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Abstract
Distributed quantum systems and especially the Quantum Internet have the ever-increasing potential to
fully demonstrate the power of quantum computation. This is particularly true given that developing a
general-purpose quantum computer is much more difficult than connecting many small quantum devices.
One major challenge of implementing distributed quantum systems is programming them and verifying
their correctness. In this paper, we propose a CSP-like distributed programming language to facilitate the
specification and verification of such systems. After presenting its operational and denotational semantics,
we develop a Hoare-style logic for distributed quantum programs and establish its soundness and (relative)
completeness with respect to both partial and total correctness. The effectiveness of the logic is demon-
strated by its applications in verification of quantum teleportation and local implementation of non-local
CNOT gates, two important algorithms widely used in distributed quantum systems.

1 Introduction

Quantum computers exploit quantum phenomena such as superposition and entanglement to perform
computation. The past five years have seen exciting progresses in building small-scale quantum
processors and the two state-of-the-arts, Google’s Sycamore and IBM Q Rochester, both have 53
qubits. While these small quantum devices already demonstrate certain advantages over classical
supercomputers, large scale general-purpose quantum computers are still far from reach.

The Quantum Internet has been proposed as a key strategy to provide large-scale quantum
computing [25, 37, 26, 10]. The idea is to connect many small quantum devices by using quantum
communications and this network of quantum devices will then have the functionality of a (virtual)
large-scale quantum computer. On July 3, 2020, the Department of Energy of the United States
proposed a 10-year roadmap for a national Quantum Internet under the $1.2 billion National Quantum
Initiative Act. Several important steps have been experimented in the past two years. In February
2020, scientists from Argonne and the University of Chicago successfully entangled photons across a
52-mile underground network of optical fibre. In April 2021, a team of researchers from QuTech in
the Netherlands reported realisation of the first entanglement-based quantum network (connecting
three quantum processors) [30].

As pointed out in [26], software-defined networking (SDN) technology is particularly important
for quantum networks, because under current technical conditions, quantum memories have a very
short lifespan. On the other hand, programming quantum networks is much harder and more error-
prone than programming classical ones due to the possible existence of entanglement between
different systems and non-commutativity of quantum observables and operations.

Inspired by Apt’s work [2] on distributed programming based upon Hoare’s CSP (Concurrent
Sequential Processes) [21], we define in this paper a programming language for distributed quantum
systems. Recall that a distributed system consists of a number of spatially separated processes
that work independently using their private storage, but communicate by explicit message passing.
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2 Verification of Distributed Quantum Programs

Our language supports both classical and quantum operations of individual processes. However,
to make the presentation simpler, we only consider classical communication between different
processes. Note that this is not a serious limitation, as generic quantum communication can be
achieved by using the teleportation protocol [5] provided that entanglement is pre-shared between
relevant parties. Furthermore, communication is achieved in a handshaking (or rendezvous) way;
that is, the sender can deliver a message only when the receiver is ready to accept it at the same
moment. We leave the asynchronous communication of quantum states as future work. Based on the
notion of classical-quantum assertions defined in [16], we propose Hoare-style logic systems for both
partial and total correctness of distributed quantum programs, and prove their soundness and (relative)
completeness. The effectiveness of these logic systems are demonstrated through the verification of
quantum teleportation and local implementation of non-local CNOT gates, two important algorithms
widely used in distributed quantum systems. It is worth noting that since the language we consider
includes probabilistic assignments, this paper actually provides a sound and relatively complete Hoare
logic for distributed probabilistic programs as a by-product.

Technical Contributions: While the semantics and proof systems in this paper are defined in a
way similar to that of [16], the extension from sequential quantum programs to distributed quantum
programs is challenging.

Firstly, the operational semantics of quantum measurements and probabilistic assignments in [16]
are given in a ‘nondeterministic’ way, with the probabilities of different branches being encoded
in the quantum part of the configurations. This follows a tradition originated in [32] and adopted
in [39, 40] that simplifies both notationally and conceptually the semantics of (deterministic) quantum
languages, especially the description of non-termination. However, distributed quantum programs
investigated in this paper exhibit real nondeterminism (in the transition systems for operational
semantics) due to the possible interleaving of local actions and communication of different sequential
processes. To distinguish these two types of nondeterminism, we model quantum measurements
and probabilistic assignments in a (standard) probabilistic way. Accordingly, the transition relation
between configurations has to be lifted to probability distributions of configurations.

Secondly, despite that the entire distributed program may exhibit nondeterminism even if each
individual process is deterministic, we show that different computations from a given configuration
actually obtain the same classical-quantum state, thanks to the disjointness of the (classical changeable
and quantum) variables accessible by different processes. This result clears the obstacle in defining
the denotational semantics of distributed quantum programs and ensures that a distributed program
can be sequentialised into a deterministic one without affecting its semantics.

Thirdly, the proof systems presented in [16] are designed for sequential quantum programs. New
techniques are developed in this paper in extending them to distributed programs and proving their
soundness and relative completeness.

Organisation of the paper: In the rest of this section, we briefly discuss some related works and
present quantum teleportation as a motivating example. The remainder of this paper is organised as
follows. In Sec. 2, we present the three layers of the syntax of the distributed quantum programming
language, which is followed by its operational and denotational semantics in Sec. 3. In particular, we
prove that distributed quantum programs are semantically deterministic in the sense that different
computations from a given configuration always give the same classical-quantum state. We then show
in Sec. 4 how a distributed quantum program can be sequentialised without affecting its semantics.
Based on the notion of classical-quantum assertion, we present a Hoare-style logic in Sec. 5 for
distributed quantum programs and establish its soundness and (relative) completeness for both partial
and total correctness. The last section concludes this paper with an outline of future works. Due to
space limitation, we omit all proofs as well as the verification of quantum teleportation and local
implementation of non-local CNOT gates. Interested readers may find these details in the appendix.
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1.1 Related Works

The following three lines of previous works are closely related to this paper.
Quantum Process Algebras: Process algebra is the mainstream approach to formally model and

reason about quantum communication systems. Since 2004, several quantum process algebras such
as QPAlg [23], CQP [17], and qCCS [13, 42, 15] have been introduced and adopted in verification
of popular quantum communication protocols such as teleportation [5] and superdense coding [6].
Following [2] (also see [1], Chapter 11), we choose to use (a subset of) a quantum extension of process
algebra CSP as our language for programming distributed quantum systems, but use a Hoare-style
logic to reason about their correctness.

Quantum Hoare Logic: Hoare logic provides a syntax-oriented proof system to reason about
program correctness [20]. In recent years, Hoare-style logics for quantum programs have been
developed in [9, 14, 24, 39, 35, 16]. However, these logic systems are designed for the verification of
sequential quantum programs, thus are not suitable for the distributed ones considered in the current
paper. Nevertheless, our definition of semantics of distributed quantum programs is based on the key
notions such as classical-quantum states and assertions introduced in [16].

Programming with Quantum Communication: The authors of [33] presented some interesting
ideas of specifying and analysing quantum communication in a predicative programming language.
However, the key technique for verification of quantum communication protocols developed in [33]
(and in predicative programming [19] in general) is refinement, while we use a Hoare-style logic here.

1.2 Motivating Example — Quantum Teleportation

Quantum teleportation was proposed by Bennett et al. [5] for transmitting quantum information (e.g.
the exact state of an atom or photon) via only classical communication but with the help of previously
shared quantum entanglement between the sender and the receiver. It is one of the most surprising
examples where entanglement helps to accomplish a certain task that is impossible in the classical
world. A large number of quantum communication protocols such as quantum gate teleportation [18],
port-based teleportation [22], quantum repeaters [7], and measurement based quantum computing [31]
have been designed based on it, and some of them have been experimentally implemented [29].

Let us consider the simplest case of teleporting a qubit. Assume that Alice and Bob live far apart
and there is only a classical communication channel between them. But Alice wants to send quantum
information, say a state |ψ〉 , α0|0〉+ α1|1〉 of qubit q, to Bob. How can she do it? This seems a
task impossible for her to accomplish because it may take infinite amount of classical information to
describe the complex amplitudes α0 and α1. However, if Alice and Bob share entanglement; more
precisely, if they possess qubits q1 and q2 respectively and these two qubits are in the Bell state
|β〉 , 1√

2 (|00〉+ |11〉) (also called EPR pair), then they can accomplish the task using the following
protocol, called teleportation:

(1) Alice interacts qubit q in state |ψ〉 and her half q1 of the shared EPR pair |β〉 by performing first
the controlled NOT (CNOT for short) on q, q1 and then the Hadamard gate H on q, where:

the CNOT acts as follows: if the control qubit q is in |0〉 then the target qubit q1 is left
unchanged, and if q is in |1〉 then q1 is flipped between |0〉 and |1〉;
the H gate turns basis states |0〉 and |1〉 to their equal superposition |+〉 and |−〉, where
|±〉 = 1√

2 (|0〉 ± |1〉), respectively.
(2) Alice measures her qubits q, q1 (in the standard basis), and sends the obtained results – classical

bits z, x through the classical channel to Bob.
(3) On his half q2 of the EPR pair, Bob performs operation X whenever the received classical

information x = 1, and then Z whenever z = 1. Here X and Z are Pauli operations with
X|i〉 = |1− i〉 and Z|i〉 = (−1)i|i〉 for i = 0, 1.
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Figure 1 Quantum Teleportation. The wires from top to bottom represent qubits q, q1, and q2 respectively.
Furthermore, q and q1 belong to Alice while q2 belongs to Bob.

Quantum teleportation can be visualised as the quantum circuit in Figure 1. What surprises us is that
at the end Bob’s qubit q2 is in state |ψ〉. In other words, Alice sends the quantum information |ψ〉 to
Bob only by classical communication of two bits in step (2), even without knowing the amplitudes
α0 and α1 of |ψ〉. Of course, this is achieved by consuming some entanglement (At the end of the
protocol, qubits q1 and q2 are no longer entangled).

2 A Language for Programming Distributed Quantum Systems

We propose a programming language to describe distributed quantum systems. The syntax has three
layers, introduced in the following three subsections respectively.

2.1 Sequential quantum programs

For the first layer, we extend the classical-quantum while language defined in [16] with alternative
and repetitive commands [11]. We assume two basic types for classical variables: Boolean with
the corresponding domain DBoolean , {true, false} and Integer with DInteger , Z. For
each integer d ≥ 1, we assume a basic quantum type Qudit with domain HQudit, which is a
d-dimensional Hilbert space with an orthonormal basis {|0〉, . . . , |d− 1〉}. In particular, we denote
the quantum type for d = 2 as Qubit. Let cVar , ranged over by x, y, · · · , and qVar , ranged over by
q, r, · · · , be countably infinite sets of classical and quantum variables, respectively. Denote by type(v)
the type of a (classical or quantum) variable v. For any finite subset V of qVar , letHV ,

⊗
q∈V Hq,

whereHq , Htype(q). In this paper, when we refer to a subset of qVar , it is always assumed to be
finite.

With the above notions, a sequential quantum program is defined by the following syntactic rules:

S ::= skip | abort | x := e | x :=$ g | x := measM[q̄] | q := 0 | q̄ ∗= U | S0;S1 |
if B1 → S1 � . . .� Bn → Sn fi | do B1 → S1 � . . .� Bn → Sn od

where S and Si are sequential quantum programs, x a classical variable in cVar , e a classical
expression with the same type as x, g a discrete probability distribution overDtype(x),Bi a Boolean-
type expression, q a quantum variable and q̄ , q1, . . . , qn a (ordered) tuple of distinct quantum
variables in qVar ,M a measurement and U a unitary operator on dq̄-dimensional Hilbert space with

dq̄ , dim(Hq̄) =
n∏
i=1

dim(Hqi
).

Sometimes we also use q̄ to denote the (unordered) set {q1, q2, . . . , qn}. Let |q̄| , n be the size of q̄.
We write x := meas q̄ for x := measMcom[q̄] whereMcom , {Pk , |k〉〈k| : 0 ≤ k < dq̄} is
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the projective measurement according to the computational basis ofHq̄ . We always write |k〉 for the
product state |k1〉 · · · |kn〉, where k =

∑n
i=1 kidqi+1 . . . dqn

.
The alternative and repetitive commands above are sometimes abbreviated as

if �ni=1Bi → Si fi and do �ni=1Bi → Si od

respectively. For simplicity, we only consider deterministic sequential quantum programs in this paper.
To this end, we assume that the Bi’s are mutually exclusive; that is, for each i, Bi →

∧
j 6=i ¬Bj

is a tautology. However, we do not require
∨n
i=1Bi ↔ true. Under this assumption, a guarded

command Bi → Si in if �ni=1Bi → Si fi will be chosen to execute once its guard Bi evaluates to
true. If all guards evaluate to false, the alternative command will lead to a (classical) failure state,
which is a feature introduced in [11] but does not exist in the while language of [16]. The selection
of guarded commands in do �ni=1Bi → Si od follows a similar way, with the only difference that
after termination of a selected Si the whole command is repeated. Moreover, in contrast with the
alternative command, the repetitive command properly terminates if all the guards evaluate to false.

