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Aggregation is common in data analytics and crucial to distilling information from large datasets, but current
data analytics frameworks do not fully exploit the potential for optimization in such phases. The lack of
optimization is particularly notable in current “online” approaches that store data in main memory across
nodes, shifting the bottleneck away from disk I/O toward network and compute resources, thus increasing
the relative performance impact of distributed aggregation phases.

We present ROME, an aggregation system for use within data analytics frameworks or in isolation. ROME
uses a set of novel heuristics based primarily on basic knowledge of aggregation functions combined with de-
ployment constraints to efficiently aggregate results from computations performed on individual data subsets
across nodes (e.g., merging sorted lists resulting from top-k). The user can either provide minimal informa-
tion that allows our heuristics to be applied directly, or ROME can autodetect the relevant information at
little cost. We integrated ROME as a subsystem into the Spark and Flink data analytics frameworks. We use
real-world data to experimentally demonstrate speedups up to 3× over single-level aggregation overlays, up
to 21% over other multi-level overlays, and 50% for iterative algorithms like gradient descent at 100 iterations.
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1 INTRODUCTION

Data analytics is a core challenge of our era. Extracting and distilling information from large
datasets is now commonplace in academia (e.g., astrophysics, chemistry), enterprise (e.g., ad-
vertising, recommendation), and government (e.g., intelligence services, demographic surveys)
[5, 15, 42].

1.1 Aggregation

Data analytics systems typically split data across nodes and compute information from subsets of
the data, then aggregate the partial results.

Many aggregation functions are associative [59], so a natural choice is to aggregate results along
an overlay (network) such as a tree connecting leaf nodes (where original computations occur) to
a root (where the final result will be available). It becomes clear that there are simple customiza-
tions to such aggregation trees created for a broad range of aggregation functions. Exactly which
customizations are applicable—most prominently affecting fan-in of the tree—depends on charac-
teristics of the aggregation function that affect the size of the data.

1.2 Optimizing Aggregation

The instinctual decision to maximize parallelism via bushy trees with small fan-ins [7] where many
nodes at the lowest level run simultaneously is suboptimal, say, for sorting, because every element
is seen at each level, leading to a high amount of repeated work. Conversely, a system with a fixed
single coordinator performing aggregation (e.g., as in Cao and Wang’s work [8]) has non-optimal
latency for applications such as deduplication where data filtering removes burdensome repetition.

1.3 In Perspective

Intuitively, the problem of aggregation can be considered the “inverse” of multicast: In the latter
case, data is typically propagated along a tree, and the function applied at every node in the tree,
in the simplest case, copies in the input to all outgoing links; in more complex scenarios, nodes
can perform transformation functions on data prior to forwarding it (e.g., for interoperability), or
collect acknowledgments or negative acknowledgments (for reliability).

While much effort has been invested in optimizing multicast spanning trees, aggregation has
received less attention, although aggregation is very common in practice, and its impact is in-
creasing in the era of data analytics. While the familiar problems—e.g., merging sorted input or
combining of word counts—have outputs at least as large as each input, the average MapReduce
job at Google [19] and the common “aggregate” jobs at Facebook and Yahoo! [10] actually decrease
the amount of data. Despite the large potential performance impact of simple traits of aggregation
trees, most systems described in literature performing aggregation are agnostic to them.

1.4 Leveraging Aggregation Function Characteristics

We propose to automatically tailor aggregation overlays to specific problems, using the ratio R of
the output size of the aggregation function at hand to its input size, which is easy to find or estimate

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 4. Publication date: July 2022.

https://doi.org/10.1145/3516430


ROME: All Overlays Lead to Aggregation, but Some Are Faster than Others 4:3

Table 1. Some Common Aggregation Functions and Their Size Ratios of Output to One Input
(|a | Means Size of a)

Common problems R =
|Output |
|Input |

Production jobs at Facebook, Yahoo! [10], Google [19]; sieve and deduplication algorithms <1

Top-k on pre-partitioned data, k-means clustering, square matrix multiplication, word
=1

count with fixed dictionary, gradient descent with mini-batching

Top-k on arbitrary data, word count on mismatched dictionaries, sort, generate n-grams >1

for many aggregation functions. For example, a top-k aggregate (top-k for short) overlay reports
the k groups according to a selection criteria on the group’s score [25]. If all data belonging to a
group resides on a single partition stored at a single leaf node such that the leaf nodes can calculate
scores for each group, then the aggregation function produces output of size k—a ratio of R = 1
(i.e., k/k). If some group’s data is spread across all partitions, however, then the aggregators must
merge sets for the scores to be calculated at the root, resulting in output of each aggregator that
is bigger than its input. Table 1 shows common aggregation problems grouped by relevant ratios.

To better illustrate top-k on pre-partitioned data and top-k on arbitrary data, and the difference
between them, consider the following example with two worker nodes w1, w2, and k = 2: With
pre-partitioned data, assume w1 gets {(a, 2), (b, 3), (c, 5)}. It suffices for w1 to report its own top-2
{(b, 3), (c, 5)}, as w2 will not report anything for any same keys as w1. The final top-2 can thus
contain at most w1’s top-2 b and c . Hence, no worker needs to report more than k in the general
case, from which k are selected at every step of the aggregation so R = 1. However, in the case of
top-k with arbitrary data,w2 might actually have {(a, 3), (d, 2), (e, 4)}, and so ifw2 reports only its
top-2 as {(a, 3), (e, 4)} taking the combined top-2 from both workers’ top-2 will yield {(c, 5), (e, 4)}
although a’s combined count is 2 + 3 = 5, which is more than that of e , and so the result really
should be {(c, 5), (a, 5)}. Hence, workers in the general case must report all their values, and all
aggregated values passed on at every level, clearly leading to R > 1.

Research that underscores the importance of minimal aggregation latency largely ignores the
impact of overlays [28, 32]; existing big data analytics frameworks mostly use one-size-fits-all
overlays, leading to unnecessarily high latency for distributed data aggregation. When customiz-
able overlays are available in a framework, users must manually configure them properly for a
particular problem. Such static optimization might become simply impossible with non-trivial ag-
gregation functions (e.g., composed functions) and jobs, or when the same code/code portion is
executed on several distinct datasets with different data skew.

1.5 Solution Outline

In this article, we present a novel holistic approach for optimizing aggregation implemented in
a system called ROME (Robust Aggregation Overlays minimizing Execution Time). In short, our
approach is threefold:

(1) an Analysis stage obtains relevant constraints from applications, based on which,
(2) an Overlay stage determines theoretically (near-)optimal overlay trees for idealized settings;

finally,
(3) a Mapping stage applies several heuristics to tailor these overlays to real-life (non-ideal)

deployment constraints at hand.

Like most currently popular systems for data analytics [2, 53, 60], ROME works in-memory
to significantly reduce latency and unpredictable timings. It is designed for easy integration into
existing data analytics systems.
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1.6 Contributions

The contributions of this article are as follows:

• We define a model for a class of problems termed compute-aggregate whose distributed execu-
tion can be optimized by manipulation of an underlying aggregation tree without requiring
revision to applications themselves.
• We elucidate why current data analytics frameworks, while well-suited to compute-

aggregate, are currently addressing these problems inefficiently by design, and we introduce
a framework to rectify that.
• We identify parameters for aggregation trees and prove their optimal values via mathemat-

ical models for various cases.
• We adapt these proven heuristics for creating near-optimal aggregation overlays by simpli-

fying them to only use the size of data output by an aggregation function divided by the size
of its input—a value that can be determined on-the-fly. We also develop a load-balancing
technique and other practical alterations to reduce network usage during aggregation, as
well as reaggregation (e.g., for incremental computations).
• We introduce ROME, a full-featured system implementing our heuristics. We describe its ar-

chitecture and API. We then integrate ROME as a subsystem into two common data analytics
frameworks, Apache Flink [3] and Apache Spark [4], to increase the efficiency of end-to-end
data analytics.
• We evaluate ROME through these two systems. We empirically demonstrate that our chosen

overlays are uniformly better than any predetermined overlay. Our microbenchmarks show
differences of up to 86% between targeted and naïve overlays, even with no memory
constraints and smaller deployments than typical in real-world use. Both of these factors
could result in bigger differences in practice. Within real-world systems, job execution
time shrinks by a factor of up to 3 over systems using single-level aggregation overlays
such as reduce in Flink and Spark, by 21% over the treeReduce in Spark, and 16% if using
Spark’s feature to manually configure an overlay. When running an iterative algorithm
like gradient descent, total runtime improves by 50% at 100 iterations over Spark’s Mllib
implementation, which also uses a multi-level aggregation overlay. We also show that using
optimized overlays can reduce the memory requirements over those used to complete jobs
in Flink or Spark deployments.

1.7 Roadmap

The rest of the article is structured as follows: Section 2 defines the model considered and how it
relates to the current landscape of data analytics. Section 3 presents an overview of our approach.
Section 4 provides optimality proofs for fan-in values F for specific values of R and scenarios. Sec-
tion 5 presents the implementation of our ROME system, including its architecture, API, handling
of faults, as well as how it integrates into Flink and Spark. Section 6 presents experiments with both
of these prototypes. We position our work to prior art in Section 7 and conclude with Section 8.

2 MODEL

This section outlines the compute-aggregate family of problems considered and how it fits into
the landscape of data analytics.

2.1 Problem Definition

Intuitively, compute-aggregate problems consist of two phases (see Figure 1): a (i) compute phase
processes distributed subsets of input in parallel; a subsequent (ii) aggregation phase combines the
results of the first phase to obtain a final output.

More formally, using the notation summarized in Table 2:
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Fig. 1. Visual representation of the computation and aggregation phases.

Table 2. Notation Used

Token Meaning

n Number of computation/leaf nodes.
f () Initial computation function.
д () Aggregation function.
h () (Composed) function to compute and aggregate.
z Data formatted for input/computation.
x Data formatted for aggregation.
F Fan-in of the tree, making the height O (logFn).
д (x ) The aggregation function for a set of inputs x .
дt (x ) Returns the time taken for д (x ) (with communication).
t Time per unit of data for linear дt (x ); дt (∅) = 0.
x0 Output from one computation node.
R Ratio of the final aggregate output size to |x0 |.
R1 Ratio of output sizes of individual levels.

