
Efficient Evaluation of Arbitrarily-Framed Holistic SQL
Aggregates and Window Functions

Adrian Vogelsgesang

salesforce.com, Inc.

avogelsgesang@salesforce.com

Thomas Neumann

Technische Universität München

neumann@in.tum.de

Viktor Leis

Friedrich-Alexander-Universität Erlangen-Nürnberg

viktor.leis@fau.de

Alfons Kemper

Technische Universität München

kemper@in.tum.de

ABSTRACT
Window functions became part of the SQL standard in SQL:2003

and are widely used for data analytics: Percentiles, rankings, mov-

ing averages, running sums and local maxima are all expressed

as window functions in SQL. Yet, the features offered by SQL’s

window functions lack composability: Framing is only available for

distributive and algebraic aggregate functions, but not for holistic

aggregates like percentiles and window functions like ranks. The

SQL standard explicitly disallows holistic aggregates from being

framed and thereby severely limits data analysts.

This paper proposes to remove this restriction, thereby making

window functions fully composable. The newly gained compos-

ability allows for more complex aggregates which are tricky to

evaluate. The lack of subquadratic, parallel algorithms to evaluate

framed holistic aggregates is probably the main objection against

adding truly composable window functionality to the SQL standard.

As such, this paper shows how to efficiently evaluate all window

and aggregate functions from SQL:2011, except for DENSE_RANK, in
combination with arbitrary window frames. This includes framed

distinct aggregates, framed value functions, framed percentiles and

framed ranks.

CCS CONCEPTS
• Information systems→ Online analytical processing engines.

KEYWORDS
Database Systems; Holistic aggregates; Window functions

ACM Reference Format:
Adrian Vogelsgesang, Thomas Neumann, Viktor Leis, and Alfons Kemper.

2022. Efficient Evaluation of Arbitrarily-Framed Holistic SQL Aggregates

andWindow Functions. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3526184

This work is licensed under a Creative Commons

Attribution-NoDerivs International 4.0 License.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3526184

1 INTRODUCTION
Window functions efficiently answer important business questions

involving rankings and percentiles. As such, they are commonly

supported by both research and commercial systems, including

Hyper [27], Umbra [24], DuckDB [2], SQLite [5], PostgreSQL [3],

Snowflake [21], Oracle [29], and Microsoft SQL Server [28].

Common business questions such as “Howmany monthly-active

users do we have?”, “How long do my customers need to wait for

their orders?”, and “What is the 99th percentile worst-case delivery

time of a product?” can be answered through window functions, by

using distinct counts, ranking, or percentile functions. However, the

immediate follow-up question tends to be “How did those numbers

change over time? Are we getting better or worse?”. Usually, one

would query for such a change over time using SQL’s windowing

functionality, more specifically using a window frame. One could

try to query for the change in monthly-active users with the query

select o_orderdate, count(distinct o_custkey) over w
from orders
window w as (

order by o_orderdate
range between ’1 month’ preceding and current row)

However, SQL:2011 explicitly disallows the usage of distinct aggre-

gates as window functions. Similarly, the change over time in the

99th percentile of delivery times could be queried with

select l_shipdate,
percentile_disc(

0.99, order by l_receiptdate - l_shipdate
) over w

from lineitem
window w as (

order by l_shipdate
range between ’1 week’ preceding and current row)

But, again, SQL:2011 does not provide such flexibility.

Given the importance of the underlying business question, it is

of little surprise that the data exploration tool Tableau supports

moving percentiles [32] through an implementation in the applica-

tion layer. It would be preferable to push down this computation

to the database and profit from the composability with the rest of

SQL. The Tableau researchers Wesley and Xu previously explored

incremental algorithms for holistic aggregates [38]. Implementing

Tableau’s algorithms in a database system poses multiple chal-

lenges, though. The algorithms are single-threaded and cannot be

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1243

https://doi.org/10.1145/3514221.3526184
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3514221.3526184
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3526184&domain=pdf&date_stamp=2022-06-11

parallelized. Some of their algorithms have a complexity of O(𝑛2).
Thereby, those algorithms do not scale to the large data sizes com-

mon in database systems. At the same time, they only present

algorithms for distinct counts, modes and moving percentiles but

leaves out other window functions, in particular ranking functions.

The main contributions of this paper are algorithms for holistic

aggregates which

(1) cover all SQL aggregate and window functions except for

DENSE_RANK,
(2) have a guaranteed worst-case runtime of O(𝑛 log𝑛),
(3) can be efficiently parallelized,

(4) can reuse large parts of existing algorithms already present

in most database systems (thereby reducing implementation

effort), and

(5) beat state-of-the art algorithms in a performance evaluation.

Given our contributions, we argue that the existing restrictions in

SQL:2011 are unnecessary.

2 WINDOW FUNCTIONS IN SQL
Aggregate functions and window functions are at the heart of al-

most every OLAP query [22, 37]: While most other SQL operators

process each tuple in isolation, aggregation and window functions

allow analysis across multiple tuples. Aggregate functions summa-

rize multiple rows into a single row, producing one row per group.

They reduce the number of tuples. In contrast, window functions

do not change the number of tuples. Instead, they add additional

context to each row in the form of a new column. Depending on

the used window function, this new column can represent, e.g., a

previous value, a rank, a running sum or a moving average.

In this section we first give an overview of aggregate functions

and window functions. Based on that understanding, we then point

out existing restrictions and propose solutions to fill those gaps.

2.1 Aggregate Functions
Aggregate functions summarize input tuples into an aggregate

value. They are commonly divided into three complexity classes [20]:

• For distributive aggregates (COUNT, SUM, . . .) one can combine

multiple partial results to form the final result.

• Algebraic aggregates (AVG, . . .) can be decomposed into dis-
tributive aggregates. E.g., AVG(x) = SUM(x) / COUNT(x).
• Holistic aggregates (PERCENTILE, COUNT DISTINCT, . . .) are
aggregates which need to look at all input tuples holistically.

Distributive and algebraic aggregates are cheap to evaluate:

While iterating over the input tuples, tuples can be eagerly com-

bined into the aggregation state. The required memory is constant

and the execution time is linear in the input size. In contrast, evalu-

ating a holistic aggregate is more involved: A percentile cannot be

computed by combining the percentiles from subsets of the input.

The tuples cannot be pre-aggregated and the complete input must

be inspected holistically to determine the resulting percentile.

2.2 Window Frames in SQL
Windowing in SQL is expressed with the syntax

function(arguments) over (partition by ...
order by ... rows between ...)

The OVER clause specifies which other tuples to consider when

evaluating the window function for a given row. The function call

then condenses those tuples into the value for the new column.

The OVER clause consists of three optional parts: The PARTITION
BY clause groups the input tuples into partitions. Each partition is

treated independently and partitions do not influence each other.

The ORDER BY clause defines an order within each partition and

thereby introduces a notion of neighboring tuples. The remaining

parts of the OVER clause allow to, for each tuple, select a subset of

those neighboring tuples, the window frame.
Window frames can express a wide variety of queries:

rows between unbounded preceding and current row

computes a running aggregate

range between ’1 month’ preceding and current row

computes a sliding aggregate, and

rows between unbounded preceding and unbounded following
exclude current row

can compare a row against, e.g., the maximum of all other rows.

Depending on the framing mode, the frame boundaries are identi-

fied as a fixed row offset (ROWS) or based on a value range (RANGE).
Additionally, the frame exclusion options (EXCLUDE CURRENT ROW,
EXCLUDE TIES, . . .) allow excluding tuples explicitly.

While frame boundaries are frequently provided as constants,

they can be arbitrary expressions. One example use case for this

flexibility is stock market limit orders that are only valid for a time

interval chosen by the individual traders. To figure out which orders

executed at a favorable time, one can compare them with all other

orders during the good_for interval using

select price > median(price) over (
order by placement_time
range between current row and good_for following)

from stock_orders

While non-constant boundaries are not very common, SQL provides

for this flexibility and a full-fledged system should support them.

2.3 Window Functions
Based on partitioning, sort order and framing, the window function

computes the result value for each tuple. The available window

functions can be divided into three classes:

• Most aggregate functions (AVG, MIN, . . .) can also be used as

window functions.

• Value functions (NTH_VALUE, FIRST_VALUE, . . .) evaluate a

given expression against a neighboring tuple in the partition.

• Rank functions (RANK, ROW_NUMBER, CUME_DIST, . . .) rank a

row in comparison to the other tuples in the partition.

The usage of sort order and framing depend on the window

function. For aggregate functions, the aggregate is applied to all

input tuples within the current frame. The ordering is only used

to establish the window frame. Value functions use the ordering

for two purposes: As for aggregate functions, it is used to establish

the window frame. Additionally, the ordering is reused to define

the semantics of the value function itself, i.e. the criterion by which

NTH_VALUE selects a tuple. Rank functions do not support framing

and only use the ORDER BY clause to define the ranking order.

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1244

2.4 Proposed Extensions
As just described, the SQL standard distinguishes between window

frames and window functions which can be combined to answer a

large variety of analytical questions. At the same time, the framing

functionality is limited to a small set of functions. Holistic aggre-

gates like percentiles and window functions like rank cannot be

used with a window frame. We propose to lift this restriction.

For DISTINCT aggregates this is straightforward. We can simply

write COUNT(DISTINCT x) OVER(. . .). In contrast, all order-based

aggregate and window functions need a second ORDER BY clause,
such that the window function can use a different ordering than

the frame. The placement of the additional ORDER BY clause follows
the convention established by the SQL standard for other order-

sensitive aggregates like ARRAY_AGG. The ORDER BY in the OVER
clause is then used exclusively for establishing the window frame,

while the order attached to the window function is used to define

the function’s result. For many systems, those extensions do not

require grammar changes: E.g., the PostgreSQL grammar [4] accepts

DISTINCT and ORDER BY as part of every function call, and only

rejects those clauses during semantic analysis in places where those

keywords do not apply.

