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In this paper, we present a multiple concurrent occupant identification approach through footstep-induced floor vibration
sensing. Identification of human occupants is useful in a variety of indoor smart structure scenarios, with applications in
building security, space allocation, and healthcare. Existing approaches leverage sensing modalities such as vision, acoustic,
RF, and wearables, but are limited due to deployment constraints such as line-of-sight requirements, sensitivity to noise, dense
sensor deployment, and requiring each walker to wear/carry a device. To overcome these restrictions, we use footstep-induced
structural vibration sensing. Footstep-induced signals contain information about the occupants’ unique gait characteristics, and
propagate through the structural medium, which enables sparse and passive identification of indoor occupants. The primary
research challenge is that multiple-person footstep-induced vibration responses are a mixture of structurally-codependent
overlapping individual responses with unknown timing, spectral content, and mixing ratios. As such, it is difficult to determine
which part of the signal corresponds to each occupant. We overcome this challenge through a recursive sparse representation
approach based on cosine distance that identifies each occupant in a footstep event in the order that their signals are generated,
reconstructs their portion of the signal, and removes it from the mixed response. By leveraging sparse representation, our
approach can simultaneously identify and separate mixed/overlapping responses, and the use of the cosine distance error
function reduces the influence of structural codependency on the multiple walkers’ signals. In this way, we isolate and
identify each of the multiple occupants’ footstep responses. We evaluate our approach by conducting real-world walking
experiments with three concurrent walkers and achieve an average F1 score for identifying all persons of 0.89 (1.3× baseline
improvement), and with a 10-person “hybrid” dataset (simulated combination of single-walker real-world data), we identify 2,
3, and 4 concurrent walkers with a trace-level accuracy of 100%, 93%, and 73%, respectively, and observe as much as a 2.9×
error reduction over a naive baseline approach.
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1 INTRODUCTION
Identification (ID) of indoor occupants is an important component of smart infrastructure. Timely and accurate
identification of indoor occupants can assist with building security, space allocation/utilization, personalized
services, as well as healthcare monitoring. Various approaches exist in the literature for identifying indoor
occupants including WiFi/Radio Frequency (RF) [2, 8, 34, 35, 84, 85], vision [7, 12, 39, 56, 60, 77, 81], mobile [28,
45, 48, 57, 79], and acoustic [29, 88]. These approaches are state-of-the-art techniques for person identification,
but are limited in their deployment due to restrictions of line-of-site (vision), dense sensor deployment (WiFi/RF),
ambient noise (acoustic), and requiring persons to carry a device at all times (mobile).
To overcome these limitations, prior works have utilized structural floor vibration sensing due to its passive

and sparse sensing capability and “device-free” nature [65, 67]. The primary physical insight for these systems
is that human gait patterns are a type of biometric and are unique [11]. The human gait is a complex activity
that involves many skeletal and muscle groups within the human body. As such, physical characteristics of
individuals (e.g., height, weight, posture, etc.) all influence how someone walks. The use of gait as a biometric
has a rich history and many people can relate to the concept of identifying persons they know based on their gait
(e.g., that looks like a friend walking in the crowd ahead of me). In fact, gait as a biometric is reliable enough
to be used in forensic analysis [11]. For example, a tall person may have longer strides, a heavier person may
have a higher footstep ground reaction force, and some people may walk more slowly/quickly (which affects
both center of mass position and foot contact angle). When these individuals walk in a building strucutre, their
footsteps impart a dynamic force on the structure itself, which induces a vibration response that can be measured
using vibration sensors. Therefore, these footstep-induced vibration responses will also be unique and can be
used for identification. Prior approaches using footstep-induced floor vibrations focus on person identification
scenarios where only one person is walking in the sensing area [65, 67]. In real-world scenarios, however, people
tend to walk in groups of two or more concurrent walkers. As such, these prior approaches are limited in many
real-world scenarios.
In our work, we present a person identification approach for “multiple walker” scenarios (i.e., when two or

more persons are walking concurrently) using footstep-induced structural vibration sensing. The challenges with
this approach are twofold: 1) the footstep responses from multiple concurrent walkers are an overlapping mixture
of each individual’s response, with the timing of each step as well as the contribution of that step to the overall
response being unknown. As a result, it is difficult to separate the components of the signal that correspond to
each individual, making it difficult to accurately identify each walker. Figure 1 shows a conceptual example of
this challenge; and 2) vibration responses from different persons have a codependency on the properties of the
underlying structure, and these structural components dominate the overall response. As such, it is difficult to
extract the unique signal components necessary for identifying each occupant.

This type of problem can be viewed as a “signal/source separation” problem. These types of problems are highly
studied area in the signal processing domain. These works are characterized by their goal of isolating/separating
individual responses from mixed signals, typically without any prior knowledge of the input/individual responses.
The most prominent works in this field fall under the category of “Blind Source Separation” (BSS). Common BSS
approaches include ones that use Principal Component Analysis (PCA), Independent Component Analysis (ICA),
and Non-Negative Matrix Factorization (NMF) [5, 33, 40, 41, 54, 72, 73, 90].

In the case of footstep-induced vibration responses, however, these approaches have limitations that result in
decreased performance. PCA and ICA-based approaches have a forced/assumed source independence requirement
which is not satisfied with footstep-induced structural vibrations because the response for each occupant depends
on the vibration characteristics of the medium (i.e., the structure). Further, NMF, which does not rely on the
independence of the source signals, imposes a non-negativity requirement, which can result in loss of source
signal information and reduce the ability to uniquely identify occupants with separated signals [40].
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Fig. 1. Footstep-induced signals from multiple walkers may overlap. With overlapping signals, it is difficult to determine the
number of walkers and their individual signal components.

