
1

A Tensor Network based Decision Diagram for
Representation of Quantum Circuits
Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying

Abstract—Tensor networks have been successfully applied in
simulation of quantum physical systems for decades. Recently,
they have also been employed in classical simulation of quantum
computing, in particular, random quantum circuits. This paper
proposes a decision diagram style data structure, called TDD
(Tensor Decision Diagram), for more principled and convenient
applications of tensor networks. This new data structure provides
a compact and canonical representation for quantum circuits. By
exploiting circuit partition, the TDD of a quantum circuit can be
computed efficiently. Furthermore, we show that the operations
of tensor networks essential in their applications (e.g., addition
and contraction), can also be implemented efficiently in TDDs.
A proof-of-concept implementation of TDDs is presented and its
efficiency is evaluated on a set of benchmark quantum circuits.
It is expected that TDDs will play an important role in various
design automation tasks related to quantum circuits, including
but not limited to equivalence checking, error detection, synthesis,
simulation, and verification.

I. INTRODUCTION

Google’s recent demonstration of quantum supremacy on
its 53-qubit quantum processor Sycamore [1] has confirmed
that quantum computers can indeed complete tasks much
more efficiently than the most advanced traditional computers.
Quantum devices of similar sizes have also been developed
at IBM, Intel, IonQ, and Honeywell. It is widely believed
that quantum processors with several hundreds of qubits will
very likely appear in the next 5-10 years. The rapid growth of
the size of quantum computing hardware motivates people to
develop effective techniques for synthesis, optimisation, testing
and verification of quantum circuits.

Mathematically, quantum circuits can be represented as
unitary matrices, which transform initial quantum states (rep-
resented as vectors) to desired output states. The size of this
matrix representation grows exponentially with the size of
the quantum system, which makes it a great challenge to
even simulate a quantum random circuit with a modest size
and a shallow depth. Existing matrix-based packages like
Qiskit (https://qiskit.org/) and the Google TensorNetwork [25],

Xin Hong, Sanjiang Li and Yuan Feng are with Centre for Quantum Software
and Information (QSI), Faculty of Engineering and Information Technology,
University of Technology Sydney, NSW 2007, Australia.
E-mail: {sanjiang.li, yuan.feng}@uts.edu.au

Xiangzhen Zhou is with Centre for Quantum Software and Information
(QSI), University of Technology Sydney, NSW 2007, Australia and State Key
Lab of Millimeter Waves, Southeast University, Nanjing 211189, China.

Mingsheng Ying is with Centre for Quantum Software and Information
(QSI), University of Technology Sydney, NSW 2007, Australia, State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy
of Sciences, China and Department of Computer Science and Technology,
Tsinghua University, China.
E-mail: mingsheng.ying@uts.edu.au

though very efficient, store such a matrix as a complete array,
whose size quickly exceeds the memory limit. For example, it
requires 64GB memory to store the functionality of a 16-qubit
quantum circuit if each matrix entry is represented in data type
complex128.

In order to alleviate the challenge and to provide a compact,
canonical, and efficient representation for quantum function-
alities, several decision diagram style data structures have
been proposed, including Quantum Information Decision Dia-
grams (QuIDDs) [26] and Quantum Multiple-Valued Decision
Diagrams (QMDDs) [23]. QuIDD is a variant of Algebraic
Decision Diagrams (ADDs) [2] by restricting values to complex
numbers, which are indexed by integers, and interleaving row
and column variables in the variable ordering. In contrast,
QMDD partitions a transformation matrix into four submatrices
of equal size, which in turn are partitioned similarly, and
uses shared nodes to represent submatrices differing in only a
constant coefficient. Evaluations in [23] showed that QMDDs
offer a compact representation for large unitary (transformation)
matrices. Consequently, they provide a compact and canonical
representation for the functionality of quantum circuits. Indeed,
QMDDs have been successfully used in simulation [29] and
equivalence checking [10], [9] of quantum circuits as well as
verifying the correctness of quantum circuits compilation [27].

Tensor networks provide a flexible way to represent quantum
circuits and have been successfully employed in the classical
simulation of quantum computing in the last few years. By
observing that quantum circuits are a special class of tensor
networks, Pednault et al. [24] exploited the flexibility of tensor
computations with circuit partition and tensor slicing methods,
and broke the 49-qubit barrier of that time in the simulation
of quantum circuits. Later on, the size and depth of quantum
circuits which can be simulated employing tensor network and
the simulation time have been significantly improved (see, e.g.,
[5], [17], [11], [12], [16]). Tensor networks can also be applied
in computing the functionality of a quantum circuit. Indeed, it
can be computed in essentially any order, which in turn greatly
affects the calculation efficiency. For a quantum circuit with
low tree-width, by exploiting an optimal contraction order, the
tensor representation of the quantum circuit can be computed
in time polynomial in the size of the circuit [18]. While it is in
general NP-hard to find an optimal contraction order, one may
exploit heuristics like circuit partition [24], tree decomposition
[18], and hyper-optimisation approaches [13], which have been
demonstrated as very useful for simulating quantum circuits.

Inspired by the success of tensor networks in the classical
simulation of quantum circuits, this paper aims to introduce
a novel decision diagram, called Tensor Decision Diagram

ar
X

iv
:2

00
9.

02
61

8v
2

 [
qu

an
t-

ph
]

 2
1

A
ug

 2
02

1

2

(TDD for short), for tensor networks. As a new data structure,
TDD can further explore the flexibility of tensor networks in
a more principled way, while overcoming the serious memory
bottleneck of matrix-based representations.

While it is observed that the Boole-Shannon expansion
commonly used in the design of decision diagrams is “not a
basic decomposition for quantum mechanical phenomena [23]”,
tensors, as multidimensional linear maps with complex values,
do enjoy Boole-Shannon style expansions. This observation
lays the foundation of our design of TDD.

TDDs have several important features that warrant their
applicability. Analogous to reduced ordered binary decision
diagrams (ROBDD) for Boolean functions [7], redundant nodes
or nodes representing the same tensor in a TDD can be
removed or merged so that shared nodes are used as much as
possible. The canonicity result (Theorem 3) guarantees that,
up to variable ordering, each quantum circuit has a unique
reduced TDD representation. An efficient algorithm (Alg. 1)
is also designed to generate the reduced TDD representation
of a quantum functionality (e.g., a quantum gate or a part of a
quantum circuit). Moreover, we show that basic TDD operations
such as addition and contraction can be implemented efficiently.
As QMDD, TDD provides a universal, compact and canonical
representation for quantum circuits, which is vital in various
design automation tasks.

In the remainder of this paper, after a brief review of quantum
circuits and QMDD in Sec. II and of tensor networks in Sec. III,
we introduce our new data structure TDD in Sec. IV. The
construction and implementation of basic tensor operations are
presented in Sec. V. After that, we show how to compute the
TDD representation of a quantum circuit in a circuit partition
way in Sec. VI. Experimental results are reported and analysed
in Sec. VII. The last section concludes the paper and briefly
discusses several topics for future research. Most technical
proofs as well as detailed experimental results are presented
in the appendix.

II. BACKGROUND

For convenience of the reader, we review some basic
concepts about quantum circuits and the Quantum Multi-value
Decision Diagram (QMDD) in this section.

A. Quantum Circuits

The most basic concept in quantum computing is the qubit,
which is the counterpart of bit in classical computing. The
state of a qubit is often represented in Dirac notation

|ϕ〉 := α0 |0〉+ α1 |1〉 , (1)

where α0 and α1 are complex numbers, called the amplitudes
of |ϕ〉, and satisfy |α0|2 + |α1|2 = 1. We also use the vector
[α0, α1]ᵀ to represent a single-qubit state. In general, an n-
qubit quantum state can be represented as a 2n-dimensional
complex vector [α0, α1, . . . , α2n−1]ᵀ.

The evolution of a quantum system is described by a
unitary transformation. In quantum computing, it is usually
called a quantum gate. A quantum gate has a unique unitary
matrix representation in a predefined orthonormal basis. Fig. 1

H gate : H 1√
2

[
1 1
1 −1

]
T gate : T

[
1 0

0 e
iπ
4

]

CX gate :
X


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Fig. 1. The matrix representations of the H, T, and CX gate.

shows several such examples. The state after applying a
specific transformation can be obtained by multiplying the
corresponding unitary matrix and the vector that represents
the input quantum state. For example, the output state resulted
from applying a Hadamard gate to an input state [α0, α1]

ᵀ is
calculated as follows

1√
2

[
1 1
1 −1

] [
α0

α1

]
=

1√
2

[
α0 + α1

α0 − α1

]
.

More generally, an n-qubit quantum gate is represented as a
2n × 2n-dimensional unitary transformation matrix.

A quantum circuit consists of a set of qubits and a sequence
of elementary quantum gates. Given an input state to the qubits
involved, the quantum gates in a quantum circuit will be applied
to the input state in a sequential manner. The functionality
of an n-qubit quantum circuit can also be described by a
2n × 2n-dimensional unitary transformation matrix.

B. Quantum Multi-value Decision Diagram

Quantum Multi-value Decision Diagram (QMDD) [19] is
a decision diagram based data structure which provides a
compact and canonical representation for quantum states and
transformation matrices.