Definition 1. A compute-aggregate task produces output h (z ) from input z = z1, . . . , zn where
h (z ) is decomposable into computations on partial inputs, f (z1) , . . . , f (zn ), and an aggregation
function д () such that h (z ) ≡ д (x1, . . . ,xn ) with ∀i ∈ [1..n] xi = f (zi ).

Intuitively, each computation node contains some subset of the intial data. After computation
(i), a system aggregates (ii) the results along an aggregation tree (henceforth simply tree) com-
munication structure to create the final output. With the exception of passing the results of the
computation to the aggregation tree the two phases are independent from each other. The two
phases are visually represented in Figure 1.

We consider optimizing the aggregation phase. Optimizing computation requires knowledge
about the data, data structures, and computation for each specific problem. We show optimizing
the tree often only requires knowing very basic information about the aggregation function.

Aggregation can be triggered by the completion of the computation phase or run periodically on
the current state of the data, as long as the data is formatted for aggregation. Aggregation applies
some function д to all of the outputs of the computation nodes, д ( f (z1) , . . . , f (zn )). This does
not have to be done in a single step. Aggregation can be applied to the results of previous aggrega-
tion. When aggregation begins, each output from a leaf is sent to a single aggregation node. The
aggregation is applied to all inputs received at the node, and the node outputs the aggregated re-
sult. The outputs from those nodes, if there are indeed multiple such nodes, are in turn aggregated.
The final aggregate result contains exactly one path to each leaf, so each computation output is
included exactly once, resulting in an explicit tree structure. Figure 2 shows how 16 leaf nodes can
be placed in four different trees that only differ in their fan-ins.
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Fig. 2. Four aggregation trees with 16 leaves.

2.2 Function Requirements

We consider aggregation functions that take x = x1 . . . xm and output an aggregate x1..m , i.e.,
x1..m = д (x ). Functions must be able to handle any number of inputs for the increased fan-in to
be effective, as there is no advantage to having multiple inputs available if they cannot be used.

Functions are cumulative, commutative, and associative. This essentially means inputs may be
aggregated in any order with any group of inputs, including those that are outputs of non-root
nodes of the tree. Definitions 2, 3, and 4 capture the properties more precisely. Definitions require
equivalency (≡), not necessarily identical output. For example, if a system is supposed to output
the single word with the maximum number of occurrences (word count) and two words are tied
for that distinction, either word may be returned.

Definition 2 (Cumulative Aggregation). д
(
д (x ) ,д

(
x ′

)) ≡ д (
x ,x ′

)

Definition 3 (Commutative Aggregation). д
(
x ′,x

) ≡ д (
x ,x ′

)

Definition 4 (Associative Aggregation). д
(
д

(
x ,x ′

)
,x ′′

) ≡ д (
x ,д

(
x ′,x ′′

)) ≡ д (
x ,x ′,x ′′

)
2.3 In Perspective

Before detailing how we optimize aggregation, we put it in the perspective of state-of-the-art data
analytics systems, which can natively aggregate data (see Table 3).

Aggregation in many big data analytics frameworks follows the MapReduce [19] approach, and
map data to disjoint processing partitions. This aggregation by partition model still inspires a sig-
nificant portion of data analytics. It works well for problems like word count where aggregation
can be partitioned. We show this is inefficient for problems such as top-k in Section 5.

For total aggregation jobs where all data must be compared (e.g., top-k , sort), at least transitively,
to each other to find a global result, aggregation by partition must use only a single partition.
That is, users must either create a single reducer (fan-in of n) or run iterations of the problem to
prune data at the cost of remapping at each iteration. While Flink [3] addresses some issues with
MapReduce (e.g., processing in-memory for lower latency), it still suffers from similar aggregation
limitations. Aggregation by partition and total aggregation are disjoint in the big data problem
space, as shown in Figure 3, even if the tools for one may be applied to the other.

Spark [4] also uses an in-memory model. Additionally, it adds an extra aggregator functionality
to the MapReduce model, allowing aggregation to be distributed across multiple reducers. These
aggregators require “add-only” semantics, which require monotonic operators without supporting
transitive operators (i.e., enforcing non-transitive operators). This is insufficient for a wide range
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Table 3. System Comparison

System Fan-in In-memory Aggregation types

MapReduce [19] Manually configurable By partition
Flink [3] Manually configurable � By partition
Spark [4] Manually configurable

or tree template by
height

� By partition or total aggregation
or add-only semantics

ROME Adaptive or self-
adaptive

� Total aggregation

Fig. 3. Aggregation by partition and total aggregation in the data analytics problem space.

of problems like top-k sorting, which rely on score comparisons across nodes to be transitive. Con-
sequently, for aggregation methods more complex than a monotonically increasing counter, Spark
must use its reduce operator, effectively limiting the deployment to a fan-in of n.

The treeReduce functionality (added in 2015) in Spark enables user-specified aggregation
topologies, however with several drawbacks. First, the topology in treeReduce is defined by height
rather than fan-in using a scale factor internally

scale := max(2, �partitions1/heiдht 	).

When a user calls treeReduce, Spark runs partial aggregation rounds as long as

remaininд partitions > scale + �remaininд partitions/scale	

evaluates positively, and updates

remaininд partitions := remaininд partitions/scale

accordingly. As a consequence, the user sets only an upper bound of the total height of the ag-
gregation tree. Hence, Spark is forced to fit the aggregation overlay to the number of partitions,
workers, and given (max) height, which ignores the actual aggregation function.

Second, Spark does not provide guidance on how to pick an appropriate value. Simply setting
height, i.e., the upper bound, to a very large value will cause Spark to build up aggregation trees of
maximum height, always enforcing a fan-in of 2. Informed users may use our heuristics presented
shortly based on the ratio R of final output to one input, and the number n of nodes across which
data is originally distributed, to manually determine a height. However, one must recalculate the
height when the application is deployed with a different number of worker nodes or workload.
Even then, resulting overlays may be skewed by the greedy hash partitioner Spark uses to form
an aggregation tree based on a rough fan-in derived from the provided height.

Clearly, manual calculation of an aggregation overlay requires that R and n are known before
the application is deployed, which can be hard. Thus, the ability of ROME to autodetect R, as we
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Table 4. Overview of Optimizations and Heuristics Devised by ROME

Heuristic Section Input Output Description

Autodetection
of R

Section 3.2 n: # of
nodes,
R []: ratios

G: overlay Actual ratios R [1..n] are measured on nodes of
first level (F = 2) to build overlay G for upper
levels.

Optimal
fan-in

Section 3.3.1 R: ratio F : fan-in Optimal fan-in F is computed using R based
on Table 5.

Fan-in
rounding

Section 3.3.2 F : fan-in F ′: fan-in Fan-in F is rounded up (F ′ = �F 	) to ensure a
discrete value.

Balancing
mechanism

Section 3.4.1 G: overlay G′: over-
lay

G′ is constructed from G to minimize perfor-
mance skew across nodes.

Node
colocation

Section 3.4.2 G: overlay G′: over-
lay

Nodes at different levels are colocated to reduce
communication.

Root node
bypass

Section 3.4.3 G: overlay G′: over-
lay

G′ replaces root node of G by worker of the
third-party system (e.g., Spark).

Append-only
updates

Section 3.4.4 G: overlay,
V : node

G′: over-
lay,
V ’: node

New node V with append-only data is added to
overlay G and aggregation recomputed at root
V ’.

Infrequent
updates

Section 3.4.4 G: overlay,
V : node

V []: nodes Values are re-computed at nodes V [] (V [1] = V ).

R , F , G, and V represent characteristic ratios, fan-ins, overlay graphs, and nodes, respectively. Note that for

presentation simplicity, input and output types are conceptual, i.e., actual heuristics might operate at other levels of

abstraction inside the implementation.

shall detail in Section 3.2, and use a properly determined topology based on fan-in at execution
time is a more applicable way and leads to lower job latency.

3 OPTIMIZING COMPUTE-AGGREGATE

While the aggregation function д() is fixed for a given problem, the overlay over which to apply
it is configurable. Our goal is thus to find an aggregation overlay yielding minimal latency, using
the set of available resource to its best. This section discusses our threefold approach towards that
goal. To help the reader quickly identify our optimization techniques proposed throughout the
section, we summarize them in Table 4.

3.1 Optimizing Overlays

To optimize aggregation overlays, ROME applies a three-stage approach as shown in Figure 4 to
an aggregation job submitted by an application. In short:

(1) The Analysis stage obtains relevant constraints for the job. This consists first and foremost
in the mentioned characteristic R-ratio between the aggregation function output and a single
input (cf. Table 2).

(2) An Overlay stage uses R to determine the fan-in of a (nearly) optimal overlay tree for an
idealized setting.

(3) A Mapping stage applies several heuristics to tailor such an overlay to the real-life de-
ployment constraints at hand; this includes catering for workload rebalancing, trees with
non-fractional height, limited resources of on-path aggregation nodes, and strategic reuse
of resources.

The job is then executed by ROME. In case the job was submitted through a data analytics
framework that ROME is integrated into, this execution happens in a concerted manner with the
framework, as we shall elaborate on shortly.

Next, we discuss the three phases in more detail.
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Fig. 4. ROME’s three-staged approach.

3.2 Analysis Stage

The first stage is concerned with obtaining characteristic information from jobs that allow the
necessary aggregation to be optimized. Chiefly, this consists in the R-ratio. Other parameters used
in later stages such as for incremental aggregation (cf. Figure 4) are (currently) obtained explicitly
as parameters of the job.

Static analysis. R-ratios are well-known for a number of aggregation scenarios such as the
ones presented in Table 1. ROME can thus perform a simple static analysis of aggregation
jobs passed to it to determine if they consist in/use any of these functions directly. Depend-
ing on the integration of ROME into a larger framework, that framework can share a map
with ROME that outlines any of the framework’s own known/pre-defined aggregation func-
tions and their corresponding R-values (or correspondences to ROME’s pre-defined ones).
Simple embeddings of these functions inside composite functions, e.g., inside loops, allow
for automatic inference of R in a good number of cases.