With those extensions, the framing options from the OVER clause
are now fully composable with all window functions, as demon-

strated in the following example: When analyzing TPC-C per-

formance, comparing performance numbers achieved years ago

against today’s performance numbers does not represent howmuch

of an achievement those numbers were back in the days. A fair

judgment requires comparing a TPC-C result with all previous per-
formance numbers while excluding later submissions. The query

select dbsystem, tps,
count(distinct dbsystem) over w,
rank(order by tps desc) over w,
first_value(tps order by tps desc) over w,
first_value(dbsystem order by tps desc) over w,
lead(tps order by tps desc) over w,
lead(dbsystem order by tps desc) over w,

from tpcc_results
window w as (order by submission_date

range between unbounded preceding and current row)

shows how to use the proposed extensions for such an analysis.

For each entry from the tpcc_results table, the window frame w
only includes previously submitted performance results. Based on

that window frame, the query computes the number of competing

systems, the rank which the performance result achieved compared

to previous systems, the performance and name of the overall best

system (FIRST_VALUE) at the time of submission, and the next-best

system’s performance (LEAD), so that one can judge how tight the

ranking was. Similar queries come up in almost all contexts when

putting historical performance data into context: TeraFLOPS of

graphic cards, marathon times of athletes, fuel efficiency of auto-

mobiles. Without our proposed extensions, those queries require a

complicated and – as shown empirically in Section 6.2 – inefficient

SQL formulation.

The newly gained functionality poses two challenges, though:

For distinct aggregates, we need to efficiently deduplicate tuples.

For the other window functions, we have two independent ORDER
BY clauses, but can physically sort the tuples only by one of them.

3 RELATEDWORK
This paper is related to three lines of work: window processing in

OLAP systems, window processing in streaming systems and range

queries in the algorithm community. This section first summarizes

the contributions of each line of research. Next, the strategies em-

ployed by previous work are discussed in order to identify their

main choke points and guide the design of merge sort trees.

3.1 Lines of Research
In the context of OLAP systems, Leis et al. [27] showed how to effi-

ciently implement window functions and introduced segment trees

as an index structure for distributive aggregates. Kohn et al. [24]

and Cao et al. [11] both improved on this by avoiding duplicated

work across multiple window functions (e.g., reusing partitioning

and ordering between window functions). The work presented in

our paper is orthogonal and can be combined with this previous

work. Wesley and Xu pushed the boundaries of the SQL standard

and introduced incremental algorithms for framed distinct counts,

percentiles and modes [38]. Their algorithms for percentiles and

modes were recently incorporated into DuckDB.

For windowing in stream-processing systems, a multitude of data

structures (e.g., base intervals [1], SlickDeque [30], FlatFAT [34],

FIBA [33]) and aggregation strategies (e.g., Cutty [12], Scotty [36])

were proposed, covering a large variety of frame types, in-order and

out-of-order arrivals, as well as window sharing across multiple

queries. But very few papers consider holistic aggregates: The only

technique we are aware of is base intervals [1] which can compute

percentiles in O(𝑛(log𝑛)2) by storing sorted lists of input values

in the aggregation states.

In the algorithms community, window functions are referred to

as range queries. Range medians were extensively studied by mul-

tiple authors [9, 10, 19, 23, 25]. The proposed algorithms vary de-

pending on how many medians are queried, whether the requested

medians are known upfront, and whether an index can be built

upfront. Applied to the use case of SQL window functions, all those

algorithms take O(𝑛 log𝑛) time and O(𝑛 log𝑛) space1. In compar-

ison to this previous work, our merge sort tree is a static, more

compact data structure and can be represented more efficiently

without pointers. An O(𝑛 log𝑛) algorithm for range distinct counts
was previously presented [31]. Holistic ranks and value functions

can be computed in O(𝑛 log𝑛) using a suitably annotated tree [17],

also called order statistic tree. However, an order statistic tree cannot
be efficiently parallelized. For windowed modes, algorithms exist

which take O(𝑛 log𝑛) time and O(𝑛) space [13, 25].
Our paper combines merge sort trees and range trees by Bent-

ley [6, 7] with a variation of the fractional cascading technique by

Chazelle et al. [14, 15] and extends them with preprocessing steps

to make them applicable to holistic aggregates in SQL.

1
Some publications [9, 10, 23] claim O(𝑛) space consumption in the word RAM model.
Note that the word-RAM model assumes that the word size grows with the problem

size, and is as such not relevant for SQL types with fixed integer widths.

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1245

Table 1: State-of-the-art algorithms for holistic aggregates
compared to our proposed merge sort tree algorithm.
aggregate algorithm serial runtime space parallel

dist. count incremental [38] O(𝑛) O (𝑛) no

MST (our approach) O(𝑛 log𝑛) O (𝑛 log𝑛) yes

dist. aggr. naive O(𝑛2) O (𝑛) no

MST (our approach) O(𝑛 log𝑛) O (𝑛 log𝑛) yes

percentile incremental [38] O(𝑛2) O (𝑛) no

segment tree [1, 27] O(𝑛 (log𝑛)2) O (𝑛 log𝑛) yes

order statistic tree [17] O(𝑛 log𝑛) O (𝑛 log𝑛) no

MST (our approach) O(𝑛 log𝑛) O (𝑛 log𝑛) yes

rank order statistic tree [17] O(𝑛 log𝑛) O (𝑛 log𝑛) no

MST (our approach) O(𝑛 log𝑛) O (𝑛 log𝑛) yes

3.2 Existing Evaluation Strategies
Table 1 summarizes the state-of-the-art algorithms for holistic ag-

gregates and compares them against our proposed merge sort tree

for SQL’s default window frame BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW. The table contains the complexity for comput-

ing all 𝑛 output tuples. Depending on the specific aggregate, the

current state-of-the-art algorithms come with different drawbacks.

Merge sort trees (MSTs) win over most competing algorithms be-

cause they can be parallelized. Compared to segment trees, i.e.,

the only parallelizable competitor, merge sort trees provide better

runtime complexity. For distinct counts and percentiles, a decision

in favor of merge sort trees needs further consideration, though:

The incremental algorithm from Wesley and Xu [38] computes

percentiles in O(𝑛) space, while merge sort trees use O(𝑛 log𝑛)
space. We deem the higher memory consumption a worthy tradeoff

because a O(𝑛2) runtime limits the solvable problem size more

severely than a O(𝑛 log𝑛) memory usage. For distinct counts, the

tradeoff between a serial O(𝑛) algorithm and a parallel O(𝑛 log𝑛)
algorithm depends on the input size and the number of available of

cores. In practice, the window function is part of a window opera-

tor which first needs to run a sorting step to establish the window

frame order. If this sorting step is comparison-based and thereby

O(𝑛 log𝑛), sorting dominates the overall runtime, and the better

asymptotic complexity of Wesley and Xu’s algorithm does not yield

a better end-to-end complexity.

The reason why most competitors cannot be parallelized is that

they keep an aggregation state up-to-date as tuples enter or leave

the window frame. When a second thread wants to process the

second half of input tuples, it first needs to compute the aggregate

state at the starting point. It thereby re-does all the work of the first

thread before processing its own input tuples. Even worse, modern

parallel systems use task-based parallelism instead of thread-based

parallelism [26]. Work is divided into a much larger number of

independent tasks than available threads. Usually, each task has a

fixed size and the number of tasks linearly depends on the number

of input tuples. In such a task-based model, parallelization actively

deteriorates the performance of our competitors to O(𝑛2) or worse
(depending on the aggregate) because each of the 𝑂 (𝑛) tasks needs
to first aggregate all 𝑂 (𝑛) preceding tuples. In general, the amount

of duplicate work between tasks and thereby the impact of paral-

lelization on our competitors depend on the requested frame size.

The larger the frame size, the worse task-based parallelization im-

pacts the runtime of our competitors. Also, for non-monotonic

frame boundaries, as in the example on stock limit orders, all com-

petitors except the segment tree are 𝑂 (𝑛2) even in the serial case.

This is because the same input tuple might enter and leave the

window frame multiple times. In the worst case, each input tuple

enters the window frame𝑂 (𝑛) times, pushing the computation cost

per result tuple from 𝑂 (1) to 𝑂 (𝑛).
Previous work used segment trees to parallelize the computation

of distributive and algebraic aggregates [27]. Segment trees depart

from the idea of keeping an aggregate-state up-to-date. Instead, seg-

ment trees are first constructed in a parallelized O(𝑛) build phase

before being used as read-only index structures during an embar-

rassingly parallel O(𝑛 log𝑛) probe phase. As an added benefit, the

runtime stays unchanged even for non-monotonic window frames

because segment trees do not rely on overlap between consecutive

window frames. This O(𝑛 log𝑛) time complexity depends on the

fact that two aggregation states for distributive and algebraic aggre-

gates can be merged in 𝑂 (1). Previous work [1] applied segment

trees to percentiles by annotating each node of a segment tree with

a sorted list. The resulting algorithm is indeed parallelizable, but

is O(𝑛(log𝑛)2) because two aggregation states cannot be combined

in O(1) and combining all relevant states from the segment tree

into an overall aggregate result takes O((log𝑛)2). Similarly, the

aggregation state for all other holistic aggregates cannot be merged

in O(1). Due to this non-constant merge costs, segment trees and

other approaches based on combining partial aggregates (such as

prefix sums [8], FIBA [33], FlatFAT [34], Cutty [12], Scotty [36])

cannot be efficiently applied to holistic aggregates.

Besides their better algorithmic properties, merge sort trees have

practical implementation benefits: With merge sort trees, a single

data structure covers a wide range of holistic aggregates. This re-

duces implementation effort compared to multiple specialized algo-

rithms for the various aggregates. Furthermore, the most demand-

ing part of parallelizing merge sort trees is the parallel merging of

sorted lists. Such a parallelized merge is usually already present in

database systems as part of a merge join or as part of the ORDER
BY implementation and can be reused. Note that even if a database

system employs quicksort or some other sorting algorithm, proper

parallelization of a quicksort still requires a merge step to combine

the thread-local sorted lists into a single sorted result [16, 18].