2.2 Sequential quantum process

To describe the second syntactic layer for distributed quantum programs, we adopt a subset of Hoare’s
CSP (Communicating Sequential Processes) [21, 8], following the approach in [1]. Let chan be a set
of (classical) channel names, ranged over by c, d, . . . . An input command is of the form c?x, while
an output command is of the form c!e, where c ∈ chan is a communication channel, x ∈ cVar a
classical variable, and e an expression. Intuitively, c?x expresses the request to receive a classical
value along channel c. Upon reception this value is assigned to variable x. In contrast, c!e expresses
the request to send the value of expression e along channel c. A generalised guard is of the form
g , B;α where B is a Boolean expression, and α an input or output command. In particular, if
B ≡ true, then we denote g simply as α.

Let α1 and α2 be two input/output (i/o) commands. They are said to match if they refer to the
same channel, one of them is an input, and the other one output with the same type. Given two
matched i/o commands α1 , c?x and α2 , c!e, the communication effect of α1 and α2 is defined to
be the program statement x := e; that is,

Effect(α1, α2) = Effect(α2, α1) , x := e.

I Definition 1. A sequential quantum process has the form:

S ::= S0; do �mj=1Bj ;αj → Sj od

where m ≥ 0, S0, S1, . . . , Sm are sequential quantum programs defined in the previous subsec-
tion. Again, we assume that Bj’s are mutually exclusive. We call S0 the initialisation part, and
do �mj=1Bj ;αj → Sj od the main loop of S. If m = 0, then we let S = S0. In this way, any
sequential quantum program is a sequential process. If S0 ≡ skip, we drop S0 from S unless m = 0.

We have the following notations for sequential quantum process S.
Denote by cv(S) and qv(S) the sets of classical and quantum variables appearing in S, respect-
ively. Note that we do not distinguish between free and bound variables; that is, the classical vari-
able appearing in an input command of S is also included in cv(S). Let var(S) , cv(S)∪ qv(S).
Denote by change(S) the set of classical variables that appear on the left-hand side of an
assignment or in an input command in S. Note that the only way to retrieve information from
a quantum system is to measure it, which may change its state. Thus qv(S) is also the set of
changeable quantum variables in S.
Denote by chan(S) the set of channel names appearing in S.
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2.3 Distributed quantum programs

Now we are ready to define the syntax for distributed quantum programs.

I Definition 2. A distributed quantum program is a parallel composition S ::= S1‖ · · · ‖Sn where
n ≥ 1 and S1, . . . , Sn are sequential quantum processes defined in the above subsection which satisfy

Pairwise disjointness: for all 1 ≤ i 6= j ≤ n, var(Si) ∩ (change(Sj) ∪ qv(Sj)) = ∅;
Point-to-point connection: for all 1 ≤ i < j < k ≤ n, chan(Si) ∩ chan(Sj) ∩ chan(Sk) = ∅.

Let cv(S) ,
⋃n
i=1 cv(Si), and change(S), qv(S), and var(S) be similarly defined.

Essentially, the first clause requires that (1) classical variables in any process cannot be changed
by other processes; (2) quantum variables in any process do not appear in other processes. The second
clause in Definition 2 implies that each communication channel is shared by at most two processes.
This constraint, together with the assumption that sequential processes are deterministic, means that
at any moment, each process is only able to communicate with at most one other process. Note also
that we disallow nested parallelism in distributed programs. Finally, any sequential quantum process
is a distributed quantum program with n = 1.

The constraints in Definition 2 look very strict at the first glance. However, using similar
approaches presented in [3, 43], more general distributed quantum systems can be transformed into
this special form by introducing control variables (say, stageA and stageB in the following example).

I Example 3 (Quantum Teleportation as a Distributed Program). The quantum teleportation
protocol presented in Sec. 1.2 can be written as a distributed program Teleport , Alice ‖ Bob where
Alice ,

q, q1 ∗= CNOT; q ∗= H; zA := meas q; xA := meas q1; stageA := 0;
do stageA = 0; c!xA → stageA := 1 � stageA = 1; d!zA → stageA := 2 od

and Bob ,

stageB := 0;
do stageB = 0; c?xB → stageB := 1; if xB = 1→ q2 ∗= X � ¬(xB = 1)→ skip fi
� stageB = 1; d?zB → stageB := 2; if zB = 1→ q2 ∗= Z � ¬(zB = 1)→ skip fi

od

3 Operational and Denotational Semantics

We recall some basic notions from [16] to define the semantics of distributed quantum programs.

3.1 Classical-quantum states

Let Σ , cVar → D be the (uncountably infinite) set of classical states, where D , DBoolean ∪
DInteger. We further require that states in Σ respect the types of classical variables; that is, σ(x) ∈
Dtype(x) for all σ ∈ Σ and x ∈ cVar . For V ⊆ qVar , let D(HV ) be the set of partial density
operators on HV ; that is, positive linear operators with the trace being less than or equal to 1.
Furthermore, let 0HV

∈ D(HV ) be the zero operator onHV .

I Definition 4. Given V ⊆ qVar , a classical-quantum state (cq-state for short) ∆ on V is a
function in Σ→ D(HV ) such that

(1) the support of ∆, denoted d∆e, is countable. That is, ∆(σ) 6= 0HV
for at most countably infinite

many σ ∈ Σ;
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〈skip, σ, ρ〉 → 〈E, σ, ρ〉 〈x := e, σ, ρ〉 → 〈E, σ[σ(e)/x], ρ〉

〈q := 0, σ, ρ〉 → 〈E, σ,
∑dq−1

i=0 |0〉q〈i|ρ|i〉q〈0|〉 〈q̄ ∗= U, σ, ρ〉 → 〈E, σ, Uq̄ρU
†
q̄ 〉

〈x :=$ g, σ, ρ〉 →
∑

d∈Dtype(x)
g(d) · 〈E, σ[d/x], ρ〉

M = {Mi : i ∈ I}, ρi = MiρM
†
i , pi = tr(ρi)

〈x := measM[q̄], σ, ρ〉 →
∑

pi>0 pi · 〈E, σ[i/x], ρi/pi〉

σ |= Bi, 1 ≤ i ≤ n
〈if �n

i=1Bi → Si fi, σ, ρ〉 → 〈Si, σ, ρ〉
σ |=

∧n

i=1 ¬Bi

〈if �n
i=1Bi → Si fi, σ, ρ〉 → 〈E, fail, ρ〉

σ |= Bi, 1 ≤ i ≤ n
〈do �n

i=1Bi → Si od, σ, ρ〉 → 〈Si; do �n
i=1Bi → Si od, σ, ρ〉

σ |=
∧n

i=1 ¬Bi

〈do �n
i=1Bi → Si od, σ, ρ〉 → 〈E, σ, ρ〉

〈S0, σ, ρ〉 →
∑

i∈I
pi · 〈Si, σi, ρi〉

〈S0;S1, σ, ρ〉 →
∑

i∈I
pi · 〈Si;S1, σi, ρi〉

where E;S1 ≡ S1
σ |=

∧m

j=1 ¬Bj

〈do �m
j=1Bj ;αj → Sj od, σ, ρ〉 → 〈E, σ, ρ〉

(Paral)
〈Sk, σ, ρ〉 →

∑
i∈I

pi · 〈Sk,i, σi, ρi〉, 1 ≤ k ≤ n
〈S1‖ . . . ‖Sk‖ . . . ‖Sn, σ, ρ〉 →

∑
i∈I

pi · 〈S1‖ . . . ‖Sk,i‖ . . . ‖Sn, σi, ρi〉

(Comm)

Sk ≡ do �m
j=1Bk,j ;αk,j → Sk,j od, S` ≡ do �m′

j=1B`,j ;α`,j → S`,j od, 1 ≤ k < ` ≤ n

σ |= Bk,j1 ∧B`,j2 , αk,j1 and α`,j2 match,Effect(αk,j1 , α`,j2 ) ≡ x := e, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m′

〈S1‖ . . . ‖Sn, σ, ρ〉 → 〈S′1‖ . . . ‖S′n, σ[σ(e)/x], ρ〉

where S′k , Sk,j1 ;Sk, S
′
` , S`,j2 ;S`, and S′i , Si for i 6= k, `

Table 1 Operational semantics for distributed quantum programs, where σ is a proper classical state; i.e.,
σ 6≡ fail.

(2) tr(∆) ,
∑
σ∈d∆e tr[∆(σ)] ≤ 1.

Denote by qv(∆) the set V of quantum variables in ∆ defined in Definition 4. Sometimes it is
convenient to denote a cq-state ∆ by the explicit form

⊕
i∈I〈σi, ρi〉 where d∆e = {σi : i ∈ I} and

∆(σi) = ρi for each i ∈ I . When ∆ is a simple function such that d∆e = {σ} for some σ and
∆(σ) = ρ, we denote ∆ simply by 〈σ, ρ〉. Let {∆i : i ∈ I} be a countable set of cq-states over
V such that for any σ,

∑
i∈I ∆i(σ) = ρσ for some ρσ ∈ D(HV ) and

∑
i∈I tr(∆i) ≤ 1. Then the

summation of them, denoted
∑
i∈I ∆i, is a cq-state ∆ over V such that for any σ ∈ Σ, ∆(σ) = ρσ.

Obviously, d∆e =
⋃
i∈Id∆ie. It is worth noting the difference between

∑
i∈I〈σi, ρi〉, the summation

of some (simple) cq-states, and
⊕

i∈I〈σi, ρi〉, the explicit form of a single one: in the latter σi’s must
be distinct while in the former they may not.

Let SV be the set of all cq-states over V , and S the set of all cq-states; that is, S ,
⋃
V⊆qVar SV .

We extend the Löwner order vV for D(HV ) pointwisely to S by letting ∆ v ∆′ iff qv(∆) = qv(∆′)
and for all σ ∈ Σ, ∆(σ) vqv(∆) ∆′(σ). Then SV is a pointed ω-CPO underv, with the least element
being the constant 0HV

function, denoted ⊥V . Furthermore, S as a whole is an ω-CPO under v.
When ∆ v ∆′, there exists a unique ∆′′ ∈ Sqv(∆), denoted ∆′ −∆, such that ∆′′ + ∆ = ∆′. For
any real numbers λi, i ∈ I , if both ∆+ ,

∑
λi>0 λi∆i and ∆− ,

∑
λi<0(−λi)∆i are well-defined

and ∆− v ∆+ , then the linear-sum
∑
i∈I λi∆i is defined to be ∆+ −∆−. In the rest of this paper,

whenever we write
∑
i∈I λi∆i we always assume that it is well-defined. Finally, let E be a completely

positive and trace-nonincreasing super-operator from L(HV ) to L(HW ). We extend it to SV in a
pointwise way: E(∆)(σ) = E(∆(σ)) for all σ.

3.2 Operational Semantics

Let Prog be the set of all distributed quantum programs. A configuration is a triple 〈S, σ, ρ〉 where
S ∈ Prog ∪ {E} with E being a special symbol to denote termination, σ ∈ Σ ∪ {fail} with fail
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being another special symbol to denote the failure state, and ρ ∈ D(HV ) for some V subsuming
qv(S) with tr(ρ) = 1. We always identify E‖ . . . ‖E with E. The operational semantics of programs
in Prog is defined as the smallest transition relation→ given in Table 1.

I Remark. The transition rules presented in Table 1 for sequential quantum programs follows the
same spirit as in [16], except for the newly introduced alternative and repetitive commands whose
semantics definitions are also standard [11]. The rules (Paral) and (Comm) are similar to their analogy
for classical non-probabilistic programs [1].

It is worth noting that the transitions for quantum measurements and probabilistic assignments
in [16] are given in a ‘non-deterministic’ way, with the probabilities of different branches being
encoded in the quantum part of the configurations (by allowing partial density operators instead of
density operators in configurations). Note that it is only a matter of notational convenience to represent
probabilistic choices with non-determinism. However, distributed quantum programs investigated
in this paper exhibit real non-determinism due to the possible interleaving of local actions and
communication of different sequential processes. To distinguish these two types of non-determinism,
we decide to model quantum measurements and probabilistic assignments in a (standard) probabilistic
way. J

The following lemma, which can be easily proved by inspecting the transition rules in Table 1,
shows that→ is indeed a relation from configurations to probability distributions of configurations.

I Lemma 5. Let 〈S, σ, ρ〉 be a configuration and 〈S, σ, ρ〉 →
∑
i∈I pi·〈Si, σi, ρi〉. Then

∑
i∈I pi =

1.