Autodetecting R. The static inference of R from a complex aggregation function д () is not
always possible. For the very same reason, one cannot automatically extract or synthesize
an aggregation functionд () from a function f () naïvely applied to an entire dataset, to allow
for automatic breakdown of h () into compute and aggregation functions f () and д () and
corresponding distributed multi-phase execution (cf. References [34, 39]).

For these cases, ROME supports automatic runtime detection of R. ROME then builds the
first level of aggregation with a fan-in of 2. Once nodes at this level complete their local
aggregation, R is locally computed and sent to the controller, which builds the heuristic tree
for the average computed value of R and the n

2 results already computed. We use a fan-
in of 2 for initiation, as it allows estimating R very quickly while also preserving as much
aggregation as possible for the optimal overlay calculated.

In very rare cases the observed R =
|Output |
|Input | might change mid-way during the data pro-

cessing. A hypothetical scenario is when the input data and aggregation function belong
to the group of R ≥ 1 (see Table 1), e.g., word count on mismatched dictionaries, but
the data that is aggregated on the first level is “semi” pre-partitioned so the first level ob-
serves R = 1. We consider this as a very unlikely scenario and so ROME does not consider
significant changes of R mid-way during the data processing. However, ROME could check
the observed R at each level and trigger a re-balance of the remaining overlay in case of a
sudden change. Section 6.3 provides an in-depth analysis of R ratio autodetection of ROME.
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Table 5. Optimal Value for F to Minimize the Latency of a Single Input Block,
and Values ROME Chooses

R Optimal fan-in (cf. Section 4) ROME fan-in

R < 1 2 2
R = 1 e 3

1 < R < n min
(
n, (1 − lognR)−log

R
n
)

min
(
n, �(1 − lognR)−log

R
n	

)
, cf. Section 3.4.1

R ≥ n n n

User-provided. To avoid autodetection of R and its overheads (or to bypass static analysis),
a user can always submit a job with an explicit value for R. As a matter of fact, internally
in ROME, a negative R value represents the absence of such a pre-defined value. We will
elaborate on this later in the context of the ROME system and its API (see Section 5.2).

3.3 Overlay Stage

Our goal is thus to find an aggregation overlay with minimal latency for a given aggregation
function. Figure 2 shows four overlays created with different fan-ins, yielding equivalent results
for compute-aggregate tasks. Smaller fan-ins like that in Figure 2(a) yield higher parallelism at
the lowest levels. Figure 2(c) instead obtains all input at the first level of aggregation. That level
will thus take longer than a single level in Figure 2(a), but there are fewer levels to run. Consider
the aggregation of occurrences of words in a word count job. Each word is considered at each
level. More branching increases parallelism, but at the cost of redundancy at multiple levels. To
determine the best tradeoff between parallelism and redundancy, we need to reason on the factors
that impact the latency when using an aggregation overlay.

3.3.1 Optimal Fan-in. The aggregation time at a level—composed of the time to receive input
from the level just beneath it and the time to create the output for the level—depends on the size
of the input, some set of partial results x . We use дt (x ) to denote the time required by д (x ) to
aggregate input of size |x |, including communication time. Aggregation on the same level of the
overlay happens in parallel, so only the time of a single branch is modeled.

The optimal fan-in for an aggregation tree can intuitively be derived from the given aggregation
functionд () deployed by considering two measures of function complexity: (a) A measure of space
complexity in the form of the R-ratio. (b) The time complexity based on дt () [16]. The next section
focuses on proving optimal values for R for minimizing aggregation time in several scenarios of
(b). However, somewhat skipping forward and maintaining the bigger picture, these proofs will be
based on an idealized setting to stay tractable. We thus have to adapt these heuristics in several
ways for application in ROME (see Table 5).

3.3.2 Fractions. The first consideration removes fractional fan-ins. The equations in the theo-
retical model assumes all variables are continuous; however, aggregation must use discrete inputs
in real-life. Hence, in practice, a system as to round up (or down) the fan-in F derived from the
model, e.g., considering the ceiling �F 	. For instance, applications such as top-k sorting on pre-
partitioned data that output the same size as one input, i.e., R = 1, use a fan-in of 3, while the
theory would insist on a fan-in of e . Values in the range 1 < R < n are likewise rounded to the
smallest fan-in with the same height as the suggested ideal. We round up, because rounding down
might increase the height of the overlay.

3.3.3 Time Complexity. In Section 4.3, we identify the parameters for aggregation trees and
prove their optimal values via mathematical models for various cases. However, after an in-depth
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analysis of the results, we can observe that the ratio R is often sufficient to guide a system towards
the choice of the near-optimal overlay tree without requiring to take into account more complex
parameters. For instance (as proved in Section 4.3), the optimal fan-in when R = 1 is 2 regardless
of the time complexity of the aggregation function, i.e., дt (): The linear and super-linear cases are
formally proved, while the sub-linear case would be dominated by the linearity resulting from the
communication time, hence this last case can hardly be observed in real-world scenarios. Hence,
while we do consider time complexity in our theoretical analysis, our heuristics devised in ROME
omits this aspect based on our analysis results.

3.4 Mapping Stage

Further heuristics are required in practice to deal with a non-ideal setting, e.g., to deal with non-full
trees, and to effectively map a conceptual overlay to an actual application topology.

3.4.1 Balancing Mechanism. A theoretical model can easily assume that overlay trees are per-
fectly balanced using continuous variables. This often requires fractional tree heights. Applying
fan-ins obtained after rounding blindly creates trees where some nodes have more children than
others; thus, the coarse-grained heuristics usually result in unbalanced trees that can be tuned
further.

Figure 5 shows a simple example of imbalance skewing performance. In Figure 5(a), the model
chooses a fan-in of 4 and expects the height of the overlay to be log49 ≈ 1.58. The actual height of
the associated overlay is 2. There are also nodes with fewer than 4 children, creating a performance
skew between branches. Figure 5(b) also has a height of 2. However, the lowest level of the longest
branch has a fan-in of 3 instead of 4. Because the input size is reduced the corresponding node will
run faster, and there is no increase in height to offset this. Thus, the latency of the slowest branch
is decreased.

To analyze this more formally, let us consider an aggregation function д (x1 . . . xα ). Let c be the
amount of time to process one input to the aggregation. If д (x1 . . . xα ) is linear on the size of its
combined inputs, then the latency of a single run of the function is simply c α . For an unbalanced
tree using a heuristic fan-in α , we model the branch with the highest latency, i.e., with most input.
This branch has ϵ levels using α , and (�logαn	) − ϵ levels with a fan-in of no more than α − 1.
Consequently, a total time for the branch can be estimated as follows:

ϵ∑
k=0

Rkcα +

�log
α

n 	−1∑
k=ϵ+1

Rkc (α − 1).

Note that aggregation only makes sense for α ≥ 2, which implies this formulation holds for
R ≥ 1. When R > 1, the formulation simplifies to

c

(
α
Rϵ+1 − 1

R − 1
+ (α − 1)

(
R �log

α
n 	 − Rϵ+1

R − 1

))
.

Also, when R = 1, it simplifies to

c
(
ϵ + 1 + �logα (n)	 (α − 1)

)
.

These equations are minimal when ϵ is minimized, i.e., when the entire path uses the smaller
fan-in.

As long as imbalance remains, we can apply this logic inductively to decrease the fan-in of
a node on whichever is the highest latency branch until there are no nodes that have a different
number of children than other nodes at the same height. This inductive process creates as balanced
an aggregation overlay as possible for a given height and number of leaf nodes.
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Fig. 5. The effect of the balancing mechanism. Fig. 6. Reusing workers to reduce resources and
latency.

ROME thus implements an explicit balancing mechanism. The system first finds the non-
fractional height of a tree using the heuristic. For a heuristically determined fan-in α , this is simply
�logαn	. By our inductive reasoning, ROME finds the smallest fan-in, which creates an overlay with
the same height as the heuristic. Thus, the balancing mechanism uses the equation �logn/�logαn		
as the practical fan-in where α is the value returned by the original heuristic. Observe that this
only affects 1 ≤ R < n; there is no fan-in less than 2, and any fan-in less than n results in greater
tree height.

3.4.2 Colocation. Data-intensive aggregations can spend a significant amount of time just send-
ing serialized objects over the network. A natural heuristic for ROME is to colocate distinct aggre-
gation nodes that communicate with each other at the same worker as long as this does not create
resource contention. For example, consider the aggregation tree with 4 leaves and fan-in of 2 in
Figure 6(a). Since aggregation at different levels does not run concurrently, workers can host nodes
along a single branch without resource contention. Nodes of the same color can be harmlessly colo-
cated on the same worker machine. In addition to reducing the number of workers required for an
overlay, using RAM for intra-worker communication (dashed lines) instead of the network as for
inter-worker communications (solid lines) reduces communication latency. Figure 6(b) shows an
optimized physical overlay where boxes represent physical machines. Such optimization reduces
the communication time of each parent by a factor of F−1

F
.

3.4.3 Root Node Bypass. When ROME is integrated into a third-party system, we can improve
latency by running the final aggregation in that system instead of in ROME. The aggregation is
the same, in fan-in and result, yet we save one overlay level and thus networking.

Figure 7 shows an aggregation performed in this manner. The ROME nodes run most of the
aggregation. The results from the level beneath the root are sent to a component of the third-party
system, which acts as the root of the overlay and completes the aggregation. Note that in the case
of R ≥ n, which means a fan-in of n, the ROME workers are not used at all. In this case, the overlay
contains no ROME nodes, and the entire aggregation is completed in the third-party system.