4 EVALUATING HOLISTIC AGGREGATE WITH
MERGE SORT TREES

In this section, we show how to use merge sort trees to efficiently

compute framed holistic aggregates under parallelization. We first

provide an overview of our general approach and motivate it based

on the shortcomings of previously proposed algorithms. While the

merge sort tree data structure is identical for all holistic aggre-

gates, the different aggregates require different preprocessing steps

and query the tree in different ways. We use COUNT DISTINCT to
motivate the necessary operations on a merge sort tree before intro-

ducing the data structure itself. We then describe the preprocessing

and query methods for other aggregates.

4.1 High-Level Overview
To arrive at an efficient, parallelizable algorithm, we adopt the same

strategy previously applied by Leis et al. for segment trees [27]: We

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1246

a b b c c b ac

- - 1 - 3 2 04

of distinct values in frame
=

of outgoing references
=

of values < 3

values

previous
occurrence

previous
occurrence

compute idx of
prev. occurrence

✔
✘

value < 3 ⇒ new distinct value
value ≥ 3 ⇒ repeated value

✔ ✘ ✔ ✘ ✔

Figure 1: Computing a windowed COUNT DISTINCT by eval-
uating a 2-dimensional range query.

split the evaluation into two phases. In the first phase, we build an

index structure. In the second phase, we use this index to efficiently

compute all aggregate results. To achieve a runtime of O(𝑛 log𝑛),
we replace segment trees with merge sort trees. Segment trees rely

on combining partial aggregates to form the final aggregate results.

For holistic aggregates, combining partial aggregates is expensive,

though. Merge sort trees sidestep those costs by directly computing

the aggregate result without combining partial aggregates.

Building the merge sort tree takes 𝑂 (𝑛 log𝑛) time and the build

phase can be parallelized using existing algorithms for parallel sort-

ing. After the build phase, the tree can be queried for the aggregate

result for any window frame in𝑂 (log𝑛) time. As there is one query

for each of the 𝑛 input tuples, the overall window operator can be

evaluated in 𝑂 (𝑛 log𝑛). During the query phase, the merge sort

tree is not modified and shared between threads, making the query

phase embarrassingly parallel. Just as segment trees, merge sort

trees do not rely on overlap between consecutive window frames,

and guarantee O(𝑛 log𝑛) runtime even for non-monotonic frames.

4.2 Windowed COUNT DISTINCT
COUNT DISTINCT aggregates are usually computed using hash ta-

bles: A hash table is used to deduplicate all input values, and the

number of entries in the resulting hash table equals the COUNT
DISTINCT. Recomputing this hash table from scratch for every win-

dow frame is prohibitively expensive, though: Even for simple frame

boundaries like UNBOUNDED PRECEDING AND CURRENT ROW, this
algorithm has complexity O(𝑛2). Wesley and Xu [38] hence pro-

posed an incremental O(𝑛) algorithm which updates the hash table

for consecutive window frames. But, as discussed in the previous

section, this approach comes at the expense of parallelization. In

fact, under task-based parallelism the algorithm is back at O(𝑛2).
Using range counting queries to compute distinct counts:

To enable parallelization, we need to approach the problem from a

different angle. Instead of using a hash table to identify duplicates,

we preprocess the input as shown in Figure 1. The top half of the

picture shows 8 input tuples, with 3 distinct values a, b and c. In this
example, the queried window frame (highlighted in blue) consists of

the last 5 values, and as those 5 values contain all 3 distinct values,

the COUNT DISTINCT yields “3” on this window frame.

Above the input tuples, the figure shows backreferences pointing

from each value to its previous occurrence. The key insight is: The

number of distinct values inside a window frame always equals the

number of backreferences originating inside the window frame and

pointing before the frame’s start. This is explained by the following

reasoning: Every value which is observed for the first time inside

the frame has a backreference pointing before the start of the frame.

Every duplicate value already appeared within the window before

and its backreference hence points to a position inside the window

frame. By only counting references which point before the frame’s

start, we are only counting the first occurrence of each value and

avoid counting duplicated values multiple times.

The bottom half of Figure 1 shows an alternative representation

of those backreferences: Backreferences are represented as an array

of integers where each entry contains the index of the previous

occurrence of the corresponding value. The first two entries of the

array have the special value “-” because the corresponding values

(a and b) appear for the first time, the third entry is 1 because the

corresponding value b previously occurred at index 1, and so forth.

Algorithm 1 Computing the index of the previous occurrence.

1: function ComputePrevIdcs(𝑖𝑛)

2: sorted← []

3: for i← 0 to in.size do
4: sorted[i]← (in[i], i)

5: Sort sorted lexicographically increasing ⊲ Stable Sort

6: prevIdcs← []

7: prevIdcs[0]← “-”
8: for i← 1 to in.size do
9: if sorted[i].first == sorted[i-1].first then
10: prevIdcs[i]← sorted[i-1].second

11: else
12: prevIdcs[i]← “-”

13: return prevIdcs

This index array can be computed in parallel using Algorithm 1.

The algorithm constructs a copy of the input data and annotates

each element with its original position. Next, the copy is sorted lex-

icographically, i.e., by the input value, using the original position as

a tie breaker for identical values. The sort step is effectively a stable

sort on the input value, leaving the relative order of duplicates un-

changed. All duplicated input values are thereby grouped together

into continuous runs, with each run being sorted ascendingly by

the original positions. After sorting, the previous occurrence, if any,

of the value sorted[i] is at sorted[i-1]. We can now compute

the final prevIdcs array in a linear pass over the sorted data. Both

loops are O(𝑛) and trivial to parallelize. Sorting is O(𝑛 log𝑛) and
there is plenty of research on parallel sorting.

The complete construction of the index array does not involve the

actually queried window frame. The window frame only becomes

relevant to compute the final distinct count: To compute the distinct

count for a window from index 𝑎 until index 𝑏, we count the entries

smaller than 𝑎 within prevIdcs[a...b]. The window frame in

Figure 1 starts at index 3, hence we are looking for entries smaller

than 3 within the highlighted input section. All qualifying entries

are annotated with a small check mark in the figure.

A naive linear pass over the array to count all such entries would

take O(𝑛) per distinct count, and thereby push the overall process-

ing time for all 𝑛 output tuples to O(𝑛2). We need a more efficient

way to count those entries.

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1247

✔
✘

value < 3 ⇒ new distinct value
value ≥ 3 ⇒ repeated value

- - - 1 2 3 0 4

✔ ✘ ✘- - - 1 0 2 3 4✔

sorted ⇒ binary search ⇒ log(n)

Sort pairs
- - - 1 2 3 0 4

- - 1 - 3 2 4 0✔- - - 4✔

Sort 4-tuples
log(n)
levels

Figure 2: A merge sort tree improves query time to
O(𝑛(log𝑛)2) by utilizing a tree of sorted lists.

Another way to think of this counting is as a two-dimensional

range query: The first dimension is sorted by the order of the win-

dow frame and filtering on this dimension filters the tuples down to

the current window frame. The second dimension is sorted by the

index of the previous occurrence and filtering on this dimension

excludes duplicate values. This maps the computation of a distinct

count to a two-dimensional range counting query. We now only

need an efficient data structure for such range counting queries.

Merge sort trees can efficiently answer such two-dimensional

range counting queries. To arrive at a better asymptotic complexity,

we need a way to count the number of indices smaller than the

given threshold without comparing each individual entry against

the threshold. An obvious solution would be to sort the array and

then use a binary search to locate the threshold value inside the

sorted array. Sorting the array by prevIdcs is not possible, though.
To compute a framed distinct count, we have to count how many

entries inside the window frame are smaller than the threshold. The

array is already sorted by the ORDER BY of the window frame, and

we rely on this order to place all values inside thewindow frame into

the consecutive range prevIdcs[a...b]. Sorting the prevIdcs
array by another criterion would destroy this sort order and inhibit

us from efficiently identifying all tuples inside the window frame.

Instead, we need to keep both sort orders at the same time.

To solve this issue, we store the same list multiple times, as

visualized in Figure 2. The lowest layer stores the original prevIdcs
array. On top of that, there are multiple partially sorted copies. In

the first copy, pairs are sorted; the second copy contains sorted runs

of length 4. For larger input arrays, the tree would have additional

layers, until all numbers are sorted inside a single run. In general,

the tree has O(log𝑛) layers and needs O(𝑛 log𝑛) memory. Such a

tree can be efficiently built bottom-up in O(𝑛 log𝑛) by modifying

a merge sort algorithm to preserve the intermediate sorted runs

instead of discarding them. Because of this resemblance of the data

structure with the intermediate results of a merge sort, we call the

resulting data structure a merge sort tree.
One can now use this merge sort tree to efficiently count the

number of values below a certain threshold in a given window

frame. To do so, the queried range is pieced together from the

various sorted lists. Figure 2 shows such a query for the range [3; 7].
The queried range can be pieced together using the sorted runs

[3; 3] on the lowest level and [4; 7] on the first level. For each range,

we can determine how many values are smaller than the given

threshold using a binary search on the corresponding sorted run.

In this example, we execute 2 binary searches.

✔

✔ ✘

✔ ✔ ✔✔ ✔ ✘ ✘ ✘

7 distinct values in frame

...✔ ✘✔

binary search

... ✘✔

Pointers to
next layer

...✔✔ ✘ ✘ ...

Figure 3: Fractional cascading: Pointers between layers re-
strict the search ranges on lower layers, reducing query time
to O(𝑛 log𝑛).

In general, we need at most 2 binary searches per layer: On the

highest level, we have always exactly one sorted run. On all other

levels, we need at most two runs, one run to the left and one run to

the right of the range already covered on the higher levels. As there

are O(log𝑛) layers and each binary search has O(log𝑛) execution
time, the evaluation of a distinct count for a given window frame

is O((log𝑛)2). For the overall evaluation of a window query, this

gives us an O(𝑛(log𝑛)2) execution time. The construction costs

of O(𝑛 log𝑛) for the merge sort tree are dominated by this query

time. We hence need to focus our attention on querying the merge

sort trees to further improve the overall execution time.