To address these challenges, our approach leverages sparse representation to sequentially and recursively
identify individual responses, reconstruct them, and remove them from the combined signal. This approach is
built on the insight that the dynamic response of the structure is the superposition of the response from each
person’s footstep excitation. Further, individuals tend to walk similarly across different steps and prior steps
when a person was walking independently can be used as basis functions to represent new steps from that same
person. In this way, our approach leverages a sparse representation to sequentially and recursively identify
which basis function (prior step) best represents each step within a detected footstep event (where a “footstep
event” may contain one or more individual steps). To reduce the effect of the structure codependency, we find
the sparse coefficients using a cosine distance-based error function. We observe that the frequency spectrum of
footstep-induced vibrations is dominated by the “structural response” components (i.e., those due to the dynamic
properties of the structure itself, such as resonant frequencies with large magnitude peaks). As such, a traditional
error function such as the Euclidean distance would place more emphasis on the dominant peaks and have higher
identification errors. The cosine distance, on the other hand, measures the cosine of the angle between the two
vectors (e.g., the two frequency spectra in our problem) [32]. It is a normalized frequency spectrum comparison,
which focuses on the similarity between the overall shapes of the two spectra regardless of their magnitudes
and thus reduces the influence of the structure-dependent peaks. By using a cosine distance error function, our
approach minimizes the difference between the overall shape of the frequency spectrum, enabling a better match
between similar responses (i.e., the same person). The basis functions identified by the sparse representation are
then used to reconstruct that individual’s independent response, and it is subtracted from the combined response.
The remaining signal then contains the next person’s footstep response, which can be identified, reconstructed,
and removed in the same way. This process is done sequentially and recursively for each footstep event until all
individual steps are identified, reconstructed, and removed from the combined response. As a result, the multiple
walker response is separated into individual components and each person is identified. In summary, our primary
research contributions are:

(1) We present an approach for identifying multiple concurrent walkers using footstep-induced floor vibrations.
(2) We separate mixed vibration responses through a recursive sparse-representation-based occupant identifi-

cation and signal reconstruction approach.
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(3) We overcome the effects of structure codependency using a cosine distance-based error function which
minimizes the difference between the normalized frequency spectra, thereby reducing the influence of
dominant peaks in the frequency spectrum that correspond to the dynamic properties of the structure itself.

(4) We evaluate our approach with real-world walking experiments involving 3 concurrent walkers and hybrid
real-world/simulation experiments with 10 total walkers.

The rest of the paper is organized as follows: First, we provide an overview of relevant related works (Section 2).
Next, we describe the physical insights that enable our multiple person identification approach (Section 3).
Following this, we describe our recursive sparse representation-based approach in detail (Section 4). Next, we
evaluate the performance of our work in Section 5, and describe our future work (Section 6). Finally, we provide
concluding remarks (Section 7).

2 RELATED WORK
In our work, we identify indoor occupants in “multiple walker” scenarios using footstep-induced floor vibrations.
The relevant prior work in this area is largely from two primary categories: 1) approaches for identification of
indoor occupants, and 2) signal/source separation approaches. The following sections presents each of these
categories in detail and discusses how our approach fills the research gaps that exist in prior works.

2.1 Indoor Occupant Identification
Indoor occupant identification is a common application for various sensing modalities in the literature. In
this section, we explore some of the most prominent works in this area which include: vision-based [7, 12, 39,
56, 60, 77, 81], radio-frequency(RF)/WiFi-based [2, 8, 34, 35, 84, 85], mobile/wearable-based [28, 45, 48, 57, 79],
acoustic-based [29, 88], and vibration-based [65, 67].

Vision-based methods determine person identification from visual biometrics such as facial features [26, 39, 81]
and body structure/characteristics (including gait mechanics) [7, 12, 56, 60, 77]. Accuracy with vision-based
methods is typically quite high and for this reason they are commonly used in society (e.g., many mobile devices
now use some form of face recognition for unlocking devices). The limitation of these approaches, however, is
that they require a clear line of site to operate (i.e., no walls or objects obstructing the view of the camera). As a
result, vision-based methods may have “blind spots” or areas where they do not function, and require additional
cameras to cover areas, which is expensive at building-scale. Further, many vision-based approaches raise privacy
concerns and people often do not like cameras in their homes or in areas that need additional privacy (e.g.,
bathrooms, bedrooms, etc.).
Radio frequency methods have been shown to successfully identify indoor occupants in a variety of indoor

settings and typically rely on tracking body movement and gait patterns to identify individuals [2, 8, 34, 35, 43,
84, 85]. These approaches, however, typically require the persons to walk or move through the path between the
transmitter and receiver, so they have limited identification range unless a large number of sensors is deployed.
Mobile/wearable-based systems, on the other hand, provide ubiquitous person identification due to their

personalized information and ability to travel everywhere with occupants [28, 45, 48, 57, 79]. These types of
approaches typically fall in two categories: 1) IMU-based systems that track gait and body movement to learn
unique characteristics of each person [28, 45, 48], and 2) tag-based systems that remember unique IDs from devices
given to each person and then use those devices/IDs to identify/track the individuals [57, 79]. The limitation with
these approaches, however, is that they require individuals to always wear/carry the device, and maintain its
charge throughout the entire day.
Acoustic-based techniques sense changes in vibration patterns through a medium to determine occupant

identities. Acoustic-based methods use the air as a medium and determine occupant IDs through unique body

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 10. Publication date: March 2022.



Recursive Sparse Representation for Identifying Multiple Concurrent Occupants Using Floor Vibration Sensing • 10:5

movements and/or gait [29, 88]. They are limited, however, by the presence of ambient noise in the environment
- if there is a loud machine or other sources of noise, these approaches do not perform well.

Prior works have utilized structural floor vibration sensing to overcome many of the limitations of the
sensing modalities discussed above due to its passive and sparse sensing capability and “device-free” nature [67].
Structural floor vibration sensing has been shown be successful with applications involving identification [65, 67],
detection/tracking [18, 47, 49, 58, 61, 68], localization [3, 50–52, 69], and monitoring human gait health and
activity levels [6, 17, 19–24, 42, 44, 59, 62, 64]. These prior approaches focus on scenarios where only one person
is walking in the sensing area. In real-world scenarios, however, people tend to walk in groups of two or more
concurrent walkers. As such, prior approaches using footstep-induced floor vibrations are limited in many
real-world scenarios. Some preliminary work focused on multiple walker scenarios [25, 75] shows that this
sensing modality has potential for expansion from the previously studied multiple-walker scenarios, but was
limited to extracting step onset and/or small-scale signal characteristics.