3.4.4 Incremental Computations. Many big data applications deal with dynamic datasets, mean-
ing that new partitions may be added, or existing partitions may have their data changed. Aggre-
gating from scratch upon changes in these cases is not necessary, and highly inefficient. ROME
thus allows users to specify two ways for efficiently handling incremental data:

Append-only updates: Append-only data is the norm for some applications and filesys-
tems [21, 46]. In this case, new data is aggregated directly with the results cached at the
root of the original overlay. Figure 8(a) illustrates it. The new data in the gray node is ag-
gregated with the result from the unshaded nodes, stored in the black node. This is no more
work than the black node would have done during reaggregation anyway, and the rest of the
overlay is not needed, freeing up resources and reducing latency. This refined approach can
be naturally extended to adding multiple new nodes at once, creating a new overlay where
one leaf is the old root node and other leaves compute the new incoming data.
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Fig. 7. Final aggregation in ROME vs. a third-party
system. Black nodes produce data. Uncolored nodes
are ROME workers. Gray nodes are third-party sys-
tem workers storing results.

Fig. 8. Minimizing reaggregation. Gray nodes have
new or updated data. Black nodes perform (re-)ag-
gregations. Results from boxed nodes are obtained
from caches.

Infrequent updates: In this scenario, some existing partitions of the dataset change over time.
In this case, the overlay will be kept alive by ROME after the final aggregation, and partial
results remain in an in-memory cache managed by each worker. When a new version of a
partition reaches a worker, only the aggregation along the path to the root is rerun, since
other results are unaffected. Figure 8(b) shows an example where only a single partition
(gray node) is changed: only black nodes perform reaggregation.

Table 5 summarizes the parameters of the aggregation overlay ROME uses when running with
autodetection. Next, we discuss optimality of these parameters.

4 THEORETICAL OPTIMALITY RESULTS

This section proves optimality of overlay trees for R in idealized scenarios as used for ROME’s
Overlay phase (cf. Section 3.3).

4.1 Synopsis

We focus on the case where input processed in a single block, and each aggregation results in a
single block of its own. This means all of the data is available and computed at a single step at
the leaves, then the aggregation tree reads the entire results and outputs a single output without
natural breaks, which can be used to distribute the work.

In this case, we are concerned with the optimal latency of processing the block. The number of
inputs—including the direct outputs from the computation phase and aggregations of them—that
can be aggregated at each node in the tree is variable, as long as each result from the computation
phase is included exactly once. Reducing the fan-in means increasing the number of siblings in
the tree, which in turn means that more aggregation is done in parallel at each level. However,
subsequent levels have to repeat some of the work their children did. Therefore, the optimal fan-
in depends on the ratio of work that is repeated to the amount of parallelism gained.

4.2 Notation and Assumptions

We rely on several assumptions to calculate optimality. These do not affect the correctness of the
output. Table 2 shows the notation used to rigorously define our assumptions and prove optimal
fan-ins for the trees.

We assume time complexities of aggregation functions depend solely on input size. Some aggre-
gation algorithms have time complexities expressed in terms of the fan-in and the size of individual
inputs, e.g., O (fan-in × log (average input size)). Our experiments show this deviation is a small
factor.

We model communication time as linear on the amount of data transferred. Contemporary
streams to a node share bandwidth, so the communication time at a node is the same as long
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as all children start sending data before the node finishes receiving the data from any set of other
nodes. Communication at a node can be affected by other nodes on the network, especially when
TCP incast is present [61]. We assume that TCP incast is resolved on the TCP level (cf. Reference
[56]) or communication time is relatively inconsequential. We wait for all streams when aggregat-
ing at a node to avoid higher programming complexity to account for locking and race conditions.
These assumptions require, performance-wise, a pseudo-synchrony that requires a degree of ho-
mogeneity among nodes of a level. Heterogeneity may exist across levels.

We do ignore some of the other complexities that can be associated with communication, es-
pecially with regard to node location on the network and shared resources or conflicts. We are
considering mostly the case of using third-party cloud offerings, which often hide such things
from the user. As such, we consider the network architecture a black box best approximated in the
average case as mostly uniform.

Homogeneous hardware is a fair premise when datacenters mass order standard hardware, and
cloud services provide tiers of service based on performance. The minor service variations can be
unpredictable. Homogeneous input follows from our model for data distribution. If aggregation
time depends on the data traits other than size (e.g., element order), then those traits must be
distributed. We find the leeway in synchrony and the impact of tree customization mask enough
heterogeneity in practice.

Aggregation costs are modeled as monotonically increasing on input size and are zero for no
input. Modeling non-linear setup overheads complicates analysis, and the practical impact of these
overheads is very small. When aggregation changes the size of the data, we model ratio of output
to input at each level to be the same. This is or can be made to be true for many applications. In
many other cases the ratio stays within a range, e.g., below 1, and the optimal fan-in is unaffected.

We assume the same ideal fan-in is used at all levels of the tree (unlike, say, in Figure 2(d)).
Without a rigorous proof of this, we note that once R1 is applied to the first level, the optimal
remaining fan-in is essentially being applied to 1

F
nodes with input different by a factor of R1,

which is essentially the same problem.
We model full and balanced trees. Means of working around this in practice have been discussed

in Section 3.3 and Section 3.4.

4.3 Optimality Proofs

Here, we prove theoretical (near-)optimality of the fan-in F for minimizing latency given n input
partitions and дt (x ) for several cases of R when there is a single block of input at each tree leaf.

4.3.1 Ratio R < 1 and дt () ≥ Linear.

Lemma 1. The total aggregation time with linear дt (x ) and R � 1 is a (F ,n,R) = t |x0 |F (R−1)
logF n
√

R−1
, and

∂

∂F
a (F ,n,R) =

t |x0 | (R − 1) Rlog
n

d −
(
1 +

logR1

logn
R

log
n

F

1

)
(
Rlog

n
F − 1

)2
.

Proof. For aggregation linear on input size, the time at a level is constant t × (the input
size at the level). Initial input size is |x0 |, and size changes by a factor of R1 at each of the

subsequent logFn levels. Thus, total aggregation time is
∑log

F
n

m=1 tFRm−1
1 x0. Pulling out the constants

gives tF |x0 |
∑log

F
n

m=1 Rm−1
1 =

tx0F R
logF n

1 −1

R1−1 . Recalling R1 =
logF n
√
R gives t |x0 |F (R−1)

logF n
√

R−1
. �

Lemma 2. The total aggregation time with R = 1 is дt (F |x0 |) logFn.
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Proof. Reusing the logic from Lemma 1 without introducing R gives us
∑log

F
n

m=1 дt (F |x0 |). This

simplifies to дt (F |x0 |)
∑log

F
n

m=1 1, and then to дt (F |x0 |) logFn. �

Theorem 1. The optimal fan-in is 2 when R < 1 and дt (x ) is linear or superlinear.

Proof. By Lemma 1, the total aggregation time taken isa (F ,n,R) = t F |x0 |(R−1)
logF n
√

R−1
, and ∂

∂F
a(F ,n,R)

is t |x0 | (R − 1)
R logn F−(1+R logn F log

n
R )

(R logn F−1)2 . 0 < lognF ≤ 1 for 2 ≤ F ≤ n, so ∂
∂F

a(F ,n,R) > 0 for 0 < R < 1.

∴ The optimal F is 2.
We assumed дt (x1) + · · · + дt (xm ) = дt (x1 + · · · + xm ). As F grows there are more inputs and

input size is reduced less, and дt (x1) + · · ·+дt (xm ) < дt (x1 + · · · + xm ) for superlinear дt (x ), so
superlinear дt (x ) is more sensitive to F than linear дt (x ).
∴ This result holds for superlinear дt (x ). �

Intuition. Consider the case where you are aggregating two inputs at one node. If the aggregation
time is linear or super-linear, then adding two more inputs would at least double the aggregation time
at that node. Alternatively the other two inputs could be aggregated in parallel, and the two results
could be aggregated at the next level. Because each output is smaller than the original input, the second
layer of aggregation is faster than the first layer, meaning the total time is less than twice that of the
first layer. As long as the first layer reduces the size of the input, it more than offsets the extra layers
of aggregation.

4.3.2 Ratio R = 1 and Linear дt ().

Theorem 2. The optimal fan-in is e when R = 1 and дt (x ) is linear.

Proof. With дt (F |x0 |) logFm from Lemma 2 and linear дt (x ),

a (F ,n,R) = F |x0 | t logFn.

∂

∂F
a (F ,n,R) =

|x0 | t (logF − 1) logn

log2F
, which is 0 iff F = e .

∂2

∂F 2
a (F ,n,R) = − |x0 | t (logF − 2) logn

F log3F
.

At F = e , ∂2

∂F 2a (F ,n,R) > 0, so this is a minimum.
∴ The optimal F is e . �

Intuition. In this case increasing the number of inputs increases the aggregation time at a layer,
but it does not change the aggregation time at the subsequent layer. However, if enough inputs are
aggregated at a single layer, then it can reduce the height of the tree. If we start with a binary tree,
then it does not take much to reduce the height by one layer. However, if we already have a wider
fan-in, then it takes progressively higher increases in fan-in to reduce the height further due to the
nature of the log function. Therefore, it makes sense that we have a fan-in that is close to, but not
quite, 2.

4.3.3 Ratio R = 1 and Superlinear дt ().

Theorem 3. The optimal fan-in is [2, e ) when R = 1 and дt (x ) is superlinear.

Proof. By Lemma 2 the total aggregation time is al inear (F ,n,R) = дt (F |x0 |) logFn. As shown

in Theorem 2, limдt (x )→l inear is e . We can assume ∂2

∂F 2asuper l inear (F ,n,R) > ∂2

∂F 2al inear (F ,n,R).

Thus, ∂2

∂F 2al inear (F ,n,R) > 0 for F ≥ e =⇒ ∂2

∂F 2asuper l inear (F ,n,R) > 0. Thus, any minimum
occurs at F < e .
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∴ The optimal value of F is in the range [2, e ) �

Intuition. Compared to the case where aggregation time is linear, this scenario has a greater in-
crease in the aggregation time when the fan-in increases. There is still a benefit to decreasing the height
of the tree, but that offset needs to be more significant, especially for very superlinear aggregations.
Therefore, the optimal fan-in is somewhere between 2 (the quickest aggregation at each level) and the
optimal time calculated for linear aggregation.