Fractional cascading improves this query time to O(𝑛 log𝑛)
by avoiding to re-run the binary search on each tree level. The

key idea is to traverse the tree top-down and reuse the result of

the binary search on one level to narrow down the search range

on the next level [14, 15]. Figure 3 illustrates this approach. During

construction of the merge sort tree, we annotate the tree with

additional pointers. When querying the tree to determine a distinct

count, we perform a O(log𝑛) binary search only on the highest

level of the merge sort tree. The additional pointers then allow us

to reuse the result of this binary search to narrow down the search

range on the next finer-grained level. On the next level, the binary

search profits from the reduced search range to the point that it

runs in constant time. When descending to the next level, we again

reuse the binary search from the now current level, and thereby

turn all except for the first binary search into O(1) operations. In
sum, we need O(log𝑛) for the first binary search plus O(1) on each

of the O(log𝑛) levels, leading to an overall complexity of O(log𝑛)
per query. The initial top-level binary search cascades down from

the top to the bottom.

To ensure O(1) time for each of the searches on the lower levels,

one can annotate each element on each level with two additional

pointers as visualized in Figure 4. For each element on the upper

level, the pointers locate an element’s sort position on the next level

in the left and right sublist. The pointers point to the largest element

in the sublist which is smaller or equal to the annotated element.

Having located an element on the upper level, one can now find

the element’s positions on the next level by simply traversing the

pointer. The additional pointers increase the memory consumption

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1248

0 2 3 4

02 3 4

Figure 4: Pointers between two tree levels.

only by a constant factor; the asymptotic memory consumption

stays unchanged at O(𝑛 log𝑛). The pointers are computed as a

byproduct of constructing the merge sort tree by persisting the

input iterators used during the merge steps.

Instead of annotating every element, one can also annotate only

every 𝑘th element. As long as 𝑘 is chosen as a constant, this sam-

pling does not influence the asymptotic complexity. Between one

annotated element and the next annotated element, there are al-

ways at most 𝑘 elements, and on the next level we have to locate our

element again by searching within those 𝑘 elements. This still yields

a constant upper bound on the size of the search range, thereby

ensuring that each tree level can be traversed in O(1). While as-

ymptotic complexity is not influenced by reducing the number of

annotated elements, this optimization is relevant for a practical

implementation as discussed in Section 5.1.

This approach was inspired by and is closely related to a tech-

nique known as fractional cascading: Fractional cascading was orig-
inally introduced by Chazelle et al. as a technique to solve com-

putational geometry problems, such as the intersection of paths

and lines and various types of range searches [14, 15]. It allows

searching a set of unrelated lists by injecting additional sentinel

values into the lists and then annotating every list element with

pointers into the related lists. Our technique improves on this in

two key aspects: First, in our case the lists inside the upper layers

were created by merging lists from the lower layers. Hence, we

do not need to inject additional sentinel values, but only need to

annotate existing values. Second, we do not need to annotate every
list element with pointers, but instead relax it to only annotate

every 𝑘th element.

4.3 Arbitrary distinct aggregates
Next, we expand the algorithm to handle arbitrary distinct aggre-

gates. Without loss of generality, the rest of this section focuses on

a SUM DISTINCT aggregate. The presented approach is applicable

to all distributive aggregates.

To compute a windowed SUM DISTINCT, we annotate a merge

sort tree as shown in Figure 5: Each element is annotated with the

distinct sum of the values for all entries up to and including the cur-

rent position. Using those partial sums, the overall SUM DISTINCT
for a frame can be computed by (1) covering the frame with sorted

runs of the merge sort tree, (2) searching the lower bound of the

window frame inside each sorted run, and (3) adding up the corre-

sponding partial sums

The first two steps are identical to computing a windowed dis-

tinct count. The novelty for arbitrary aggregates consists of the

third step: Instead of only counting the number of values smaller

than the given lower bound, we combine the partial aggregates

associated with this lower bound.

1 2 2 3 3 2 3 1

- - 1 - 3 2 4 0

1 3 3 5 2 5 1 4

1 3 6 6 1 3 6 6

queried window

✔ ✔

✔ ✘ ✘ ✘

✔
✘

value < 2 ⇒ new distinct value
value ≥ 2 ⇒ repeated value

5

1

precomputed sum at
✔→✘-boundary

+
6 = SUM DISTINCT in window

- - - 1 2 3 0 4

- - - 1 0 2 3 4

Figure 5: Computing a windowed SUM DISTINCT from an
annotated merge sort tree.

As before, finding the positions inside all relevant runs takes

O(log𝑛) thanks to fractional cascading. To compute the aggregate

result, at most O(log𝑛) partial aggregates need to be combined.

This leads to an overall complexity of O(log𝑛) for computing a

single windowed SUM DISTINCT value and thereby leaves the com-

plexity of the complete window operator unchanged at O(𝑛 log𝑛).
Note that the proposed algorithm works for all distributive or

algebraic aggregates, including user-defined aggregates as long

as they provide a function to merge two aggregation states. An

inverse function to the merge function, i.e. a function to remove a

value from an aggregate state, is not required. This is an important

benefit of the proposed algorithm because for many user-defined

aggregates such an inverse function is not available.

4.4 Windowed Rank Functions
Just like distinct aggregates, windowed rank functions can be re-

duced to two-dimensional range queries. For that purpose, let’s

recall the syntax for windowed rank functions from Section 2.4:

select dbsystem, tps,
rank(order by tps desc) over w

from tpcc_results
window w as (order by submission_date

range between unbounded preceding
and current row)

This query contains two ORDER BY clauses: The ORDER BYwithin
the function call determines the criterion by which competitors

are ranked. The ORDER BY within the window definition is used to

establish the window frame and thereby determines which com-

petitors to rank the current row against. The rank of a row equals

the number of tuples within the window frame which compare

smaller than the current row for the rank’s ORDER BY criterion.

As such, the algorithmic core challenge is the same as for a

distinct count: We need to count the number of tuples from our

window frame which are smaller than a given threshold. Therefore,

we reuse the merge sort tree introduced in the previous section.

If we build the merge sort tree directly with the unmodified tuple

values as the lowest layer, a merge sort tree allows us to efficiently

determine the number of values smaller than a given value inside

an arbitrary window frame in O(log𝑛) using the same algorithm

as in Section 4.2. As for distinct counts, we can thereby evaluate

the complete window operator in O(𝑛 log𝑛).
The ROW_NUMBER function can be computed by disambiguating

duplicate elements based on their position in the input data, such

that two elements never compare as equal. Based on this, the rank

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1249

functions PERCENT_RANK and NTILE are straightforward to imple-

ment: PERCENT_RANK is a scaled version of RANK, and CUME_DIST
is a scaled version of ROW_NUMBER.

DENSE_RANK is the only rank-related function from the SQL stan-

dard which cannot be answered by a merge sort tree. A dense

rank requires counting the number of distinct tuples within the

window frame which compare smaller than the current row. As

for distinct counts, the distinctness criterion can be turned into a

range query by using the indices of a value’s previous occurrence.

In combination with the two existing ordering criteria, this leads

to a 3-dimensional range query. A merge sort tree can only handle

2-dimensional range queries, though. Instead, a structure which

supports higher-dimensional range queries is needed. Range trees
offer such functionality. We do not discuss range trees in this paper

and refer the reader to [6, 7] for more details. A𝑑-dimensional range

tree takes O(𝑛(log𝑛)𝑑−1) space and, if combined with fractional

cascading, an individual range count query takes O(𝑛(log𝑛)𝑑−1)
time. With a range tree, a framed DENSE_RANK window query can

be evaluated in O(𝑛(log𝑛)2) time using O(𝑛(log𝑛)2) space.

4.5 Percentiles and Value Functions
Looking back at our motivating examples for framed percentiles

select l_shipdate,
percentile_disc(

0.99, order by l_receiptdate - l_shipdate
) over w

from lineitem
window w as (order by l_shipdate
range between ’1 week’ preceding and current row)

and value functions

select dbsystem, tps,
first_value(tps order by tps desc) over w,
first_value(dbsystem order by tps desc) over w

from tpcc_results
window w as (order by submission_date

range between unbounded preceding and current row)

we see that they again specify two ORDER BY clauses. The ORDER
BY in the function call defines the criterion by which a value is

selected. The ORDER BY in the OVER clause establishes the frame.

Both percentiles and value functions map to the same underlying

problem: Selecting the 𝑖th smallest value. For value functions, 𝑖 is

directly provided in the query. For the 𝑝th percentile, 𝑖 is computed

as 𝑠 ∗ 𝑝/100 where 𝑠 is the number of elements inside the frame.

To do so, we build on the following idea [9, 19]: We first prepro-

cess the original input to create a permutation array as depicted

in Figure 6. The input tuples are originally sorted by the window

frame’s sort criterion, as shown in the top half of the figure. We then

sort the data by the criterion for the percentile, in this example by

alphabetic order. During the sorting, we keep track of the original

positions and then store the original indices in the permutation

array shown at the bottom half of the figure.

Based on that permutation array, one can find the 𝑖th smallest

value within any window frame by finding the 𝑖th index pointing

into the frame. Figure 6 visualizes this for a median query on the

range [2; 6]. There are 5 values in that range, so the median is the

1 5 2 0 6 3 7 4

queried window [2; 6]

d a c f h b e goriginal input

permutation
array

median in [2;6]
=

3rd smallest value
=

3rd ✔, i.e. idx ∈ [2;6]

✔ value ∈ [2; 6] ⇒ in window

✔ ✔ ✔✗ ✗ ✗ ✗ ✔

✗ value ∉ [2; 6] ⇒ outside window

a b c d e f g h

Figure 6: Finding a windowed median by scanning the per-
mutation array.