In this work, we address the limitations of prior works using footstep-induced structural vibration sensing. Our
approach leverages physical insights regarding the differences in humanwalking and floor vibration characteristics
to identify multiple concurrent walkers through a recursive sparse representation-based approach.

2.2 Signal Separation
As discussed previously, our treatment of the multiple walker-induced structural vibrations can be viewed as a
“Blind Source Separation” (BSS) problem. The most prominent BSS approaches are those which leverage Principal
Component Analysis (PCA), Independent Component Analysis (ICA), and Non-Negative Matrix Factorization
(NMF) [5, 33, 40, 41, 54, 72, 73, 90].

Of these, the most common BSS approach is ICA, which relies on independence of each input “source” [10]. ICA
has been successfully applied to speech recognition (i.e., the “cocktail party problem” ) [9, 37], medical images/EEG
signals [76, 83], financial data [31, 53], image processing/denoising [36, 46], and communication systems [14, 71].
For multiple walker footstep-induced vibrations, however, potential loss of signal information (NMF) and/or
source codependency on the underlying structure cause many of these prior BSS approaches to fail to accurately
separate the vibration responses from the multiple concurrent walkers, resulting in erroneous identification.

To overcome the limitations of these prior BSS approaches, ourwork introduces a recursive sparse representation-
based signal separation approach which leverages a cosine distance error metric. In this way, our approach
reduces the influence of the structure codependency and separates mixed/overlapping responses from multiple
concurrent walkers. Section 4.2 explores our approach in more detail.

3 PHYSICAL INSIGHTS FOR MULTIPLE PERSON IDENTIFICATION
To identify occupants in indoor settings, we separate multiple-person footstep-induced structural vibration signals
into the individual components corresponding to each walker. In this section, we discuss the physical insights
regarding the dynamics of footstep-induced floor vibrations that enable our recursive sparse representation-based
approach.

For building structures, the floor vibration response can be modeled as the convolution between the structure’s
frequency response function and the excitation forcing function. This convolution relationship is given by the
following expression [78, 80]:

𝑥 (𝑡) = ℎ(𝑡) ∗ 𝑓 (𝑡) (1)

where 𝑥 (𝑡) is the time history of the building vibration response, ℎ(𝑡) is the structure’s impulse response function,
𝑓 (𝑡) is the vibration forcing function (i.e., the footstep force in our case), and ∗ is a symbol representing the
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convolution integral. In the case of a multiple walker footstep-induced forcing function, 𝑓 (𝑡) contains the mixture
of the individual forcing functions from each individual person.
In a linear-elastic structure, dynamic responses (i.e., floor vibrations) can be modeled as the addition of each

individual excitation source. This behavioral effect is typically referred to as the Principal of Superposition [1, 13,
86]. Superposition, therefore, enables us to rewrite Equation 1 as the summation of the responses due to each
walker as follows:

𝑥 (𝑡) = ℎ(𝑡) ∗ (𝑓1 (𝑡) + 𝑓2 (𝑡) + ...𝑓𝑁 (𝑡)) (2)
where 𝑓𝑛 (𝑡) represents the individual footstep forcing function of person𝑛 and𝑁 is the total number of concurrent
walkers in the sensing area. Further, the distributive properties of the convolution integral allow us to rewrite
Equation 2 as the summation of each individual response convolution in the following way:

𝑥 (𝑡) = ℎ(𝑡) ∗ 𝑓1 (𝑡) + ℎ(𝑡) ∗ 𝑓2 (𝑡) + ...ℎ(𝑡) ∗ 𝑓𝑁 (𝑡) (3)
From this expression we can make two key observations: 1) each of the individual footstep excitations (i.e.,

those from each walker) are not independent - they have a mutual dependence on the structure’s frequency
response function (ℎ(𝑡)). Based on this observation, we conclude that traditional approaches like ICA are not
suitable for separating multiple walker’s footstep-induced vibrations; and 2) building off the insight regarding
gait as a biometric described above, if we assume that the same person walks similarly across different steps,
we can use prior information (i.e., prior footstep responses) from each person to estimate their components of
the total signal (ℎ(𝑡) ∗ 𝑓𝑛 (𝑡)) and isolate/separate them. This enables us to uniquely identify individual walkers
from a multiple walker mixed signal. In real-world settings, the response superposition shown in Equation 3
typically involves a few number of concurrent walkers. Further, if we assume only a few number of people’s
footsteps will completely overlap at a time, this superposition can be modeled as a sparse representation of the
prior responses from each person (i.e., a sparse representation of a dictionary of prior step basis functions). We
leverage these observations and insights to enable our recursive sparse representation-based multiple person
identification approach. Further details regarding this approach are presented in Section 4.2.

4 MULTIPLE PEOPLE IDENTIFICATION APPROACH
Our approach for the identification of multiple concurrent walkers uses sparse representation to sequentially and
recursively identify occupants and reconstruct their portions of the mixed footstep responses. This approach
consists of four main modules: 1) vibration sensing and adaptive footstep event detection (Section 4.1), 2) sparse-
representation-based recursive occupant identification (Section 4.2), 3) signal reconstruction for identified footstep
removal (Section 4.3), and 4) trace-level dictionary updating (Section 4.4). An overview of our approach is shown
in Figure 2.

4.1 Vibration Sensing and Adaptive Footstep Event Detection
The first module of approach collects structural vibration signals and detects when footsteps occur. To measure the
floor vibration signals, we use geophone sensors, which are low-cost vibration sensors that measure the velocity
of the floor vibrations and can be easily retrofitted into existing buildings. To increase the signal resolution, we
amplify the signal with a variable gain operational amplifier (100-1000X gain), which can be calibrated based on
observed responses in the sensing area.