The next lemma extends the Change and Access lemma for classical programs by considering the
effects of transitions on quantum states.

I Lemma 6 (Change and Access). Let 〈S, σ, ρ〉 → µ. Then there exist a set {Si : i ∈ I} of
distributed programs with v(Si) ⊆ v(S) for v ∈ {change, qv, cv}, a set {fi : i ∈ I} of functions
over Σ, and a set {Ei : i ∈ I} of super-operators acting onHqv(S) such that

(1) for each i, fi does not change the value of variables outside change(S). That is, for all τ ∈ Σ,
fi(τ)|V = τ |V where V , cVar\change(S);

(2) for each i, fi depends only on cv(S). That is, fi(σ)|cv(S) = fi(τ)|cv(S) whenever σ|cv(S) =
τ |cv(S);

(3)
∑
i∈I Ei is trace-nonincreasing;

(4) µ =
∑
i∈I,pi>0 pi · 〈Si, fi(σ), Ei(ρ)/pi〉 where pi = tr(Ei(ρ));

(5) for any σ′ which agrees with σ on cv(S), i.e. σ′|cv(S) = σ|cv(S), and ρ′ ∈ D(HV ) with
V ⊇ qv(S),

〈S, σ′, ρ′〉 →
∑

i∈I,p′
i
>0

p′i · 〈Si, fi(σ′), Ei(ρ′)/p′i〉 (1)

where p′i = tr(Ei(ρ′)).

A configuration is called a terminal if it has no successor distributions. Because of the communic-
ation constraints, distributed programs can also end up with a deadlock configuration, in which not all
the processes terminate properly (become E), and none of them has led to a failure (the classical state
becomes fail). In other words, 〈S, σ, ρ〉 is a terminal iff S ≡ E, σ ≡ fail, or it is a deadlock. For a
distribution µ =

∑
i∈I pi · 〈Si, σi, ρi〉 of configurations, we denote by

∆µ ,
∑

i∈I,Si≡E,σi 6≡fail

〈σi, piρi〉
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the cq-state obtained by restricting µ on the properly terminated configurations. Let Prµ(E) , tr(∆µ)
be the probability of µ having properly terminated.

The transition relation→ defined above can be further extended to distributions of configurations
by letting µ→ ν where µ =

∑
i∈I pi · ci if (1) for each i, ci → νi for some νi whenever ci is not a

terminal; otherwise, let νi , ci, and (2) ν =
∑
i∈I pi · νi. It is easy to check that such a ν is a valid

distribution over configurations. Let→k be the k-fold composition of→, and→∗ ,
⋃
k≥0 →k the

reflexive and transitive closure of→.
Let S ∈ Prog, and 〈σ, ρ〉 ∈ SV with V ⊇ qv(S) and tr(ρ) = 1. A computation of S starting

in 〈σ, ρ〉 is an infinite sequence π , {µi : i ≥ 0} of distributions over configurations where
µ0 = 〈S, σ, ρ〉 and for each i ≥ 0, µi → µi+1.

I Lemma 7. Let π , {µi : i ≥ 0} be a computation starting in 〈σ, ρ〉. Then ∆µ0 v ∆µ1 v . . ..

With Lemma 7, we can define for any computation π , {µi : i ≥ 0} the cq-state computed by π
as ∆π ,

∨
i≥0 ∆µi , the least upper bound of ∆µi according to v.

I Example 8 (Operational Semantics of Quantum Teleportation). Let σ be a classical state
and |ψ〉 a pure state in H2. Then one of the computations, denoted π, of Teleport starting in
〈σ, |ψ〉q〈ψ| ⊗ |β〉q1,q2〈β|〉 is shown as follows:

〈Teleport, σ, [|ψ, β〉]〉

→5
∑

i,j=0,1

1
4 ·
〈
doa‖dob, σ[i/xA, j/zA, 0/stageA, 0/stageB , [|j, i,XiZjψ〉]

〉
→

∑
i,j=0,1

1
4 · 〈stageA := 1; doa‖stageB := 1; if xB = 1→ q2 ∗= X � ¬(xB = 1)→

skip; dob, σ[i/xA, j/zA, 0/stageA, 0/stageB , i/xB ], [|j, i,XiZjψ〉]
〉

→4
∑

i,j=0,1

1
4 ·
〈
doa‖dob, σ[i/xA, j/zA, 1/stageA, 1/stageB , i/xB ], [|j, i, Zjψ〉]

〉
→5

∑
i,j=0,1

1
4 · 〈doa‖dob, σ[i/xA, j/zA, 2/stageA, 2/stageB , i/xB , j/zB ], [|j, i, ψ〉]〉

→2 µ ,
∑

i,j=0,1

1
4 · 〈E, σ[i/xA, j/zA, 2/stageA, 2/stageB , i/xB , j/zB ], [|j, i, ψ〉]〉

→ µ→ · · ·

where doa and dob are the do-loops of Alice and Bob, respectively. For pure state |φ〉, we denote by
[|φ〉] its corresponding density operator |φ〉〈φ|. Thus

∆π =
∑

i,j=0,1

〈
σ[i/xA, j/zA, 2/stageA, 2/stageB , i/xB , j/zB ], 1

4 [|j, i, ψ〉]
〉
.

Note that although each component process of a distributed program is deterministic, the whole
program can still exhibit nondeterminism. This is due to the interleaving nature of local actions of
individual processes and communication between disjoint pairs of processes; see Rules (Paral) and
(Comm) in Table 1. However, the following theorem shows that these different computations actually
compute the same cq-state.

I Theorem 9 (Determinism). Let S ∈ Prog be a distributed quantum program, and 〈σ, ρ〉 ∈ SV
with V ⊇ qv(S) and tr(ρ) = 1. Then the set

{∆π : π is a computation of S starting in 〈σ, ρ〉}

has exactly one element.
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3.3 Denotational Semantics

With Theorem 9, the denotational semantics of distributed quantum programs can be defined using
the operational one. Let S⊇qv(S) ,

⋃
V⊇qv(S) SV .

I Definition 10. Let S ∈ Prog. The denotational semantics of S is a mapping [[S]] : S⊇qv(S) →
S⊇qv(S) such that

(1) for any 〈σ, ρ〉 ∈ SV with V ⊇ qv(S) and tr(ρ) = 1,

[[S]](σ, ρ) , the unique element in {∆π : π is a computation of S starting in 〈σ, ρ〉};

(2) for any ∆ =
⊕

i∈I〈σi, ρi〉 (thus tr(ρi) > 0 for any i ∈ I),

[[S]](∆) ,
∑
i∈I

tr(ρi) · [[S]]
(
σi,

ρi
tr(ρi)

)
.

To simplify notation, we always write (σ, ρ) for (〈σ, ρ〉) when 〈σ, ρ〉 appears as a parameter of
some function. The next lemma guarantees the well-definedness of Definition 10.

I Lemma 11. Let S ∈ Prog and ∆ ∈ SV with V ⊇ qv(S). Then
(1) [[S]](∆) has countable support, and tr([[S]](∆)) ≤ tr(∆). Hence [[S]](∆) ∈ SV as well;
(2) for any λi ∈ R, [[S]](∆) =

∑
i λi · [[S]](∆i) whenever ∆ =

∑
i λi ·∆i.

4 Transformation to sequential quantum programs

Throughout this section, we consider a distributed quantum program S , S1‖ · · · ‖Sn where for each
i,

Si , Si,0; do �mi
j=1Bi,j ;αi,j → Si,j od.

The transformation of S into a sequential one follows the standard approach for classical (non-
probabilistic) programs [1].

Let Γ , {(i, j, k, `) : αi,j and αk,` match, and i < k}. That is, Γ collects all the pairs of
generalised guards in the component processes which are able to communicate. The sequentialisation
of S is defined as

T (S) , S1,0; . . . ;Sn,0;
do �(i,j,k,`)∈Γ Bi,j ∧Bk,` ∧Bi → Effect(αi,j , αk,`);Si,j ;Sk,`
od

where Bi ,
∧

(t,j,k,`)∈Γ,t<i ¬(Bt,j ∧ Bk,`). When Γ is empty, we simply drop the do loop in the
definition.

Note that we introduce an additional condition Bi here to guarantee that the resultant quantum
program is deterministic (so that it can be described in the language presented in Sec. 2.1). This is
unnecessary for classical programs in [1], since verification of nondeterministic classical programs
has been well investigated. However, from Theorem 9 the nondeterministic choices in S do not really
matter in computing the final cq-state. Therefore, introducing the additional condition Bi does not put
any restriction on the expressiveness of the sequentialised program T (S); this will be more rigorously
shown with Theorem 12 below.
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It is obvious that S and T (S) are not semantically equivalent: at least they have different
conditions for termination. To see this, let

TERM ,
n∧
i=1

mi∧
j=1
¬Bi,j , BLOCK ,

∧
(i,j,k,`)∈Γ

¬(Bi,j∧Bk,`) =
∧

(i,j,k,`)∈Γ

¬(Bi,j∧Bk,`∧Bi).

Then S terminates iff TERM holds while T (S) terminates iff BLOCK holds. Note that TERM →
BLOCK but generally the reverse direction is not true.

The following theorem shows that S and T (S) are indeed equivalent conditioning on TERM .

I Theorem 12. For any cq-state ∆ ∈ SV with V ⊇ qv(S), [[S]](∆) = [[T (S)]](∆)|TERM , the
restriction of [[T (S)]](∆) on the set of classical states σ with σ |= TERM .

I Example 13 (Sequentialisation of Teleportation). The sequentialisation of Teleport, denoted
T (Teleport), is as follows:

q, q1 ∗= CNOT; q ∗= H; zA := meas q; xA := meas q1;
stageA := 0; stageB := 0;
do stageA = 0 ∧ stageB = 0→ xB := xA;

stageA := 1; stageB := 1; if xB = 1→ q2 ∗= X � ¬(xB = 1)→ skip fi
� stageA = 1 ∧ stageB = 1→ zB := zA;

stageA := 2; stageB := 2; if zB = 1→ q2 ∗= Z � ¬(zB = 1)→ skip fi
od

It is easy to see that

[[Teleport]](∆) = [[T (Teleport)]](∆)|stageA 6∈{0,1}∧stageB 6∈{0,1}.

5 Verification of distributed quantum programs

The basic notion for verification of distributed quantum programs is classical-quantum assertion
from [16].

5.1 Classical-quantum assertions

Recall that assertions for classical program states are usually represented as first order logic formulas
over cVar . For any classical assertion p, denote by [[p]] , {σ ∈ Σ : σ |= p} the set of classical states
that satisfy p. Two assertions p and p′ are equivalent, written p ≡ p′, iff [[p]] = [[p′]]. Let P(HV ) be
the set of Hermitian operators onH whose eigenvalues lie between 0 and 1.

I Definition 14. Given V ⊆ qVar , a classical-quantum assertion (cq-assertion for short) Θ over
V is a function in Σ→ P(HV ) such that

(1) the image set Θ(Σ) of Θ is countable;
(2) for each M ∈ Θ(Σ), the preimage Θ−1(M) is definable by a classical assertion p in the sense

that [[p]] = Θ−1(M).

Denote by qv(Θ) the set V of quantum variables in Θ. We write
⊕

i∈I〈pi,Mi〉 instead of⊕
i∈I〈[[pi]],Mi〉 for a cq-assertion Θ whenever Θ(Σ) = {Mi : i ∈ I} and Θ−1(Mi) = [[pi]] for

each i ∈ I . Note that this representation is not unique: the representative assertion pi can be replaced
by p′i whenever pi ≡ p′i. Furthermore, the summand with zero operator 0HV

is always omitted. In
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particular, when Θ(Σ) = {0H,M} or {M} for some M 6= 0HV
, we simply denote Θ by 〈p,M〉 for

some p with Θ−1(M) = [[p]].
LetAV be the set of all cq-assertions over V , andA the set of all cq-assertions. Again, we extend

the Löwner order vV for L(HV ) pointwisely to A by letting Θ v Θ′ iff qv(Θ) = qv(Θ′) and for all
σ ∈ Σ, Θ(σ) vqv(Θ) Θ′(σ). It is easy to see thatAV is also a pointed ω-CPO under v, with the least
element being ⊥V . Furthermore, it has the largest element >V , 〈true, IHV

〉. When Θ v Θ′, we
denote by Θ′ −Θ the unique Θ′′ ∈ Aqv(Θ) such that Θ′′ + Θ = Θ′. With these notions, summation
and linear-sum of cq-assertions can be defined similarly as for cq-states. Let V1, V2 be two subsets
of qVar , and Θi ∈ AVi

, i = 1, 2. We say Θ1 . Θ2 whenever Θ1 ⊗ IHV2\V1
v IHV1\V2

⊗ Θ2.
Obviously, when restricted on some given set of quantum variables, . coincides with v.