The main idea of QMDD is to recursively partition a 2n×2n

transformation matrix into submatrices till matrix elements are
reached. The QMDD of M is constructed as follows: First, we
introduce a root node, representing the original matrix. The root
node has four successors, denoting the submatrices obtained
by partitioning M into four with the same size. Each child
node is then further expanded in the same manner. Suppose,
in some step, a node corresponding to a matrix element is
obtained. Then this node is regarded as a terminal node labelled
1, while its corresponding matrix element will be assigned
as the weight of its incoming edge. The obtained decision
diagram may have redundant nodes and weight-0 edges. After
proper normalisation and reduction, we have a reduced decision
diagram representation of M , which is unique up to the order
of variables.

Example 1. Shown in Fig. 2 is the QMDD representation of
the controlled-T gate, where the node labeled with y0 represents
the original matrix representation of the controlled-T gate and
the two 0 attached to it represent the upper right and bottom left
sub-matrices which are all 0-matrices. The two nodes labeled
with y1 represent the upper left and bottom right sub-matrices

3

Fig. 2. The QMDD representation of the controlled-T gate, where the weight
of an edge is omitted if it is 1.

which are, respectively, the identity matrix and the matrix of
the T gate.

III. TENSOR AND TENSOR NETWORK

Before describing our data structure TDD, let us briefly
recall the basic idea and notations of tensor networks.

A. Basic concepts

A tensor is a multidimensional linear map associated with
a set of indices. In this paper, we assume that each index
takes value in {0, 1}. That is, a tensor with index set I =
{x1, . . . , xn} is simply a mapping φ : {0, 1}I → C, where
C is the field of complex numbers. Sometimes, to emphasise
the index set, we denote such a tensor by φx1...xn or φ~x,
and its value on the evaluation {xi 7→ ai, 1 ≤ i ≤ n} by
φx1...xn(a1, . . . , an), or simply φ~x(~a) or even φ(~a) when there
is no confusion. The number n of the indices of a tensor
is called its rank. Scalars, 2-dimensional vectors, and 2 × 2
matrices are rank 0, rank 1, and rank 2 tensors, respectively.

The most important operation between tensors is contraction.
The contraction of two tensors is a tensor obtained by summing
up over shared indices. Specifically, let γ~x,~z and ξ~y,~z be
two tensors which share a common index set ~z. Then their
contraction is a new tensor φ~x,~y with

φ~x,~y(~a,~b) =
∑

~c∈{0,1}~z
γ~x,~z(~a,~c) · ξ~y,~z(~b,~c). (2)

Another useful tensor operation is slicing, which corresponds
to the cofactor operation of Boolean functions. Let φ be a
tensor with index set I = {x, x1, . . . , xn}. The slicing of φ
with respect to x = c with c ∈ {0, 1} is a tensor φ|x=c over
I ′ = {x1, . . . , xn} given by

φ|x=c(~a) := φ(c,~a) (3)

for any ~a ∈ {0, 1}n. We call φ|x=0 and φ|x=1 the negative
and positive slicing of φ with respect to x, respectively. We
say an index x ∈ I is essential for φ if φ|x=0 6= φ|x=1.

A tensor network is an undirected graph G = (V,E)
with zero or multiple open edges, where each vertex v in V
represents a tensor and each edge a common index associated
with the two adjacent tensors. By contracting connected tensors
(i.e., vertices in V), with an arbitrary order, we get a rank m

T T

H X H

Fig. 3. A quantum circuit with 2 qubits and 5 gates.

Fig. 4. A tensor network which is equivalent to the circuit shown in Fig. 3.

tensor, where m is the number of open edges of G. This tensor,
which is independent of the contraction order, is also called the
tensor representation of the tensor network. Interested readers
are referred to [18] and [4] for more detailed introduction.

B. Quantum circuits as tensor networks

The quantum state of a qubit x with vector representation
[α0, α1]ᵀ can be described as a rank 1 tensor φx, where
φx(0) = α0 and φx(1) = α1. Moreover, a single-qubit gate
with input qubit x and output qubit y can be represented as a
rank 2 tensor φxy . Note that for tensor representation, we do not
distinguish between input and output indices, information about
which can be naturally implied when tensors are interpreted as
gates or circuits. For example, the tensor representation of a
Z-gate, with x the input and y the output qubit, is φxy(00) = 1,
φxy(01) = φxy(10) = 0, φxy(11) = −1. Likewise, an n-qubit
gate is represented as a rank 2n tensor.

A little thought shows that a quantum circuit is naturally a
tensor network if we view gates as tensors as above. In such
a tensor network, each vertex (tensor) represents a quantum
state or a quantum gate and each edge a common index of
two adjacent tensors. The functionality of any quantum circuit
involving n qubits is naturally represented as a tensor of rank
2n, by contracting all the tensors involved, instead of a 2n ×
2n transformation matrix. This shift of perspective not only
decreases our cognitive load, potentially, it will also provide a
more concise representation of quantum functionality.

Example 2. Consider the circuit shown in Fig. 3. Regarding
each gate as a tensor (cf. Fig. 1), Fig. 4 shows the tensor
network representation of the circuit. By contracting the tensor
network, we obtain the tensor representation of the circuit

φx0x3y0y3
(a0a3b0b3) =

1∑
a1,a2,b1,b2=0

T(a0a1)H(b0b1)CX(a1b1a2b2)T(a2a3)H(b2b3). (4)

It is straightforward to check that this tensor indeed gives the
functionality of the circuit presented in Fig. 3. For example,
φx0x3y0y3

(1111) = −i corresponds to the fact that the circuit
maps |11〉 to −i |11〉.

4

Fig. 5. A tensor network with hyper-edge (denoted by the dotted line), which
is also equivalent to the circuit shown in Fig. 3.

Given a tensor φ~x and xi, xj ∈ ~x, if φ~x(~a) = 0 whenever
ai 6= aj , we slightly abuse the notation to use an identical
index for both xi and xj . For example, the tenor for Z gate
can be written as φxx with φxx(0) = 1 and φxx(1) = −1.
Similarly, CX gate can be represented as a tensor φxxy1y2

with
φxxy1y2

(abc) = a · (b⊕ c) + a · b⊕ c, where a, for example,
is the complement of a. In [24], edges formed by identical
indices are called hyper-edges.

Example 3. For the tensor network shown in Fig. 4, the four
indices x0, x1, x2, x3 can all be represented by the same index
x0 since the two T gates are diagonal and the CX gate is
block diagonal. Thus, the tensor network can be modified as the
graph shown in Fig. 5, where the dotted line is a hyper-edge
and the corresponding tensor becomes φx0x0y0y3

.

IV. TENSOR DECISION DIAGRAM

To fully exploit the benefit of tensor network representation
of quantum circuits and the circuit partition technique, a suitable
data structure for tensors is desired. In this section, we introduce
such a data structure — Tensor Decision Diagram (TDD).

As decision diagrams, TDDs are similar to ROBDDs [7],
multiplicative binary moment diagrams (*BMDs) [8], and
QMDDs [23], which are designed for representing, respectively,
Boolean functions, pseudo–Boolean functions, and rn × rn
matrices. Like ∗BMDs and QMDDs, TDDs have weights
associated with their edges which are combined multiplicatively.
In addition, to make the TDD representation of a quantum
functionality canonical, several reduction and normalisation
rules are also introduced for TDDs.

While the construction of a QMDD is based on a particular
matrix multiplication [23], TDD relies on the Boole-Shannon
expansion (see below). For a quantum circuit, nodes in its TDD
representation correspond to indices in the circuit (regarded as
a tensor network) and each node has two child nodes according
the Boole-Shannon decomposition. By contrast, nodes in the
QMDD representation correspond to qubits in the circuit and
each node has four child nodes.

Note that most proofs are deferred to the appendix.

A. Basic Definition

To begin with, we observe that any tensor φ can be expanded
with respect to a given index in the style of Boole-Shannon
expansion for classical Boolean circuits.

Lemma 1. Let φ be a tensor with indices in I . For each x ∈ I ,

φ = x · φ|x=0 + x · φ|x=1, (5)

Fig. 6. A TDD representation of the tensor in Example 3, where the values
of the tensor are stored at the terminal nodes of the TDD.

where x(c) := 1− x(c) for c ∈ {0, 1}.

Note that in above we regard each index x ∈ I as the identity
tensor with only one index x, which maps 0 to 0 and 1 to 1.

Recursively using the Boole-Shannon expansion, a tensor
can be naturally represented with a decision diagram.

Definition 1 (Tensor Decision Diagram). A Tensor De-
cision Diagram (TDD) F over a set of indices I is
a rooted, weighted, and directed acyclic graph F =
(V,E, index, value, low, high, w) defined as follows:

• V is a finite set of nodes which is partitioned into non-
terminal nodes VN and terminal ones VT . Denote by rF
the unique root node of F;

• index : VN → I assigns each non-terminal node an index
in I;

• value : VT → C assigns each terminal node a complex
value;

• both low and high are mappings in VN → V which
assign each non-terminal node with its 0- and 1-successors,
respectively;

• E = {(v, low(v)), (v, high(v)) : v ∈ VN} is the set of
edges, where (v, low(v)) and (v, high(v)) are called the
low- and high-edges of v, respectively. For simplicity, we
also assume the root node rF has a unique incoming
edge, denoted er, which has no source node;

• w : E → C assigns each edge a complex weight. In
particular, w(er) is called the weight of F , and denoted
wF .

A TDD is called trivial if its root node is also a terminal node.

For convenience, we often call a terminal node with value c
a terminal c node or simply terminal c if it is unique.

The following example shows how a tensor can be trans-
formed to a TDD using the Boole-Shannon expansion.