4.3.4 Ratio 1 < R < n and Linear дt ().

Theorem 4. The optimal fan-in is (1 − lognR)−log
R

n when 1 < R < n and дt (x ) is linear.

Proof. From Lemma 1, the amount of time taken to aggregate is a(F ,n,R) = t F |x0 |(R−1)
logF n
√

R−1
, and

∂2

∂F 2a(F ,n,R) = t |x0 |(R−1)

(R logn F−1)2 (Rlog
n

F − (1 + Rlog
n

F lognR)).

For R > 1, t |x0 |(R−1)

(R logn F−1)2 > 0, so the expression is 0 iff Rlog
n

F = (1 + Rlog
n

F lognR), which happens at

F = (1 − lognR)−log
R

n .
∂2

∂F 2a(F ,n,R) =
t |x0 |(R−1)R logn F logR (logn+logR−(logn−logR )R logn F )

F log2n (R logn F−1)3 .

Because
t |x0 |(R−1)R logn F logR

F log2n (R logn F−1)3 > 0, ∂2

∂F 2a(F ,n,R) > 0 iff logn + logR − (logn − logR)Rlog
n

F > 0. Substi-

tuting the extrema value for F gives R−logR (1−logn R )−1
R−logR (1−logn R )+1

− lognR < 0. To prove this, we fix n and find R

to maximize b (F ,R) = R−logR (1−logn R )−1
R−logR (1−logn R )+1

− lognR. ∂
∂R

b (F ,R) =
2log2n+log2R−4lognlogR

Rlogn (logR−2logn)2 . ∂
∂R

b (F ,R) > 0 for

1 < R < n. Thus, max(b (n,R)) occurs at limR→n , and limR→n b (n,R) < 0. The extrema of a(F ,n,R)
is a minimum.

(1−lognR)−log
R

n > n =⇒ d > n, which is impossible. Since the only local extrema is a minimum,
∂
∂F

a(F ,n,R) < 0 for F = [2, (1 − lognR)−log
R

n], so the optimal fan-in is the largest possible value,
i.e., n, in this case.
∴ The optimal F is min(n, (1 − lognR)−log

R
n ). �

Intuition. As R grows, there is less incentive to have trees with more height, because each level
ends up redoing more and more work of the levels below it. So, it makes sense that the optimal fan-in
(and height) fall between the values calculated for R = 1 and R > n. That limR→e+ (1 − lognR)−log

R
n =

e is a nice sanity check that the equation is continuous with the previous proof.

4.3.5 Ratio R > n.

Theorem 5. The optimal fan-in is n when R ≥ n.

Proof. The time taken by the root node is дt (R
log

F
n

1 |x0 |). R ≥ n =⇒ R1 ≥ F and logFn ≥ 1, so
this is minimal at logFn = 1. In addition, for F < n the rest of the tree takes non-zero time.
∴ The optimal F is n. �

Intuition. In this formulation, the aggregation at each subsequent layer is slower than the sum
of the layer below it. Therefore, it makes sense to have the shortest tree possible.

Table 6 summarizes the results from our proofs. There are still unproven cells where the degree
of sub- or superlinearity of the aggregation is required to find the optimal value. There is always
an aspect of linearity to дt (x ) due to communication time, so it makes sense to use the results
from the linear cases on the sublinear cases, which would complete most of the table.
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Table 6. The Optimal Value for F to Minimize the Latency of a Single Input Block
and the Applicable Proof When Available

R Optimal fan-in Model runtime Sublin. дt () Linear дt () Superlinear дt ()

R < 1 2 t |x0 |F (R−1)
logF n
√

R−1
unproven Theorem 1 Theorem 1

R = 1 e tF |x0 | logFn unproven Theorem 2 Theorem 3 (near opt.)

1 < R < n min
(
n, (1 − lognR)−log

R
n
)

t |x0 |F (R−1)
logF n
√

R−1
unproven Theorem 4 unproven

R ≥ n n t |x0 |F (R−1)
logF n
√

R−1
Theorem 5 Theorem 5 Theorem 5

As announced in Section 3.3.3 our analysis indicates that time complexity of aggregation functions has little to no

impact on distributed aggregation time (e.g., the same fan-in of n is optimal for R ≥ n regardless of sublinear, linear, or

superlinear time complexity for дt ()), leading to simpler heuristics.

5 ROME SYSTEM

We present our ROME system for optimized compute-aggregate task processing leveraging the
heuristics presented in the previous sections. We focus on its architecture, API, fault tolerance
support, and integration into general-purpose data analytics frameworks.

5.1 System Architecture

Figure 9 shows the architecture of ROME, which is implemented in Java (6,000 LoC). There are two
core components inside ROME: (i) workers that are deployed on all nodes and (ii) a controller that
coordinates workers. A full processing environment also requires an invoker, a set of producers,
and a consumer. These can be implemented inside ROME, but will typically reside in a third-party
framework. More precisely, the complete set of components/component types in ROME with their
respective duties is as follows:

Workers: aggregate data received from other nodes and send the results to their parent in the
aggregation tree. If requested, then results are stored inside an in-memory cache to avoid
repetitive aggregations.

Controller: directs the workers in creating and maintaining the overlay, tracks the status of
each worker, and repairs any active aggregation overlay and restarts aggregation as needed
if a worker leaves the system (or fails; see Section 5.3).

Invoker: a client that interacts with the ROME controller to initialize the overlay and relays
relevant data between a third-party analytics system and ROME. This role is typically played
by the “job manager” of the former system.

Producers: feed the data into the leaf nodes of the aggregation overlay. The data may be read
directly from a local or distributed file system, but typically producers are worker compo-
nents of a third-party system.

Consumer: receives the final aggregation result. This role is typically played by a worker of
the third-party system.

interface Accumulator<T> extends Externalizable {
T get();
void add(List<Accumulator<T>> list);

}

Listing 1. Accumulator interface (public visibility).
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Fig. 9. Architecture of ROME.

Table 7. Examples of Accumulator Implementations

Accumulator Description Lines of code R
MergeLists Merge sorted lists into a list of

all elements in sorted order.
79 n

TopKSort Output a sorted list of the k high-
est scoring elements from sorted
input.

71 1 on pre-
partitioned, ≥1
on arbitrary data

LCS Output longest substring, which
is contained in all sequences.

62 (without gener-
alized suffix tree)

<1

WordCount Take mappings of key�→int and
combine the counts of same
keys.

114 ≥1

SVM + SGD Iterative gradient descent on
mini-batches.

118 1

5.2 API

Because we assume aggregation is associative, we need a standard interface to link up the ag-
gregating nodes. The Accumulator interface is shown in Listing 1. There are only two necessary
functions.

(1) add() simply allows an input to be added or replaced. When a producer or worker lower in
the overlay calls add() the data is placed in the worker. If data already exists for that child,
then the existing data is replaced. If after the call there is data from every child available,
then aggregation at that worker begins.

(2) get() retrieves the result. A communication manager on each worker thus fetches (“get()s”)
results from its node and sends them to its parent.

Each aggregation requires a separate Accumulator implementation. We implemented several types
of Accumulators during our experimentation. Table 7 shows how little implementation complexity
they require. The entire implementation of an Accumulator is often less than 100 lines of code

(LoC).
Table 8 outlines our simple API, and Figure 9 shows where in the workflow the API calls occur.

An invoker calls initialize() with a list of nodes ROME can use for the workers and controller.
To start a new aggregation, the invoker calls the createOverlay() procedure (step 1 in Figure 9)
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Table 8. Core ROME API

Signature Action Return value

initialize(nodes) Setup –
createOverlay(id, R, n, flags) Overlay configured List of nodes to send data and root node
send(id, Accumulator, node) Accumulator sent to node –
get(id, root) Get result from root Aggregation result
releaseOverlay(id) Overlay dissolved –

with an ID to uniquely identify the overlay. This function sends R and a number of leaf nodes
to the controller. A flag specifies whether to enable incremental computations (cf. Section 3.4.4).
If there are not enough available nodes, then the controller returns an error; otherwise, it sets
up an overlay and replies (step 2) to the invoker with a list of ROME workers where producers
should send their data and the worker that is the overlay root. The overlay is maintained until the
invoker calls releaseOverlay(). At that point, workers drop their connections and release any
cached partial results.

A leaf node forwards its local compute results to the assigned ROME worker by calling the
send() procedure (step 3). Each ROME worker independently merges the received Accumulators
from its children and then sends the result to its parent in the aggregation tree.

The node that receives the final result of the aggregation (the consumer) invokes get() (step 4).
When the aggregation is completed by the root, the result is returned (step 5).

Note that to request autodetection of R, when calling createOverlay(), an invoker simply spec-
ifies a negative R. Since ROME will not build the full aggregation tree, the reply received by the
invoker from the controller will contain an invalid root node. When the consumer invokes get(),
our framework transparently retrieves the actual root from the controller to obtain the aggregation
result.

5.3 Fault Tolerance

Our fault recovery strategy [30] is similar to that of Spark [60]. We maintain data from unaffected
portions of the overlay and only recompute what was lost. For some component recoveries, we rely
on the fault tolerance mechanism of the third-party system without hampering safety or liveness.
Below, we discuss the process for each component:

Controller: Apache ZooKeeper [24] provides services to build reliable distributed coordina-
tion including a hierarchical key-value store. ZooKeeper can be utilized to maintain the
controller’s state and make it fault tolerant. If ZooKeeper’s scalability is an issue for large de-
ployments with several hundreds of workers, then heartbeats from workers can be rerouted
with techniques similar as in Heron [31] (using special “heartbeat” daemons on separate ma-
chines that consume all the keep-alive heartbeat traffic) to further reduce load on ZooKeeper.
In our deployments, the controller load was low enough that this was not necessary.

Invoker: If a failure happens during createOverlay(), then the controller aborts the overlay.
Otherwise, the new instance of the invoker can recover details about a previously created
overlay using the unique overlay identifier used in creation.

Producer: The responsibility for producers remains with the invoking system. If a producer
fails after calling send(), then it is presumably restarted and calls send() again. The second
call is ignored unless the overlay is configured to accept incremental changes. If so, then the
new send() is treated like new data and data is reaggregated along that branch.

