ⟦𝑣 − 𝜙⟧

∗⋄̄ and the ⟦𝑣 − 𝜙⟧⋄̄
in Algorithm 1 since they are from different times of encryption.
Obviously, they share the same probability distribution and are
computationally indistinguishable from the perspective of Party ⋄̄.
As a result, it perfectly simulates the view of Party ⋄̄. □



Algorithm 2: The procedure to transform an SS variable
⟨𝑣⋄, 𝑣 ⋄̄⟩ into an HE variable ⟦𝑣⟧ where 𝑣 = 𝑣⋄ + 𝑣 ⋄̄.
1 Function SS2HE(𝑣⋄):
2 Enc and Send the SS piece of this party 𝑣⋄ using 𝑝𝑘⋄
3 Recv the encrypted SS piece of the other party ⟦𝑣 ⋄̄⟧⋄̄
4 return ⟦𝑣⟧⋄̄ = ⟦𝑣 ⋄̄⟧⋄̄ + 𝑣⋄
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Figure 13: The MatMul source layer followed by an SS-based
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Figure 14: The Embed-Matmul source layer followed by an SS-

based top model. All cross-party transmission (red arrows)

are protected by HE or SS.

Transformation from SS variables to HE variables FSS2HE
Inputs:

⊲ Party ⋄ inputs a piece of SS 𝑣⋄ and keys 𝑝𝑘⋄, 𝑝𝑘⋄̄;
⊲ Party ⋄̄ inputs a piece of SS 𝑣⋄̄ and keys 𝑝𝑘⋄̄, 𝑝𝑘⋄.
Outputs:

⊲ Party ⋄ outputs a ciphertext ⟦𝑣⟧⋄̄;
⊲ Party ⋄̄ outputs a ciphertext ⟦𝑣⟧⋄, where 𝑣 = 𝑣⋄ + 𝑣⋄̄.

Lemma A.6. The protocol ΠSS2HE in Algorithm 2 securely realizes

FSS2HE in the presence of a semi-honest adversary that can corrupt

one party.

Proof. Since both parties have symmetric routines, we only
describe how to simulate the view of Party ⋄. The only messages
received in the protocol is ⟦𝑣 ⋄̄⟧⋄̄. To simulate it, the simulator
computes ⟦𝑣 ⋄̄⟧∗⋄̄ = ⟦𝑣⟧⋄̄ − 𝑣⋄. Here we differentiate ⟦𝑣 ⋄̄⟧∗⋄̄ and
the ⟦𝑣 ⋄̄⟧⋄̄ in Algorithm 2 since they are from different times of
encryption. Obviously, they have the same probability distribution
since 𝑣 = 𝑣⋄ + 𝑣 ⋄̄, and they are computationally indistinguishable
from the perspective of Party ⋄. As a result, the view of Party ⋄ can
be perfectly simulated. □

B EXTENSION TO FEDERATED TOP MODELS

Although the top models are usually non-federated to address effi-
ciency in practice, we can also use a federated top model so that
Party B cannot get access to 𝑍 or ∇𝑍 , strengthening the security
guarantees. In this section, we discuss how to adapt our work to
the federated top model. Without loss of generality, we assume the
top model utilizes the SS technique (e.g., SecureML).

First, for the forward propagation, our source layers should out-
put an SS variable ⟨𝑍 ′

𝐴
, 𝑍 ′

𝐵
⟩ satisfying 𝑍 ′

𝐴
+𝑍 ′

𝐵
= 𝑍 . In fact, this can

be easily done with our algorithm protocols, as described below.
⊲ For the MatMul source layer, we have the fact that 𝑍 ′⋄ = 𝑋⋄𝑈⋄ +
𝜀⋄ + 𝑋⋄̄𝑉⋄̄ − 𝜀⋄̄, where 𝜀⋄, 𝜀⋄̄ are generated by different parties.
Hence, ⟨𝑍 ′

𝐴
, 𝑍 ′

𝐵
⟩ forms an SS variable of 𝑍 logically. As shown

in Line 1 of Figure 13, Party A and Party B return 𝑍 ′
𝐴
and 𝑍 ′

𝐵
,

respectively. By doing so, we can easily adapt the MatMul source
layer to the federated top model.