Given a classical assertion p, we denote by p ./
∑
i〈pi,Mi〉 the cq-assertion

∑
i〈p ./ pi,Mi〉

(if it is valid) where ./ can be any logic connective such as ∧, ∨,⇒,⇔, etc. Let F be a completely
positive and sub-unital linear map from P(HV ) to P(HW ). We extend it to AV in a pointwise
way. In particular, when qv(Θ) ∩W = ∅, Θ ⊗ IHW

is a cq-assertion which maps any σ ∈ Σ to
Θ(σ)⊗ IHW

.

I Definition 15. Given a cq-state ∆ and a cq-assertion Θ with qv(∆) ⊇ qv(Θ), the expectation of
∆ satisfying Θ is defined to be

Exp(∆ |= Θ) ,
∑
σ∈d∆e

tr [(Θ(σ)⊗ IHV
) ·∆(σ)] =

∑
σ∈d∆e

tr [Θ(σ) · trHV
(∆(σ))]

where V = qv(∆)\qv(Θ) and the dot · denotes matrix multiplication.

5.2 Correctness formula

As usual, program correctness is expressed by correctness formulas with the form {Θ} S {Ψ}
where S is a distribute quantum program, and Θ and Ψ are both cq-assertions. We do not put any
requirement on the quantum variables which Θ and Ψ are acting on. In fact, the sets qv(S), qv(Θ),
and qv(Ψ) can be all different.

I Definition 16. Let S ∈ Prog, and Θ and Ψ be cq-assertions.

(1) We say the correctness formula {Θ} S {Ψ} is true in the sense of total correctness, written
|=tot {Θ} S {Ψ}, if for any V ⊇ qv(S,Θ,Ψ) and ∆ ∈ SV ,

Exp(∆ |= Θ) ≤ Exp([[S]](∆) |= Ψ).

(2) We say the correctness formula {Θ} S {Ψ} is true in the sense of partial correctness, written
|=par {Θ} S {Ψ}, if for any V ⊇ qv(S,Θ,Ψ) and ∆ ∈ SV ,

Exp(∆ |= Θ) ≤ Exp([[S]](∆) |= Ψ) + tr(∆)− tr([[S]](∆)).

IExample 17. The correctness of quantum teleportation can be stated as follows: for any |ψ〉 ∈ H2,

|=tot {|ψ〉q ⊗ |β〉q1,q2} Teleport {|ψ〉q2} ,

which claims that the (arbitrary) quantum state of qubit q is successfully transmitted to qubit q2
by Teleport. Note that the postcondition |ψ〉q2 does not refer to q and q1, meaning that the post-
measurement state of these quantum systems is irrelevant.
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(Skip) {Θ} skip {Θ} (Abort) {>V } abort {⊥V }

(Assn) {Θ[e/x]} x := e {Θ} (Rassn)

 ∑
d∈Dtype(x)

g(d) ·Θ[d/x]

x :=$ g{Θ}

(Init)
q ∈ qv(Θ){∑dq−1

i=0 |i〉q〈0|Θ|0〉q〈i|
}
q := 0 {Θ}

(Unit)
q̄ ⊆ qv(Θ){

U†q̄ ΘUq̄

}
q̄ ∗= U {Θ}

(Meas)
q̄ ⊆ qv(Θ),M = {Mi : i ∈ I}{∑

i∈I
M†i Θ[i/x]Mi

}
x := measM[q̄] {Θ}

(Seq)
{Θ} S0 {Θ′} , {Θ′} S1 {Ψ}

{Θ} S0;S1 {Ψ}

(Alt)
{Bi ∧Θ} Si {Ψ} , ∀i ∈ {1, . . . , n}
{Θ} if �n

i=1Bi → Si fi {Ψ} (Rep)
{Bi ∧Θ} Si {Θ} , ∀i ∈ {1, . . . , n}

{Θ} do �n
i=1Bi → Si od

{
Θ ∧

∧n

i=1 ¬Bi

}
(Imp)

Θ . Θ′, {Θ′} S {Ψ′} , Ψ′ . Ψ
{Θ} S {Ψ}

(Dist)
{Θ} S1,0; . . . ;Sn,0 {Ψ} , {Bi,j ∧Bk,` ∧Ψ} Effect(αi,j , αk,`);Si,j ;Sk,` {Ψ} , ∀(i, j, k, `) ∈ Γ

{Θ} S1‖ . . . ‖Sn {Ψ ∧ TERM}

where Γ and TERM are defined as in Sec. 4.

Table 2 Proof system for partial correctness.

5.3 Proof systems

The core of Hoare logic is a proof system consisting of axioms and proof rules which enable syntax-
oriented and modular reasoning of program correctness. In this section, we propose a Hoare logic for
distributed quantum programs.

Partial correctness. We propose in Table 2 a proof system for partial correctness of distributed
quantum programs, which is a natural extension of the quantum Hoare logic introduced in [16] for
deterministic while programs. We write `par {Θ} S {Ψ} if the correctness formula {Θ} S {Ψ}
can be derived from the system.

I Theorem 18. The proof system in Table 2 is both sound and (relatively) complete with respect to
the partial correctness of distributed quantum programs.

Total correctness. Ranking functions play a central role in proving total correctness of while
loop programs. Recall that in the classical case, a ranking function maps each reachable state in the
loop body to an element of a well-founded ordered set (say, the set N of nonnegative integers), such
that the value decreases strictly after each iteration of the loop. Our proof rules for total correctness of
repetitive commands and distributed quantum programs also heavily relies on the notion of ranking
assertions.

I Definition 19. Let Θ ∈ AV . A decreasing sequence (w.r.t. v) of cq-assertions {Θk : k ≥ 0} in
AV with Θ v Θ0 and

∧
k Θk = ⊥V are Θ-ranking assertions for do �ni=1Bi → Si od if for any

k ≥ 0, 1 ≤ i ≤ n, and ∆ ∈ SW , W ,
⋃n
i=1 qv(Si) ∪ V ,

Exp([[Si]](∆|Bi) |= Θk) ≤ Exp(∆ |= Θk+1). (2)

They are said to be Θ-ranking assertions for S1‖ . . . ‖Sn if, for any k ≥ 0, (i, j, t, `) ∈ Γ, and
∆ ∈ SW , W ,

⋃n
i=1 qv(Si) ∪ V , we have

Exp([[St,`i,j ]](∆|Bi,j∧Bt,`
) |= Θk) ≤ Exp(∆ |= Θk+1)

where St,`i,j , Effect(αi,j , αt,`);Si,j ;St,`.
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(Abort-T) {⊥V } abort {⊥V }

(Alt-T)
Θ .

∨n

i=1 Bi, {Bi ∧Θ} Si {Ψ} , ∀i ∈ {1, . . . , n}
{Θ} if �n

i=1Bi → Si fi {Ψ}

(Rep-T)

{Bi ∧Θ} Si {Θ} , ∀i ∈ {1, . . . , n}
Θ-ranking assertions exist for do �n

i=1Bi → Si od
{Θ} do �n

i=1Bi → Si od
{

Θ ∧
∧n

i=1 ¬Bi

}

(Dist-T)

{Θ} S1,0; . . . ;Sn,0 {Ψ}, and Ψ-ranking assertions exist for S1‖ . . . ‖Sn

{Bi,j ∧Bk,` ∧Ψ} Effect(αi,j , αk,`);Si,j ;Sk,` {Ψ} ,∀(i, j, k, `) ∈ Γ
Ψ ∧ BLOCK . TERM

{Θ} S1‖ . . . ‖Sn {Ψ ∧ TERM}

where Γ and TERM are defined as in Sec. 4.

Table 3 Some proof rules for total correctness.

The proof system for total correctness is then defined as for partial correctness, except that the
rules (Abort), (Alt), (Rep), and (Dist) are replaced by their corresponding total correctness version
shown in Table 3. We write `tot {Θ} S {Ψ} if the correctness formula {Θ} S {Ψ} can be derived
using this proof system.

I Theorem 20. The proof system for total correctness is both sound and (relatively) complete with
respect to the total correctness of distributed quantum programs.

6 Conclusion and future works

In this paper, we propose a distributed programming language for the purpose of formal description
and verification of distributed quantum systems. A Hoare-style logic, which turns out to be sound and
(relatively) complete for both partial and total correctness, is introduced to help analysis of quantum
programs written in this language. Effectiveness of the logic is demonstrated by its application
in verification of quantum teleportation and local implementation of non-local CNOT gates, two
important protocols widely used in distributed quantum systems.

The distributed language investigated in this paper only allows local quantum operations and
classical communication (LOCC). Although LOCC is a widely used quantum communication model,
there are also important quantum communication protocols, such as Quantum Key Distribution [4]
and Quantum Leader Election [34], which do require transmission of quantum states. It is well known
that this kind of quantum communication can be achieved by employing the teleportation protocol
(provided that enough entanglement is pre-shared between relevant parties), and thus in principle
these protocols can be verified using the logic presented in this paper, but their verification in this way
will be clumsy and inconvenient. Therefore, it is desirable to extend our language to include quantum
communication in future works. To this end, we have to trace the ownership of each quantum system
so that the no-cloning property [38] of quantum information is not violated. We expect that the
verification of such distributed quantum programs will be much more challenging.
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A Preliminaries

This section is devoted to fixing some notations from linear algebra and quantum mechanics that will
be used in this paper. For a thorough introduction of relevant backgrounds, we refer to [28, Chapter
2].

A.1 Basic linear algebra

Let H be a Hilbert space. In the finite-dimensional case which we are concerned with here, it is
merely a complex linear space equipped with an inner product. Consequently, it is isomorphic to Cd
where d = dim(H), the dimension ofH. Following the tradition in quantum computing, vectors in
H are denoted in the Dirac form |ψ〉. The inner product of |ψ〉 and |φ〉 is written 〈ψ|φ〉, and they are
orthogonal if 〈ψ|φ〉 = 0. The outer product of them, denoted |ψ〉〈φ|, is a rank-one linear operator
which maps any |ψ′〉 inH to 〈φ|ψ′〉|ψ〉. The length of |ψ〉 is defined to be ‖|ψ〉‖ ,

√
〈ψ|ψ〉 and it is

called normalised if ‖|ψ〉‖ = 1. A set of vectors B , {|i〉 : i ∈ I} in H is orthonormal if each |i〉
is normalised and every two of them are orthogonal. Furthermore, if they span the whole spaceH;
that is, any vector in H can be written as a linear combination of vectors in B, then B is called an
orthonormal basis ofH.

Let L(H) be the set of linear operators on H, and 0H and IH the zero and identity operators
respectively. Let A ∈ L(H). The trace of A is defined to be tr(A) ,

∑
i∈I〈i|A|i〉 for some (or,

equivalently, any) orthonormal basis {|i〉 : i ∈ I} ofH. The adjoint of A, denoted A†, is the unique
linear operator in L(H) such that 〈ψ|A|φ〉 = 〈φ|A†|ψ〉∗ for all |ψ〉, |φ〉 ∈ H. Here for a complex
number z, z∗ denotes its conjugate. Operator A is said to be normal if A†A = AA†, hermitian if
A† = A, unitary if A†A = IH, and positive if for all |ψ〉 ∈ H, 〈ψ|A|ψ〉 ≥ 0. Obviously, hermitian
operators are normal, and both unitary operators and positive ones are hermitian. Any normal operator
A can be written into a spectral decomposition formA =

∑
i∈I λi|i〉〈i| where {|i〉 : i ∈ I} constitute

some orthonormal basis ofH. Furthermore, if A is hermitian, then all λi’s are real; if A is unitary,
then all λi’s have unit length; if A is positive, then all λi’s are non-negative. The Löwner (partial)
order vH on the set of hermitian operators onH is defined by letting A vH B iff B −A is positive.

LetH1 andH2 be two finite dimensional Hilbert spaces, andH1 ⊗H2 their tensor product. Let
Ai ∈ L(Hi). The tensor product of A1 and A2, denoted A1 ⊗A2 is a linear operator in L(H1 ⊗H2)
such that (A1 ⊗A2)|(ψ1〉 ⊗ |ψ2)〉 = (A1|ψ1〉)⊗ (A2|ψ2〉) for all |ψi〉 ∈ Hi. To simplify notations,
we often write |ψ1〉|ψ2〉 for |ψ1〉 ⊗ |ψ2〉. Given H1 and H2, the partial trace with respect to H2,
denoted trH2 , is a linear mapping from L(H1 ⊗ H2) to L(H1) such that for any |ψi〉, |φi〉 ∈ Hi,
i = 1, 2,

trH2(|ψ1〉〈φ1| ⊗ |φ1〉〈φ2|) = 〈φ2|φ1〉|ψ1〉〈φ1|.