Example 4. Fig. 6 gives the TDD obtained by directly applying
the Boole-Shannon expansion to the tensor φx0x0y0y3 in Eq. 4,
where and in all illustrations in this paper we omit the weight of
an edge if it is 1. Each terminal node bears a value which, when
multiplying with weights along the path to the root node (which
happen to be all 1 in this example), corresponds to the value
of φ under the evaluation specified by the path. For example,
the terminal node with value i corresponds to the value of
φ under the evaluation {x0 7→ 1, y0 7→ 0, y3 7→ 0}. Each
non-terminal node v acts as a decision node and represents

5

an index x, while its low- and high-edges denote evaluations
which evaluate x to 0 and, respectively, 1.

Conversely, let us see how each node v of a TDD F naturally
corresponds to a tensor Φ(v). If v is a terminal node, then
Φ(v) := value(v) is a rank 0 tensor, i.e., a constant; if v is a
non-terminal node, then

Φ(v) := w0 · xv · Φ(low(v)) + w1 · xv · Φ(high(v)), (6)

where xv = index(v), and w0 and w1 are the weights on the
low- and high-edges of v, respectively. Comparing Eq. 6 with
the Boole-Shannon expansion in Lemma 1, we immediately
have

Φ(v)|xv=c = wc · Φ(vc), (7)

where c ∈ {0, 1}, v0 = low(v), and v1 = high(v).
Finally, the tensor represented by F itself is defined to be

Φ(F) := wF · Φ(rF). (8)

Recall here that rF and wF are the root node and the weight
of F , respectively.

An efficient manipulation of general TDDs seems impossible.
Following [7], we restrict our discussion to ordered TDDs.

Definition 2. A TDD F is called ordered if there is a linear
order ≺ on I such that index(v) ≺ index(low(v)) and
index(v) ≺ index(high(v)) for every non-terminal node v,
provided that both low(v) and high(v) are non-terminal as
well. If this is the case, we say F is a ≺-ordered TDD.

For simplicity, we abuse the notation slightly by assuming
x ≺ index(v) for all x ∈ I and all terminal nodes v ∈ VT .

The size of a TDD F , written size(F), is the number
of non-terminal nodes of F . As each non-terminal node has
two outgoing edges, there are altogether 1 + 2 × size(F)
edges, including er, in F . Like ROBDDs, the size of the TDD
representation strongly relies on the selected variable order.
For example, the tensor φ = (x1 · x2) + (x3 · x4) + (x5 ·
x6) can be represented as a TDD with 6 non-terminal nodes
under the order ≺1:= (x1, x2, x3, x4, x5, x6), but its TDD
representation under ≺2:= (x1, x3, x5, x2, x4, x6) requires at
least 2 × (1 + 21 + 22) = 14 internal nodes (cf. [20, Ch.3]).
While finding an optimal order is NP-hard, there are efficient
heuristic methods that have been devised for ROBDDs, which
may also be extended to TDDs.

B. Normalisation

A tensor may have many different TDD representations.
For example, let F be a TDD with root node rF and weight
wF 6= 0. A different TDD representing the same tensor can be
constructed by, for example, multiplying wF by 2 and dividing
the weights of the low- and high-edges of rF by 2. In order
to provide a canonical representation, we first introduce the
notion of normal tensors.

Definition 3 (normal tensor). Let φ be a tensor with index set
I = {x1, . . . , xn} and ≺ a linear order on I . We write

‖φ‖ := max
~a∈{0,1}I

|φ(~a)| (9)

for the maximum norm of φ. Let ~a∗ be the first element in
{0, 1}I (under the lexicographical order induced by ≺) which
has the maximal magnitude under φ, i.e.,

~a∗ = min{~a ∈ {0, 1}I : |φ(~a)| = ‖φ‖}. (10)

We call ~a∗ the pivot of φ. A tensor φ is called normal if either
φ = 0 or φ(~a∗) = 1.

It is easy to see that there are tensors φ with ‖φ‖ = 1 but
φ is not normal. The following lemma shows that any tensor
can be normalised in a unique way.

Lemma 2. For any tensor φ which is not normal, there exists
a unique normal tensor φ∗ such that φ = p · φ∗, where p is a
nonzero complex number.

The uniqueness of the normal tensor in the above lemma
suggests the following definition.

Definition 4. A TDD F is called normal if Φ(v) is a normal
tensor for every node v in F .

It is worth noting that as normal TDDs may still have
arbitrary weights, tensors represented by normal TDDs do not
have to be normal. Normal TDDs enjoy some nice properties
collected in the following two lemmas.

Lemma 3. Suppose F and G are two normal TDDs such that
Φ(F) = Φ(G). Then we have wF = wG and Φ(rF) = Φ(rG).

Proof. By Eq. 8, we have Φ(F) = wF · Φ(rF) and Φ(G) =
wG · Φ(rG). Because Φ(rF) and Φ(rG) are normal tensors
and Φ(F) = Φ(G), by Lemma 2, we know wF = wG and
Φ(rF) = Φ(rG).

For any non-normal TDD F , we can transform it into a
normal one by applying the following two rules.

Normalisation Rules.
NR1: If v is a terminal node with a nonzero value value(v) 6= 1,

then set its value to 1, and change the weight w of each
incoming edge of v to value(v) · w.

NR2: Suppose v is a non-terminal node such that Φ(v) 6= 0
is not normal but both Φ(low(v)) and Φ(high(v)) are
normal. Let w0 and w1 be the weights on the low- and
high edges of v respectively. If Φ(low(v)) 6= 0 and either
Φ(high(v)) = 0 or |w0| ≥ |w1|, we set w to be w0.
Otherwise, set it to be w1. Divide w0 and w1 by w and
multiply the weight of each incoming edge of v by w.

Let F be a non-normal TDD. We first apply NR1 to every
terminal node of F to make it normal. Furthermore, if a non-
terminal node v of F represents a non-normal tensor but both
its successors represent normal tensors. Then, it is easy to see
that after applying NR2 to v, this node itself represents a normal
tensor. This gives a procedure to transform F into a normal
TDD in a bottom-up manner. Furthermore, the transformation
can be done within time linear in the size of F .

Theorem 1. Applying a normalisation rule to a TDD does not
change the tensor it represents. Moreover, a TDD is normal if
and only if no normalisation rule is applicable.

6

(a)

(b)

(c)

Fig. 7. Normalisation of the TDD shown in Fig. 6, where nodes are normalised,
from bottom to top, by applying NR1 or NR2 step by step.

Proof. The first part of the theorem follows from Eq. 6, and
the second directly from the definitions.

Example 5. Applying NR1 to the two terminal nodes labeled
with i and −i in the TDD in Fig. 6, we have the TDD as shown
in Fig. 7 (a). Then, applying NR2 to the right two y3 nodes
gives the TDD in Fig. 7 (b). The normalised TDD, shown in
Fig. 7 (c), is obtained by applying NR2 to the right y0 node.

We have seen how to transform an existing TDD into a
normal one. In contrast, the following theorem provides a way
to construct a normal TDD directly from a given tensor.

Theorem 2. Let I = {x1, x2, ..., xn} be a set of indices and
≺ a linear order on it. For any tensor φ with index set I , there
exists a ≺-ordered normal TDD F such that Φ(F) = φ.

C. Reduction

As can been seen from Fig. 7, normal TDDs may still have
redundant nodes. For example, the first and the third y3 nodes
of the normal TDD in Fig. 7(c) have the same low- and high-
edges and thus represent the same tensor. This fact motivates
us to further introduce:

Definition 5. A TDD F is called reduced if it is normal and

1) no node represents the 0 tensor, i.e., Φ(v) 6= 0 for every
node v in F;

2) all edges weighted 0 point to the (unique) terminal 1;
and

3) no two different nodes represent the same tensor, i.e.,
Φ(u) 6= Φ(v) for any two nodes u 6= v in F .

The following lemma shows that every non-terminal node
of a reduced TDD F is labelled with an essential variable of
the tensor represented by F .

Lemma 4. Suppose F is a reduced TDD of a non-constant
tensor φ over index set I . Then every non-terminal node of F
is labelled with an index that is essential to φ.

The following definition of sub-TDDs is useful in our later
discussion. Recall that we assume x ≺ index(v) for all x ∈ I
and all terminal nodes v.

Definition 6. Let F be a reduced TDD over a ≺-linearly
ordered index set I . Let x ∈ I , and x � index(rF). We define
sub-TDDs Fx=0 and Fx=1 of F as follows.

1) If x ≺ index(rF), then Fx=0 = Fx=1 = F;
2) If x = index(rF), Fx=0 is defined as the TDD rooted

at low(rF) with weight wF · w(rF , low(rF)), i.e., the
weight of the low-edge of rF multiplied by the weight
of F . Analogously, we have Fx=1.

Corresponding to the Boolean-Shannon expansion for tensors
(cf. Eq. 5), we have

Lemma 5. Suppose F is a reduced TDD on I , x ∈ I and
x � index(rF). Then we have

Φ(F) = x · Φ(Fx=0) + x · Φ(Fx=1). (11)

Now we are ready to prove the canonicity of reduced TDDs.
Two TDDs F and G are said to be isomorphic, denoted F h G,
if they are equal up to renaming of the nodes; that is, there
exists a graph isomorphism between F and G which preserves
node indices, edge weights, and values on terminal nodes.
Furthermore, it maps low-edges to low-edges and high-edges
to high-edges.

Theorem 3 (canonicity). Let I be an index set and ≺ a linear
order on I . Suppose F and G are two ≺-ordered, reduced
TDDs over I with Φ(F) = Φ(G). Then F h G.