⊲ Similarly, for the Embed-MatMul source layer, we can also obtain
the SS variable ⟨𝑍 ′

𝐴
, 𝑍 ′

𝐵
⟩ satisfying 𝑍 = 𝑍 ′

𝐴
, 𝑍 ′

𝐵
via Line 5-10 of

Figure 7. Thus, we directly output them to the federated top
model.
Second, for the backward propagation, Party B no longer gets

access to ∇𝑍 . Instead, both parties take as input an SS variable
⟨𝜀,∇𝑍 − 𝜀⟩. For the MatMul source layer, the major difference is
that Party B cannot compute model gradients ∇𝑊𝐵 = 𝑋𝑇

𝐵
∇𝑍 alone.

To tackle this problem, we turn the SS variable into an HE vari-
able ⟦∇𝑍⟧𝐴 for Party B via Algorithm 2 (Line 3 of Figure 13).
Next, Party B proceeds to compute the encrypted model gradi-
ents ⟦∇𝑊𝐵⟧𝐴 = 𝑋𝑇

𝐵
⟦∇𝑍⟧𝐴 , which are then transformed into an

SS variable ⟨∇𝑊𝐵 − 𝜙𝐵, 𝜙𝐵⟩ (Line 4-5 of Figure 13). Eventually, the
update will be performed based on the secretly shared mode gra-
dients. For the Embed-MatMul source layer, the routines are more
complex. We refer interested readers to Figure 14 for more details.

To summarized, the federated source layers proposed in this
work can also be integrated with federated top models.

B.1 Security Analysis

In this subsection, we provide the security analysis of BlindFL
when the top model is also a federated module. Without loss of
generality, we assume the model weights of the federated top model
are also secretly shared and/or encrypted. Furthermore, since our
work focuses on the security guarantees of federated source layers,



we assume the federated top model securely realizes the following
ideal functionality for simplicity.

Forward and backward propagation of SS-based top model FTopSS
Inputs:

⊲ Party A inputs secretly shared activations 𝑍 ′
𝐴
, secretly shared

and/or encrypted models of the top model, and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;
⊲ Party B inputs inputs secretly shared activations 𝑍 ′

𝐵
, labels 𝑦, se-

cretly shared and/or encrypted models of the top model, and keys
𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝜀;
⊲ Party B outputs ∇𝑍−𝜀 , where ∇𝑍 denotes the backward derivatives
of 𝑍 = 𝑍 ′

𝐴
+ 𝑍 ′

𝐵
.

Then, we identify the ideal functionality ofML training of BlindFL
with an SS-based top model, and provide the security guarantees
in Theorem B.1.

ML Training of BlindFL with an SS-based top model FML
Inputs:

⊲ Party A inputs features 𝑋𝐴 and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;
⊲ Party B inputs features 𝑋𝐵 , labels 𝑦, and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .
Outputs:

⊲ Both parties output the trained federated source layers and Party

B further outputs the trained federated top model (model weights
are secretly shared or encrypted).

Theorem B.1. Assume the federated top model ΠTopSS securely

realizes FTopSS in the presence of a semi-honest adversary that can

corrupt one party. The training of BlindFL using the MatMul and

Embed-MatMul federated source layers securely realizes FML in the

presence of a semi-honest adversary that can corrupt one party.