Consumer: Likewise, the third-party system is responsible for recovering consumers. Any
consumer wishing to receive the aggregation result can invoke get(). This can be done
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multiple times (it is idempotent) by different consumers as long as releaseOverlay() has
not been invoked.

Worker: Workers send heartbeat messages to the controller. They also notify the controller if
another worker is not responding to attempts to send data along the overlay. Upon suspect-
ing a worker failure, the controller creates a new worker at an unused node. It also notifies
the failed worker’s parent and children and sends them the address of the new worker. If a
worker fails after it sends all its results to its parent, then the new worker (and its children)
do not need to perform any additional task for recovery. Otherwise, the children need to
(re)send their results to the new worker. Observe that if a child of a failed worker misses a
portion of the result in its memory, then it needs to recursively ask for the corresponding
portions from its own children. ROME has no direct hooks into third-party systems. Thus,
in the case of producers part of such a failure, ROME kills the processes at the end of the
associated branches. This forces them to restart and re-send() their data. If no unused nodes
are available, then ROME returns an error to the invoker.

5.4 Integrating ROME

We designed ROME to be easy to integrate with popular more generic data analytics systems.
Developers should be able to accelerate their system when performing aggregations with mini-
mal implementation effort. In this section, we describe how we have integrated ROME in Apache
Spark [4] 2.4 and Apache Flink [3] 1.1. We chose a more stable version of Flink in favor of some
benchmarks, however, we adapted a very recent version of Spark to benefit from recent updates
(see Section 2.3) on treeReduce. For both systems, less than 350 LoC were needed for successful
integration.

5.4.1 Spark. We extend Spark’s API with a reduceWithROME() operator. Besides the aggrega-
tion function, the user can also provide the output to input ratio R. If R is unknown to the user,
then a negative value can be passed in its stead.

As discussed in Section 5.2, aggregators in ROME implement the Accumulator interface.
Our class SparkAccumulator wraps the aggregation function provided by a user and transpar-
ently reuses several utilities supplied by Spark (e.g., serializers). To execute reduceWithROME(),
the following changes to Spark were also required: (i) during the submission of a job using
reduceWithROME(), the Spark driver invokes createOverlay(); (ii) upon executing the job, each
Spark worker wraps the local data and the aggregation function into a SparkAccumulator and
sends it to ROME; (iii) the Spark driver invokes get() as many times as needed to get the partial
results from ROME and then does the final aggregation.

5.4.2 Flink. We implement a reduceWithROME() method to extend the ReduceFunction inter-
face. The method is parameterized by the ratio R. Again, a negative value can be passed to indicate
an unknown R. We also support a variant of ReduceFunction called GroupReduceFunction, which
runs an aggregation over an object list instead of a single pair.

As with Spark, integrating ROME with Flink requires little effort. We provide a
FlinkAccumulator to wrap the ReduceFunction provided by the user and some Flink-specific
utilities. The following changes are also made to Flink: (i) the Flink job manager calls the
createOverlay() procedure if reduceWithROME() is used; (ii) each Flink worker forwards a
FlinkAccumulator object with the results of local computation on its data partition to ROME using
the send() procedure; (iii) the Flink worker elected by the job manager for performing the final
aggregation retrieves the partial results from ROME via get().
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Fig. 10. Overlay comparison for various values of R.

6 EVALUATION

In this section, we evaluate our heuristics and ROME integrated into Flink and Spark in Amazon
AWS.

6.1 Overlay Evaluation

First, we evaluated the accuracy of our heuristics against one-size-fits-all overlays with simulated
workloads on m3.medium nodes started from a single image. All nodes were provided on demand,
so no network location or locality information was available. For the overlay evaluation, we mea-
sured aggregation latency in isolation from computation. To that end, aggregation was delayed
until all leaves completed computation. The controller then initiated aggregation and timed from
that point until the root node reported completion.

6.1.1 Varying Fan-in. Our first experiments verified our heuristics and balancing mechanism
on a system with 32 leaf nodes. The compute phase generated a set number of random integers.
Aggregators read the size of their input and use a given R to calculate their output size before
generating another list of random numbers to fill that output.

Figure 10 shows the average time to aggregate across 25 runs of each possible fan-in tree for
each of 3 R values both with and without the balancing mechanism. Overlays using the original
heuristic assigned children to an aggregator until the prescribed fan-in was met, then continued
with the next node in a left-to-right fashion. Balanced overlays applied the mechanism on the fan-
in before constructing the trees. This means there were often large jumps in performance when
the chosen fan-in crosses a threshold changing the height of the overlay.

We circle the performance of two overlays in each graph to highlight the comparison of our
performance to the overlay of fan-in n commonly seen in practice. The second overlay is unavoid-
able for total aggregation problems when aggregating by partition, such as with Spark without
treeReduce or Flink as described in Section 2.3.

For both R = 1
n

(Figure 10(a)) and R = n (Figure 10(c)) ROME’s heuristics correctly chose the

fastest aggregation overlay. This is especially visible with R = 1
n

, as the fastest overlay outper-
formed the slowest overlay of a single aggregation, used in frameworks aggregating by partition,
by 86%.

When R = n0.8 (Figure 10(b)), there was an overlay outperforming our chosen one by 6%. This
very small difference happened in one overlay adjacent to the chosen one, suggesting the heuristics
are successful at finding a nearly optimal overlay.

The difference between the balanced and unbalanced overlays is most obvious in the range
of [7, 31], where the unbalanced overlays become significantly more skewed. In this range all
the unbalanced overlays diverged from the balanced ones. This is most notable in the case of
R = n, when the idealized model [18] monotonically decreases, because it allows fractional overlay
height. Given that the trend increases in that range in practice and that the balanced overlays
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Fig. 11. Strategies for new data. Fig. 12. Varying input size. Fig. 13. Varying leaf node #.

thus outperformed the unbalanced ones, we can assert that our balancing mechanism effectively
improves performance.

6.1.2 Append-only Updates. Next, we tested our append-only update technique by appending
a single node to an existing 25-node overlay. Figure 11 shows the difference between creating a
new overlay with 26 leaves vs. aggregating the prior output with the new data.

Complete reaggregation took slightly longer than the original aggregation. Aggregating the
previous results with the new data was faster in all cases, although the amount of savings depended
on R, i.e., on the size of the output of the previous data. With R = 1

n
, aggregating the prior output

with the new data directly was 85% faster than using a new overlay. With R = n the benefit was a
15% speedup.

If the overlay was reused each time, then the second approach would require time equal to the
original aggregation time plus the time to aggregate those new results with the data from the new
node. In all cases that combined time was greater than the cost of using a new overlay. Thus, it
makes sense to use this approach only for append-only data.

6.1.3 Input Size and Distribution. To fully understand the performance of ROME, we next con-
sidered the effects of the number of leaf nodes and the input data size. These are environmental
parameters imposed by the user and problem and are thus not configurable by ROME. Nonetheless,
both of course significantly affect performance. For each of the chosen values of R, we varied the
number of leaves n from 3 to 30 and, independently, the input size from 25,000 elements per leaf
to 200,000.

Figure 12 shows the effect of changing the input size across 25 nodes using the same R values
as the earlier experiments. The final two points for R = n are omitted, as memory requirements at
the root exceeded the available RAM, and latency increases dramatically with disk accesses. With
the exception of the omitted points, latency is very predictably correlated with the input size.

Figure 13 shows how the number of leaves affects the latency, with the input size per leaf re-
maining the same. Thus, a cluster with 20 leaves is processing twice the total amount of input data
as a cluster of 10 leaves. Observe that smaller values of R, which have smaller fan-ins and thus
higher parallelism, are less sensitive to changes in the number of nodes. The latency increased in
a sublinear fashion relative to the number of leaves, suggesting that the job should be parallelized
to a larger degree when possible.

For R = n, the relationship is predictably linear. This is not surprising, given that all aggregation
takes place at a single node, which means that we were increasing the workload of a single machine
by a factor equal to the change in fan-in.

6.2 Integrated Evaluation

We compared performance of unmodified versions of Spark and Flink to versions integrated with
ROME. In the unmodified systems, each worker node was placed on a separate AWS instance and
used the whole available main memory.
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In the case of Spark+ROME (respectively, Flink+ROME), a ROME node is colocated with a Spark
(or Flink) worker node and uses half of the instance’s memory. We differentiate between ROME-
manual and ROME-auto. The first represents a user providing the correct value of R, while the
second represents a user providing a negative value, meaning our system autodetects R with a
single layer of aggregation (cf. Section 3.2). Additional details on how ROME is integrated into
Spark and Flink can be found in Section 5.4.

Flink and Spark use a fixed fan-in of the number of worker nodes. We also compared to Spark
using treeReduce to specify tree depth (see Section 2.3 for a detailed discussion of this functional-
ity). For Spark using treeReduce, the user sets only an upper bound of the total tree height (depth)
of the aggregation tree. Hence, Spark is forced to fit the aggregation overlay to the number of
partitions, workers, and given (max) height, which ignores the actual aggregation function. Since
treeReduce uses a depth of 2 as default, but takes a user-provided depth as an upper bound, we
show results for both treeReduce with default depth and treeReduce(d) with d equivalent to the
optimal (but unbalanced) overlay of ROME.

We chose three experiments exploring behavior in different ranges of R. The first experiment
considers a longest common substring problem where R < 1. The second experiment considers a
top-k sort on not pre-partitioned data comprising two aggregation phases, with n ≥ R ≥ 1 and
R = 1, respectively. The third experiment runs an iterative algorithm—a gradient descent with
mini-batches with the goal of learning a classification problem. Each iteration runs an aggregation
phase with R = 1.

We run each experiment 10 times and report the average and standard deviations as error bars.

6.2.1 Longest Common Substring. We ran the longest common substring (LCS) problem on
a DNA dataset [49]. Worker nodes were assigned unique DNA sequences from a section of the
genome. Each worker built an suffix tree containing all the substrings contained within its se-
quence. This data structure was then compared to those from other workers to remove substrings
that are not contained in all sequences. Since the output size was smaller than the input, the fan-in
for ROME is 2.