0 1 2 5 3 4 6 7✘ ✘ ✔ ✔

1 5 0 2 3 6 4 7✔✔✔

1 5 2 0 6 3 7 4✔

✔
✘

value ∈ [2; 6]
value ∉ [2; 6]

search 3rd ✔ in [0; 7]
2 ✔ in left half
⇒ 3rd ✔ is in right half;
 the 3-2 = 1st ✔

search 1st ✔ in [4; 7]
2 ✔ in left half
⇒ 1st ✔ is in left half

search 1st ✔ in [4; 5]
1 ✔ in left half
⇒ 1st ✔ is in left half

search 3rd ✔
in permutation array

✔ ✘✔✘

found 3rd ✔ at position 4

mergesort tree
for permutation array

sorted ⇒ 2 binary searches
to find range of ✔s

sorted ⇒ 2 binary searches
to find range of ✔s

O((log𝑛)︸ ︷︷ ︸
layers

(2 log𝑛)︸ ︷︷ ︸
binary searches

)

Figure 7: Amerge sort tree speeds up the search in the permu-
tation array from O(𝑛) to O((log𝑛)2). Fractional Cascading
reduces this further to O(log𝑛).

3rd smallest value. We iterate over the permutation array from left

to right. The first value “a” occurred outside the window frame at

index 1 and therefore we skip it. The next two values “b” and “c” fall

within the frame. Those are the two smallest values from the frame,

but since we are looking for the 3rd smallest value we keep going.

The value “d” is outside the frame and skipped. The next value “e”

is in the frame, and given we already encountered two qualifying

values, this is the 3rd smallest value and thereby the median.

Finding this index with a linear search would take O(𝑛) and
since we have to repeat it for each tuple of our window operator

the overall query time would be O(𝑛2). To improve upon that time,

we can employ a merge sort tree. The merge sort tree is constructed

as usual, but with the indices from the permutation array as the

lowest layer. Searching for the 𝑖th value inside this tree can be

achieved in O(log𝑛) as sketched in Figure 7: To find the searched

element one starts at the top of the tree. The searched element

might be either in the left or right sublist. To decide on which

side the searched element is, we count the number of qualifying

elements in the left sublist. One can do so by using two binary

searches to locate the upper and the lower frame bound inside the

sorted list. In case the number of qualifying elements in the left

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1250

sublist is smaller than the searched element, we descend to the left,

otherwise to the right. Those steps are repeated until reaching the

lowest layer. On the lowest layer, the remaining range consists of

exactly one element: the searched element. The tree has O(log𝑛)
layers and on each layer we do 2 binary searches. This would leave

us with O((log𝑛)2) complexity. But, as before, fractional cascading

can avoid the repeated binary searches and thereby provides an

execution time of O(log𝑛).
As an additional semantic requirement, percentiles ignore NULL

values while value functions by default do not consider NULLs when
selecting the 𝑖th value. For value functions the SQL standard pro-

vides the IGNORE NULLS clause to exclude NULLs. As such, we need
a way to exclude NULL tuples. Doing so is possible by building the

merge sort tree only on the non-ignored tuples and remapping

indices between the original input of the window operator and its

filtered representation. This additional step is O(𝑛) and hence does
not influence the overall asymptotic complexity.

In summary, our algorithm for percentiles and value functions

consists of 3 steps:

(1) Compute the permutation array→ O(𝑛 log𝑛)
(2) Build the merge sort tree→ O(𝑛 log𝑛)
(3) Compute the percentile for all 𝑛 input tuples→ O(𝑛 log𝑛)

Summing up all steps, we arrive at an overall execution time of

O(𝑛 log𝑛).

4.6 LEAD and LAG
The functions LEAD and LAG can be extended to a windowed version
with two independent ORDER BY clauses just like first_value and
other value functions.

To evaluate a windowed LEAD/LAG, one has to (1) compute the

ROW_NUMBER of the own row, (2) adjust the row number by adding or

subtracting an offset, (3) find the row at that offset, and (4) evaluate

the expression provided to LEAD/LAG on this row. One can use the

algorithm from Section 4.4 to determine the row number of the own

row (step 1) and the algorithm from Section 4.5 to find the row with

the adjusted position (step 3). Both algorithms are in O(𝑛 log𝑛), so
the overall algorithm for LEAD/LAG is also O(𝑛 log𝑛).

4.7 Non-continuous Window Frames
So far, all presented algorithms relied on the fact that a window

frame consists of a single continuous range of rows. But not all win-

dow frames are continuous. A FILTER clause or a frame exclusion

clause can lead to non-continuous frames. The merge sort tree is

also applicable for such non-continuous frames.

In the presence of a frame exclusion clause (EXCLUDE CURRENT
ROW, EXCLUDE TIES, . . .), a window frame can contain up to two

holes, breaking the otherwise continuous range into three con-

tinuous ranges. The construction of the merge sort trees stays

unchanged, but the check for frame inclusion when querying the

tree becomes more complex. This does not influence the asymptotic

complexity because all frames expressible with frame exclusion

clauses can be pieced together from at most three ranges, i.e., a

constant number.

The FILTER clause from SQL:2003 allows excluding individ-

ual rows during aggregation by writing SUM(a) FILTER(a > 0)
OVER(. . .). This clause can also be extended to distinct aggregates

queried window [2; 6]

d a c f h b e goriginal input rank of "e" in [2;6]

=
number of ✔s in [2;6]

✔ value < 4 ⇒ smaller than own value

✔ ✔
sort index 03 2 5 7 1 4 6

✗ ✗ ✗

value ≥ 4 ⇒ rank unchanged✗

Figure 8: Preprocessing applied for rank queries.

and all other window functions discussed in this paper, by support-

ing the syntax RANK(ORDER BY a) FILTER(is_active) OVER(. . .).
The key insight here is: Whether a particular row is excluded or

not depends only on the tuple itself and can be determined upfront,

independently of the window frame. As such, the FILTER clause

can be supported with the same trick we used for IGNORE NULLS
in Section 4.5: We skip inserting filtered-out tuples into the merge

sort tree in the first place and remap indices accordingly.

5 IMPLEMENTATION DETAILS
We integrated our algorithms into Hyper, a commercial high perfor-

mance database system which employs code generation. This sec-

tion gives an overview of our implementation choices and presents

additional optimizations.

5.1 In-Memory Representation
We implemented merge sort trees as pure in-memory structures. If

necessary, they could also be spooled to disk. We represent the tree

using contiguous integer arrays, one array per tree level. Pointers

inside the merge sort tree are expressed as indices into the array

of the next tree level. Payload values are represented as integers

through additional preprocessing.

The payload values of the tree for percentile queries are already

integers. For distinct aggregates, prevIdcs contains mostly integer

indices, but also the special value “-”. We map the special value

“-” to 0 and shift all other indices by 1. For rank functions, we

number the input tuples with dense integer numbers representing

their sort order as visualized in Figure 8. This preprocessing can

be done using a sort algorithm in O(𝑛 log𝑛). Thereby, we avoid
handling all SQL types and intricacies of ORDER BY clauses (multiple

sort criteria, sorting by arbitrary SQL expressions, collation-aware

string comparisons, NULLS LAST, . . .) as part of the merge sort tree

and instead move this complexity into the preprocessing step.

Depending on the input size, we build the tree using either 32-bit

or 64-bit integers. This decision is made independently for each

window partition at runtime. Using smaller integer widths reduces

memory consumption and, thanks to reduced memory bandwidth

usage, also improves performance.

For the same reasons, we annotate only every 𝑘th element with

pointers into the next level. As discussed in Section 4.2, this sam-

pling does not deteriorate asymptotic complexity. Storing fewer

pointers reduces strain on memory bandwidth. On the other hand,

a larger 𝑘 increases the number of comparisons necessary on each

tree level. By choosing 𝑘 , one can thereby tradeoff memory con-

sumption and memory bandwidth against CPU cycles. In addition

to reducing the number of pointer annotations, we use a higher

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1251

fanout 𝑓 for our tree. During the build phase of the tree we hence

do multi-way merges. For larger fanouts, a query has to do more bi-

nary searches per layer in the tree. Those additional searches do not

deteriorate asymptotic complexity because the number of binary

searches per layer is still bounded by 2𝑓 . The overhead for addi-

tional binary searches is offset by the lower memory consumption

and better cache locality.

The tree has ⌈log𝑓 (𝑛)⌉𝑛 + (⌈log𝑓 (𝑛)⌉ − 1)𝑛𝑓 /𝑘 elements. Since

the tree height is ⌈log𝑓 (𝑛)⌉, a larger 𝑓 leads to an exponentially

smaller number of elements. At the same time, a larger fanout

requires additional storage for the pointers between tree levels and

thereby linearly increases memory consumption. A larger sampling

parameter 𝑘 reduces memory consumption linearly. Based on the

empirical evaluation in Section 6.6, we use 𝑓 = 𝑘 = 32.

5.2 Parallelization
Our implementation is completely parallelized. Embarrassingly

parallel preprocessing steps use simple parallel_for loops. For
parallel sorting during preprocessing, each task sorts a part of the

data using introsort, the sorted runs are then merged. For parallel

merging, we select percentiles across all sorted input runs using a

median of medians and search those percentiles in each input run,

thereby dividing the input runs into chunks which can be indepen-

dently merged in parallel [18]. The merge sort tree is constructed

bottom-up. On the lower layers, each task merges multiple input

runs into an output run independently of other tasks. On the up-

per layers, multiple threads collaborate on merging a run, and we

parallelize the merge step itself. Computing the aggregate results

from the merge sort tree is again embarrassingly parallel.

5.3 Code Reuse
In contrast to the alternatives, an advantage of our approach is that

we can reuse large amounts of code which exist in database systems.

We reused large parts of our parallel sorting code which also han-

dles sorting for all other ORDER BY clauses, e.g., for query results

and non-holistic window operators. The existing sorting code was

directly reusable, though needed some small fixes: Previously, the

quicksort part of our introsort implementation used 2-way parti-

tioning instead of 3-way partitioning. In the presence of duplicates,

a quicksort with 2-way partitioning deteriorates to O(𝑛2), and
this quadratic behavior was triggered by framed distinct counts

on columns with few duplicates because in this case most array

entries are 0. Hence, we improved our quicksort implementation to

use 3-way partitioning. Implementing holistic aggregates thereby

improved our robustness also for other usages of sorting.