Proof. Since all values are secretly shared and/or encrypted
during the training process, it is actually a hybrid interaction of the
ΠMatMulSSFw,ΠMatMulSSBw,ΠEmbed-MatMulSSFw,ΠEmbed-MatMulSSBw, and
ΠTopSS protocols. Therefore, simulation can be done using the hy-
brid argument. Combing Lemma B.2, B.3, B.4, B.5, and the assump-
tion on the federated top model, we prove Theorem B.1. □

Forward propagation of the MatMul source layer
followed by an SS-based top model FMatMulSSFw

Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared and/or encrypted mod-
els𝑈𝐴, ⟦𝑉𝐴⟧𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , secretly shared and/or encrypted mod-
els𝑈𝐵, ⟦𝑉𝐵⟧𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝑍 ′
𝐴
;

⊲ Party B outputs𝑍 ′
𝐵
, where𝑍 ′

𝐴
+𝑍 ′

𝐵
= 𝑋𝐴𝑊𝐴+𝑋𝐵𝑊𝐵,𝑊⋄ = 𝑈⋄+𝑉⋄.

Lemma B.2. The protocol ΠMatMulSSFw in Line 1 of Figure 13 se-

curely realizes FMatMulSSFw in the presence of a semi-honest adversary

that can corrupt one party.

Proof. This lemma can be proved similarly as Lemma A.1. Thus,
we would like to refer readers to the proof of Lemma A.1. □

Backward propagation of the MatMul source layer
followed by an SS-based top model FMatMulSSBw

Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared derivatives 𝜀 , secretly
shared and/or encrypted models𝑈𝐴, ⟦𝑉𝐴⟧𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , secretly shared derivatives ∇𝑍 − 𝜀 ,
secretly shared and/or encrypted models 𝑈𝐵, ⟦𝑉𝐵⟧𝐴 , and keys
𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝜙𝐴, ∇𝑊𝐵 − 𝜙𝐵 ;
⊲ Party B outputs ∇𝑊𝐴 − 𝜙𝐴, 𝜙𝐵 , where ∇𝑊⋄ = 𝑋𝑇

⋄ ∇𝑍 .

Lemma B.3. The protocol ΠMatMulSSBw in Line 2-8 of Figure 13 se-

curely realizes FMatMulSSBw in the presence of a semi-honest adversary

that can corrupt one party.

Proof. Since both parties have symmetric routines, we only
describe how to simulate the view of Party A. There are three
messages received in the protocol. For the first two messages, i.e.,
⟦∇𝑍⟧𝐵,∇𝑊𝐵 − 𝜙𝐵 (Line 3 and 5), they can be simulated by simu-
lating the ΠSS2HE and ΠHE2SS protocols, respectively. For the third
message, i.e., ⟦∇𝑊𝐴 − 𝜙𝐴⟧𝐵 (Line 7), we construct a simulator that
randomly picks plaintexts (∇𝑊𝐴 − 𝜙𝐴)∗ and encrypts them using
𝑝𝑘𝐵 to obtain ⟦(∇𝑊𝐴 − 𝜙𝐴)∗⟧. Since ∇𝑊𝐴 − 𝜙𝐴 is one piece of
random secret, (∇𝑊𝐴 − 𝜙𝐴)∗ and ∇𝑊𝐴 − 𝜙𝐴 share the same proba-
bility distribution. Furthermore, without Party B’s secret key 𝑠𝑘𝐵 ,
⟦∇𝑊𝐴 − 𝜙⟧ and ⟦(∇𝑊𝐴 − 𝜙)∗⟧ are computationally indistinguish-
able from the perspective of Party A. The other values in the view of
Party A are computed locally. For instance, denoting ⟦∇𝑍 ∗⟧𝐵 as the
simulated version of ⟦∇𝑍⟧𝐵 , the simulator can simulate ⟦𝑊𝐴⟧𝐵 by
computing ⟦𝑊 ∗

𝐴
⟧𝐵 = 𝑋𝑇

𝐴
⟦∇𝑍 ∗⟧𝐵 . Again, they are computationally

indistinguishable from the perspective of Party A. Consequently,
the view of Party A can be simulated perfectly. □

Forward propagation of the Embed-MatMul source layer
followed by an SS-based top model FEmbedMatMulSSFw

Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared and/or encrypted mod-
els 𝑆𝐴, ⟦𝑇𝐴⟧𝐵,𝑇𝐵,𝑈𝐴, ⟦𝑉𝐴⟧𝐵, ⟦𝑈𝐵⟧𝐵,𝑉𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;