We monitor the collected vibration signals for the presence of footstep-induced vibrations using an adaptation
of the Chi-squared anomaly detection approach [51]. This approach detects footsteps as impulsive events that
have a higher variation from the ambient noise levels and extracts them from the total signal into footstep
event windows. Specifically, we compare the null hypothesis (𝐻0 : 𝜎2

𝑤 ≤ 𝜎2
𝑛) and the alternative hypothesis
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Fig. 2. Overview of our approach for separating and identifying multiple concurrent walkers. Once several step events have
been identified at the step level, the predictions are used at the trace level to update/restrain the prior step dictionary and
update the predictions to the most common persons in the area.

(𝐻1 : 𝜎2
𝑤 > 𝜎2

𝑛). In these hypotheses 𝜎2
𝑤 represents the sample variance of the current vibration signal window

and 𝜎2
𝑛 represents the sample variance of the ambient noise levels [4, 30, 49, 51]. When the null hypothesis is

rejected, our system marks the signal window as an “impulsive event” and further classifies it as a “footstep” or
“non-footstep” event using the process outlined in [49].

In real-world situations, there are typically multiple concurrent walkers. As such, impulsive events that are
classified as footsteps may contain one or multiple overlapping steps from different walkers. Figure 3 shows
examples of this challenge. In this figure, when there is only one walker, detected impulses can be classified as
footsteps and used for determining the identity of the walker. However, in the case of multiple walkers, detected
impulsive events may contain one or more footsteps from each of the walkers, and it is difficult to determine how
many footstep responses are present when signals are mixed and overlapping. As such, our adaptive footstep
event detection approach has a variable window length and determines both the onset and the termination of
the footstep event. We determine the onset using the anomaly detection process described above, then continue
monitoring the signal with a sliding window until the null hypothesis is no longer rejected (which is then used to
mark the footstep event termination). In the case of many concurrent walkers (e.g., more than 4), it is possible
that the individual steps from each person will continuously overlap. In this case, the null hypothesis would be
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(a) Single walker adaptive footstep event detection.
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Fig. 3. An example of the output from our adaptive footstep event detection approach with (a) one walker and (b) multiple
walkers. In (b), the first event contains two partially overlapping footsteps and the second event contains three footsteps (2
of which are overlapping). Red boxes indicate detected footstep event windows and green boxes indicate sub-windows.

rejected for many consecutive individual steps, and the likelihood of detecting multiple steps from the same
person increases. To reduce this effect, we set an upper-bound on the footstep event length equal to the average
step period of walkers in the area (which can be determined from prior information). In this way, our detected
footstep events have a variable length and we can capture each of the footsteps that occur at approximately the
same time as one, combined, footstep event.

The challenge with the adaptive footstep event detection employed in our method, however, is that the number
of footsteps inside the window is unknown. To address this challenge, our approach conducts a trace-level,
step-level, and sub-window-level classification to determine the number of occupants in the sensing area, number
of steps in a “footstep event”, and number of individual steps in a sub-window of the overall footstep event (i.e., if
there are “perfectly overlapping” steps or not), respectively. We define a footstep trace as a series of consecutive
footsteps in the sensing area, a footstep event as described above, and the sub-window represents a portion of
the step event corresponding to each individual detected step within the overall footstep event window. The size
of the sub-window can be determined empirically based on the average duration of footstep responses in the
sensing area. For this work, we define the sub-window size as 4000 samples (approximately 0.15s) based on the
observed average duration of a singular footstep response.
Figure 3 shows example outputs from our adaptive footstep event detection module. In Figure 3a, a single

footstep is detected as a footstep event, while in Figure 3b, two footstep events are detected; in the first footstep
event (the one to the left), there are two clear footstep responses, and our approach is able to detect those as one
event and output the number of footsteps within the footstep event window (2). Then, for the second detected
footstep event, there appear to be two footstep responses, but there are, in fact, three (Persons 1 and 2 have
completely overlapping steps). In these cases, our system detects the footstep event, and outputs the correct
number of footstep responses (3) within that window using the classification approach described above.
At the trace-level, we extract the entropy of the footstep trace for each sensor (defined by:

𝐻 (𝑋 ) = −∑𝑛
𝑖=1 P(𝑥𝑖 ) log P(𝑥𝑖 ), where 𝐻 (𝑋 ) is the entropy and 𝑃 (𝑥𝑖 ) is the probability of the value of sample

𝑖 [74]), and use this entropy as a feature for determining the number of walkers in the sensing area using a
multi-class support vector machine (SVM) classifier [15, 27]. We choose to use an SVM classifier based on the
insight that our dataset is small, and the feature distribution is unknown, and SVM classifiers are well-suited to
distinguishing classes in those types of conditions. The maximum number of walkers (i.e., number of classes) for
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this classifier can be determined empirically during initial system calibration based on anticipated building/sensing
area occupancy. Alternatively, the trace-level number of walkers can be determined according to the procedures
outlined in prior occupancy tracking works which utilize footstep-induced vibration sensing [63, 68].

Next, at a step-level, we extract the signal energy from each sensor (defined as sum of squares of signal sample
values [70]), length of the footstep event window (number of samples between the detected signal onset and
termination as described above), and entropy of the frequency domain [74] as features for each footstep event
window and use a multi-class SVM classifier to determine the number of persons (footsteps) in the footstep
event window. These features were chosen empirically based on the observation and intuition that the number
of footstep impulses is proportional to the randomness in the signal (i.e., the entropy), that the step event
duration is typically longer with an increasing number of consecutive footsteps, and also that the signal energy
is proportional to the number of footstep impulses. In this classifier, our system outputs the number of footsteps
in the footstep event window. If the predicted number of steps exceeds the trace-level number of walkers, the
prediction is updated to the number of walkers (i.e., there cannot be more steps than total walkers). This is based
on the assumption that no more than one step from each person is in any one footstep event (based on the
upper-limit for the footstep event duration discussed above).
Finally, the same set of features used at the step-level is extracted from the sub-window signal to classify

the number of individual footsteps within each sub-window with a separate multi-class SVM classifier. In this
classifier, when the number of footsteps predicted exceeds 1, our system considers the footstep responses to be
“completely overlapping”, meaning that two (or more) persons step at approximately the exact same time. During
training, the threshold for “completely overlapping” can be set empirically to allow for some partial overlapping
to be considered “completely overlapping” for analysis purposes. This takes into consideration that, when signals
are separated by a very small amount of time (i.e., less than a few thousand samples/less than 0.1s), most of their
responses are completely mixed and difficult to distinguish. In this work, we assume a threshold of 3000 samples
(0.11s) for this purpose.