Because of the amount of computing power and the memory requirement to aggregate at a
single node with Flink and Spark, we chose m3.2xlarge nodes on AWS, which have 8 virtual CPUs,
30 GB of RAM, and 2 SSDs for permanent storage. Since the suffix trees necessary for aggregation
are about 700 MB per sequence, Flink is unable to process the results from 32 sequences, even with
30 GB of RAM. We thus run Flink with 16 sequences, but Spark with 16 and 32 sequences.

We run three variants of this test. The first, labeled “16 Seq. (Agg),” reads the precomputed
data structures from disk. The time to read 700 MB from an SSD is minimal, so this essentially
isolates the aggregation phase for sequences without needing to modify Flink or Spark with a
stopping mechanism between compute and aggregate to synchronize a timer. The second test, “16
Seq. (Comp-Agg),” represents the entire compute-aggregate workload for 16 sequences including
building the LCS structures online from the DNA sequence. Similarly, we have a “32 Seq. (Comp-
Agg)” test, which runs the entire compute-aggregate job with 32 sequences on 32 nodes. The Comp-
Agg variants show how much effect the improvement on aggregation time has on the total job
latency. The times in Figures 14 and 15 are all normalized to the time that ROME-manual (fastest
system) takes.

Figure 14 shows the results when running Flink. Flink+ROME improves latency by a factor of
3.68 over Flink when reading the precomputed data structures (“16 Seq. Agg”). Computing the 16
LCS structures online increases job latency, which lowers the benefit of running Flink+ROME—
a speedup of 2.42 over Flink when considering the entire compute-aggregate workload for 16
sequences (“16 Seq. Comp-Agg”). We see that if a user provides R to Flink+ROME then that brings
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Fig. 14. LCS with Flink. Fig. 15. LCS with Spark.

almost no benefit over ROME to autodetect R, since autodetection uses the optimal R anyway
during the probing phase.

Figure 15 shows the LCS problem using Spark with 16 and 32 DNA sequences. The 32 Seq.
(Comp-Agg) test taxes the standard Spark system. In part because the memory requirement at the
aggregating node is very close to the total allotment, the execution takes 260% of the time of the
comp-agg job on 16 sequences. The fastest configuration is Spark+ROME when R is provided, re-
ducing total time for the entire compute-workload by a speedup of 21% and 80% over vanilla Spark
when working on 16 and 32 sequences, respectively. The overhead of automatically detecting R is
less than 1%, simply because autodetection runs the initial aggregation phase with the optimal R.

Using treeReduce for the 16 sequences with the manually calculated ideal height (4) shows same
performance as ROME when running with autodetection. However, treeReduce becomes less ef-
ficient when running the problem of 32 sequences (using optimal height 5), adding an overhead
of almost 5% compared to ROME with autodetection. Spark treeReduce with the default config-
uration (height 2) shows similar performance for the small problem of 16 sequences, but adds a
penalty of 11% over ROME with autodetection when running the problem of 32 sequences.

The sublinear relationship between latency and the number of machines matches the earlier
results and shows ideal overlays are more important as data sizes grow.

6.2.2 Top-k Sort. Next, we analyzed Wikipedia page accesses [55] to find the top-k most visited
pages. We distributed 35.6 GB of relevant data (with a total of 706, 639, 151 words), part of a much
larger dataset available for more expressive querying, across 32 i3.large workers. The benchmark
calculated each page’s score in a first aggregation phase (R-ratio s.t. n ≥ R ≥ 1). Then, in a second
aggregation phase each compute task found the k most visited pages in its partition. Aggregation
involved finding the k highest scoring pages from all those, so the R-ratio of the second phase is 1.
This benchmark stresses the R autodetection of ROME, since ROME uses a non-optimal temporary
fan-in while running the first intermediate aggregation.

Figure 16 shows the completion time for 3 different values of k . We normalize the values in this
graph to the time Flink+ROME takes when R is provided to determine the pages with the top k%
most accessed pages. When k is 0.1%, autodetecting R adds less than 3% overhead. Running vanilla
Flink requires almost 2 times as long as running Flink+ROME.

Increasing k to 0.2% minimally impacts the compute phase but doubles the aggregation load.
As a result, the Flink vanilla deployment adds a slowdown of factor 2.3 compared to Flink+ROME
with manual configured R. Flink+ROME autodetection overhead grows to 7%.

When we increase k to 0.5%, garbage collection comprises a third of the resulting runtime for
vanilla Flink. In contrast, garbage collection does not affect either Flink+ROME setup despite the
reduced RAM allocation to each worker. As a result, ROME shows a speedup of almost 2.7 over
vanilla Flink, with only 9% overhead to autodetect R.
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Fig. 16. Top-k with Flink. Fig. 17. Top-k with Spark.

Figure 17 shows the Top-K sort problem when using Spark with different configurations for
k . Spark shows a more efficient resource usage compared to Flink, so we run the problem with
larger values of k . We normalized the values in this graph to the time ROME takes with manual
configured R.

For the smallest k (0.1) all systems perform similarly (vanilla Spark adds a penalty of 4% over
ROME), since the aggregation load is very small. Increasing k to 0.5% leads to five times higher
aggregation load, which unveils differences in performance. ROME with autodetection adds 1.9%
overhead compared to manual configuration of ROME, but vanilla Spark needs 43% more time.
With Spark’s default depth of 2, treeReduce is 11% slower than ROME; using treeReducewith the
same depth as ROME is 6% slower.

When k was increased to 1% the aggregation overlay became even more important. Autode-
tection of ROME adds 6% overhead compared to a manually configured ROME. treeReduce with
manually set optimal tree depth (same as ROME) adds 16%, while default treeReduce adds 21%.
vanilla Spark took 3× more than ROME.

This experiment also showed a worst-case scenario for ROME-auto during the first experiment
phase with n ≥ R ≥ 1. When R is autodetected there must be a level of aggregation to learn R,
adding overhead in this case.

6.2.3 Gradient Descent. Gradient descent (GD) is an iterative method for optimizing a differ-
entiable objective function by updating the parameters of the function in the opposite direction
of the gradient of the function. GDs are widely used by many data-intensive machine learning
tasks including training of neural networks [43]. Mini-batch GD is a variant that uses a small (ran-
domly sampled) subset of the data to perform the GD update (instead of the complete dataset in
each iteration). Spark MLlib1 provides a GD implementation supporting mini-batching. In each
iteration, a mini-batch uses an aggregation task with a treeAggregate overlay (used internally by
treeReduce) for computing and summing up the subgradients, hence an aggregation with R = 1.

In this benchmark, we trained a Support Vector Machine (SVM) using Spark’s MLlib
(SVMWithSGD) to perform binary classification. We used a 21.4 GB large dataset from KDD Cup
2012 [47], which holds feature vectors and corresponding classification; in total, 55 million binary
features [27].

We compare Spark using the default implementation of MLlib’s SVMWithSGD (using
treeAggregate) and a modified version using ROME as an aggregation overlay using 32 i3.xlarge
workers. The ROME aggregation function uses the same logic as the default SVMWithSGD function,
hence only 118 LoC were changed for integrating the ROME overlay (mostly accounting for wrap-
ping/boilerplate code). We set the number of iterations (from 1 to 100) used by SVM to learn and

1https://spark.apache.org/mllib/.
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Fig. 18. Gradient descent with Spark. Fig. 19. Gradient descent time savings.

Table 9. Network Optimizations

No colocation Colocation

No root bypass 166.4± 5.1 158.3± 3.5
Root bypass 160.5± 4.1 154.2± 2.6

Average and standard deviation in seconds.

ignore earlier convergence, so all iterations run. Using ROME for aggregation does not change
PR/ROC (quality) so we focus again on total running time.

Figure 18 shows the time for varying number of iterations and Figure 19 the savings of ROME
over Spark. We normalized the values in this graph to the time ROME needs for 1 iteration (2.33
seconds). When running a single iteration, Spark is 11% slower than ROME, even though ROME
needs to set up a larger aggregation overlay. With increasing number of iterations, the advantage
of ROME over Spark increases. At 10 iterations, ROME runs 28% faster, at 20 iterations 40% faster,
and at 100 iterations 50% faster than Spark. The trend indicates higher savings with more iterations.

6.2.4 Parent-child Colocation and Root Node Bypass. Our next tests were for the two location-
based optimizations. Since both the root node bypass and node colocation optimizations were
targeted at reducing network latency by decreasing the amount of traffic, we reran the top-k ex-
periment with k = 1%. With its slightly higher network component, this test was best suited to
see small but significant network latency savings. We reran the test using four configurations of
Spark+ROME—with and without root node bypass, with and without parent-child colocation (see
Table 9). The time taken with both mechanisms applied was 7.3% faster than when neither was
applied. Applying only colocation or root node bypass only saved 4.9% or 3.5%, respectively. The
combined savings was less than the sum of the two, because we could not colocate the final parent
in the case of root bypass.

6.3 Autodetection

Next, we investigate the R ratio autodetection of ROME when running the top-k experiment with
Spark (Section 6.2.2). We ran the experiment on i3.large instances with a group of 16 workers and
32 workers and vary k from 0.1% to 1%. We report the measured R ratio during the autodetection
phase when running the aggregation phase to find the k most visited pages in each task’s partition.
In theory, if all partitions have at least k unique (no overlaps across partitions) pages, and if all
partitions are of same size, then the R ratio should be 1.

Figure 20 shows the measured R ratio when running ROME with Spark on the same dataset, but
using 16 and 32 workers, with varying k . Hence, a bar for 16 workers summarizes all 8 reported
R ratio values of the partial aggregation. When running with 16 workers, the R ratio starts at .96
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Fig. 20. ROME R ratio autodetection running top-k with Spark.

and goes down to .78 at k = 1%. When running the same experiment using 32 workers, the R ratio
starts at .96 but goes down to .79 at k = 0.4% and grows to 1.16 at k = 1%. Furthermore, standard
deviation was less than 0.01 for all configurations. Across all configurations of this experiment,
the average R ratio is 0.88 with standard deviation of 0.10.