⊲ Party B inputs features 𝑋𝐵 , secretly shared and/or encrypted mod-
els 𝑆𝐵, ⟦𝑇𝐵⟧𝐴,𝑇𝐴,𝑈𝐵, ⟦𝑉𝐵⟧𝐴, ⟦𝑈𝐴⟧𝐴,𝑉𝐴 , and keys 𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝑍 ′
𝐴
;

⊲ Party B outputs 𝑍 ′
𝐵
, where 𝑍 ′

𝐴
+ 𝑍 ′

𝐵
= 𝐸𝐴𝑊𝐴 + 𝐸𝐵𝑊𝐵, 𝐸⋄ =

lkup(𝑄⋄, 𝑋⋄),𝑄⋄ = 𝑆⋄ +𝑇⋄,𝑊⋄ = 𝑈⋄ +𝑉⋄.

Lemma B.4. The protocol ΠEmbedMatMulSSFw in Line 1 of Figure 14

securely realizes FEmbedMatMulSSFw in the presence of a semi-honest

adversary that can corrupt one party.

Proof. This lemma can be proved similarly as Lemma A.3. Thus,
we would like to refer readers to the proof of Lemma A.3. □

Backward propagation of the Embed-MatMul source layer
followed by an SS-based top model FEmbedMatMulSSBw

Inputs:

⊲ Party A inputs features 𝑋𝐴 , secretly shared derivatives 𝜀 , secretly
shared activations𝜓𝐴, 𝐸𝐵 −𝜓𝐵 , secretly shared and/or encrypted
models𝑆𝐴, ⟦𝑇𝐴⟧𝐵,𝑇𝐵,𝑈𝐴, ⟦𝑉𝐴⟧𝐵, ⟦𝑈𝐵⟧𝐵,𝑉𝐵 , and keys 𝑠𝑘𝐴, 𝑝𝑘𝐵 ;



Algorithm 3: The MatMul source layer under the multi-
party setting. We assume there are𝑀 Party A’s.
1 Function MultiPartyMatMulInit(𝐼𝑁𝐴(𝑖) , 𝐼𝑁𝐵,𝑂𝑈𝑇):
2 if is Party B then

3 Initialize𝑈𝐵 ∈ R𝐼𝑁𝐵×𝑂𝑈𝑇

4 foreach 𝑖 ← 1 to𝑀 do

5 Initialize 𝑉𝐴(𝑖) ∈ R𝐼𝑁𝐴(𝑖 )×𝑂𝑈𝑇

6 Enc and Send 𝑉𝐴(𝑖) ; Recv ⟦𝑉𝐵 (𝑖)⟧𝐴(𝑖)
7 return𝑈𝐵, ⟦𝑉𝐵 (𝑖)⟧𝐴(𝑖) ,𝑉𝐴(𝑖)
8 else // Party A(i)

9 Initialize𝑈𝐴(𝑖) ∈ R𝐼𝑁𝐴(𝑖 )×𝑂𝑈𝑇 ,𝑉𝐵 (𝑖) ∈ R𝐼𝑁𝐵×𝑂𝑈𝑇

10 Enc and Send 𝑉𝐵 (𝑖) ; Recv ⟦𝑉𝐴(𝑖)⟧𝐵
11 return𝑈𝐴(𝑖) , ⟦𝑉𝐴(𝑖)⟧𝐵,𝑉𝐵 (𝑖)
12 Function MultiPartyMatMulFw(𝑋⋄,𝑈⋄, ⟦𝑉⋄⟧⋄̄):
13 if is Party B then