The output of this model (trace-level, step-level, and window-level number of steps, and isolated footstep
events) are then sent to the next module to be used in our recursive sparse representation-based approach.

4.2 Sparse Representation-Based Occupant Identification
Once footstep events have been detected using the procedure outlined in Section 4.1, our system next identifies
the footsteps in the detected footstep event using a recursive sparse representation-based approach. As previously
discussed, the insight behind this approach is that each person’s footstep response is unique and similar across
multiple footsteps because humans each have a unique walking style, and that each sub-window contains only a
few number of persons’ overlapping individual steps. As such, the response in each footstep event sub-window
can be approximated using a sparse representation of a dictionary of basis functions, which are created using
prior footstep responses from each person when he/she was walking solo. For this work, we use the magnitude
spectrum of the Fourier transform of the vibration signals when conducting this sparse approximation. The
magnitude spectrum is used based on prior work, which showed that the frequency domain signals best highlight
the differences in responses between different people (and are, therefore, well-suited for use in identification) [67].

Sparse representation is a common technique in the fields of signal processing and data analysis to represent a
measured/observed signal as the product of a “dictionary” of basis functions and a sparse coefficient vector [89].
The basic concept for sparse representation is founded on the principal of superposition outlined above, and, the
insight that an individual footstep event sub-window can be represented using a few number of basis functions.
Therefore, a sparse representation-based approach is well-suited for our multiple occupant problem. In these
problems, the term “sparse” refers to the constraint that there are more zero-valued elements in the coefficient
vector than non-zero ones. The general expression for sparse representation used in this work is the following [89]:
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Y = DX (4)
where Y𝑛×1 is the magnitude of the Fourier Transform of the multiple person vibration response signal window
(i.e., the “combined” response), D𝑛×𝑚 is the “dictionary” of basis functions (which consists of prior steps from
potential walkers in the area), X𝑚×1 is the coefficient vector, n is the length of the current signal window, and m
represents the number of basis functions in the dictionary. In our work, m is dependent on the prior footstep
information available, and is equal to the summation of the number of basis functions (prior steps) available for
each potential walker in the area.
A number of approaches exist in the literature for solving sparse representation problems [89]. In this work,

we are using a sparse representation to concurrently identify an individual walker from a combined (i.e., multiple
walker) response, and isolate/reconstruct that person’s individual footstep response. As such, for our sparse
representation, we are imposing a constraint that the ℓ0-Norm of𝑋 is less than or equal to the number of estimated
walkers in the current footstep event sub-window, 𝑛𝑤 . That is to say, there is one basis function in the prior step
dictionary that best represents each individuals’ footstep in the current signal window. The “less than or equal to”
in this formulation provides the algorithm flexibility in the event that the number of steps in the sub-window
was misclassified. For example, if two steps are predicted in the current sub-window, but the algorithm identifies
that one person’s basis function best represents that sub-window, the algorithm will identify the step in the
sub-window as the singular step only (instead of two, which may have been an incorrect estimation). Therefore,
a traditional approach to solving the sparse representation with constraint on the ℓ0-Norm of 𝑋 is given by the
following expression [89]:

𝑋 = argmin
X
| |𝑌 − 𝐷𝑋 | |22,

𝑠 .𝑡 .| |𝑋 | |0 ≤ 𝑛𝑤

(5)

where 𝑋 is the optimal sparse coefficient vector to represent 𝑌 using the prior step dictionary 𝐷 , and 𝑛𝑤 is the
number of predicted steps in the current footstep event sub-window (as determined according to the process
outlined in Section 4.1 above). This approach leverages a Euclidean distance-based error function to approximate
the residual between the measured signal (𝑌 ) and the sparse approximation signal (𝐷𝑋 ). However, from our
observations, the responses for each person are dominated by similar structure-based frequencies (i.e., the
structure codependency). As a result, this Euclidean distance error function will concentrate on reducing the error
of the highest magnitude frequencies (i.e., the resonant responses occurring at/around the natural frequency of
the structure), leading to confusion between individuals.
To overcome this challenge and reduce the erroneous predictions from a Euclidean distance-based error

function, our work leverages a cosine distance-based error function. The cosine distance is characterized as a
metric for comparing the overall shape (direction) of two vectors in space. It differs from a Euclidean distance
metric in that it is a normalized dot product of the two vectors being compared [32]. As such, by normalizing the
comparison, the cosine distance is less influenced by the dominant peaks in the frequency spectrum and provides
a better comparison of the overall shape of the measured signal and sparse approximation signal. Therefore, we
replace the Euclidean distance error function in Equation 5 with a cosine distance error function to obtain the
following expression for solving the sparse approximation:

𝑋 = argmin
X

1 −
Σ𝑛𝑖=1𝑦𝑖 (DX)𝑖√︃

Σ𝑛
𝑖=1𝑦

2
𝑖

√︃
Σ𝑛
𝑖=1 (DX)2

𝑖

 ,
𝑠 .𝑡 .∥X∥0 = 1, ∥X∥2 = 1

(6)
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With this formulation, we impose the constraint of one nonzero coefficient in X (ℓ0-Norm of 𝑋 equals one) and
utilize a grid search which guarantees the optimal solution, instead of | |𝑋 | |0 ≤ 𝑛𝑤 in Equation 5. To facilitate
this change, we modify the dictionary to include additional basis functions when 𝑛𝑤 is predicted to be greater
than one, which are the combination of each persons’ individual basis functions. Additional details regarding
these cases are provided below. This change helps reduce the likelihood of misidentification and facilitates the
identification of the footstep. Specifically, this constraint ensures that the algorithm uniquely identifies one
walker (or one combination of walkers when 𝑛𝑤 > 1) for each footstep event sub-window. Further, we impose
the constraint that the ℓ2-Norm of 𝑋 equals one to ensure that a unique solution is obtained (since the cosine
distance is a normalized comparison).