5.4 Code Generation
As mentioned, we implemented merge sort trees in a code gen-

erating database system. For code-generating systems, there is a

tradeoff which parts of the algorithm to generate at runtime and

which parts to implement in C++. In general, an implementation in

C++ is preferable because C++ code is easier to reason about and

saves query compilation time and thereby query latency. On the

other hand, generated code is custom-fitted to the exact query at

hand and exploits additional performance optimizations such as

inlining the query-specific comparator into the sort algorithm. As

such, the decision which parts to generate ad hoc and which parts

to implement in C++ is crucial for overall performance.

Because the merge sort tree only stores integers independent of

the query at hand, we implement the merge sort tree in C++. The

preprocessing steps – which depend on the sort order specified in

the query – are generated ad hoc. Thereby, merge sort trees reach

both goals: We take advantage of a particular query’s sort order by

inlining the comparators for the preprocessing phase. At the same

time, we keep implementation complexity and query compilation

times low by implementing the merge sort tree in C++.

5.5 Competitors
For the evaluation, we also implemented both the naive and the

incremental algorithms fromWesley and Xu [38] in our database. As

discussed in Section 3.2, incremental algorithms suffer from O(𝑛2)
behavior under task-based parallelization, though. Hyper employs

task-based parallelismwith task sizes of 20 000 tuples.We are able to

directly observe this detrimental effect on incremental algorithms in

Section 6.4. For our evaluation, we still parallelized the algorithms,

given that a non-parallel version of the incremental algorithms

would have been completely uncompetitive.

To benchmark order statistic trees, we wrote a standalone im-

plementation for windowed percentiles. Our implementation uses

an open-source implementation of order statistic B-Trees [35].

6 EVALUATION
In this section, we experimentally evaluate our proposed algorithms

against the current state-of-the-art algorithms. Given that merge

sort trees beat the competing algorithms in their algorithmic com-

plexity, we can show arbitrarily large speed-ups. Doing so would

not add much insight, and hence we instead focus on the cut-over

points and tradeoffs between the different algorithms.

Our benchmark results for Hyper can be reproduced through

the freely available HyperAPI. All benchmark scripts for both Hy-

per and its competitors are available under https://github.com/

salesforce/holistic-aggregates-paper.

6.1 Experimental Setup
We evaluated all algorithms on the TPC-H data set. We chose the

TPC-H data set because it resembles real-world data sets and is

widely available, making it easier to reproduce our results. In the

spirit of the TPC-H benchmark, we modeled our queries after real-

world business questions. At the same time, we kept the queries

intentionally simple (no joins, no filters, . . .) to keep them focused

on the algorithms proposed in this paper. We executed our queries

against the lineitem table, as this is the largest table in TPC-H.

All experiments were performed on a dual-socket system with

two Intel Xeon Silver 4114 CPUs, 20 cores (40 hardware threads) at

2.2 GHz and 3.0 GHz boost frequency, running Linux 4.15 and the

“performance” CPU governor. All reported query times are end-to-

end times, including SQL parsing, query optimization and execution.

Building the merge sort tree happens during query execution and

is thereby included in the reported times. Loading the lineitem
table from CSV is not included in our measurements. We do not

build any indices during load time.

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1252

https://github.com/salesforce/holistic-aggregates-paper
https://github.com/salesforce/holistic-aggregates-paper

Postgres
Join

Postgres
Subquery

Tableau
Client-Side

DuckDB
Subquery

DuckDB
Join

Hyper
Subquery

Hyper Join Hyper
Naive

Hyper
MST

0K

200K

400K

600K

th
ro

ug
hp

ut
 [t

up
le

s/
s] 616k

63k
4.3k 5.5k 7.5k 7.9k 9.7k275 333

Figure 9: Throughput of a framed median on a tiny data set.
Traditional SQL formulations are not competitive.

6.2 Necessity of Native Support
To show the need for the proposed SQL extensions, and the inade-

quacy of existing SQL functionality, we benchmark the query

select percentile_disc(
0.5 order by l_extendedprice

) over (order by l_shipdate
rows between 999 preceding and current row)

from lineitem

against a traditional SQL formulation using a correlated subquery

with lineitem_rn as (select *,
ROW_NUMBER() over (order by l_shipdate) as rn
from lineitem)

select (
select percentile_disc(0.5)

within group (order by l_extendedprice)
from lineitem_rn l2
where l2.rn between l1.rn - 999 and l1.rn)

from lineitem_rn l1

and a self join

with lineitem_rn as (. . .)
select percentile_disc(0.5)

within group (order by l2.l_extendedprice)
from lineitem_rn l1 join lineitem_rn l2

on l2.rn between l1.rn - 999 and l1.rn
group by l1.rn

We executed both formulations on DuckDB 0.3.2.dev1201, Hy-

per 0.0.14567 and PostgreSQL 13.4. We measured the client-side

implementation in Tableau Server 2021.3 by mimicking the query

with Tableau’s WINDOW_PERCENTILE function and taking the time of

the end-tablecalc-interpreter.compute-final-table event

reported in the log file. Note that this evaluation method excludes

the transfer costs between the database system and Tableau. The

queries were executed on a tiny set of 20 000 tuples from the TPC-H

lineitem table because the traditional SQL queries did not finish

on larger inputs in reasonable time.

Figure 9 shows the results. The performance of the traditional

SQL queries varies by an order of magnitude between database

systems. In the light of this large variability, Tableau’s choice to

use a client-side implementation instead of offloading median com-

putations to the database is understandable: Tableau’s client-side

implementation avoids the bad performance of, e.g., PostgreSQL.

At the same time, it cannot reach the performance of DuckDB or

Hyper. With the proposed extensions, this tradeoff changes.

Merge Sort
Tree

Order Sta-
tistic Tree

Incremental
(DuckDB)

Incremental
(Hyper) Naive

0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M
Input Size [tuples]

Median

Distinct
Count

Rank

Lead

0M

5M

10M

15M

tu
pl

es
/s

0M

5M

10M

15M

tu
pl

es
/s

0M

5M

10M

15M

tu
pl

es
/s

0M

5M

10M

15M

tu
pl

es
/s

Figure 10: Throughput of holistic functions for increasing
problem sizes. Not all approaches support all aggregates.

Even the naive evaluation algorithm is 15× faster than Tableau’s

client-side implementation and 3× faster than the fastest SQL re-

sult. This shows that, also without more efficient algorithms, the

improved expressiveness provided by our SQL extensions already

outperforms heavily optimized database systems like DuckDB and

Hyper. Our newly proposed merge sort tree algorithm increases

the performance advantage to 63× compared to the SQL results.

This already gives a taste, but does not yet showcase the full perfor-

mance benefits unlocked by merge sort trees. For larger input sizes,

the performance differences only become larger: The non-equi join

and correlated sub-query are executed as a O(𝑛2) nested-loop joins
by all competitors. While the naive evaluation algorithm avoids

the overhead of a self join, it is still O(𝑛2). The more advanced

merge sort tree has a better complexity of O(𝑛 log𝑛) but cannot
fully profit from this, yet, at small input sizes. Furthermore, Hyper

is single-threaded at such a small input size and does not oper-

ate at peak performance, yet. To compare the different algorithms

for holistic aggregates and understand their scalability to multiple

cores, we need to switch to a larger data set.

6.3 The Need for Better Holistic Algorithms
Having established the need for native holistic window function

support in general, we next focus on the comparison of the available

algorithms for holistic aggregates. To do so, we look at their perfor-

mance at larger problem sizes. Figure 10 compares the throughput

of different algorithms for increasing problem sizes. In this experi-

ment, we use an increasingly large random sample from the TPC-H

lineitem table as input and set the frame size to 5% of the input

table size. For all order-based window functions (median, rank,
lead) we ordered by l_extendedprice. For the distinct count, we
computed the number of distinct l_partkeys.

We evaluated our merge sort tree based algorithms against the

incremental and naive algorithms from Wesley and Xu [38] and

order statistic trees [17]. For Wesley’s incremental algorithm we

benchmarked both an implementation in Hyper and in DuckDB.

The naive algorithm was only benchmarked in Hyper. Note that

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1253

100 1,000 10,000 100,000 1,000,000
Frame Size [tuples]

0M

10M

20M

30M

tu
pl

es
/s

Merge Sort
Tree

Order Sta-
tistic tree

Incremental
(Hyper)

Naive
Incremental
(DuckDB)

Figure 11: Throughput of a framed median for increasing
frame sizes.

the order statistic tree is a standalone implementation. It thereby

has an unfair advantage against the other systems which inevitably

have additional overhead such as parsing and query planning.

For medians, the naive and incremental algorithms are not com-

petitive for any problem size and never reach a throughput better

than 0.6M tuples per second. They are hard to distinguish in the

plot because they are overlapping and close to zero. Both the order

statistic tree and the merge sort tree initially improve their through-

put as input size increases. This is because at small input sizes there

is not enough work for all CPU cores, yet. As stated previously, we

cut tasks of 20 000 tuples and are running on a 20 core machine

(40 hardware threads). We need 0.8M tuples before we have suf-

ficient work to occupy all hardware threads. The figure confirms

this and shows the merge sort tree reaching its full performance at

0.8M input tuples. While the order statistic tree is initially competi-

tive, its performance starts to degrade at 0.35M input tuples. This

is because the frame size is getting close to the task size, and the

repetitive work between tasks becomes a bottleneck. By the time

the merge sort tree reaches its peak performance of 9.5M tuples,

the order statistic tree already fell behind the merge sort tree.

For distinct counts, the naive algorithm stays below 0.5M tuples

per second, leaving the incremental algorithm as the only challeng-

ing competitor to the merge sort tree. The incremental algorithm

is less affected by the repeated work across threads than the order

statistic tree because re-building a hash-table is cheaper than re-

building a tree. While the incremental algorithm would eventually

lose against the merge sort tree due to this repeated work, in the

graph we can observe a different effect: At an input size of 1.2M,

the hash table maintained by the incremental algorithm outgrows

the L2 cache, and the CPU drops from 0.37 instructions per cycle

to 0.27 instructions per cycle due to L2 cache stalls. The merge sort

tree on the other hand has a more cache-friendly memory access

patterns and stays at 1.28 instructions per cycle.