The definition is extended to L(H1 ⊗H2) by linearity.
A linear operator E from L(H1) to L(H2) is called a super-operator. It is said to be (1) positive

if it maps positive operators to positive operators; (2) completely positive if all the cylinder extension
IH ⊗ E is positive for all finite dimensional Hilbert space H, where IH is the identity super-
operator on L(H); (3) trace-preserving (resp. trace-nonincreasing) if tr(E(A)) = tr(A) (resp.
tr(E(A)) ≤ tr(A) for any positive operatorA ∈ L(H1); (4) unital (resp. sub-unital) if E(IH1) = IH2

(resp. E(IH1) vH2 IH2 ). From Kraus representation theorem [27], a super-operator E from L(H1)
to L(H2) is completely positive iff there is some set of linear operators, called Kraus operators,
{Ei : i ∈ I} from H1 to H2 such that E(A) =

∑
i∈I EiAE

†
i for all A ∈ L(H1). It is easy to

check that the trace and partial trace operations defined above are both completely positive and trace-
preserving super-operators. Given a completely positive super-operator E from L(H1) to L(H2) with
Kraus operators {Ei : i ∈ I}, the adjoint of E , denoted E†, is a completely positive super-operator
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from L(H2) back to L(H1) with Kraus operators {E†i : i ∈ I}. Then we have (E†)† = E , and E is
trace-preserving (resp. trace-nonincreasing) iff E† is unital (resp. sub-unital). Furthermore, for any
A ∈ L(H1) and B ∈ L(H2), tr(E(A) ·B) = tr(A · E†(B)).

A.2 Basic quantum mechanics

According to von Neumann’s formalism of quantum mechanics [36], any quantum system with
finite degrees of freedom is associated with a finite-dimensional Hilbert space H called its state
space. When dim(H) = 2, we call such a system a qubit, the analogy of bit in classical computing.
A pure state of the system is described by a normalised vector in H. When the system is in one
of an ensemble of states {|ψi〉 : i ∈ I} with respective probabilities pi, we say it is in a mixed
state, represented by the density operator

∑
i∈I pi|ψi〉〈ψi| on H. Obviously, a density operator is

positive and has trace 1. Conversely, by spectral decomposition, any positive operator with unit trace
corresponds to some (not necessarily unique) mixed state.

The state space of a composite system (for example, a quantum system consisting of multiple
qubits) is the tensor product of the state spaces of its components. For a mixed state ρ inH1 ⊗H2,
partial traces of ρ have explicit physical meanings: the density operators trH1(ρ) and trH2(ρ) are
exactly the reduced quantum states of ρ on the second and the first component systems, respectively.
Note that in general, the state of a composite system cannot be decomposed into tensor product of
the reduced states on its component systems. A well-known example is the 2-qubit state |Ψ〉 =
1√
2 (|00〉+ |11〉). This kind of state is called entangled state, and usually is the key to many quantum

information processing tasks such as teleportation [5] and superdense coding [6].
The evolution of a closed quantum system is described by a unitary operator on its state space: if

the states of the system at times t1 and t2 are ρ1 and ρ2, respectively, then ρ2 = Uρ1U
† for some

unitary operator U which depends only on t1 and t2. In contrast, the general dynamics which can
occur in a physical system is described by a completely positive and trace-preserving super-operator
on its state space. Note that the unitary transformation EU (ρ) , UρU† is such a super-operator.

A quantum measurementM is described by a collection {Mi : i ∈ I} of linear operators onH,
where I is the set of measurement outcomes. It is required that the measurement operators satisfy
the completeness equation

∑
i∈IM

†
iMi = IH. If the system is in state ρ, then the probability that

measurement result i occurs is given by pi = tr(M†iMiρ), and the state of the post-measurement
system is ρi = MiρM

†
i /pi whenever pi > 0. Note that the super-operator

EM : ρ 7→
∑
i∈I

piρi =
∑
i∈I

MiρM
†
i

which maps the initial state to the final (mixed) one when the measurement outcome is ignored is
completely positive and trace-preserving. A particular case of measurement is projective measurement
which is usually represented by a hermitian operator M in L(H) called observable. Let

M =
∑

m∈spec(M)

mPm

where spec(M) is the set of eigenvalues of M , and Pm the projection onto the eigenspace associated
with m. Obviously, the projectors {Pm : m ∈ spec(M)} form a quantum measurement.

In this paper, we are especially concerned with the set

P(H) , {M ∈ L(H) : 0H vM v IH}

of observables whose eigenvalues lie between 0 and 1, where v is the Löwner order on L(H).
Furthermore, following Selinger’s convention [32], we regard the set of partial density operators

D(H) , {ρ ∈ L(H) : 0H v ρ, tr(ρ) ≤ 1}
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as (unnormalised) quantum states. Intuitively, the partial density operator ρ means that the legitimate
quantum state ρ/tr(ρ) is reached with probability tr(ρ). As a matter of fact, we note that D(H) ⊆
P(H).

B Some useful lemmas

We first recall some basic properties of cq-states and cq-assertions from [16].

I Lemma 21 (Lemma 3.9, [16]). For any cq-state ∆ ∈ SV , cq-assertion Θ ∈ AW with W ⊆ V ,
and classical assertion p,

(1) Exp(∆ |= Θ) ∈ [0, 1];
(2) Exp(⊥V |= Θ) = Exp(∆ |= ⊥W ) = 0, Exp(∆ |= >W ) = tr(∆);
(3) Exp(∆ |= Θ) =

∑
i λiExp(∆ |= Θi) if Θ =

∑
i λiΘi;

(4) Exp(∆ |= Θ) =
∑
i λiExp(∆i |= Θ) if ∆ =

∑
i λi∆i;

(5) Exp(∆|p |= Θ) = Exp(∆ |= p ∧Θ);
(6) Exp(∆ |= F(Ψ)) = Exp(F†(∆) |= Ψ) for any Ψ ∈ AW ′ and any completely positive and

sub-unital super-operator F fromHW ′ toHW .

I Lemma 22 (Lemma 3.10, [16]).
(1) For any cq-states ∆ and ∆′ in SV ,

if ∆ v ∆′, then Exp(∆ |= Θ) ≤ Exp(∆′ |= Θ) for all Θ ∈ AW with W ⊆ V ;
conversely, if Exp(∆ |= Θ) ≤ Exp(∆′ |= Θ) for all Θ ∈ AV , then ∆ v ∆′.

(2) For any cq-assertions Θ and Θ′ with W = qv(Θ) ∪ qv(Θ′),
if Θ . Θ′, then Exp(∆ |= Θ) ≤ Exp(∆ |= Θ′) for all ∆ ∈ SV with W ⊆ V ;
conversely, if Exp(∆ |= Θ) ≤ Exp(∆ |= Θ′) for all ∆ ∈ SW , then Θ . Θ′.

I Lemma 23 (Lemma 3.11, [16]). For any cq-states ∆,∆n ∈ SV and cq-assertions Θ,Θn ∈ AW
with W ⊆ V , n = 1, 2, · · · ,

(1) Exp(
∨
n≥0 ∆n |= Θ) = supn≥0 Exp(∆n |= Θ) for increasing sequence {∆n}n;

(2) Exp(
∧
n≥0 ∆n |= Θ) = infn≥0 Exp(∆n |= Θ) for decreasing sequence {∆n}n;

(3) Exp(∆ |=
∨
n≥0 Θn) = supn≥0 Exp(∆ |= Θn) for increasing sequence {Θn}n;

(4) Exp(∆ |=
∧
n≥0 Θn) = infn≥0 Exp(∆ |= Θn) for decreasing sequence {Θn}n.

The following lemma presents the explicit form for denotational semantics of various constructs
for sequential programs, which extends [16, Lemma 4.6].

I Lemma 24. For any cq-states 〈σ, ρ〉 and ∆ in SV where V contains all quantum variables of the
corresponding program,

(1) [[skip]](∆) = ∆, [[abort]](∆) = ⊥V ;
(2) [[x := e]](σ, ρ) = 〈σ[σ(e)/x], ρ〉;
(3) [[x :=$ g]](σ, ρ) =

∑
d∈Dtype(x)

〈σ[d/x], g(d) · ρ〉;

(4) [[x := measM[q̄]]](σ, ρ) =
∑
i∈I〈σ[i/x],MiρM

†
i 〉 where Mi’s are applied on q̄, andM =

{Mi : i ∈ I};
(5) [[q := 0]](σ, ρ) = 〈σ,

∑dq−1
i=0 |0〉q〈i|ρ|i〉q〈0|〉〉;

(6) [[q̄ ∗= U ]](σ, ρ) = 〈σ, Uq̄ρU†q̄ 〉.
(7) [[S0;S1]](∆) = [[S1]]([[S0]](∆));
(8) [[if �ni=1Bi → Si fi]](∆) =

∑n
i=1 [[Si]](∆|Bi

);
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(9) [[do �ni=1Bi → Si od]](∆) =
∨
k

[[Sk]](∆), where S , do �ni=1Bi → Si od, S0 , abort,
and for any k ≥ 0,

Sk+1 , if �ni=1Bi → Si;Sk � B0 → skip fi.

Here B0 ,
∧n
i=1 ¬Bi. Thus [[S]](∆) = ∆|B0 +

∑n
i=1 [[S]]([[Si]](∆|Bi)).

Proof. Similar to that of [16, Lemma 4.6]. J

C Omitted proofs

Proof of Lemma 6. Induction on the structure of S. J

Proof of Lemma 7. This can be easily seen from the fact that the only successor configuration of a
terminal one under→ is itself. J

C.1 Proof of Theorem 9

To prove Theorem 9, we first introduce some notions. Note that from Table 1, any transition
〈S, σ, ρ〉 → µ of a distributed program S must be obtained by using (Paral) or (Comm). To make it
clear which processes are involved in the transition, we write 〈S, σ, ρ〉 k→ µ if it is caused by a local

action of process Sk. Similarly, we write 〈S, σ, ρ〉 (k,`)→ µ if it is caused by a communication between
processes Sk and S` with k < `. Let T , [n] ∪ {(k, `) ∈ [n]2 : k < `}, where [n] , {1, . . . , n}, be
the set of possible transition labels.

I Definition 25. Let π = {µi : i ≥ 0} be a computation of 〈S, σ, ρ〉. The (infinite) derivative tree
T induced by π is defined as follows: for all i ≥ 0,

(1) nodes at the i-th level of T are support configurations of µi. In particular, the root node of T is
〈S, σ, ρ〉;

(2) for any i-th level node c (thus c ∈ dµie) which is not a terminal, if c A→ ν, A ∈ T , is the transition
from c which contributes to the evolvement from µi to µi+1, then there is an edge in T from c

to each support configuration of ν. Furthermore, these edges are labelled by action A and their
corresponding probabilities in ν;

(3) for any terminal configuration c at the i-th level, note that c also appears at the i + 1-th level.
Then there is an edge in T from the i-th level c to the i+ 1-th level c. Furthermore, this edge is
labelled by a special symbol ∗ and probability 1.

Note that from a derivative tree T , we can easily recover the computation {µi : i ≥ 0} as follows: for
each i ≥ 0, let Ni be the set of nodes at the i-th level of T . Then

µi =
∑
c∈Ni

pc · c

where pc is the product of all the probabilities along the path from the root to c.

I Definition 26. Let π be a computation of 〈S, σ, ρ〉, and T its derivative tree.
(1) A run r = {ci : i ≥ 0} of π is a path of T starting from the root node (thus c0 = 〈S, σ, ρ〉).
(2) The history of a run r = {ci : i ≥ 0} is a sequence {(Ei, Ai) ∈ 2T × (T ∪ {∗}) : i ≥ 0} such

that Ei is the set of transition labels that are enabled in ci, while Ai is the label on the edge
(ci, ci+1) in T . Note that Ai ∈ Ei whenever Ei 6= ∅.

Fix arbitrarily a linear order v over T . For example, we may let A v B if (1) A ∈ [n] and
B ∈ [n]2, or (2) A < B when both A and B are in [n], or (3) i < j when A = (i, k) and B = (j, `).
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I Definition 27. A run is good if its history {(Ei, Ai) : i ≥ 0} satisfies the following condition:

∀i ≥ 0 : (Ei 6= ∅ → Ai = minEi)

where minEi is the minimum element in Ei according to the linear order v. A computation π is
good if all of its runs are good.

We are now ready to prove the main theorem of this section, which says that all computations
from a given input computes the same cq-state.

Proof of Theorem 9. Note that from any configuration 〈S, σ, ρ〉, there exists a unique good com-
putation. The main idea of the proof is that we can always transform the derivative tree T of any
computation into that of the good one starting from the same configuration, using some ‘commut-
ativity’ properties of transitions from different processes. Furthermore, this transformation does not
change the computed cq-state.