Using this approach, we construct a dictionary for sparse representation using prior footstep information from
each potential walker in the sensing area when he/she was walking solo (i.e., not with multiple walkers). To
construct the dictionary, we use the frequency spectrum of the individual responses, which are normalized by the
energy of the window to reduce the effects of attenuation and dispersion. Our approach uses this prior footstep
dictionary to identify the persons walking with the sparse representation approach described above. We first take
a sub-window of the overall footstep event window, with a length empirically set to 0.15s based on our observed
average duration of a single step response. With this sub-window, our approach identifies the first step in the
footstep event.

When the number of footsteps in the sub-window is classified as being greater than one (like the mixed step in
Figure 3b), we append the dictionary with linear combinations of the dictionary elements for each of the potential
walkers (e.g., Person 1 + Person 2, etc.). In this work, we use all possible combinations of the potential walkers.
However, at large scale (i.e., if the number of possible walkers is large (in the hundreds or more)), this number of
combinations becomes computationally expensive. In these cases, the sparsity constraint in Equation 6 can be
relaxed from ∥X∥0 = 1, ∥X∥2 = 1 to ∥X∥0 <= 𝑛𝑤, ∥X∥2 <= 𝑛𝑤 where 𝑛𝑤 is the sub-window number of steps (i.e.,
the number of overlapping steps). In these cases, it would also be necessary to impose the constraint that only
one element of X can be non-zero for each group of basis functions for each person (i.e., only one basis function
per person identified). Finally, to identify the person(s) in the sub-window, we use the known label of the basis
function corresponding to the nonzero coefficient in 𝑋 after the sparse representation and take a plurality vote
across all sensors in the sensing area.

4.3 Signal Reconstruction for Identified Footstep Removal
The next module of our approach involves sequentially and recursively reconstructing each identified footstep
response in the footstep event and subtracting that reconstructed response from the combined (multiple person
response). The remaining signal then represents the combined footstep responses from the remaining persons
who generated the footstep event response.

As discussed in Section 3, the intuition behind our approach is that a vibration signal can be represented as the
summation of the components corresponding to each excitation source (i.e., superposition). The challenge is that
only the magnitude of the frequency spectrum is known from the sparse representation procedure described
above. As a result, the timing (i.e., phase) of the signal is unknown. In addition, because of the constraint on
the ℓ2-Norm of 𝑋 , the scaling of the reconstructed signal is also unknown. To address this, we leverage prior
work [25] to reconstruct the overall signal by optimizing a scaled and time shifted version of the magnitude
spectrum with the phase of the prior step dictionary signals corresponding to the index of the nonzero coefficient
of 𝑋 .

We find this scale factor and time-shift using a sparse representation with a Euclidean distance error function
where the new dictionary,𝐷∗, contains time-shifted versions of the original prior step basis function corresponding
to the index of the nonzero coefficient of 𝑋 . Based on the observed time shifts in our preliminary experiments,
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Fig. 4. Example of signal reconstruction and identified footstep removal

this new dictionary is bound by a shift of -2000 to 2000 samples (approximately +/- 0.08s). Therefore, the time
shift and scale factor are determined with the following expression:

𝑋 ∗ = argmin
X
| |𝑌 ∗ − 𝐷∗𝑋 ∗ | |22,

𝑠 .𝑡 .| |𝑋 ∗ | |0 = 10
(7)

where 𝑌 ∗ is the time series response for the current signal sub-window. For this sparse representation, we use a
smoothed version of this time series response (100 sample smoothing window) to reduce prediction errors due to
minor variations in the reconstructed signal. Additionally, for this sparse representation, we acknowledge that
while prior steps from an individual may be similar to the current step from that same individual, they are not
exactly the same. For example, there may be some minor variations within a persons gait pattern and/or changes
in the environmental noise. As such, the basis function used to correctly identify the individual may not perfectly
match the new signal during reconstruction. To address these differences, we relax the sparsity constraint in the
coefficient vector 𝑋 ∗ to 10 non-zero elements. This relaxation allows for our approach to find a more accurate
time series reconstruction of the identified individuals response and results in fewer errors in identifying the
next footstep response (i.e., if there are differences they can result in the system thinking another step exists at
the same time as the already identified step).

We next use the output of the above sparse representation to reconstruct the identified signal as the product of
the new dictionary, 𝐷∗, and the estimated sparse coefficient vector, 𝑋 ∗. We denote this reconstructed signal as 𝑌 ∗

𝑘
,

where 𝑘 represents the 𝑘𝑡ℎ signal sub-window. Our approach next removes the components of the identified and
reconstructed step from original footstep event signal (i.e., the signal from multiple walkers) by subtracting 𝑌 ∗

𝑘

from the original footstep event signal.
The resulting signal then contains the information for each other walker in the area. As such, the process

outlined above (i.e., the sub-window number of step classification, sparse representation, and reconstructed
step removal) is repeated for the next signal sub-window and each subsequent, sequential sub-window until all
concurrent walkers’ signals have been isolated/reconstructed, and those persons have been identified. Figure 4
shows an example of this process where we reconstruct the first step in the overall signal, remove it, and then use
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Table 1. Recursive Sparse Representation Variables

Variable Name Description
S Occupant Identity Index Vector

Dj Basis Function 𝑗 (Prior Step)
Φ Phase Matrix for Prior Steps
Y Mixed Vibration Response
𝑚 Number of Basis Functions
𝑛𝑠 Number of Steps
𝑡𝑛𝑠 Step Start Time
𝜏 Time Shift