A reduced TDD can be obtained by applying the following
reduction rules on any normal TDD in a bottom-up manner.

Reduction rules.
RR1: Merge all terminal 1 nodes. Delete all terminal 0 ones, if

exist, and redirect their incoming edges to the (unique)
terminal and reset their weights to 0.

7

(a) (b)

Fig. 8. Reduction of the normalised TDD shown in Fig. 7(c), where nodes
that represent the same tensor (the first and the third y3 nodes, the second
and the fourth y3 nodes) in (a) are merged.

RR2: Redirect all weight-0 edges to the terminal. If these include
the incoming edge of the root node, then the terminal
becomes the new root. Delete all nodes (as well as all
edges involving them) which are not reachable from the
root node.

RR3: Delete a node v if its 0- and 1-successors are identical and
its low- and high-edges have the same weight w (either 0
or 1). Meanwhile, redirect its incoming edges to terminal
1 if w = 0 and, if otherwise, to its successor.

RR4: Merge two nodes if they have the same index, the
same 0- and 1-successors, and the same weights on the
corresponding edges.

Theorem 4. A normal TDD is reduced if and only if no
reduction rule is applicable.

The following theorem guarantees that the reduced TDD of
a tensor can be obtained by applying the reduction rules.

Theorem 5. Let F be a normal TDD representing tensor φ.
Applying a reduction rule to F does not change the tensor it
represents. Moreover, the reduced TDD of φ can be obtained
from F by applying the reduction rules till no one is applicable.

Proof. It is routine to show that applying any reduction rule
to a normal TDD does not change the tensor it represents.
Suppose F is a normal TDD that is not reduced. Applying
the reduction rules in a bottom-up manner until no rule is
applicable, by Theorem 4, we obtain a reduced TDD that
also represents φ = Φ(F). As reduced TDDs are unique (see
Theorem 3), this gives the reduced TDD of φ.

As each application of a reduction rule removes some nodes,
the reduced TDD has the minimal number of nodes.

Corollary 1. Let F be a normal TDD of a tensor φ. Then F
is reduced if and only if size(F) ≤ size(G) for all normal
TDDs of φ.

Example 6. Consider the normalised TDD shown in Fig. 7(c).
Applying RR1 to merge all terminal 1 nodes and delete all
terminal 0 nodes gives the TDD shown in Fig. 8 (a). Then,
further applying RR4 to merge the first and the third as well as
the second and the fourth y3 nodes, we have the reduced TDD
as shown in Fig. 8 (b), which provides a compact representation
for the circuit in Fig. 4.

Remark 1. As Boolean functions are special tensors, each
Boolean function also has a unique reduced TDD representa-
tion, which can be obtained by performing the reduction rule
RR1 on its ROBDD representation if we assign weight 1 to
each ROBDD edge.

V. ALGORITHMS

This section is devoted to algorithms for constructing the
corresponding reduced TDD from a given tensor and key
operations such as addition and contraction of TDDs. All
of these algorithms are implemented in a recursive manner.
Every time a new node is generated, we apply normalisation
and reduction rules locally to this node, implemented by
calling the reduce procedure. In this way, it can be guaranteed
that the TDDs obtained are all reduced. It is also worth
noting that motivated by [6], to avoid redundancy, in our real
implementation (not shown in the algorithms) all the nodes
are stored in a hash table. Whenever a new node is about to
be generated, we first check if such a node (with the same
index, successors and weights on the corresponding edges)
already exists in the table. If yes, the node is returned directly;
otherwise, a new one is created and added into the hash table.

A. Generation

Algorithm 1 shows the process of generating the reduced
TDD of a tensor. The time complexity of the construction is
linear in |V |, the number of nodes in the constructed TDD.

Algorithm 1 TDD_generate(φ)

Input: A tensor φ over a linearly ordered index set I .
Output: The reduced TDD of φ.
1: if φ ≡ c is a constant then
2: return the trivial TDD with weight c
3: end if
4: x← the smallest index of φ
5: tdd← an empty TDD
6: tdd.root← a new node v with index x
7: v.low ← TDD_generate(φ|x=0)
8: v.high← TDD_generate(φ|x=1)
9: tdd.weight← 1

10: return reduce(tdd)

We emphasise that, if an index is repeated in the tensor, for
example φxxy , then the two successors of the node representing
φxxy will be φ00y and φ11y . In other words, we construct the
TDD as if it is the tensor φxy. When tensor operations are
concerned, however, both x indices will be involved.

Example 7. Consider the CX gate shown in Fig. 5, which
is represented by a tensor φx0x0y1y2

. The reduced TDD of
φx0x0y1y2

is shown in Fig.9 (b), where the index x0 only
appears once with the two successors representing the tensor
φ00y1y2 and φ11y1y2 .

B. Addition

Let F and G be two reduced TDDs over index set I . The
summation of F and G, denoted F + G, is a reduced TDD

8

(a) (b)

Fig. 9. Two TDDs of the CX gate with indices x0, y1, y2: (a) the general
form before normalisation and reduction; (b) the reduced TDD, where nodes
are normalised and those represent the same tensor are merged.

with the corresponding tensor Φ(F) + Φ(G). For any x ∈ I
with x � index(rF) and x � index(rG), by the TDD version
of the Boole-Shannon expansion (cf. Eq. 11), we have

Φ(F) + Φ(G) = x · (Φ(Fx=0) + Φ(Gx=0))

+ x · (Φ(Fx=1) + Φ(Gx=1)).

Recall here Fx=c (resp. Gx=c) is the sub-TDD as defined in
Definition 6 for c ∈ {0, 1}.

Motivated by this observation, Algorithm 2 implements
the Add operation for TDDs, in a node-wise manner. The
time complexity is O(|F| · |G|), where |F| and |G| denote the
numbers of nodes in the two TDDs respectively.

Algorithm 2 Add(F ,G)

Input: Two reduced TDDs F and G.
Output: The reduced TDD of Φ(F) + Φ(G).
1: if rF = rG then
2: tdd← F
3: tdd.weight← wF + wG
4: return tdd
5: end if
6: x← the smaller index of rF and rG
7: tdd← an empty TDD
8: tdd.root← a new node v with index x
9: v.low ← Add(Fx=0,Gx=0)

10: v.high← Add(Fx=1,Gx=1)
11: tdd.weight← 1
12: return reduce(tdd)

C. Contraction
Contraction is the most fundamental operation in a tensor

network. Many design automation tasks of quantum circuits
are based on contraction. In this subsection, we consider how
to efficiently implement the contraction operation via TDD.

Let F and G be two reduced TDDs over I , and var a
subset of I denoting the variables to be contracted. Write cont
for both tensor and TDD contractions. For any x ∈ I with
x � index(rF) and x � index(rG), we have by definition
Eq. 2 that if x ∈ var, then cont (Φ(F),Φ(G), var) equals

1∑
c=0

cont(Φ(Fx=c),Φ(Gx=c), var\{x});

otherwise, it equals

x · cont(Φ(Fx=0),Φ(Gx=0), var)

+ x · cont(Φ(Fx=1),Φ(Gx=1), var).

Algorithm 3 gives the detailed procedure for TDD contrac-
tion. The time complexity is O(|F|2 · |G|2), while |F| and |G|
denote the numbers of nodes in F and G, respectively.

To conclude this section, we would like to point out that the
tensor product of two TDDs F and G with disjoint essential
indices can be regarded as a special case of contraction. In
particular, we have

Φ(F ⊗ G) = cont(Φ(F),Φ(G), ∅),

and the time complexity of using Algorithm 3 to compute
F ⊗ G becomes |F| · |G|.

A special case which arises often in applications is when,
say, every index in F precedes any index in G under the order
≺. For this case, to compute the tensor product of F and
G, all we need to do is to replace the terminal node of F
with the root node of G, multiply the weight of the resulting
TDD with the weight of G, and perform normalisation and
reduction if necessary. Since we do not need to touch G, the
time complexity is simply O(|F|).

Algorithm 3 cont(F ,G, var)
Input: Two reduced TDDs F and G, and the set var of

variables to be contracted.
Output: The reduced TDD obtained by contracting F and
G over var.

1: if both F and G are trivial then
2: tdd← F
3: tdd.weight← wF · wG · 2len(var)
4: return tdd
5: end if
6: x← the smaller index of rF and rG
7: L← cont(Fx=0,Gx=0, var\{x})
8: R← cont(Fx=1,Gx=1, var\{x})
9: if x ∈ var then

10: return Add(L,R)
11: else
12: tdd← an empty TDD
13: tdd.root← a new node v with index x
14: v.low ← L
15: v.high← R
16: tdd.weight← 1
17: return reduce(tdd)
18: end if

VI. TWO PARTITION SCHEMES

The TDD representation of a quantum circuit can be
calculated flexibly. In particular, there is no need to expand
a quantum gate to an n-qubit form (by tensoring an identity
matrix). In general, the TDD representation of a quantum
circuit can be obtained by contracting the TDDs of individual
gates in the circuit in any order.

9

Fig. 10. Partition Scheme I, where only one CX cut is allowed each time.

In this paper, we assume that all gates in our circuits
are either single-qubit gates or CX gates. For simplicity of
presentation, we use the original qubit order (or its inverse).
Following this order, we scan the circuit qubit by qubit, and
then rank the indices following the circuit order. That is, given
two indices x and x′ appearing in the circuit, suppose qi and
qj are the qubits that x and x′ are on. Then we set x ≺ x′ if
either i < j, or i = j and x is to the left of x′ on the qubit
wire qi. For example, the selected order for the circuit shown
in Fig. 10 is

(x0, x0,1, x0,2, y0, x1, x1,1, x1,2, y1, x2, ..., y2, x3, ..., y3).