This experiment shows the advantage of ROME’s autodetection over a manually configured
system, simply because the R ratio depends highly on the actual setup of an experiment. Not only
the input data can cause a change in the R ratio, but also a change in the number of workers or a
parameter update of the aggregation function. This is one of the key benefits of using ROME over
other tree overlays like Spark’s manually configured treeAggregate—ROME automatically adapts
to the actual situation.

The very low standard deviation for each of the configurations highlights that within a single
setup, R ratio does not vary much. This allows ROME to run autodetection only once and use the
detected value for the remaining aggregation without any drawback.

6.4 Fault Tolerance Overhead

This experiment used the top-k most visited pages of Wikipedia and was run 31 times [30]. ROME
used a fan-in of 3 (see Figure 21). We ran the experiment on i3.large spot instances. Each of the
32 nodes contained a Spark worker and a ROME worker. The controller node ran Spark’s cluster
manager and ROME controller. We also deployed a Spark driver on a separate instance.

We first evaluated the overhead of providing fault tolerance in ROME, as shown in Figure 22.
This was the only experiment that ran ROME without fault tolerance. Because this experiment was
solely testing ROME internal functions, we show only the results with Spark. The mean execution
time was around 44 seconds with and without fault tolerance. The standard deviation was around
2 seconds for both cases. This shows that ROME’s fault tolerance has negligible impact.

To evaluate the recovery time under failure, we put a tier two ROME worker node along with its
parent and one of its children on the same worker node and crashed that worker node at different
stages of computation and before the second tier node finished its computation (black node in
Figure 21). We observed that upon failure the latency increased by 50%.

7 RELATED WORK

The data analytics systems discussed in Section 2.3 are popular in part because of their power
to adapt to current processing needs. Data analytics has quickly outgrown many early attempts
at aggregation, which required special architecture, such as processors in tree networks and
fully parallelizable functions [11, 29]. Aggregation is so fundamental to data analytics that the
MapReduce framework has been modified to include aggregation more than once. Incoop [6] ex-
ploits Combiners to aggregate between the map and reduce phases, and Map-Reduce-Merge [58]
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Fig. 21. Failure affecting multiple tree levels. Fig. 22. ROME fault tolerance.

implements aggregation after the reduce phase. Yu et al. [59] also attempt to optimize aggregation
between phases. All these approaches attempt to add the necessary aggregation functionality to
MapReduce but do not consider the effect of topology.

Kumar et al. [32] consider the need for an aggregation overlay to respond with the most accurate
result available within a deadline. The proposed solution determines the probability of a child node
providing additional results within a given timeframe, then decides to wait or forward the current
known results for the parent node to meet its deadline. This work is complementary to our focus
on overlays.

Astrolabe [52] and STAR [26] use a holistic data management approach and optimize aggrega-
tion within their given hierarchies. Astrolabe uses gossip protocols for large-scale data propaga-
tion. STAR, extending the work of SDIMS [57] to build on top of distributed hash tables, has more
flexible and configurable aggregation options but tries to use its topology rather than a prescribed
fan-in. SDIMS allows the user to specify an aggregation precision with the understanding that
very low latency is sometimes a priority over perfect answers. Kumar et al. [32] also consider the
ability to selectively drop data during processing to minimize latency for applications that need
very fast aggregation.

PIER [23] is another system built on DHTs to distribute workload, this time for database use. The
overlays are once again restricted by the underlying framework, but the system itself efficiently
aggregates results to respond to queries.

While not specific to aggregation, Kim et al. [29] extend the work by Cheng and Robertazzi [11]
to optimize load distribution on processors connected by a tree network. The newer work maxi-
mizes parallelization for fastest completion, because there is no computation to aggregate results
from each processor. Work with sensors optimizes overlays for power consumption while con-
forming to the routing restrictions imposed by the location and communication capabilities of
sensors [9, 48]. TinyDB [35] furthers this in determining when to sample, which is equivalent to
local computation.

Valerio et al. [51] consider aggregation when servers span multiple administration domains that
do not trust each other. Their auditing system detects if a server may bias the aggregation result
when manipulating the aggregation overlay. We assume all nodes are within the same administra-
tion domain.

Morozov and Weber [40] consider merge trees for distributed computations. Their approach
monitors data traits in different branches and recomputes a better tree, sparsifying the trees on
different computations nodes to scale the computation. It does not optimize for aggregation func-
tions or extrapolate to find optima.
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Naiad [41] considers aggregation as part of iterative or cyclic computations. It allows distributed
data access and updates to be interleaved and is not aggregation-specific. Like resilient distributed
datasets put forth by Zaharia et al. for Spark [60], Naiad relies on data retained in memory. This
offers latencies that can be orders of magnitude better than with disk accesses. This addresses the
problem raised by Venkataraman et al. [53] that data access is a significant bottleneck for iterative
calculations on many distributed frameworks.

While users may be able to use our heuristics to manually configure aggregation in in-memory
distributed data analytics systems like Spark [60] and Presto [53], as mentioned, this approach may
fail when datasets are yet unknown, which is commonly the case with non-initial computation
phases.

One work that does explicitly consider topology is CamCube [1], which allows users with full
environmental control to define neighbor nodes that bypass traditional network routing to mini-
mize latency. Each machine is limited to six such neighbors, but the configuration has been shown
to decrease latency in some jobs using a MapReduce style framework with built-in aggregation
called Camdoop [14].

LightSaber [50] is a recent stream processing engine, optimized for window aggregation queries.
Lightsaber focuses on single server setups with a large number of cores and a large amount of
shared memory. In this context, several performance gains result from optimizations, such as
thread pinning, NUMA-aware scheduling, static memory allocations, SIMD instructions, and multi-
core computations. In contrast, ROME is designed for large-scale distributed systems, where the
network communication cost must be taken into account and where some low-level optimizations
may not be easily exploitable.

Distributed machine learning systems need to move model parameters across different nodes
to avoid divergence during the training phase, possibly incurring high communication costs.
Blink [54] focuses on multi-GPU servers with high-bandwidth NVLink/NVSwitch inter-GPU com-
munication: Given a topology of the allocated GPUs, it aims at the optimal communication rate
by packing spanning trees and by optimizing the amount of data transferred across the GPU links.
MLNet [36] tackles the parameter synchronization problem by proposing instead a customized
communication layer, which can optimize the communication through an aggregation overlay;
however, this is built using a fixed and user-defined fan-in. SwitchML [45] and ATP [33] take
a step further by carrying out the aggregation phase directly, as an in-network service, on top
of the programmable switches available in the network. Differently from SwitchML, ATP also
considers the multi-tenant scenarios where multiple jobs run at the same time in the network.
Since programmable switches come with hardware restrictions, PANAMA [20] proposes to run
the in-network service on top of FPGA-based devices. Finally, KungFu [37] proposes to perform
real-time monitoring of the distributed ML system to detect when the communication functions in-
terfere with the training process: When the training throughput drops due to network contention,
KungFu automatically adjusts the topology to reduce the use of contended network links. While
these works involve data aggregation, they focus on specific application goals and target specific
hardware setups.

Our initial intuition of using theR ratio for optimizing the execution of basic compute-aggregate
tasks was presented at a workshop [17], however, without thorough consideration of dealing with
real-life (discrete) settings or implementation experience. The formal aspects of the problem were
studied subsequently [18], again in an idealized setting without considering implementation, fur-
ther adding focus on the case of data streaming.

Finally, Chuprikov et al. [12, 13] investigate compute-aggregate problems in setups where net-
work links have different capacities/costs and “hard” topological constraints (e.g., compute nodes
may not aggregate) focusing on hardness of optimal distribution and lower bounds.
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8 CONCLUSIONS

We present ROME to construct and maintain low-latency aggregation overlays. ROME chooses
an overlay based on the ratio of aggregation output to one input—a ratio highly characteristic
of performance of distributed overlay-based aggregation—which we call R. Our targeted reuse of
nodes further decreases latency and resource requirements. We empirically show our overlays are
nearly, if not actually, optimal.

We propose that R is easy to find in most practical scenarios, at least to the granularity of the
ranges R < 1, R = 1, and R ≥ n identified by our heuristics. If such estimation is not possible,
then the user can inform our system to compute R on-the-fly via partial aggregation with low
overhead—9% in the worst case in our experiments.

We integrate ROME into Flink and Spark and validate the effects of the overlay in end-to-end
distributed data analytics with real-world data and problems. ROME decreases latency by a factor
of up to 3 over unmodified systems that do not use tree overlays for aggregation, and up to 21% and
16% over a Spark deployment using treeReduce with default and manually tuned configurations,
respectively. When running iterative algorithms with many aggregation phases, ROME decreases
total runtime by up to 50% over the fastest Spark configuration. These improvements are despite
sharing the RAM allocation between two systems. Even with the reduced RAM available, ROME
completes some applications Flink and Spark are unable to handle due to memory constraints.

In ongoing work, we are considering optimizing the computation and aggregation in tandem
instead of considering aggregation in isolation (e.g., calculating an optimal number of leaf nodes
and specific optimizations for iterative computation), supporting streaming-type aggregation (cf.
Reference [18]), and the addition of an additional phase exploiting the ability to perform basic
computations such as aggregation directly on switches [22, 38, 44], and (smart) network interface
controllers.

Another interesting aspect is how ROME could cope with stragglers, i.e., tasks with extremely
large running times that may slow down the entire job computation when their results are needed
for computing the final job output. With ROME, stragglers may emerge within the producers
or the workers. In both cases, ROME could monitor the running times of the producers or the
workers and, in case of significant time skewness, it may choose to dynamically reconfigure the
overlay: Non-straggler workers should continue to aggregate using a near-optimal overlay, while
straggler nodes could send their output directly to the root node of the aggregation overlay. In
other words, ROME could use a strategy that is similar to the one it adopts in case of incremental
updates (Section 3.4.4). This strategy should minimize the aggregation latency, assuming that the
stragglers are restricted to a limited number of tasks.
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