For the remaining measured window functions, our only com-

petitor is the naive algorithm which does not stand a chance. We do

not show results for additional functions (other distinct aggregates,

nth_value, cume_dist, . . .) because those functions use merge

sort trees in the same way as the shown functions with only slight

modification, leading to the same performance characteristics.

6.4 Influence of Frame Sizes
Next, we measure the influence of the frame size on the different

algorithms. For small window frames, even a naive evaluation strat-

egy can yield good performance. This is because the window size

directly influences the serial-execution costs of the naive and incre-

mental algorithms and of the ordered statistic tree. Furthermore,

the frame size affects their parallelizability (see Section 3.2). In this

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Non-Monotonicity

0M

5M

10M

tu
pl

es
/s

Merge Sort
Tree Incremental Naive

Figure 12: Throughput of a framed median for increasingly
non-monotonic window frames.

experiment, we computed the median of l_extendedprice on the

lineitem table at scale factor 1with the window frame

over(order by l_shipdate
rows between size preceding and current row)

and measured the throughput for increasing frame sizes. Figure 11

plots the results of this experiment.

We observe that merge sort trees provide a stable performance

independent of the frame size. DuckDB’s implementation of the

incremental algorithm is not competitive, mostly because it is not

properly multi-threaded. In contrast, our implementation of both

the naive and the incremental algorithm are multi-threaded and

are initially competitive. This confirms our decision to multi-thread

the competing algorithms, although they cannot be parallelized

efficiently under task-based parallelism. As the frame size increases,

the naive and incremental algorithm’s throughput drops quickly,

the intersection points are at 130 and 700 tuples, respectively. This is

still far from the task-size of 20 000 and their bad performance is not

due to bad parallelizability, but due to their worse asymptotic single-

threaded complexity for increasing frame sizes. Order statistic trees

are competitive for a larger range, but lose against merge sort trees

at a frame size of 20 000 due to the bad effect of larger frame sizes

on their parallelizability. If we do not parallelize the order statistic

tree, its throughput is independent of the frame size but it is not

competitive against the multi-threaded merge sort tree.

We also executed this experiment for all other window functions.

The observations were similar: As we increase the frame size, the

throughput of naive and incremental algorithms degrade quickly

while the merge sort tree is mostly unaffected. The incremental

algorithm for distinct counts loses against the merge sort tree at

a frame size of 50 000, again due to the detrimental effect of paral-

lelization at large frame sizes. Beyond that point, merge sort trees

outperform their competitors by arbitrarily large factors.

This intersection point is still far from the size of SQL’s default

frame BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW which

has a size of 6 million tuples for this data set. For SQL’s default

frame, only merge sort trees compute the median in a reasonable

time, with an unchanged throughput of 9.3M tuples per second.

6.5 Non-monotonic Frames
So far, all experiments used monotonic window frames. The incre-

mental algorithms benefited from the large overlap between consec-

utive frames. To evaluate the influence of non-monotonic frames,

we computed a framed median for the window clause

order by l_shipdate rows between
m * mod(l_extendedprice * 7703, 499) preceding and
500 - m * mod(l_extendedprice * 7703, 499) following

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1254

Sampled Fraction of Cascading Pointers
Fanout 1 2 4 8 16 32★ 64 128 256 512 1024

2

4

8

16

32★

64

128

256 3.53

2.87

2.48

2.06

1.82

1.83

1.89

2.47

3.03

2.48

2.27

1.94

1.66

1.69

1.83

2.41

2.80

2.28

1.96

1.74

1.51

1.54

1.66

2.28

3.40

2.12

1.78

1.60

1.44

1.42

1.55

2.19

2.89

2.23

1.68

1.48

1.34

1.33

1.45

2.05

2.78

1.91

1.85

1.45

1.29

1.32

1.39

1.98

3.53

1.75

1.84

1.48

1.25

1.25

1.34

1.94

4.93

1.81

2.13

1.30

1.24

1.25

1.33

1.85

7.99

2.20

2.92

1.30

1.23

1.30

1.34

1.83

13.98

2.98

4.54

1.45

1.28

1.34

1.40

1.94

30.41

4.67

7.73

1.80

1.49

1.48

1.47

1.98

Figure 13: Runtime of a windowed rank for different fanout
and pointer sampling parameters.

The mod generates a pseudorandom number between 0 and 499.

We reused this construction from Wesley and Xu [38]. For𝑚 = 0,

the frame is monotonic. For 𝑚 = 1, the frames still have a size

of 500 elements, but there is significantly less overlap between

consecutive frames due to the added offset. As discussed in the

previous experiments, at very small frame sizes the incremental

algorithms can be competitive against merge sort trees. We chose

such a small size to show that, even for tiny frame sizes, a non-

monotonic window frame makes merge sort trees the better choice.

Figure 12 depicts the results. As expected from the previous

experiment, the incremental algorithm is competitive against the

merge sort tree for monotonic frames of size 500. The incremental

algorithm becomes less efficient than merge sort trees as soon

as we introduce a small amount of non-monotonicity. As non-

monotonicity increases, the incremental algorithms become even

slower than the naive implementation due to the added bookkeep-

ing overhead. We do not depict the other window functions here

for brevity, the findings are similar.

6.6 Fanout and Pointer Sampling
As stated in Section 5.1, we used the parameters 𝑓 = 𝑘 = 32. To

determine those parameters, we benchmarked a single-threaded

merge sort tree outside the window operator for a rank query on

1 million equally distributed random integers. Figure 13 visualizes

the summed-up times for building the merge sort tree and com-

puting the aggregate results. While 𝑓 = 16, 𝑘 = 4 provides a better

execution time, we chose 𝑓 = 𝑘 = 32 because this configuration has

a lower memory usage. We especially prefer a larger fanout as this

leads to an exponentially reduced memory size for larger problems

(see discussion in Section 5.1). With 𝑓 = 16, 𝑘 = 4, a merge sort tree

on 100 million elements requires 12.4 GB, with 𝑓 = 𝑘 = 32 only

4.4 GB. The window operator and query framework needs 1.6 GB

memory on this input size, without taking any aggregate state into

account. Even if our competitors were completely stateless, the

additional memory overhead of merge sort trees is a factor of 2.75.

We deem this memory consumption acceptable given the vastly

improved performance.

6.7 Cost Breakdown
Figure 14 provides a break-down of the evaluation of a running

distinct count on the TPC-H lineitem table at scale-factor 10. All

in all, query evaluation takes 3.3 seconds. The first three phases

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
Time [s]

Table Scan Combine Partitions Sort Partition

Compute Hashes Sort Hashes (Phase 1) Sort Hashes (Phase 2) Compute prevIdcs

Build MST (Phase 1) Produce ResultBuild MST (Phase 2)

Figure 14: Execution Phases of a Framed Distinct Count.

set-up the partitioning and sorting for the window operator. The

next four phases correspond to Algorithm 1: We first populate an

array (line 4) which we then sort (line 5) before we compute the

prevIdcs array (lines 7 and following). To make the sorting step

independent of the data types used in the query, we do not sort

the values themselves but only their hashes. In the absence of hash

collisions, this does not deteriorate the runtime. Sorting is split into

two phases for multi-threading: we first sort thread-locally and

then merge those sorted runs. Next, we build the 6 layers of the

merge sort tree, using two different multi-threading strategies for

the lower and upper layers (see Section 5.2). Last, we use the merge

sort tree to compute the results. All phases are parallelized. Empty

spaces between phases are synchronization overheads.

7 CONCLUSION
We argue that existing SQL functionality like ranks, percentiles

and distinct counts should be supported also in combination with

SQL’s framing capabilities for window functions. In this paper we

present O(𝑛 log𝑛) algorithms for windowed versions of all win-

dow and aggregate functions from the SQL:2011 standard except

for DENSE_RANK. Furthermore, we show how to evaluate DISTINCT
variants of arbitrary distributive aggregates in combination with

window frames. In contrast to previous work, our algorithms are

parallelized and avoid quadratic runtime in all cases, also for com-

plex window frames including non-monotonic and non-continuous

window frames.

We achieve this by mapping distinct counts, ranks, percentiles

and all other window functions to range counting queries which

can be answered efficiently using merge sort trees. While our paper

focuses on relational systems, it will be interesting to see how

future work can expand this approach, e.g., to stream aggregation

systems where additional challenges, such as out-of-order arrivals,

are present.

By implementing and evaluating the proposed algorithms in Hy-

per, a commercial high-performance database system, we demon-

strate how the algorithmic improvements directly translate to end-

to-end improvements in query time: Our implementation outper-

forms the best traditional SQL formulation by 63× for small inputs

and our algorithm is even more performant at larger input sizes.

This is both due to a better asymptotic complexity and because it

can exploit multi-core systems more effectively.

REFERENCES
[1] Arvind Arasu and Jennifer Widom. 2004. Resource Sharing in Continuous

Sliding-Window Aggregates. In PVLDB. Morgan Kaufmann, 336–347. https:

//doi.org/10.1016/B978-012088469-8.50032-2

[2] DuckDB authors. 2021. DuckDB - Window functions. Retrieved June 15, 2021

from https://duckdb.org/docs/sql/window_functions

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1255

https://doi.org/10.1016/B978-012088469-8.50032-2
https://doi.org/10.1016/B978-012088469-8.50032-2
https://duckdb.org/docs/sql/window_functions

[3] PostgreSQL authors. 2021. PostgreSQL: Documentation: 14: 3.5. Window Functions.
Retrieved January 12, 2022 from https://www.postgresql.org/docs/14/tutorial-

window.html

[4] PostgreSQL authors. 2022. PostgreSQL 14.1: gram.y source code. Retrieved January
12, 2022 from https://github.com/postgres/postgres/blob/REL_14_1/src/backend/

parser/gram.y

[5] SQLite authors. 2021. Window functions. Retrieved June 15, 2021 from https:

//www.sqlite.org/windowfunctions.html

[6] Jon Louis Bentley. 1979. Decomposable Searching Problems. Inform. Process. Lett.
8, 5 (1979), 244–251. https://doi.org/10.1016/0020-0190(79)90117-0

[7] Jon Louis Bentley. 1980. Multidimensional Divide-and-Conquer. Commun. ACM
23, 4 (1980), 214–229. https://doi.org/10.1145/358841.358850

[8] Guy E. Blelloch. 1990. Prefix sums and their applications. Technical Report.