Our approach of computing the TDD of a quantum circuit
includes two steps. First, we partition the circuit into several
parts; second, we calculate the TDD of each part separately
and then combine them together through contraction.

While finding the optimal partition scheme is attractive, it
is also a very challenging task. We observe that some simple
strategies are already able to reduce the resource consumption
significantly during the computation process. In the following,
we introduce two straightforward partition schemes.

The first partition scheme divides the circuit horizontally
into two parts from the middle (so that the upper and lower
parts have roughly the same number of qubits) and then cuts it
vertically such that in each part no more than k (a predefined
parameter) CX gates are separated by the horizontal cut, where
k is chosen to ensure that the rank of each block of the final
circuit is smaller than 2n, the rank of the tensor of the original
circuit. In our experiments, we set k = bn/2c.

Example 8. Consider the circuit shown in Fig. 10 and set
k = 1, i.e., we allow only one CX cut at a time. The circuit
is divided into four parts as shown by the dotted lines. In
the contraction process, we first calculate the TDDs of the
four parts separately. Then, contracting the left (right, resp.)
two TDDs gives the TDD of the left (right, resp.) half of the
circuit. Finally, we contract these two TDDs and obtain the
TDD of the whole circuit. If we set k = 2, then no vertical cut
is required and the circuit is partitioned into two parts: the
top half and the bottom half. The same TDD can be obtained
by contracting the TDDs of the top and the bottom halves.

Note that the more CX gates separated by the horizontal
cut, the more vertical partitions we need to introduce, and the
more tensors with large (near 2n) rank we need to contract.

Fig. 11. Partition Scheme II, where only one CX cut is allowed each time
and part C involves up to 2 qubits.

Our second partition scheme intends to alleviate this issue by
enveloping those separated CX gates if they are closely located
in the circuit. First, we horizontally divide the circuit from
the middle as in the first scheme. Whenever k1 (a predefined
parameter) CX gates have been separated by the horizontal
cut, we introduce a third small block that wraps a small part
of the circuit such that it contains several CX gates that are
separated by the horizontal cut and has no interactions (i.e.,
shares no CX) with qubits not occupied by that gates in this
block. Whenever the third block occupies k2 (a predefined
parameter) qubits, we introduce a new vertical cut. The second
scheme is a generalisation of the scheme used in [17] for
classical simulation, where no vertical partition is introduced.
In our experiments, we set k1 and k2 as bn/2c and bn/2c+ 1,
respectively.

Example 9. Consider the circuit given in Fig. 10 again.
Suppose we allow one CX cut every time, and limit the number
of qubits in part C to two. Then the circuit can be partitioned
into five parts as illustrated in Fig. 11. We then compute and
contract the TDDs in the order of A, B, C for every block
split by the vertical lines. The TDD of the whole circuit is then
obtained by contracting the TDDs of these blocks in sequence.

Now we make a simple comparison of the above contraction
methods. Suppose we compute the TDD (or QMDD) repre-
sentation of the circuit in Fig. 10 in the original circuit order.
We need in essence to calculate eight (8, 2, 1)-contractions,
five (8, 4, 2)-contractions, one (6, 2, 0)-contraction, and two
contractions between tensors with rank ≤ 4, where an (m,n, r)-
contraction is a contraction between a rank m tensor and a
rank n tensor over r common indices. In comparison, Partition
Scheme I requires one (8, 8, 4)-contraction, two (5, 5, 1)-
contractions, five (5, 2, 1)-contractions, and nine contractions
between tensors with rank ≤ 4; while Partition Scheme II
requires one (8, 8, 4)-contraction, one (8, 4, 2)-contraction, one
(5, 5, 1)-contraction, and 14 contractions between tensors with
rank ≤ 4. As the time and space consumption both grow
exponentially with the ranks of the tensors [13], this illustrates
the efficiency of the two partition schemes.

VII. IMPLEMENTATION AND EVALUATION

To demonstrate the effectiveness of TDD as an efficient data
structure for the representation and manipulation of quantum
functionalities, we developed the TDD package in Python3, im-

10

plemented the two partition schemes, and empirically compared
them with three state-of-the-art approaches in the literature.

A. Benchmarks

Most benchmarks we used were published by IBM as part
of the 2018 QISKit Developer Challenge1, which2 have been
wildly used in evaluating qubit mapping algorithms (see, e.g.,
[28]). To compare the scalability of different methods, we also
tested three commonly used quantum algorithms, including
Bernstein-Vazirani (bv) [3], Quantum Fourier Transform (qft)
[22], as well as Quantum Volume (qv) [21]. The numbers of
qubits and gates in these benchmarks range from 2 to 100 and
5 to 10,223, respectively.

B. TDD Implementation

We implemented TDD using Python3. In our calculation
process, calculated results are stored in a computed table as in
the implementation of ROBDD [6]. In order to improve the
reusability of the calculated results in the computed table, we
map all indices of a TDD to {0, 1, · · · ,m− 1}, where m is
the number of different indices of the tensor associated to the
TDD, such that TDDs differ only by a renaming of indices
will be treated as the same. Our source code is available at
Github.3

In our experiments, for the first partition scheme, we set
the parameter k as bn/2c, where n is the number of qubits in
the input circuit. Similarly, for the second partition scheme,
we set the two parameters k1 and k2 as bn/2c and bn/2c+ 1,
respectively. All experiments were executed on a laptop with
Intel i7-1065G7 CPU and 8 GB RAM.

C. Empirical results

We compared our results with three state-of-the-art ap-
proaches for computing quantum functionalities — Qiskit
(https://qiskit.org), the Google TensorNetwork package [25],
and QMDD [23]. The first two approaches are matrix-based,
while QMDD is decision diagram-based. For Qiskit, we call
the unitary_simulator for calculating the unitary matrix of every
circuit, and for TensorNetwork, a tensor network is constructed
for every circuit and the auto contractor will be used for
completing the task. For QMDD, we compute the functionality
of an input circuit in a way similar to TDD with no partition,
i.e., we construct the QMDD of each quantum gate and then
multiply them in the circuit order. The QMDD package we
used is the version obtained from http://www.informatik.uni-
bremen.de/agra/eng/qmdd.php.

We summarise our experimental results on the benchmark
circuits from [28] in Table I. More and detailed results can
be found in Table II of the Appendix. The performance of
Qiskit is very similar but inferior to TensorNetwork. Except
the 15 qubit circuit ‘rd84_142’, Qiskit can finish in 116.7s all
circuits which TensorNetwork does not run out of memory.

1https://www.ibm.com/blogs/research/2018/08/winners-qiskit-developer-
challenge/

2Available from http://iic.jku.at/eda/research/ibm_qx_mapping/
3https://github.com/VeriQC/TDD

TABLE I
DATA SUMMARY FOR BENCHMARK CIRCUITS TAKEN FROM [28], WHERE
TIME (-MO) DENOTES THE TOTAL TIME OF ALL CIRCUITS ON WHICH TN

(THE GOOGLE TENSORNETWORK) IS NOT MEMORY OUT.

QMDD TDD TNNo part. Part. I Part. II
Time (-MO) 30.66 259.38 117.51 88.45 115.15

Time 31.23 263.67 119.56 90.53 -
node num. (final∗) 6413 13888 13888 13888 -
node num. (max∗) 15758 36194 17769 17325 -
ratio (max/final∗) 2.46 2.61 1.28 1.25 -

For ‘rd84_142’, Qiskit runs out of memory but TensorNetwork
finishes in 49.3s. In the following, we omit the results of Qiskit
from the table.

1) Compare with matrix-based methods: As mentioned
before, matrix-based methods, like Qiskit and TensorNetwork,
represent an n-qubit circuit by a 2n×2n matrix. Assume that all
data in such a matrix is represented in data type complex128.
Then 64GB of memory must be allocated for the matrix of a
16-qubit circuit. This implies in particular that in our laptop
(with 8GB RAM) these methods can process quantum circuits
with at most 15 qubits. This observation is confirmed by our
experiments. In comparison, the DD-based methods are often
much more compact. Indeed, for the qft circuits and on our
laptop, both QMDD and TDD can easily process quantum
circuits with up to 21 qubits. For example, both DDs can
generate the functionality of the circuit ‘qft_21’ by using less
than 128 MB memory. For the bv circuits, this characteristic
of DDs is even striking, as both DDs can easily process bv
circuits with as many as 100 qubits in a few seconds!

On the other hand, when the number of qubits is small
(≤ 10), TensorNeteork usually works faster than DD-based
methods. This is perhaps due to that the time-consumption for
transforming matrices to decision diagrams is not negligible.
Surprisingly, while it takes only 0.08s for TensorNetwork to
compute the tensor of the circuit ‘qv_n9_d5’ (with 9 qubits),
both QMDD and TDD time out. It turns out that the TDD
representation has 262,144 nodes, while in comparison the
TDD of ‘qft_17’ has 262,143 nodes. This suggests that some
quantum circuits can be better processed by TensorNetwork
than DD-based methods and there are quantum circuits which
may have no compact DD representations.

2) Compare with QMDD: Recall that every non-terminal
node in a TDD has two successors while any non-terminal
node in a QMDD has four. In principle, the TDD representation
of a quantum circuit has about twice the number of nodes as
the circuit’s QMDD, provided that the same order is used. If
this is the case, the memory usage of the TDD representation
is roughly the same as that of the QMDD representation. This
is because they have the same number of weighted edges and
store the same number of weights (complex numbers). This
observation is consistent with our experimental results. As a
consequence, the TDD representation is as compact as QMDD.