14 foreach 𝑖 ← 1 to𝑀 do

/* Line 5-8 of Figure 6 */

15 𝑍𝑖 = MatMulFw(𝑋𝐵,𝑈𝐵/𝑀, ⟦𝑉𝐵 (𝑖)⟧𝐴(𝑖))
16 return 𝑍 =

∑
𝑖 𝑍𝑖

17 else // Party A(i)
/* Line 5-8 of Figure 6 */

18 MatMulFw (𝑋𝐴,𝑈𝐴(𝑖) , ⟦𝑉𝐴(𝑖)⟧𝐵 )
19 return null
20 Function MultiPartyMatMulBw(𝑋⋄,𝑈⋄,𝑉⋄̄, ∇𝑍):
21 if is Party B then

22 Enc ∇𝑍 into ⟦∇𝑍⟧𝐵
23 foreach 𝑖 ← 1 to𝑀 do

24 Send ⟦∇𝑍⟧𝐵
25 ∇𝑊𝐴(𝑖) − 𝜙𝐴(𝑖) = HE2SS()

26 Update 𝑉𝐴(𝑖) via ∇𝑊𝐴(𝑖) − 𝜙𝐴(𝑖) , Enc and Send
𝑉𝐴(𝑖)

27 Update𝑈𝐵 via ∇𝑊𝐵 = 𝑋𝑇
𝐵
∇𝑍

28 else // Party A(i)
29 Recv ⟦∇𝑍⟧𝐵
30 𝜙𝐴(𝑖) = HE2SS(𝑋𝑇

𝐴(𝑖)⟦∇𝑍⟧𝐵)
31 Recv ⟦𝑉𝐴(𝑖)⟧𝐵

⊲ Party B inputs features 𝑋𝐵 , secretly shared derivatives ∇𝑍 − 𝜀 ,
secretly shared activations 𝐸𝐴 −𝜓𝐴,𝜓𝐵 , secretly shared and/or en-
crypted models 𝑆𝐵, ⟦𝑇𝐵⟧𝐴,𝑇𝐴,𝑈𝐵, ⟦𝑉𝐵⟧𝐴, ⟦𝑈𝐴⟧𝐴,𝑉𝐴 , and keys
𝑝𝑘𝐴, 𝑠𝑘𝐵 .

Outputs:

⊲ Party A outputs 𝜙, 𝜉, 𝜌𝐴, ∇𝑄𝐴 − 𝜌𝐵 ;
⊲ Party B outputs ∇𝑊𝐴 −𝜙, ∇𝑊𝐵 − 𝜉, ∇𝑄𝐴 − 𝜌𝐴, 𝜌𝐵 , where ∇𝑊⋄ =
𝐸𝑇⋄ ∇𝑍, ∇𝐸⋄ = ∇𝑍𝑊𝑇

⋄ , ∇𝑄⋄ = lkup_bw(∇𝐸⋄, 𝑋⋄) .

Lemma B.5. The protocol ΠEmbedMatMulSSBw in Line 2-10 of Figure 7

securely realizes FEmbedMatMulSSBw in the presence of a semi-honest

adversary that can corrupt one party.

Proof. Since both parties have symmetric routines, we only
describe how to simulate the view of Party A. There are eight
messages received in total.

First, for the four messages received in Line 3, 5, 6, and 8 of
Figure 14, they are received by invoking the ΠHE2SS and ΠSS2HE

protocols, so we can simulate them by simulating the FHE2SS and
FSS2HE functionalities.