Let π = {µi : i ≥ 0} be a computation with µ0 = 〈S, σ, ρ〉 A→ µ1, and T its derivative tree.
Suppose the good computation from 〈S, σ, ρ〉 would choose B, B 6= A, as the first action. We show
in the following how to transform π into another (not necessarily good) computation π′ with the first
action being B, and they compute the same cq-state. To simplify the presentation, we assume B = k

for some k ∈ [n] (the case when B ∈ [n]2 is similar).
First, we prove that the B-transition must appear along every terminating run of π. To see this,

suppose on the contrary there is a successful run r in which no B-transition is executed. Note that
any transition which does not involve k cannot change the value of variables in cv(Sk), and since
Sk is deterministic, at most one of the actions in T which involve k is enabled at any moment.
Consequently, B will be continuously enabled along r, which is a contradiction since the quantum
program in the last configuration of r must be E.

Now for any terminating run r = {ci : i ≥ 0} of π (thus c0 = 〈S, σ, ρ〉) with history {(Ei, Ai) :
i ≥ 0}, let ciB , 〈RiB , σiB , ρiB 〉 be the first configuration in which B is executed; that is, AiB = B,
and Ai 6= B for all i < iB . From transition rule (Paral) in Table 1 and Lemma 6, let

〈S, σ, ρ〉 B→
∑
j∈J

pj · 〈Rj , fj(σ), Ej(ρ)/pj〉 (3)

where Rj = S1‖ . . . ‖Sk,j‖ . . . ‖Sn for some Sk,j , fj only depends on cv(Sk) but does not change
the variables outside change(Sk), Ej is a super-operator acting onHqv(Sk), and pj = tr(Ej(ρ)). Then
from the fact that along the path c0, c1, . . . , ciB , no action involving k is performed, the transition
that happens at ciB in the computation π has the form

〈RiB , σiB , ρiB 〉
B→
∑
j∈J

piB ,j · 〈RiB ,j , fj(σiB ), Ej(ρiB )/piB ,j〉 (4)

where RiB ,j = SiB1 ‖ . . . ‖Sk,j‖ . . . ‖SiBn whenever RiB = SiB1 ‖ . . . ‖Sk‖ . . . ‖SiBn , and piB ,j =
tr(Ej(ρiB )).

For any j ∈ J , we are going to construct from T a derivative tree Tj where the first execution of
the B-transition along any terminating run of T is replaced by the corresponding j-th child in the
B-transition; that is, ciB is replaced by 〈RiB ,j , fj(σiB ), Ej(ρiB )/piB ,j〉. To be more specific, Tj is
constructed as follows.

(1) Let the root of Tj be 〈Rj , fj(σ), Ej(ρ)/pj〉.
(2) To unfold Tj from the root, we follow precisely the transitions taken by T along each run r until

the configuration ciB is reached. For such a finite path c0, c1, . . . , ciB in T , it is easy to see that
the corresponding path in Tj is c′0, c

′
1, . . . , c

′
iB

, where

c′i , 〈Si1‖ . . . ‖Sk,j‖ . . . ‖Sin, fj(σi), Ej(ρi)/tr(Ej(ρi))〉
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whenever

ci = 〈Si1‖ . . . ‖Sk‖ . . . ‖Sin, σi, ρi〉.

Here in each ci the k-th process must be Sk since along the path c0, c1, . . . , ciB in T , no B-
transition is executed. In particular, c′iB is precisely the j-th support configuration of the right-hand
side distribution in Eq. (4). Furthermore, it is easy to check that each pair of the corresponding
edges in T and Tj along each run up to the respective ciB are labelled with the same probability.

(3) The subtree of Tj rooted at c′iB is the same as the subtree of T rooted at c′iB (from the above
clause, c′iB indeed appears in T as a child node of ciB ).

Finally, let T ′ be a derivative tree where the root is 〈S, σ, ρ〉, the action executed by the root is
given in Eq. (3), and for each j ∈ J , Tj is the subtree starting from 〈Rj , fj(σ), Ej(ρ)/pj〉. Note also
that the above procedure transforms non-terminating runs to non-terminating runs. Thus obviously,
the induced computation π′ = {µ′i : i ≥ 0} computes the same cq-state as π.

Repeat the above procedure, we will eventually transform any computation to the good one
without changing the cq-state computed. That concludes the proof of the theorem. J

C.2 Proof of Lemma 11

Clause (2) is easy. For (1), let ∆ = 〈σ, ρ〉 with tr(ρ) = 1, and π , {µi : i ≥ 0} a computation of S
starting in ∆. We prove by induction on i that ∆µi

has countable support and tr(∆µi
) ≤ tr(ρ). Thus

the result holds for simple cq-states. The general case follows easily.

C.3 Proof of Theorem 12

We first show a close relationship between the good transitions of S and the transitions of T (S).

I Lemma 28. For any configuration 〈S, σ, ρ〉 where S is a distributed quantum program,
(1) if the transition 〈S, σ, ρ〉 →

∑
i∈I pi · 〈Si, σi, ρi〉 appears in the derivative tree of a good

computation, then 〈T (S), σ, ρ〉 →
∑
i∈I pi · 〈T (Si), σi, ρi〉 is the (unique) transition from

〈T (S), σ, ρ〉;
(2) conversely, if 〈T (S), σ, ρ〉 →

∑
i∈I pi · 〈S′i, σi, ρi〉 then either 〈S, σ, ρ〉 →

∑
i∈I pi · 〈Si, σi, ρi〉

appears in the derivative tree of a good computation and S′i = T (Si), or 〈S, σ, ρ〉 is a deadlock.
In the latter case, σ |= BLOCK ∧ ¬TERM .

Proof. Easy from the definitions of T (S), which is a deterministic quantum program, and the good
computation of S. Furthermore, if 〈S, σ, ρ〉 is a deadlock, then the classical state σ must satisfy
BLOCK ∧ ¬TERM . J

With this lemma, Theorem 12 can be proved as follows.

Proof of Theorem 12. We need only prove the theorem for the case when ∆ = 〈σ, ρ〉 with
tr(ρ) = 1. Let π , {µi : i ≥ 0} and π′ , {µ′i : i ≥ 0} be the computation of T (S) and the good
computation of S, both starting in 〈σ, ρ〉, respectively. We are going to show that for any i ≥ 0,
∆µi = ∆µ′

i
|TERM . Then the theorem follows by taking the least upper bounds of both sides.

From Lemma 28, the derivative tree of π has the same structure (including the probability weights
along the edges) with that of π′, except for deadlock configurations. However, Lemma 28 also says
that classical states in these deadlock configurations must satisfy BLOCK ∧ ¬TERM , and thus
they will be excluded in computing ∆µ′

i
|TERM . Note further that TERM is satisfied by all the

successfully terminating configurations in µi; that is, ∆µi = ∆µi |TERM . Thus ∆µi = ∆µ′
i
|TERM

as desired. J
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xp.skip.Θ = Θ wlp.abort.Θ = >V wp.abort.Θ = ⊥V

xp.(x := e).Θ = Θ[e/x] xp.(x :=$ g).Θ =
∑

d∈Dtype(x)
g(d) ·Θ[d/x]

xp.(q̄ ∗= U).Θ = U†q̄ ΘUq̄ xp.(q := 0).Θ =
∑dq−1

i=0 |i〉q〈0|Θ|0〉q〈i|

xp.(S0;S1).Θ = xp.S0.(xp.S1.Θ) xp.(x := measM[q̄]).Θ =
∑

i∈I
M†i Θ[i/x]Mi

wlp.(if �n
i=1Bi → Si fi).Θ =

∑n

i=1 Bi ∧ wlp.Si.Θ +
∧n

i=1 ¬Bi

wp.(if �n
i=1Bi → Si fi).Θ =

∑n

i=1 Bi ∧ wp.Si.Θ

wlp.(do �n
i=1Bi → Si od).Θ =

∧
k≥0 Θk, where Θ0 , >V , and for any k ≥ 0,

Θk+1 ,
∑n

i=1 Bi ∧ wlp.Si.Θk +
∧n

i=1 ¬Bi ∧Θ.

wp.(do �n
i=1Bi → Si od).Θ =

∨
k≥0 Θk, where Θ0 , ⊥V , and for any k ≥ 0,

Θk+1 ,
∑n

i=1 Bi ∧ wp.Si.Θk +
∧n

i=1 ¬Bi ∧Θ.

Table 4 Weakest (liberal) precondition semantics for sequential programs, where xp ∈ {wp,wlp} and
V = qv(Θ).

C.4 Proof of Theorems 18 and 20

The basic idea of proving the soundness and completeness of our proof systems is to employ weakest
(liberal) preconditions. To this end, we extend the weakest (liberal) precondition semantics presented
in [16] to sequential programs defined in Sec. 2.1. Note that we do not have to extend it further
to distributed programs, thanks to the sequentialisation theorem (Theorem 12). Let A⊇qv(S) ,⋃
V⊇qv(S)AV .

I Definition 29. Let S be a sequential quantum program. The weakest precondition semantics
wp.S and weakest liberal precondition semantics wlp.S of S are both mappings

A⊇qv(S) → A⊇qv(S)

defined inductively in Table 4. To simplify notation, we use xp to denote both wp and wlp whenever
it is applicable for both of them.

The following lemma shows a duality relation between the denotational and weakest (liberal)
precondition semantics of sequential programs, which extends [16, Lemma 4.14].

I Lemma 30. Let S be a sequential quantum program, ∆ a cq-state, and Θ a cq-assertion with
qv(∆) ⊇ qv(Θ) ⊇ qv(S). Then

(1) qv(wp.S.Θ) = qv(wlp.S.Θ) = qv(Θ);
(2) Exp(∆ |= wp.S.Θ) = Exp([[S]](∆) |= Θ);
(3) Exp(∆ |= wlp.S.Θ) = Exp([[S]](∆) |= Θ) + tr(∆)− tr([[S]](∆)).

Proof. We prove this lemma by induction on the structure of S. The basis cases are easy from the
definition. We only show the following cases for clause (3) as examples. Let V , qv(Θ).
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Let S , if �ni=1Bi → Si fi. Note that Bi’s are mutually exclusive. Then

Exp(∆ |= wlp.S.Θ) = Exp
(

∆ |=
n∑
i=1

Bi ∧ wlp.Si.Θ +
n∧
i=1
¬Bi

)

=
n∑
i=1

Exp(∆|Bi |= wlp.Si.Θ) + Exp
(

∆ |= >V −
n∑
i=1

Bi

)

=
n∑
i=1

[Exp ([[Si]](∆|Bi) |= Θ) + tr(∆|Bi)− tr([[Si]](∆|Bi))]

+ tr(∆)−
n∑
i=1

tr(∆|Bi
)

= Exp([[S]](∆) |= Θ) + tr(∆)− tr([[S]](∆)).

Here the second equality follows from Lemma 21, the third one from the inductive hypothesis,
and the last one from Lemma 24.
Let S , do �ni=1Bi → Si od and Θk, k ≥ 0, be defined as in Table 4 for the wlp semantics of
do �ni=1Bi → Si od. First, we show by induction that for any k ≥ 0 and ∆′ ∈ SV ,

Exp(∆′ |= Θk) = Exp([[Sk]](∆′) |= Θ) + tr(∆′)− tr([[Sk]](∆′)) (5)

where Sk is defined as in Lemma 24. The case of k = 0 follows from the definition. Let
B ,

∧n
i=1 ¬Bi. We further calculate from Lemmas 21 and 24 that

Exp(∆′ |= Θk+1)

= Exp(∆′ |=
n∑
i=1

Bi ∧ wlp.Si.Θk) + Exp(∆′ |= B ∧Θ)

=
n∑
i=1

Exp(∆′|Bi |= wlp.Si.Θk) + Exp(∆′|B |= Θ)

=
n∑
i=1

[Exp ([[Si]](∆′|Bi
) |= Θk) + tr(∆′|Bi

)− tr([[Si]](∆′|Bi
))] + Exp(∆′|B |= Θ)

=
n∑
i=1

[
Exp([[Sk]]([[Si]](∆′|Bi

)) |= Θ) + tr([[Si]](∆′|Bi
))− tr([[Sk]]([[Si]](∆′|Bi

)))
]

+
n∑
i=1

[tr(∆′|Bi
)− tr([[Si]](∆′|Bi

))] + Exp(∆′|B |= Θ)

= Exp([[Sk+1]](∆′) |= Θ) + tr(∆′)− tr([[Sk+1]](∆′)),

where the fourth equality follows from the induction hypothesis, and the last one from the fact that
[[Sk+1]](∆′) =

∑n
i=1 [[Sk]]([[Si]](∆′|Bi

)) + ∆′|B and tr(∆′) =
∑n
i=1 tr(∆′|Bi

) + tr(∆′|B).
With Eq. (5), we have from Lemma 23 that

Exp(∆ |= wlp.S.Θ) = Exp(∆ |=
∧
k≥0

Θk) = Exp([[S]](∆) |= Θ) + tr(∆)− tr([[S]](∆)).