As far as runtime efficiency is concerned, on the benchmarks
from [28], the runtime of the three TDD schemes are, respec-
tively, 2.9, 3.8, 8.4 times of that of QMDD; but, if including
all the bv, qv, and qft circuits we have tested, the runtime of

http://www.informatik.uni-bremen.de/agra/eng/qmdd.php
http://www.informatik.uni-bremen.de/agra/eng/qmdd.php
http://iic.jku.at/eda/research/ibm_qx_mapping/

11

Fig. 12. The logarithmic time consumption for constructing the functionality
of qft circuits as the number of qubits increases, where timeout is set as 3600s.

QMDD is about 1.3, 3.1, 3.5 times of that of the three TDD
schemes. Considering that the TDD package is implemented
in Python and QMDD is implemented in C++, this suggests
that TDD is at least comparable with QMDD. Moreover, there
are quantum circuits in which the TDD package outperforms
QMDD. As can been observed from Fig. 12, for qft circuits with
17 or more qubits, the no-partition scheme of TDD is already
faster than QMDD. Even better, TDD with either partition
scheme can process the qft-22 circuit with around 1500s while
QMDD times out.

3) Compare among TDD schemes: In general, the two par-
tition schemes can significantly decrease the time-consumption
for constructing the functionality of a quantum circuit. From
Table I we can see that both partition schemes can decrease
the time-consumption by at least 50% when compared with
the no-partition scheme. This judgement is also confirmed by
experiments on bv, qft, and qv circuits (cf. Table II of the
appendix).

Table I also suggests that the TDD construction with either
partition scheme often has smaller intermediate diagrams than
QMDD and the no-partition TDD. Let

α =
maximum size of all DDs during the computing process

the size of the final DD
.

Table I shows that the α values of QMDD and the three TDD
schemes are, respectively, 2.46, 2.61, 1.28 and 1.25. That is,
the ratio could be halved if either partition scheme is adopted.

D. Summary and Discussion

From the above empirical results we can see that
• TDD is compact and memory-saving and can be used for

calculating the functionality of large circuits.
• TDD is flexible and can be easily combined with tensor

network techniques (e.g., partition) to further improve its
performance.

Besides representing the functionality of quantum circuits,
TDD can also be used in the classical simulation of quantum
circuits. Experimental results show that the performance of
TDD is similar to that of QMDD reported in [29]. For example,
we can obtain all amplitudes of ‘qft_k’ circuits within 3 seconds
for k ≤ 64. We also conducted experiments on the simulation

of random quantum circuits. The performance is also similar
to that of QMDD.

In addition, TDD can also be used to calculate the trace of a
quantum circuit, which plays a central role in calculating fidelity
and hence checking if two quantum circuits are approximately
equivalent [15]. As trace calculation is a more tensor network
fit task, TDD could be more convenient for such a task.

As a direct extension of BDD from Boolean functions
to tensors, TDDs can also represent classical gates. More
important, we can also represent the measurements and
classically controlled gates as TDDs, which makes it suitable
for coping with tasks such as equivalence checking of dynamic
quantum circuits [14].

VIII. CONCLUSION

We proposed a decision diagram style data structure —
TDD — for more principled applications of tensor networks.
Based on a Boole-Shannon style expansion for tensors, it is
rigorously proved that TDD provides a universal and canonical
representation for quantum functionalities. As a decision
diagram, TDD is also compact as redundant or isomorphic
nodes have been completely removed or merged. Experiments
on a variety of benchmark circuits include qft confirm that TDD
is compact, demonstrate its efficiency, and show that it often
outperforms the Google TensorNetwork package for circuits
with 15 or more qubits. Moreover, thanks to its origin from
tensor networks, many techniques developed or to be developed
for tensor networks can be directly imported into TDD. As an
example, we have shown that the TDD of a quantum circuit can
be computed more efficiently by exploiting circuit partitions
that were previously introduced for the classical simulation of
quantum circuits.

It is expected that TDD can be used, possibly together with
the Google TensorNetwork, in many design automation tasks,
e.g., simulation and equivalence checking, for quantum circuits.
In particular, we plan to combine TDD with TensorNetwork
in our partition-based schemes. When the rank of the tensor is
small, TensorNetwork runs faster than both decision diagrams;
however, its performance decrease sharply when the number of
qubits increases. Thus, we can use TensorNetwok to compute
the (local) functionalities of each part, transform them into
TDDs, and then contract these local TDDs to obtain the TDD
representation of the quantum circuit.

The current TDD package is far from being optimal. Future
work will implement TDD in C++ and try to exploit more
optimisation techniques developed in tensor networks, e.g., tree
decomposition [18].

In this paper, we assume that all indices of a tensor can only
take values from {0, 1}. This restriction can be removed by
allowing a node in a TDD to have any number of successors.
Moreover, different nodes can even have different numbers
of successors. What we should ensure is that all nodes
corresponding to the same index have the same number of
successors, and the contraction should be conducted on all
its successors when this index is contracted. In our follow-up
work, we plan to construct such a generalised package and
make it suitable for more tensor network tasks.

12

REFERENCES

[1] ARUTE, F., ARYA, K., BABBUSH, R., BACON, D., BARDIN, J. C.,
BARENDS, R., BISWAS, R., BOIXO, S., BRANDAO, F. G., BUELL, D. A.,
ET AL. Quantum supremacy using a programmable superconducting
processor. Nature 574, 7779 (2019), 505–510.

[2] BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACII,
E., PARDO, A., AND SOMENZI, F. Algebric decision diagrams and their
applications. Formal methods in system design 10, 2-3 (1997), 171–206.

[3] BERNSTEIN, E., AND VAZIRANI, U. Quantum complexity theory. SIAM
Journal on Computing 26, 5 (1997), 1411–1473.

[4] BIAMONTE, J. Lectures on quantum tensor networks. arXiv preprint
arXiv:1912.10049 (2019).

[5] BOIXO, S., ISAKOV, S. V., SMELYANSKIY, V. N., AND NEVEN, H.
Simulation of low-depth quantum circuits as complex undirected graphical
models. arXiv preprint arXiv:1712.05384 (2017).

[6] BRACE, K. S., RUDELL, R. L., AND BRYANT, R. E. Efficient
implementation of a bdd package. In 27th ACM/IEEE design automation
conference (1990), IEEE, pp. 40–45.

[7] BRYANT, R. E. Graph-based algorithms for boolean function manipula-
tion. Computers, IEEE Transactions on 100, 8 (1986), 677–691.

[8] BRYANT, Y.-A. C. R. E. Verification of arithmetic circuits with binary
moment diagrams. In 32nd Design Automation Conference (1995), IEEE,
pp. 535–541.

[9] BURGHOLZER, L., AND WILLE, R. Advanced equivalence checking
for quantum circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2020).

[10] BURGHOLZER, L., AND WILLE, R. Improved dd-based equivalence
checking of quantum circuits. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC) (2020), IEEE, pp. 127–132.

[11] CHEN, J., ZHANG, F., HUANG, C., NEWMAN, M., AND SHI, Y.
Classical simulation of intermediate-size quantum circuits. arXiv preprint
arXiv:1805.01450 (2018).

[12] CHEN, Z.-Y., ZHOU, Q., XUE, C., YANG, X., GUO, G.-C., AND GUO,
G.-P. 64-qubit quantum circuit simulation. Science Bulletin 63, 15
(2018), 964–971.

[13] GRAY, J., AND KOURTIS, S. Hyper-optimized tensor network contraction.
arXiv preprint arXiv:2002.01935 (2020).

[14] HONG, X., FENG, Y., LI, S., AND YING, M. Equivalence checking of
dynamic quantum circuits. arXiv preprint arXiv:2106.01658 (2021).

[15] HONG, X., YING, M., FENG, Y., ZHOU, X., AND LI, S. Approxi-
mate equivalence checking of noisy quantum circuits. arXiv preprint
arXiv:2103.11595 (Accepted by DAC) (2021).

[16] HUANG, C., ZHANG, F., NEWMAN, M., CAI, J., GAO, X., TIAN, Z.,
WU, J., XU, H., YU, H., YUAN, B., ET AL. Classical simulation of
quantum supremacy circuits. arXiv preprint arXiv:2005.06787 (2020).

[17] LI, R., WU, B., YING, M., SUN, X., AND YANG, G. Quantum supremacy
circuit simulation on sunway taihulight. IEEE Transactions on Parallel
and Distributed Systems 31, 4 (2019), 805–816.

[18] MARKOV, I. L., AND SHI, Y. Simulating quantum computation by
contracting tensor networks. SIAM Journal on Computing 38, 3 (2008),
963–981.

[19] MILLER, D. M., AND THORNTON, M. A. Qmdd: A decision diagram
structure for reversible and quantum circuits. In 36th International
Symposium on Multiple-Valued Logic (ISMVL’06) (2006), IEEE, pp. 30–
30.

[20] MOLITOR, P., AND MOHNKE, J. Equivalence checking of digital circuits:
fundamentals, principles, methods. Springer Science & Business Media,
2007.

[21] MOLL, N., ET AL. Quantum optimization using variational algorithms
on near-term quantum devices. Quantum Science and Technology 3, 3
(2018), 030503.

[22] NIELSEN, M. A., AND CHUANG, I. Quantum computation and quantum
information, 2002.