Algorithm 1 Recursive Sparse Representation-Based Multiple Person ID
1: 𝑛 ← 𝑠𝑖𝑧𝑒 (D1, 1)
2: Dj ←

F(Dj (t))∑𝑛
𝑖=1 𝐷

2
𝑖 𝑗

3: D← [|D1 |, |D2 |, ...|Dm |, |D1 | + |D2 |, |D1 | + |D3 |, ...|Dm−1 | + |Dm |]
4: for 𝑘 ≤ 𝑛𝑠 do
5: Yk ← Y(tns : (tns + n − 1)
6: Yk ← DX
7: Estimate X, subject to | |𝑋 | |0 = 1, | |𝑋 | |2 = 1
8: X̂← argminX 1 − Σ𝑛

𝑖=1𝑦𝑘𝑖 (DX)𝑖√
Σ𝑛
𝑖=1𝑦

2
𝑘𝑖

√
Σ𝑛
𝑖=1 (DX)2

𝑖

9: S(k) ← 𝑙 : X̂(l) = 1
10: Φ← [Im[F (D(t)𝑙,𝜏1 )], Im[F (D(t)𝑙,𝜏2 ), ...Im[F (D(t)𝑙,𝜏𝑛𝑡 )]]
11: D∗ ← F −1 (Re[F (D(t)𝑙 ] + 1𝑖 ∗ Φ)
12: Estimate X∗, subject to | |X∗ | |0 = 10
13: X̂∗ ← argminX∗ | |Y∗ − D∗X∗ | |22
14: Y∗k ← D∗X̂∗
15: Y← Y − Y∗k
16: Estimate 𝑡𝑛𝑠 ⊲ New Step Start Time
17: end for
18: return S, the identities of each occupant in the footstep event window

the remaining signal to identify the next step. An overview of our approach algorithm is provided in Algorithm 1
below, with the relevant system variables described in Table 1.
Using our approach, our system overcomes the challenges of mixed/overlapping multiple person responses

that are co-dependent on the underlying structure. Once each occupant’s step has been identified in the footstep
event window, we output the IDs of that window and continue to the next footstep event.

4.4 Trace-Level Dictionary Updating
Once our approach has identified a series of “step-level” predictions, we incorporate a “trace-level” updating
step to the framework. By incorporating a “trace-level” updating step, our algorithm reduces the volatility of
predictions from one step to the next. This stage of our algorithm is based on insight from normal human walking
behavior. For example, if two or more individuals are walking down a hallway, the information contained in the
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Fig. 5. Trace-level dictionary updating approach overview. Once each step has been identified at the step level, our system
identifies the most frequently identified individuals over several consecutive steps and recursively updates step-level
predictions.

series of footstep events should be limited to only those individuals walking, and an individual step within that
“trace” of footsteps is unlikely to belong to a person who was not otherwise detected in the sensing area at that
time.
In this step, we aggregate the predictions from several (typically 10 or more) consecutive footstep events

(defined as “trace level”) across each sensor in the sensing area. Using these aggregated predictions, we find the
persons with the highest number of predicted steps and restrain our dictionary to only those persons. In doing
so, we remove the potential for extraneous predictions and increase the confidence in accurately identifying each
individual walker. For example, if 9 out of 10 consecutive step events predict an identity of Person 1 and Person 2,
it is likely that the one event that is predicted as other persons (e.g., Person 7 and Person 8), actually contains
steps from persons 1 and 2, so our model updates that step event’s predictions to match the others in the trace.

To reduce the possibility of incorrectly updating the dictionary, we only update the dictionary after a confidence
level has been reached. This confidence limit is empirically set such that the “n” walkers should each represent at
least 60/𝑛% of the total predictions at the trace level and the “nth” most prominent prediction should represent at
least 50/𝑛% of the total predictions. For example, in a 2 concurrent walker scenario, if, after 10 footstep events,
30% of the step-level estimates predict “P1”, 40% predict “P7”, and the remaining 30% are some combination
of the other potential walkers, the dictionary updating would restrain the dictionary to those basis functions
corresponding to Person 1 and Person 7. If the confidence threshold is not met after the initial trace of steps, it
is re-evaluated with each new footstep event until a trace-level prediction can be made. In the event that the
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Fig. 6. Experimental Setup. Typical sensor layout and walking trajectory for the three walking participants.

confidence levels are never reached, the system updates the dictionary to the most prominent predictions across
the entire set of footstep events in the sensing area once the walkers have left the area. This ensures that there is
consistency to the predictions even if the model is not confident in those predictions across the entire sequence
of footstep events.
In Algorithm 1, this “trace-level” updating results in a modified 𝐷 , where the dictionary only contains the

basis functions corresponding to the most-frequently identified persons in the walking trace. For this work,
we restrain the dictionary updating such that the number of persons in the updated dictionary is equal to the
estimated total number of walkers in the sensing area (using the approach outlined in Section 4.1). With this
updated dictionary, the remainder of the recursive sparse representation is computed, and our system outputs
the final “step-level” predictions for the occupant identities as well as their separated vibration responses. The
following section provides an overview of our system performance through real-world walking experiments
with multiple walkers.

5 MULTIPLE PERSON IDENTIFICATION EVALUATION
To validate the performance of our system, we have conducted a series of real-world experiments. These
experiments are three-fold. First, we validate our model performance with experiments involving three concurrent
walkers in a campus building (Section 5.1). Next, we evaluate the model performance using hybrid real-world
and simulated data involving 10 total participants (Section 5.3). Finally, we validate our primary assumptions of
response superposition and structure co-dependence in Section 5.2 and Section 5.4, respectively.