J

The following two lemmas, which extend Lemmas 4.16 and 4.17 in [16], respectively, can be
similarly shown for our sequential programs. The proofs are omitted here.
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I Lemma 31. Let S be a sequential program, ∆ a cq-state, and Θ a cq-assertion with qv(∆) ⊇
qv(Θ) ⊇ qv(S). Let xp ∈ {wp,wlp}. Then

(1) wp.S.Θ + wlp.S.(>qv(Θ) −Θ) = >qv(Θ);
(2) the function xp.S is monotonic; that is, for all Θ1 v Θ2, xp.S.Θ1 v xp.S.Θ2;
(3) the function wp.S is linear; that is, for all Θ1,Θ2 ∈ AV ,

wp.S.(λ1Θ1 + λ2Θ2) = λ1wp.S.Θ1 + λ2wp.S.Θ2;

(4) the function wlp.S is affine-linear; that is, for all Θ1,Θ2 ∈ AV and λ1 + λ2 = 1,

wlp.S.(λ1Θ1 + λ2Θ2) = λ1wlp.S.Θ1 + λ2wlp.S.Θ2.

(5) if W ∩ qv(Θ) ⊆ V ⊆ qv(Θ), (V ∪W ) ∩ qv(S) = ∅, and FV→W is a completely positive and
sub-unital super-operator, then

FV→W (wp.S.Θ) = wp.S.(FV→W (Θ))

and
FV→W (wlp.S.Θ) v wlp.S.(FV→W (Θ)).

The equality holds for wlp as well if FV→W is unital;

I Lemma 32. Let S be a sequential program, and Θ and Ψ are cq-assertions. Then

|=tot {Θ} S {Ψ} iff Θ . wp.S.(Ψ⊗ Iqv(S)\qv(Ψ))
|=par {Θ} S {Ψ} iff Θ . wlp.S.(Ψ⊗ Iqv(S)\qv(Ψ)).

In particular, if qv(Θ) = qv(Ψ) ⊇ qv(S), then

|=tot {Θ} S {Ψ} iff Θ v wp.S.Ψ
|=par {Θ} S {Ψ} iff Θ v wlp.S.Ψ.

The next lemma shows a closed relationship between the correctness of a distributed quantum
program S and its sequentialisation T (S).

I Lemma 33. For any distributed program S and a cq-assertions Θ and Ψ,

|=tot {Θ} S {Ψ ∧ TERM} iff |=tot {Θ} T (S) {Ψ ∧ TERM}
|=par {Θ} S {Ψ ∧ TERM} iff |=par {Θ} T (S) {Ψ ∧ TERM + ¬TERM ∧ BLOCK} .

Proof. The first equivalence is direct from Theorem 12. For the second one, let Ψ′ , Ψ∧TERM +
¬TERM ∧ BLOCK . It suffices to prove for any ∆ ∈ SV with V ⊇ qv(Ψ,Θ, S),

Exp([[T (S)]](∆) |= Ψ′)− tr([[T (S)]](∆)) = Exp([[S]](∆) |= Ψ∧TERM )− tr([[S]](∆)) (6)

Note that all support configurations in [[T (S)]](∆) satisfy BLOCK . Thus

[[T (S)]](∆) = [[S]](∆) + [[T (S)]](∆)|¬TERM∧BLOCK

from Theorem 12, and

tr([[T (S)]](∆)) = tr([[S]](∆)) + Exp ([[T (S)]](∆) |= ¬TERM ∧ BLOCK ) .

Then Eq. (6) follows easily from the first equivalence. J
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We are now ready to prove the soundness and completeness of our proof systems.

Proof of Theorem 18. Soundness: We need only to show that each rule in Table 2 is valid in the
sense of partial correctness. The proof is divided into two steps:

(1) We first prove by structural induction that the proof rules are sound for sequential programs
(thus the rule (Dist) is no applicable). We take (Rep) as an example; the others are simpler. Let
S , do �ni=1Bi → Si od, and |=par {Bi ∧Θ} Si {Θ} for all 1 ≤ i ≤ n. Without loss of
generality, we assume qv(S) ⊆ qv(Θ). Then Bi ∧ Θ v wlp.Si.Θ from Lemma 32. We now
prove by induction on k that Θ v Θk for any k ≥ 0, where Θk is defined as in Table 4 for the
wlp semantics of do �ni=1Bi → Si od when the postcondition is

∧n
i=1 ¬Bi ∧Θ. The case when

k = 0 is trivial. Then we calculate

Θk+1 =
n∑
i=1

Bi ∧ wlp.Si.Θk +
n∧
i=1
¬Bi ∧Θ

w
n∑
i=1

Bi ∧ wlp.Si.Θ +
n∧
i=1
¬Bi ∧Θ

w
n∑
i=1

Bi ∧Θ +
n∧
i=1
¬Bi ∧Θ = Θ,

where the first inequality follows from the induction hypothesis and Lemma 31. Thus

Θ v wlp.(do �ni=1Bi → Si od).
(

n∧
i=1
¬Bi ∧Θ

)
,

and so

|=par {Θ} do �ni=1Bi → Si od
{

n∧
i=1
¬Bi ∧Θ

}
by Lemma 32.

(2) For generic distributed program, the only relevant rules are (Imp) and (Dist). The former is direct
from Lemma 32. For (Dist), let S , S1‖ . . . ‖Sn and T (S) be its sequentialisation defined in
Sec. 4. Suppose |=par {Θ} S1,0; . . . ;Sn,0 {Ψ}, and for all (i, j, k, `) ∈ Γ,

|=par {Bi,j ∧Bk,` ∧Ψ} Effect(αi,j , αk,`);Si,j ;Sk,` {Ψ} .

Note that T (S) is sequential. First, by the soundness of (Imp) for sequential programs, we have

|=par {Bi,j ∧Bk,` ∧Bi ∧Ψ} Effect(αi,j , αk,`);Si,j ;Sk,` {Ψ} .

Then |=par {Θ} T (S) {Ψ ∧ BLOCK} by using the soundness of (Seq) and (Rep) for sequential
programs. Note that Ψ ∧BLOCK v Ψ′ where Ψ′ is defined in Lemma 33. Thus from (Imp) and
Lemma 33 we have |=par {Θ} S {Ψ ∧ TERM}.

Completeness: The proof for completeness is also divided into two steps:
(1) We first prove by induction on the structure of S that for any Θ and sequential program S with

qv(S) ⊆ qv(Θ), `par {wlp.S.Θ} S {Θ} . We take the case for loops as an example. Let
S , do �ni=1Bi → Si od and Ψ , wlp.S.Θ. By induction, we have `par {wlp.Si.Ψ} Si {Ψ}
for any 1 ≤ i ≤ n. Note that

Ψ =
n∑
i=1

Bi ∧ wlp.Si.Ψ +
n∧
i=1
¬Bi ∧Θ.
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Thus Bi ∧ Ψ = Bi ∧ wlp.Si.Ψ v wlp.Si.Ψ and so `par {Bi ∧Ψ} Si {Ψ} by the (Imp) rule.
Now using (Rep) we have `par {Ψ} do �ni=1Bi → Si od {

∧n
i=1 ¬Bi ∧Ψ} and the result

follows from the fact that
∧n
i=1 ¬Bi ∧Ψ =

∧n
i=1 ¬Bi ∧Θ v Θ.

(2) Let S , S1‖ . . . ‖Sn and T (S) its sequentialisation defined in Sec. 4. Suppose |=par {Θ} S {Ψ}.
Note that for any ∆ ∈ SV with V ⊇ qv(Ψ,Θ, S), all support configurations in [[S]](∆)
satisfy TERM . Thus |=par {Θ} S {Ψ ∧ TERM}. Then from Lemma 33, we have |=par
{Θ} T (S) {Θ′} where Θ′ , Ψ∧TERM +¬TERM ∧BLOCK , and thus Θ . wlp.T (S).Θ′.
Let Ψ′ , wlp.do.Θ′ where do is the do-loop in T (S). As T (S) is sequential, we have from the
above clause that

`par {Ψ′} do {Θ′} and `par {wlp.S0.Ψ′} S0 {Ψ′}

where S0 , S1,0; . . . ;Sn,0. Note that

Ψ′ =
∑

(i,j,k,`)∈Γ

Bi,j ∧Bk,` ∧Bi ∧ wlp.Sk,`i,j .Ψ
′ + BLOCK ∧Θ′

where Sk,`i,j , Effect(αi,j , αk,`);Si,j ;Sk,`. Thus

Bi,j ∧Bk,` ∧Ψ′ = Bi,j ∧Bk,` ∧Bi ∧ wlp.Sk,`i,j .Ψ
′ v wlp.Sk,`i,j .Ψ

′,

and so

`par {Bi,j ∧Bk,` ∧Ψ′} Sk,`i,j {Ψ
′} .

by (Imp) and the completeness result for sequential quantum programs. Note that wlp.S0.Ψ′ =
wlp.T (S).Θ′. Applying (Dist) and (Imp), we derive `par {Θ} S {Ψ′ ∧ TERM}, and the result
follows from the fact that Ψ′ ∧ TERM = Θ′ ∧ TERM = Ψ ∧ TERM v Ψ.

J

The proof for total correctness is more involved.

Proof of Theorem 20. Soundness: Similar to the partial correctness case, the proof is divided
into two steps:

(1) We first prove by structural induction that the proof rules in Table 2 with the corresponding
rules replaced by those in Table 3 are sound for sequential programs (thus the rule (Dist-T) is
no applicable), in the sense of total correctness. Again, we take (Rep-T) as an example. Let
S , do �ni=1Bi → Si od, |=tot {Bi ∧Θ} Si {Θ} for all 1 ≤ i ≤ n, and {Ψk : k ≥ 0} be a
sequence of Θ-ranking assertions for S. Without loss of generality, we assume qv(S) ⊆ qv(Θ).
We now prove by induction on k that Θ v Θk + Ψk for any k ≥ 0, where Θk is defined as in
Table 4 for the wp semantics of do �ni=1Bi → Si od when the postcondition is

∧n
i=1 ¬Bi ∧Θ.

The case when k = 0 is from the fact that Θ v Ψ0. Then from the inductive hypothesis and
Lemmas 31 and 32,

Bi ∧Θ v wp.Si.Θ v wp.Si.Θk + wp.Si.Ψk,

and so

Θk+1 + Ψk+1 w
n∑
i=1

Bi ∧ wp.Si.Θk +
n∧
i=1
¬Bi ∧Θ +

n∑
i=1

Bi ∧ wp.Si.Ψk

w
n∑
i=1

Bi ∧Θ +
n∧
i=1
¬Bi ∧Θ = Θ,
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where the first inequality follows from the definition of ranking assertions and the fact that Bi’s
are mutually exclusive, and the second one from the induction hypothesis. Thus

Θ v wp.(do �ni=1Bi → Si od).
(

n∧
i=1
¬Bi ∧Θ

)
by noting that

∧
k Ψk = ⊥V , and so

|=tot {Θ} do �ni=1Bi → Si od
{

n∧
i=1
¬Bi ∧Θ

}
as desired.

(2) For generic distributed programs, again we only consider (Dist). The proof is similar to the case
for partial correctness, by noting the following two facts: for any distributed program S and
cq-assertion Ψ,

ranking assertions for S are also ranking assertions for the do-loop of T (S);
from the assumption Ψ ∧ BLOCK . TERM we have Ψ ∧ BLOCK = Ψ ∧ TERM .

Completeness: The proof for completeness is also divided into two steps:
(1) We first prove by induction on the structure of S that for any Θ and sequential program S with

qv(S) ⊆ qv(Θ), `tot {wp.S.Θ} S {Θ} . Again, we take the case for loops as an example. Let
S , do �ni=1Bi → Si od and Ψ , wp.S.Θ. By induction, we have `tot {wp.Si.Ψ} Si {Ψ}
for any 1 ≤ i ≤ n. Note that

Ψ =
n∑
i=1

Bi ∧ wp.Si.Ψ +
n∧
i=1
¬Bi ∧Θ.

Thus Bi ∧Ψ = Bi ∧ wp.Si.Ψ v wp.Si.Ψ and so `tot {Bi ∧Ψ} Si {Ψ} by the (Imp) rule.
Let Θ0 , wp.S.>qv(Θ) and Θk+1 ,

∑n
i=1Bi ∧ wp.Si.Θk. We are going to show that {Θk :

k ≥ 0} are Ψ-ranking assertions for S. First, note that

Θ1 =
n∑
i=1

Bi ∧ wp.Si.Θ0 v
n∧
i=1
¬Bi ∧ >qv(Θ) +

n∑
i=1

Bi ∧ wp.Si.Θ0 = Θ0.