Carnegie Mellon University.

[9] Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders.

2011. Towards optimal range medians. Theoretical Computer Science 412, 24
(2011), 2588–2601. https://doi.org/10.1016/j.tcs.2010.05.003

[10] Gerth Stølting Brodal and Allan Grønlund Jørgensen. 2009. Data Structures for

Range Median Queries. In Proceedings of the ISAAC (Lecture Notes in Computer
Science, Vol. 5878). Springer, 822–831. https://doi.org/10.1007/978-3-642-10631-

6_83

[11] Yu Cao, Chee-Yong Chan, Jie Li, and Kian-Lee Tan. 2012. Optimization of Analytic

Window Functions. In PVLDB. 1244–1255. https://doi.org/10.14778/2350229.

2350243

[12] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl.

2016. Cutty: Aggregate Sharing for User-Defined Windows. In Proceedings of the
CIKM. ACM, 1201–1210. https://doi.org/10.1145/2983323.2983807

[13] Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison,

and Bryan T. Wilkinson. 2014. Linear-Space Data Structures for Range Mode

Query in Arrays. Theory of Computing Systems 55, 4 (2014), 719–741. https:

//doi.org/10.1007/s00224-013-9455-2

[14] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional Cascading: I. A Data

Structuring Technique. Algorithmica 1, 2 (1986), 133–162. https://doi.org/10.

1007/BF01840440

[15] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional Cascading: II. Applica-

tions. Algorithmica 1, 2 (1986), 163–191. https://doi.org/10.1007/BF01840441

[16] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa

Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.

2008. Efficient implementation of sorting on multi-core SIMD CPU architecture.

In PVLDB. 1313–1324. https://doi.org/10.14778/1454159.1454171

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, 3rd Edition. MIT Press. http://mitpress.mit.

edu/books/introduction-algorithms

[18] Rhys S. Francis, Ian D. Mathieson, and Linda Pannan. 1993. A Fast, Simple

Algorithm to Balance a Parallel Multiway Merge. In Proceedings of PARLE (Lecture
Notes in Computer Science, Vol. 694). Springer, 570–581. https://doi.org/10.1007/3-

540-56891-3_46

[19] Sariel Har-Peled and S. Muthukrishnan. 2008. Range Medians. In Proceedings of
the European Symposium on Algorithms. Springer, 503–514. https://doi.org/10.

1007/978-3-540-87744-8_42

[20] JosephMHellerstein andMichael Stonebraker. 2005. Readings in database systems,
4th edition. MIT press.

[21] Snowflake Inc. 2021. Window Functions — Snowflake Documentation. Retrieved

June 15, 2021 from https://docs.snowflake.com/en/sql-reference/functions-

analytic.html

[22] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska.

2016. SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment. In

SIGMOD. ACM, 281–293. https://doi.org/10.1145/2882903.2882957

[23] Allan Grønlund Jørgensen and Kasper Green Larsen. 2011. Range Selection

and Median: Tight Cell Probe Lower Bounds and Adaptive Data Structures.

In Proceedings of the SODA. ACM-SIAM, 805–813. https://doi.org/10.1137/1.

9781611973082.63

[24] André Kohn, Viktor Leis, and Thomas Neumann. 2021. Building Advanced

SQL Analytics From Low-Level Plan Operators. In SIGMOD. ACM, 1001–1013.

https://doi.org/10.1145/3448016.3457288

[25] Danny Krizanc, Pat Morin, and Michiel H. M. Smid. 2003. Range Mode and Range

Median Queries on Lists and Trees. In Proceedings of the ISAAC (Lecture Notes in
Computer Science, Vol. 2906). Springer, 517–526. https://doi.org/10.1007/978-3-

540-24587-2_53

[26] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: a NUMA-aware query evaluation framework for the many-

core age. In SIGMOD. ACM, 743–754. https://doi.org/10.1145/2588555.2610507

[27] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neumann. 2015.

Efficient Processing of Window Functions in Analytical SQL Queries. In PVLDB.
1058–1069. https://doi.org/10.14778/2794367.2794375

[28] Microsoft. 2021. OVER Clause (Transact-SQL) - SQL Server | Microsoft Docs.
Retrieved June 15, 2021 from https://docs.microsoft.com/en-us/sql/t-sql/queries/

select-over-clause-transact-sql

[29] Oracle. 2021. Analytic Functions. Retrieved June 15, 2021 from https://docs.oracle.

com/cd/E11882_01/server.112/e41084/functions004.htm

[30] Anatoli U. Shein, Panos K. Chrysanthis, and Alexandros Labrinidis. 2018. Slick-

Deque: High Throughput and Low Latency Incremental Sliding-Window Ag-

gregation. In Proceedings of the EDBT. OpenProceedings.org, 397–408. https:

//doi.org/10.5441/002/edbt.2018.35

[31] Ivan Smirnov. 2016. Is it possible to query number of distinct integers in a range
in O(lg N)? Retrieved September 11, 2021 from https://stackoverflow.com/a/

39797537/3043948

[32] Tableau. 2021. Table Calculation Functions. Retrieved June 15, 2021

from https://help.tableau.com/current/pro/desktop/en-us/functions_functions_

tablecalculation.htm

[33] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2019. Optimal and

General Out-of-Order Sliding-Window Aggregation. In PVLDB. 1167–1180. https:
//doi.org/10.14778/3339490.3339499

[34] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.

General Incremental Sliding-Window Aggregation. In PVLDB. 702–713. https:

//doi.org/10.14778/2752939.2752940

[35] Simon Tatham. 2017. Counted B-Trees. Retrieved January 21, 2022 from https:

//www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html

[36] Jonas Traub, PhilippMarian Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß,

Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2021. Scotty: General

and Efficient Open-source Window Aggregation for Stream Processing Systems.

ACM Trans. Database Syst. 46, 1 (2021), 1:1–1:46. https://doi.org/10.1145/3433675

[37] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor

Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:

How Benchmarks Fail to Represent the Real World. In Proceedings of the DBTest
Workshop at SIGMOD. ACM, 1–6. https://doi.org/10.1145/3209950.3209952

[38] Richard Wesley and Fei Xu. 2016. Incremental Computation of Common Win-

dowed Holistic Aggregates. In PVLDB. 1221–1232. https://doi.org/10.14778/

2994509.2994537

Session 17: Query Processing and Optimization 2 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1256

https://www.postgresql.org/docs/14/tutorial-window.html
https://www.postgresql.org/docs/14/tutorial-window.html
https://github.com/postgres/postgres/blob/REL_14_1/src/backend/parser/gram.y
https://github.com/postgres/postgres/blob/REL_14_1/src/backend/parser/gram.y
https://www.sqlite.org/windowfunctions.html
https://www.sqlite.org/windowfunctions.html
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1145/358841.358850
https://doi.org/10.1016/j.tcs.2010.05.003
https://doi.org/10.1007/978-3-642-10631-6_83
https://doi.org/10.1007/978-3-642-10631-6_83
https://doi.org/10.14778/2350229.2350243
https://doi.org/10.14778/2350229.2350243
https://doi.org/10.1145/2983323.2983807
https://doi.org/10.1007/s00224-013-9455-2
https://doi.org/10.1007/s00224-013-9455-2
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840441
https://doi.org/10.14778/1454159.1454171
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/3-540-56891-3_46
https://doi.org/10.1007/3-540-56891-3_46
https://doi.org/10.1007/978-3-540-87744-8_42
https://doi.org/10.1007/978-3-540-87744-8_42
https://docs.snowflake.com/en/sql-reference/functions-analytic.html
https://docs.snowflake.com/en/sql-reference/functions-analytic.html
https://doi.org/10.1145/2882903.2882957
https://doi.org/10.1137/1.9781611973082.63
https://doi.org/10.1137/1.9781611973082.63
https://doi.org/10.1145/3448016.3457288
https://doi.org/10.1007/978-3-540-24587-2_53
https://doi.org/10.1007/978-3-540-24587-2_53
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/2794367.2794375
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql
https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions004.htm
https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions004.htm
https://doi.org/10.5441/002/edbt.2018.35
https://doi.org/10.5441/002/edbt.2018.35
https://stackoverflow.com/a/39797537/3043948
https://stackoverflow.com/a/39797537/3043948
https://help.tableau.com/current/pro/desktop/en-us/functions_functions_tablecalculation.htm
https://help.tableau.com/current/pro/desktop/en-us/functions_functions_tablecalculation.htm
https://doi.org/10.14778/3339490.3339499
https://doi.org/10.14778/3339490.3339499
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.14778/2752939.2752940
https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://doi.org/10.1145/3433675
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.14778/2994509.2994537
https://doi.org/10.14778/2994509.2994537

	Abstract
	1 Introduction
	2 Window functions in SQL
	2.1 Aggregate Functions
	2.2 Window Frames in SQL
	2.3 Window Functions
	2.4 Proposed Extensions

	3 Related Work
	3.1 Lines of Research
	3.2 Existing Evaluation Strategies

	4 Evaluating Holistic Aggregate with Merge Sort Trees
	4.1 High-Level Overview
	4.2 Windowed COUNT DISTINCT
	4.3 Arbitrary distinct aggregates
	4.4 Windowed Rank Functions
	4.5 Percentiles and Value Functions
	4.6 LEAD and LAG
	4.7 Non-continuous Window Frames

	5 Implementation Details
	5.1 In-Memory Representation
	5.2 Parallelization
	5.3 Code Reuse
	5.4 Code Generation
	5.5 Competitors

	6 Evaluation
	6.1 Experimental Setup
	6.2 Necessity of Native Support
	6.3 The Need for Better Holistic Algorithms
	6.4 Influence of Frame Sizes
	6.5 Non-monotonic Frames
	6.6 Fanout and Pointer Sampling
	6.7 Cost Breakdown

	7 Conclusion
	References