The ΠEmbedMatMulSSBw protocol in Figure 14 also involves parts of
the ΠEmbedMatMulBw protocol in Figure 7, where four messages are
also received (Line 18, 19, 23, and 25 of Figure 7). For the message
received in Line 23 of Figure 7, we can simulate it by simulating the
FHE2SS functionalities. For the other three messages received in Line
18, 19, and 25 of Figure 7, we construct a simulator that randomly
picks plaintexts (∇𝑊𝐴 − 𝜙)∗, (∇𝑊𝐵 − 𝜉)∗, (∇𝑄𝐴 − 𝜌𝐴)∗ and en-
crypts them using 𝑝𝑘𝐵 to obtain ⟦(∇𝑊𝐴 − 𝜙)∗⟧𝐵 , ⟦(∇𝑊𝐵 − 𝜉)∗⟧𝐵 ,
⟦(∇𝑄𝐴 − 𝜌𝐴)∗⟧𝐵 . Since ∇𝑊𝐴 −𝜙,∇𝑊𝐵 − 𝜉,∇𝑄𝐴 − 𝜌𝐴 are random
secrets, (∇𝑊𝐴 − 𝜙)∗ and ∇𝑊𝐴 − 𝜙 (or (∇𝑊𝐵 − 𝜉)∗ and ∇𝑊𝐵 − 𝜉 ,
or (∇𝑄𝐴 − 𝜌𝐴)∗ and ∇𝑄𝐴 − 𝜌𝐴) share the same probability distri-
bution. Furthermore, without Party B’s secret key 𝑠𝑘𝐵 , the cipher-
texts ⟦(∇𝑊𝐴 − 𝜙)∗⟧𝐵 and ⟦∇𝑊𝐴 − 𝜙⟧𝐵 (or ⟦(∇𝑊𝐵 − 𝜉)∗⟧𝐵 and
⟦∇𝑊𝐵 − 𝜉⟧𝐵 , or ⟦(∇𝑄𝐴 − 𝜌𝐴)∗⟧𝐵 and ⟦∇𝑄𝐴 − 𝜌𝐴⟧𝐵 ) are compu-
tationally indistinguishable from the perspective of Party A. There-
fore, they can be perfectly simulated.

The other values in the view of Party A are computed locally. For
instance, denoting the simulated version of ⟦∇𝑍⟧𝐵 , ⟦(∇𝑍 − 𝜀)𝑉𝑇

𝐴
⟧𝐵

as ⟦∇𝑍⟧∗
𝐵
, ⟦(∇𝑍 − 𝜀)𝑉𝑇

𝐴
⟧∗
𝐵
, respectively, the simulator can simu-

late ⟦𝐸𝐴⟧𝐵 by computing ⟦𝐸𝐴⟧∗𝐵 = ⟦∇𝑍⟧∗
𝐵
𝑈𝑇
𝐴
+⟦(∇𝑍 − 𝜀)𝑉𝑇

𝐴
⟧∗
𝐵
+

𝜀⟦𝑉𝑇
𝐴
⟧𝐵 . Again, they are computationally indistinguishable from

the perspective of Party A. Consequently, the view of Party A can
be simulated perfectly. □

C EXTENSION TO MULTI-PARTY LEARNING

Although we focus on the two-party setting throughout this paper,
the proposed federated source layers of BlindFL can also be gener-
alized to the multi-party setting where there are two or more Party
A’s. Here we provide an example of how to adapt the MatMul source
layer to more than one Party A’s. The adaption for Embed-MatMul
can be achieved similarly.

The multi-party MatMul source layer is presented in Algorithm 3.
The idea is to secretly share the model weights of each Party Awith
Party B one by one and let all Party A’s execute the same routines.
To be specific, for the 𝑖-th Party A (denoted as Party A(i)), the model
weights are secretly shared as𝑊𝐴(𝑖) = 𝑈𝐴(𝑖) +𝑉𝐴(𝑖) , where 𝑉𝐴(𝑖)
is managed by Party B. For Party B, the model weights are broken
into more pieces, i.e.,𝑊𝐵 = 𝑈𝐵 +

∑
𝑖 𝑉𝐵 (𝑖) , where 𝑉𝐵 (𝑖) is managed

by Party A(i).
Consequently, the goal of forward propagation is to compute

the following results:

𝑍 =
∑︁
𝑖

𝑋𝐴(𝑖)𝑊𝐴(𝑖) + 𝑋𝐵𝑊𝐵

=
∑︁
𝑖

𝑋𝐴(𝑖) (𝑈𝐴(𝑖) +𝑉𝐴(𝑖) ) + 𝑋𝐵 (𝑈𝐵 +
∑︁
𝑖

𝑉𝐵 (𝑖) )

=
∑︁
𝑖

(𝑋𝐴(𝑖)𝑈𝐴(𝑖) + 𝑋𝐴(𝑖)𝑉𝐴(𝑖) + 𝑋𝐵
𝑈𝐵

𝑀
+ 𝑋𝐵𝑉𝐵 (𝑖) ),

where𝑀 is the number of Party A’s. This can be reckoned as per-
forming federated matrix multiplication between Party B and each
Party A(i), respectively, and summing up the𝑀 intermediate results
to achieve the final results. The detailed routines are presented in
Line 12-19 of Algorithm 3.