So {Θk : k ≥ 0} is decreasing by easy induction, using Lemma 31(2). Next, as Θ v >qv(Θ), we
have Ψ v Θ0.
Finally, we prove that

∧
k Θk = ⊥qv(Θ). We show by induction on k that for any k ≥ 0 and

∆ ∈ Sqv(Θ,S),

Exp(∆ |= Θk) = tr([[S]](∆))− tr([[Sk]](∆)). (7)

The case when k = 0 is direct from Lemmas 21 and 30. We further calculate that

Exp(∆ |= Θk+1) = Exp
(

∆ |=
n∑
i=1

Bi ∧ wp.Si.Θk

)

=
n∑
i=1

Exp(∆|Bi |= wp.Si.Θk)

=
n∑
i=1

Exp([[Si]](∆|Bi) |= Θk)

=
n∑
i=1

tr([[S]]([[Si]](∆|Bi)))−
n∑
i=1

tr([[Sk]]([[Si]](∆|Bi
)))

= tr([[S]](∆))− tr([[Sk+1]](∆)).
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(C-Rep-T)
{Bi ∧Θ} Si {Θ} , {Bi ∧ p ∧ t = z} Si {t < z} , ∀i ∈ {1, . . . , n}, p→ t ≥ 0

{Θ} do �n
i=1Bi → Si od

{
Θ ∧

∧n

i=1 ¬Bi

}
where type(z) = type(t) = Integer, z 6∈ cv(p,Bi, t, Si), Θ =

⊕
i∈I
〈pi,Mi〉 and p ,

∨
i∈I

pi.

(C-Dist-T)

{Θ} S1,0; . . . ;Sn,0 {Ψ} , p→ t ≥ 0, p ∧ BLOCK → TERM

{Bi,j ∧Bk,` ∧ p ∧ t = z} Effect(αi,j , αk,`);Si,j ;Sk,` {t < z} , ∀(i, j, k, `) ∈ Γ

{Bi,j ∧Bk,` ∧Ψ} Effect(αi,j , αk,`);Si,j ;Sk,` {Ψ} , ∀(i, j, k, `) ∈ Γ
{Θ} S1‖ . . . ‖Sn {Ψ ∧ TERM}

where Γ, TERM , and BLOCK are defined as in Sec. 4,

type(z) = type(t) = Integer, z 6∈ cv(p, t, S1‖ . . . ‖Sn), Ψ =
⊕

i∈I
〈pi,Mi〉, and p ,

∨
i∈I

pi.

Table 5 Auxiliary rules.

Here the second last equality is from induction hypothesis, and the last one from Lemma 24. Note
that the second term of the r.h.s of Eq.(7) converges to the first one when k goes to infinity. Thus
limk Exp(∆ |= Θk) = 0, and so

∧
k Θk = ⊥qv(Θ) from the arbitrariness of ∆.

Now using (Rep-T) we have `tot {Ψ} do �ni=1Bi → Si od {
∧n
i=1 ¬Bi ∧Ψ} and the result

follows from the fact that
∧n
i=1 ¬Bi ∧Ψ =

∧n
i=1 ¬Bi ∧Θ v Θ.

(2) The case for generic distributed programs S is similar to that for partial correctness. The
construction of ranking assertions for the do-loop of T (S), which also work for S, follows the
same approach in the above clause.

J

D Auxiliary Rules

We have provided sound and relatively complete proof systems for both partial and total correctness of
distributed quantum programs. Thus in principle, these proof rules are sufficient for proving desired
properties as long as they can be described faithfully with Hoare triple formulas. However, in practice,
using these rules directly might be complicated. To simplify reasoning, we introduce two auxiliary
proof rules in Table 5 for the special case when a classical ranking function can be found to guarantee
the (finite) termination of repetitive sequential (C-Rep-T) or distributed (C-Dist-T) quantum programs.
More auxiliary proof rules (for deterministic quantum programs) can be found in [16, 41]. For the
sake of convenience, we write 〈p, |ψ〉〉 for 〈p, |ψ〉〈ψ|〉, and p for p ∧ >V for some appropriate V .

I Theorem 34. The auxiliary rules presented in Table 5 are sound with respect to total correctness.

Proof. First note that for any i, |=tot {Bi ∧ p ∧ t = z} Si {t < z} implies for any σ |= Bi∧p∧t =
z and ρ, and any σ′ in the support of [[Si]](σ, ρ), we have σ′ |= t < z. Then an argument similar to that
for classical programs leads to the conclusion that all computations from 〈do�ni=1Bi → Si od, σ, ρ〉
terminates within σ(t) steps, provided σ |= p. That proves (C-Rep-T). The case for (C-Dist-T) is
similar. J

E Case studies

To illustrate the effectiveness of the proof systems as well as the auxiliary rules presented in this
paper, we employ them to verify the quantum teleportation protocol. A protocol to locally implement
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nonlocal gates is also investigated.

E.1 Verification of quantum teleportation

I Example 35 (Correctness of Quantum Teleportation). The correctness of quantum teleporta-
tion can be stated as follows: for any |ψ〉 ∈ H2,

`tot {|ψ〉q ⊗ |β〉q1,q2} Teleport {|ψ〉q2} (8)

The main technique of proving Eq. (8) is to employ rule (C-Dist-T). Let t , 2− stageA and

Ψ , 1
4
∑

i,j=0,1

(〈
stageA = stageB = 0 ∧ xA = i ∧ zA = j, |j, i〉q,q1 ⊗XiZj |ψ〉q2

〉
+
〈
stageA = stageB = 1 ∧ xA = i ∧ zA = j, |j, i〉q,q1 ⊗ Zj |ψ〉q2

〉
+ 〈stageA = stageB = 2 ∧ xA = i ∧ zA = j, |j, i〉q,q1 ⊗ |ψ〉q2〉) .

The proof consists of three parts.
(1) We show that Ψ is a global invariant for the distributed programs Teleport. To this end, consider

the first branch of the do-loop in T (Telepor) presented in Example 13:

{stageA = stageB = 0 ∧Ψ}1
4
∑

i,j=0,1

〈
xA = i ∧ zA = j, |j, i〉q,q1 ⊗XiZj |ψ〉q2

〉 (Imp)

xB := xA;1
4

∑
i,j,k=0,1

〈
xA = i ∧ zA = j ∧ xB = k, |j, i〉q,q1 ⊗XkZj |ψ〉q2

〉 (Assn)

stageA := 1;1
4

∑
i,j,k=0,1

〈
stageA = 1 ∧ xA = i ∧ zA = j ∧ xB = k, |j, i〉q,q1 ⊗XkZj |ψ〉q2

〉 (Assn)

stageB := 1;∑
k=0,1

(xB = k) ∧ X kq2
(Ψ)

 (Assn)

if xB = 1→ q2 ∗= X � ¬(xB = 1)→ skip fi
{Ψ} (Alt)

where X is the Pauli-X super-operator. Similarly, for the second branch, we can prove that

{stageA = stageB = 1 ∧Ψ}
zB := zA; stageA := 2; stageB := 2; if zB = 1→ q2 ∗= Z � ¬(zB = 1)→ skip fi
{Ψ} .

(2) We show that t is a classical ranking function for the distributed program Teleport. Note that
BLOCK ≡

∧
k=0,1 ¬ (stageA = stageB = k),

TERM ≡
∧
k=0,1

¬ (stageA = k) ∧
∧
k=0,1

¬ (stageB = k)
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and the classical part of Ψ is p ,
∨2
k=0 (stageA = stageB = k). Then it is easy to check that

p→ t ≥ 0 and p ∧ BLOCK → TERM . Furthermore, from

{stageA = stageB = 0 ∧ p ∧ 2− stageA = z}
{1 < z} (Imp)
xB := xA;
{1 < z} (Assn)
stageA := 1;
{2− stageA < z} (Assn)
stageB := 1; if xB = 1→ q2 ∗= X � ¬(xB = 1)→ skip fi
{2− stageA < z} (Assn,Alt)

and similarly for the second branch of the do-loop, the integer expression t is indeed a classical
ranking function for Teleport.

(3) We show that the sequential part of T (Teleport) establishes Ψ from the precondition |ψ〉q ⊗
|β〉q1,q2 . Let |ψ〉 = x|0〉+ y|1〉 for some x, y ∈ C. Then

{|ψ〉q ⊗ |β〉q1,q2}
q, q1 ∗= CNOT;{

1√
2

(x|0〉q(|00〉+ 11〉)q1,q2 + y|1〉q(|10〉+ 01〉)q1,q2)
}

(Unit)

q ∗= H;{
1
2 (x(|0〉+ |1〉)q(|00〉+ 11〉)q1,q2 + y(|0〉 − |1〉)q(|10〉+ 01〉)q1,q2)

}
(Unit) ∑

i,j=0,1

1
2 |j, i〉q,q1 ⊗XiZj |ψ〉q2 ≡

1
4
∑

i,j=0,1

〈
true, |j, i〉q,q1 ⊗XiZj |ψ〉q2

〉 (Imp)

zA := meas q; xA := meas q1;1
4
∑

i,j=0,1

〈
xA = i ∧ zA = j, |j, i〉q,q1 ⊗XiZj |ψ〉q2

〉 (Meas)

stageA := 0; stageB := 0;
{Ψ} (Assn)

With the three parts shown above, we have from (C-Dist-T) that

`tot {|ψ〉q ⊗ |β〉q1,q2} Teleport {Ψ ∧ TERM} .

Then the desired result in Eq. (8) is obtained by noting that

Ψ ∧ TERM ≡ 1
4
∑

i,j=0,1
〈stageA = stageB = 2 ∧ xA = i ∧ zA = j, |j, i〉q,q1 ⊗ |ψ〉q2〉 ,

which is upper bounded above by |ψ〉q2 according to the order ..

E.2 Local implementation of nonlocal quantum gates

In distributed quantum computing, one of the key tasks is to implement quantum gates between qubits
that are located in different quantum computers. To illustrate the basic idea, we recall the protocol
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x

z

|ψ〉 Z

|β〉

H

|φ〉 X

Figure 2 Local implementation of remote CNOT gate. The wires from top to bottom represent qubits q, q1,
q2, and r respectively. Furthermore, q and q1 belong to Alice while q2 and r belong to Bob.

proposed in [12] which implements a nonlocal CNOT gate between two parties, say Alice and Bob,
by employing only local quantum operations and classical communication, again with the help of a
pre-shared entangled state. The protocol is depicted as in Fig. 2 and can be written as a distributed
program RCNOT , Alice ‖ Bob where Alice ,

q, q1 ∗= CNOT; xA := meas q1; stageA := 0;
do stageA = 0; c!xA → stageA := 1
� stageA = 1; d?zA → stageA := 2; if zA = 1→ q ∗= Z � ¬(zA = 1)→ skip fi

od

and Bob ,

q2, r ∗= CNOT; q2 ∗= H; zB := meas q2; stageB := 0;
do stageB = 0; c?xB → stageB := 1; if xB = 1→ r ∗= X � ¬(xB = 1)→ skip fi
� stageB = 1; d!zB → stageB := 2

od

The correctness of RCNOT is stated as follows: for any αij ∈ C with
∑
i,j=0,1 |αij |2 = 1,

`tot

 ∑
i,j=0,1

αij |i, j〉q,r ⊗ |β〉q1,q2

 RCNOT

 ∑
i,j=0,1

αij |i, j ⊕ i〉q,r

 (9)

where ⊕ denotes the addition modulo 2. Again, the fact that the postcondition does not refer to q1
and q2 means that the post-measurement state of these quantum systems is irrelevant.

Similar to that of Teleport, to prove the correctness of RCNOT it suffices to show:
(1) the cq-assertion

Ψ , 1
4
∑

i,j=0,1

(〈
stageA = stageB = 0 ∧ xA = i ∧ zB = j, |i, j〉q1,q2 ⊗Xi

rZ
j
q |ϕ〉q,r

〉
+
〈
stageA = stageB = 1 ∧ xA = i ∧ zB = j, |i, j〉q1,q2 ⊗ Zjq |ϕ〉q,r

〉
+ 〈stageA = stageB = 2 ∧ xA = i ∧ zB = j, |i, j〉q1,q2 ⊗ |ϕ〉q,r〉) .

where |ϕ〉 ,
∑
k,`=0,1 αk`|k, `〉, serves as a global invariant for RCNOT ;

(2) the expression t , 2− stageA is a classical ranking function; and
(3) the sequential part of RCNOT establishes Ψ from the precondition |ϕ〉q,r ⊗ |β〉q1,q2 .
We omit the details here.
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