[23] NIEMANN, P., WILLE, R., MILLER, D. M., THORNTON, M. A., AND
DRECHSLER, R. Qmdds: Efficient quantum function representation
and manipulation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35, 1 (2015), 86–99.

[24] PEDNAULT, E., GUNNELS, J. A., NANNICINI, G., HORESH, L., MAGER-
LEIN, T., SOLOMONIK, E., DRAEGER, E. W., HOLLAND, E. T., AND
WISNIEFF, R. Breaking the 49-qubit barrier in the simulation of quantum
circuits. arXiv preprint arXiv:1710.05867 (2017).

[25] ROBERTS, C., MILSTED, A., GANAHL, M., ZALCMAN, A., FONTAINE,
B., ZOU, Y., HIDARY, J., VIDAL, G., AND LEICHENAUER, S. Tensor-
network: A library for physics and machine learning. arXiv preprint
arXiv:1905.01330 (2019).

[26] VIAMONTES, G. F., MARKOV, I. L., AND HAYES, J. P. Improving gate-
level simulation of quantum circuits. Quantum Information Processing
2, 5 (2003), 347–380.

[27] WILLE, R., HILLMICH, S., AND BURGHOLZER, L. Efficient and correct
compilation of quantum circuits. In IEEE International Symposium on
Circuits and Systems (2020).

[28] ZULEHNER, A., PALER, A., AND WILLE, R. An efficient methodology
for mapping quantum circuits to the ibm qx architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 7 (2018), 1226–1236.

[29] ZULEHNER, A., AND WILLE, R. Advanced simulation of quantum
computations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 38, 5 (2018), 848–859.

APPENDIX
PROOFS AND EMPIRICAL RESULTS

Detailed Proofs

Lemma 6 (Lemma 2). For any tensor φ which is not normal,
there exists a unique normal tensor φ∗ such that φ = p · φ∗,
where p is a nonzero complex number.

Proof. Since φ is not normal, we have φ 6= 0. Let p = φ(~a∗)
where ~a∗ is the pivot of φ. Then φ∗ := 1

p ·φ is a normal tensor
which satisfies the condition. Furthermore, suppose there is
another normal tensor φ′ such that φ = p′ ·φ′ for some complex
number p′. Then we have φ = p · φ∗ = p′ · φ′. Obviously, we
have |p| = |p′| and, by definition, φ∗ and φ′ also share the same
pivot ~a∗ with φ. It then follows that φ∗(~a∗) = φ′(~a∗) = 1.
Thus p = p′, and φ∗ = φ′.

Lemma 7. Every terminal node of a normal TDD F has
value 0 or 1. Moreover, let v be a non-terminal node of F
with Φ(v) 6= 0, and w0 and w1 the weights on its low- and
high-edge. Then we have either w0 = 1 or w1 = 1.

Proof. The terminal case is clear by definition. Suppose the
index set of F is {x1, . . . , xn} and x1 ≺ . . . ≺ xn. For a non-
terminal node v, let φ, φl, and φh denote Φ(v),Φ(low(v)),
and Φ(high(v)), respectively. Then φ = w0 ·xi ·φl+w1 ·xi ·φh
by Eq. 6, where xi = index(v). Note that φ is a tensor over
{xi, . . . , xn} and both φl and φh can be regarded as tensors
over {xi+1, . . . , xn}.

Let ~a∗ be the pivot of φ. Suppose ~a∗ = 0~b∗ for some
~b∗ ∈ {0, 1}n−i; that is, ~a∗ takes value 0 at index xi. Then by
1 = φ(~a∗) = w0 · φl(~b∗), we have |w0| ≥ 1 from the fact that
φl is normal. On the other hand, let ~c be the pivot of φl. Then
from φ(0~c) = w0 · φl(~c) = w0 and the fact that φ is normal,
we have |w0| ≤ 1. Thus |w0| = 1 and |φl(~b∗)| = 1. Now for
any ~b ∈ {0, 1}n−i which is less than ~b∗ in the lexicographic
order, we have |φl(~b)| = |φ(0~b)| < |φ(~a∗)| = 1, as 0~b is less
than 0~b∗ = ~a∗. Thus by definition, ~b∗ is actually the pivot of
φl. So φl(~b∗) = 1 and hence w0 = 1.

The case when ~a∗ takes value 1 at index xi is analogous.

Theorem 6 (Theorem 2). Let I = {x1, x2, ..., xn} be a set
of indices and ≺ a linear order on it. For any tensor φ with
index set I , there exists a ≺-ordered normal TDD F such that
Φ(F) = φ.

Proof. We prove the result by induction on the cardinality of I .
If |I| = 0, the tensor is a constant and the conclusion clearly
holds after possible application of NR1. Suppose the statement

13

holds for tensors with up to n indices. We show it is also
true for tensors with n + 1 indices. Let I = {x1, ..., xn+1}
be the index set and, without loss of generalisation, assume
x1 ≺ x2 ≺ ... ≺ xn+1. Given an arbitrary tensor φ over I , by
the Boole-Shannon expansion, we know

φ = x1 · φ0 + x1 · φ1,

where φc := φ|x1=c for c ∈ {0, 1}. Since φc is a tensor over n
indices, by induction hypothesis, there is a ≺′-ordered normal
TDD Fc such that φc = Φ(Fc), where ≺′ is the restriction of
≺ on I \ {x1}. Let rc be the root node and wc := wFc the
weight of Fc. Then we have φc = Φ(Fc) = wc · Φ(rc). Next,
we introduce a new root node v with weight 1 on its incoming
edge. Set low(v) and high(v) to be r0 and r1 respectively.
Furthermore, set the weights on the low- and high-edges of v
to be w0 and w1, respectively. The constructed TDD, denoted
by F , is ≺-ordered and, after applying the normalisation rule
NR2 on v, normal. By Eq. 6, we have Φ(F) = φ.

Lemma 8 (Lemma 4). Suppose F is a reduced TDD of a non-
constant tensor φ over index set I . Then every non-terminal
node of F is labelled with an index that is essential to φ.

Proof. Suppose v is a non-terminal node of F which is labelled
with a non-essential index x. Let φ′ = Φ(v). Then φ′|x=0 =
φ′|x=1. From Eq. 7, φ′|x=0 = w0 · Φ(low(v)) and φ′|x=1 =
w1 · Φ(high(v)), where w0 and w1 are the weights on the
low- and high-edges of v, respectively. It follows by Lemma 2
that Φ(low(v)) = Φ(high(v)) and w0 = w1 since they are
both normal. Note that low(v)) and high(v) may be identical.
From Lemma 7, we have w0 = w1 = 1 and thus Φ(v) =
x ·Φ(low(v)) + x ·Φ(high(v)) = Φ(low(v)). This shows that
we have two nodes, viz. v and low(v), representing the same
tensor, which contradicts the assumption that F is reduced.

Theorem 7 (canonicity, Theorem 3). Let I be an index set and
≺ a linear order on I . Suppose F and G are two ≺-ordered,
reduced TDDs over I with Φ(F) = Φ(G). Then F h G.

Proof. We prove this by induction on the cardinality of I .
First, reduced TDDs of any constant tensor are clearly unique.
In particular, from 1) and 2) of Definition 5, the 0 tensor is
represented by the reduced TDD with weight 0 which has a
unique node, viz. terminal 1.

Suppose the statement holds for any tensor with at most n
indices. We prove it also holds for tensors with n+ 1 indices.
From Φ(F) = Φ(G), we have by Lemma 3 that Φ(rF) =
Φ(rG) and wF = wG . In addition, by Lemma 4, rF and rG
are labeled with essential indices. They must be the same as,
otherwise, the smaller one in the order ≺ is not essential for
either F or G. Let x be this variable. By Lemma 5, we have

Φ(F) = x · Φ(F|x=0) + x · Φ(F|x=1)

Φ(G) = x · Φ(G|x=0) + x · Φ(G|x=1).

Since Φ(F) = Φ(G), it holds that Φ(F|x=c) = Φ(G|x=c) for
c ∈ {0, 1}. By the induction hypothesis, we have Fc h Gc.
This, together with the fact that index(rF) = index(rG),
implies that F h G.

Theorem 8 (Theorem 4). A normal TDD is reduced if and
only if no reduction rule is applicable.

Proof. Clearly, a normal TDD F is not reduced if at least one
reduction rule is applicable as, otherwise, we shall have either
a node representing tensor 0 or two nodes representing the
same tensor.

On the other hand, suppose no reduction rule is applicable to
F . We show by induction on the depth of F that F is reduced.
First, from the fact that RR1 and RR2 are not applicable, F
must have a unique terminal node with value 1, and all edges
weighted 0 have been redirected to it.

Assume there exist non-terminal nodes which represent
tensor 0 and v is such a node with the ≺-largest label.
By our assumption and that label(v) ≺ label(low(v)) and
label(v) ≺ label(high(v)), we have Φ(low(v)) 6= 0 and
Φ(high(v)) 6= 0. Now, as Φ(v) = 0, the weights on the
low- and high-edges of v must both be 0, which however
activates either RR2 or RR3 and thus a contradiction with our
assumption.