Table 6: Averaged training time cost of one mini-batch (in seconds). We only

record the time cost of matrix multiplication for a fair comparison.

Dataset &

Sparsity

Model

Time Cost/Batch (Seconds)

BlindFL SecureML

SecureML

(Client-aided)

fmnist (Dense) MLP 16.741 38.913 0.006
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BLINDFL: 𝟖𝟔. 𝟐% (↑ 𝟓. 𝟑%)

Testing Accuracy

Figure 15: Training loss in terms of itera-

tions and testing AUC or accuracy metrics.

Table 7: Scalability w.r.t. the output dimensionality of the

MatMul source layer (connect-4, 3-layer MLP).

Hidden Dim 32 64 128 256
Related Time Cost 1.00× 1.91× 3.94× 8.06×
Validation Accuracy 79.8% 80.6% 81.8% 82.3%

Table 8: Scalability w.r.t. the number layers (connect-4, MLP).

# Layers 3 4 5 6
Related Time Cost 1.00× 1.01× 1.02× 1.02×
Validation Accuracy 80.6% 80.9% 81.0% 80.6%

For the backward propagation, Party B can still compute model
gradients ∇𝑊𝐵 = 𝑋𝑇

𝐵
∇𝑍 on its own. For Party A(i), it only needs to

achieve the secretly sharedmodel gradients ⟨𝜙𝐴(𝑖) ,∇𝑊𝐴(𝑖) − 𝜙𝐴(𝑖) ⟩
via a similar routine as Figure 6. Line 20-31 of Algorithm 3 shows
the detailed procedure.

Finally, it is worthy to note that here we only provide a simple
method to extend BlindFL to the multi-party setting. It is inter-
esting to explore how to optimize the algorithm protocols with
smaller computation complexity and fewer communication rounds.
We would like to leave them as our future work.

D MORE EXPERIMENTS

D.1 Experiments on Fashion MNIST

In Section 7, we conduct our experiments on tabular datasets. To
evaluate whether our work also supports more kinds of datasets,
we conduct experiments on the Fashion MNIST (fmnist) dataset
in this section. To be specific, we split each image into two 14×28
subfigures to simulate the feature partitioning in VFL. Then, we
train the MLP models over the partitioned dataset. As shown in
Table 6 and Figure 15, the results are consistent with those on other
datasets. First, BlindFL runs faster than SecureML without client
aided but slower than the client-aided SecureML. Second, BlindFL
has a similar convergence as non-federated learning on collocated

data (NonFed-collocated), and achieves better performance than
non-federated learning on the features of Party B only (NonFed-
Party B), verifying the lossless property of our work.

D.2 Scalability

In this section, we train the MLP models on the connect-4 dataset
to empirically evaluate the scalability of our work.

Scalability w.r.t. #hidden dim. We first fix the number of hid-
den layers as 3 and vary the output dimensionality of the first layer,
i.e., the MatMul source layer. (The output dimensionalities of the sec-
ond and third layers are fixed as 16 and 3, respectively.) As shown
in Table 7, when the first layer is wider, the validation accuracy
increases slightly, whilst the training time cost increases almost pro-
portionally. This is because the number of cryptography operations
in the MatMul source layer also increases correspondingly.

Scalability w.r.t. #layers. Then, we assess the effect of the num-
ber of layers. To do so, we fix the output dimensionalities of the
first and the last but one layers as 64 and 16, and vary the number
of layers by inserting 32-unit layers in the middle. For instance,
in the 4-layer case, the output dimensionalities of all layers are
64, 32, 16, and 3, respectively. As shown in Table 8, the number of
layers does not affect the training time cost significantly. This is
reasonable since the top model is a non-federated module and the
major overhead is the MatMul source layer.
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