Suppose there are two non-terminal nodes v and v′ with
Φ(v) = Φ(v′). Let Fv and Fv′ be the sub-TDDs of F
rooted at v and v′ respectively (but set their weights to be
1). Note that no reduction rule is applicable to either Fv

or Fv′ , since otherwise it is also applicable to F . Then by
induction hypothesis, they are both reduced. Furthermore, we
have Φ(Fv) = Φ(v) = Φ(v′) =Φ(Fv′), and from Theorem 3,
Fv h Fv′ . Then index(v) = index(v′) and w0 = w′0,
where w0 and w′0 are the weights on the low-edges of v
and v′, respectively. Furthermore, it follows from Eq. 6 that
Φ(low(v)) = Φ(low(v′)). By induction hypothesis, we have
low(v) = low(v′). Similarly, we can prove that high(v) =
high(v′) as well. That is, RR4 is applicable to v and v′ and
thus also a contradiction with our assumption.

In summary, we have shown that F is reduced.

Empirical Results

14

TABLE II
EXPERIMENT DATA

Benchmarks QMDD TDD No Part. TDD Part. I TDD Part. II TN

Name Qubit
num

Gate
num Time node

num. max
node

num. final Time node
num. max

node
num. final Time node

num. max Time node
num. max Time

graycode6_47 6 5 0.03 12 12 0.01 22 22 0.01 22 0.01 22 0.01
ex-1_166 3 19 0.03 10 9 0.02 22 17 0.03 22 0.04 22 0.01
4mod5-v0_20 5 20 0.03 28 22 0.03 44 36 0.03 38 0.03 38 0.02
rd32-v0_66 4 34 0.04 14 9 0.04 25 20 0.03 23 0.04 28 0.03
decod24-v0_38 4 51 0.04 18 16 0.11 38 35 0.06 38 0.08 38 0.04
4gt13_92 5 66 0.06 26 26 0.12 58 58 0.12 58 0.11 58 0.04
4mod5-bdd_287 7 70 0.07 111 74 0.26 155 109 0.24 128 0.17 128 0.04
alu-v0_26 5 84 0.06 46 23 0.25 68 49 0.14 68 0.15 68 0.05
4gt5_76 5 91 0.07 50 20 0.30 73 34 0.15 73 0.15 73 0.06
4gt5_77 5 131 0.11 46 27 0.61 91 57 0.29 91 0.24 77 0.07
decod24-v3_45 5 150 0.13 46 17 0.41 74 35 0.25 64 0.23 82 0.06
cnt3-5_179 16 175 0.19 55 48 1.00 116 104 0.51 148 0.45 148 MO
0410184_169 14 211 0.20 63 39 0.87 117 81 0.47 125 0.39 102 3.59
sys6-v0_111 10 215 0.38 473 247 3.50 877 562 1.58 685 1.00 562 0.14
4gt4-v0_72 6 258 0.20 98 31 1.01 136 68 0.50 123 0.51 119 0.14
sym6_316 14 270 1.21 5608 1520 11.55 10836 3028 2.70 3028 2.65 3028 2.35
sym9_146 12 328 0.49 523 229 6.66 1496 515 2.60 515 2.62 515 0.31
mod8-10_178 6 342 0.17 72 18 0.98 144 40 0.73 120 0.63 140 0.17
rd84_142 15 343 3.56 6922 3588 56.63 18006 8017 15.69 9175 8.98 9095 49.33
alu-v2_31 5 451 0.18 44 18 1.03 93 44 0.69 87 0.77 91 0.17
cnt3-5_180 16 485 0.38 164 48 3.29 349 104 1.54 319 1.60 311 MO
rd53_133 7 580 0.29 78 26 1.94 136 59 0.97 123 0.98 123 0.35
majority_239 7 612 0.30 87 16 2.08 231 39 1.31 231 1.26 177 0.37
sf_276 6 778 0.37 59 19 2.17 100 42 1.32 90 1.12 100 0.45
con1_216 9 954 0.60 214 37 4.85 373 91 3.10 329 2.25 242 1.00
cm42a_207 14 1776 1.21 211 81 7.69 639 216 7.43 460 7.91 460 17.23
hwb6_56 7 6723 8.57 242 88 53.91 824 178 29.99 612 27.73 731 10.46
sqn_258 10 10223 12.28 438 105 102.34 1051 228 47.09 974 28.45 747 28.66
sum(-MO) - - 30.66 - - 259.38 - - 117.51 - 88.45 - 115.15
sum - - 31.23 15758 6413 263.67 36194 13888 119.56 17769 90.53 17325 -
bv_10 10 29 0.04 20 20 0.09 56 56 0.06 56 0.06 56 0.02
bv_20 20 59 0.08 40 40 0.29 116 116 0.21 116 0.21 116 MO
bv_30 30 89 0.13 60 60 0.70 176 176 0.66 176 0.49 176 MO
bv_40 40 119 0.19 80 80 1.22 236 236 0.84 236 0.81 236 MO
bv_50 50 149 0.28 100 100 1.74 296 296 1.34 296 1.26 296 MO
bv_60 60 179 0.40 120 120 2.82 356 356 1.88 356 1.77 356 MO
bv_70 70 209 0.50 140 140 4.45 416 416 3.18 416 2.36 416 MO
bv_80 80 239 0.58 160 160 4.59 476 476 3.76 476 3.58 476 MO
bv_90 90 269 0.71 180 180 5.91 536 536 4.14 536 5.63 536 MO
bv_100 100 299 0.84 200 200 7.38 596 596 4.86 596 6.96 596 MO
qv_n2_d5 2 50 0.12 6 6 0.17 16 16 0.12 16 0.14 16 0.05
qv_n3_d5 3 50 0.09 22 22 0.18 64 64 0.15 64 0.16 64 0.02
qv_n4_d5 4 100 0.29 86 86 1.27 256 256 0.89 256 1.03 256 0.03
qv_n5_d5 5 100 0.49 342 342 3.74 1024 1024 2.26 1024 2.60 1024 0.13
qv_n6_d5 6 150 1.36 1366 1366 17.71 4096 4096 9.18 4096 10.59 4096 0.05
qv_n7_d5 7 150 16.48 5462 5462 81.97 16384 16384 35.48 16384 37.56 16384 0.07
qv_n8_d5 8 200 272.12 21846 21846 306.52 65536 65536 412.99 65536 456.98 65536 0.07
qv_n9_d5 9 200 3532.67 87382 87382 TO 2004.36 262144 2195.29 262144 0.08
qft_5 5 15 0.04 32 32 0.02 63 63 0.01 63 0.02 63 0.09
qft_6 6 21 0.04 64 64 0.03 127 127 0.02 127 0.02 127 0.03
qft_7 7 28 0.06 128 128 0.07 255 255 0.03 255 0.04 255 0.04
qft_8 8 36 0.11 256 256 0.10 511 511 0.05 511 0.05 511 0.05
qft_9 9 45 0.16 512 512 0.15 1023 1023 0.08 1023 0.08 1023 0.06
qft_10 10 55 0.32 1024 1024 0.37 2047 2047 0.14 2047 0.17 2047 0.12
qft_11 11 66 0.65 2048 2048 0.71 4095 4095 0.24 4095 0.24 4095 0.36
qft_12 12 78 1.17 4096 4096 1.27 8191 8191 0.45 8191 0.45 8191 1.55
qft_13 13 91 2.39 8192 8192 2.88 16383 16383 0.82 16383 0.85 16383 2.85
qft_14 14 105 5.62 16384 16384 5.08 32767 32767 1.83 32767 1.81 32767 51.11
qft_15 15 120 12.06 32768 32768 9.06 65535 65535 3.69 65535 3.83 65535 MO
qft_16 16 136 29.10 65536 65536 17.68 131071 131071 7.61 131071 7.37 131071 MO
qft_17 17 153 74.54 131072 131072 36.50 262143 262143 15.09 262143 14.58 262143 MO
qft_18 18 171 184.63 262144 262144 73.64 524287 524287 29.67 524287 30.55 524287 MO
qft_19 19 190 439.49 524288 524288 141.63 1048575 1048575 60.82 1048575 63.54 1048575 MO
qft_20 20 210 1067.45 1048576 1048576 332.00 2097151 2097151 132.99 2097151 131.39 2097151 MO
qft_21 21 231 2960.98 2097152 2097152 2546.23 4194303 4194303 274.99 4194303 269.77 4194303 MO
qft_22 22 253 TO - - TO - - 1668.13 8388607 1447.21 8388607 MO

sum(-TO) 5104.69 4240260 4230915 3871.86 8515357 8493051 1130.09 8496932 1147.50 8496488 -

* TN represents the Google Tensor network package. MO and TO represent, respectively, out of memory and time out of 3600 seconds, sum(-MO)
(sum(-TO), resp.) represents the sum with MO (TO, resp.) circuits above the line being excluded.
* For TDD and QMDD, we list the time (seconds), max number of nodes and final number of nodes in the construction process. For TDD with

the two partition schemes, we remove the final number of nodes, as they are all identical to that of TDD with no partition.

	I Introduction
	II Background
	II-A Quantum Circuits
	II-B Quantum Multi-value Decision Diagram

	III Tensor and Tensor Network
	III-A Basic concepts
	III-B Quantum circuits as tensor networks

	IV Tensor Decision Diagram
	IV-A Basic Definition
	IV-B Normalisation
	IV-C Reduction

	V Algorithms
	V-A Generation
	V-B Addition
	V-C Contraction

	VI Two partition schemes
	VII Implementation and Evaluation
	VII-A Benchmarks
	VII-B TDD Implementation
	VII-C Empirical results
	VII-C1 Compare with matrix-based methods
	VII-C2 Compare with QMDD
	VII-C3 Compare among TDD schemes

	VII-D Summary and Discussion

	VIII Conclusion
	References
	Appendix: Proofs and Empirical Results