5.1 Real-World Walking Experiments
In our first experimental validation, we conducted a series of real-worldwalking experimentswith three concurrent
walkers in a campus building. We conducted this experimental evaluation in conjunction with our approved
IRB protocols from Carnegie Mellon University (CMU) and Stanford University (CMU: 2015-00000125, Stanford:
IRB-54912). In this section, we first present the experimental setup, then discuss the performance of our approach
for uniquely identifying the three concurrent walkers.
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5.1.1 Experimental Setup. Our sensing system uses geophone sensors to measure footstep-induced floor vibra-
tions. For our experiments, we placed three SM-24 geophone sensors on a wood floor test bed in our lab [38]. The
three experimental participants were then asked to walk in a straight-line side-by-side for several consecutive
steps, and then repeated this process 5 times (for approximately 90 total steps between all three people). To reduce
inconsistencies with initiating walking, we removed the first step taken by each person from the experimental
data set for a total of 85 steps in our evaluation dataset. In addition, each of the participants was asked to walk by
themselves several times to provide data for constructing the prior foot-step dictionary. In each set of experiments,
the participants were not required to wear any specific shoes, but were asked to use the same shoe for each
walking iteration for consistency of data collection. Figure 6 shows an overview of the experimental setup.

5.1.2 Three ConcurrentWalker Results. In this section, we evaluate the performance of our approach in identifying
the three walking participants. The number of concurrent walkers (3) is representative of human social tendencies.
In fact, in a study byMoussaid et al.[55], the authors studied humanwalking tendencies in real-world environments
in two different settings. From these two scenarios, they observed that, for scenario A, walkers were in groups
approximately 35% of the time, and, for scenario B, approximately 50% of the time. Further, a group size of 2
concurrent walkers accounted for approximately 30% of the total instances in A and approximately 40% in B.
Higher groups of concurrent walkers (i.e., more than 3 concurrent walkers) were very small (less than 5% of all
instances). As such, our selection of 3 concurrent walkers this evaluation is representative of (and perhaps more
complex than) many real-world human social tendencies.
For this evaluation, we show our system performance in two ways: 1) we determine how well our approach

uniquely identifies both solitary and partially overlapping steps (e.g., “P1”, “P2”, “P3”), as well as completely
overlapping steps (e.g., “P1 + P2”). These results are shown in Figure 7a. Then, 2) we consider the completely
overlapping cases in more detail by separately evaluating our approach performance for separately identifying
each person (e.g., identify “P1” and “P2” from “P1 + P2”). This is combined with the solitary/partially overlapping
performance and the results are shown in Figure 7b. In each confusionmatrix, each accuracy percentage represents
the number of correctly identified steps from each person/combination divided by the total number of steps for
that person. In each confusion matrix, the “No Step” class represents instances when a footstep did not occur, but
may have been predicted. For example, an erroneous “No Step” prediction represents situations where a step was
not detected, but actually occurred, or where our system predicts fewer steps than are actually present (e.g., the
system predicts 1 step in a footstep event, but there were actually 2).
From these confusion matrices, we can observe that our approach is able to accurately identify individuals

when there are three concurrent walkers in the sensing area. In the first case, we identify individuals with as
much as 94.4% accuracy. In addition, for cases of perfectly overlapping steps (e.g., “P1 + P2”) our approach always
identifies at least one of the two walkers and identifies both walkers with as high as 83% accuracy.

In the second case, we evaluate our model performance by computing the average F1 score across each of the
classes/identities. The F1 score is a common approach for evaluating classification accuracy[82]. In this work
we define the parameters of the F1 score as follows: 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛 represents the number of correctly identified
steps for person 𝑛, 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛 represents the number of steps belonging to Person 𝑛, but identified as a
different person, and 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑛 represents the number of steps belonging to other persons, but identified
as person 𝑛. In this way, we compute an average F1 score across all three persons of 0.89 for our approach. We
compared this result with a baseline approach that uses a multi-class Support Vector Machine (SVM) for multiple
step identification and found that our approach results in a 1.3× improvement over the baseline (0.68 F1 score).
We also note that Persons “P1” and “P3” both have accuracy above 90%, while Person “P2” has a slightly lower
accuracy by comparison. Based on our observations from prior work, we infer that the lower accuracy for “P2”
is likely due to a prominent heel- and toe-strike for that individual when walking. As a result, there are often
two impulsive signals for each step, and it is possible that each part of the overall footstep response is detected
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Fig. 7. Confusion matrices showing the overall performance of our approach with three concurrent walkers. (a) shows the
accuracy for individual step detection and instances of “completely overlapping” steps; (b) shows the accuracy for individual
steps and separately evaluates each person within a “completely overlapping” step.

separately (i.e., the system thinks there are two steps when there is only one). Our future work plans to address
these scenarios by characterizing the individual heel and toe components of footstep-induced vibration responses
so that each can be accounted for in the overall response.

5.2 Superposition Validation
In this section, we validate our assumption of vibration response superposition through real-world experimen-
tation. As discussed in Section 3, one of the primary assumptions of our approach is that the multiple walker
vibration responses represent the superposition of individual responses from each walker. This assumption also
relies on the assumption that the dynamic properties of the underlying structure are linear-elastic.

To validate this assumption we conducted a series of experiments on our test structure involving other sources
of impuslive excitations: a ball drop and a bag drop. We chose these objects based on the insight that they produce
more impulsive excitations than footstep responses, and their input excitations are more easily controlled (i.e.,
drop the items from the same height and same location) as compared to walking excitations from footsteps
(people walk in different ways, with varying footstep ground reaction force, and in slightly different locations
each time). Figure 8a shows the experimental setup for these experiments. A single geophone sensor was used in
these experiments and a cloth bag and wool ball were dropped in quick sequence (bag first, then ball with a very
short delay so that responses were not perfectly overlapping). We collected approximately 30 samples of these
mixed/overlapping responses. Then, the cloth bag and wool ball were each dropped approximately 20 more times
each by themselves (i.e., single responses, not overlapping/mixed).
For this evaluation, we modeled the combined bag and ball response as the superposition of the individual

responses to determine how well the superposition matched the combined response. To determine the individual
responses for the superposition, we used our recursive sparse representation approach. The combined responses
were then compared to the modeled signal from the sparse representation reconstruction. In this way, we evaluate
whether the combined signal for controlled excitations is able to be represented by the superposition of the
individual excitations from each object.
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Fig. 8. Superposition Evaluation. (a) shows the typical setup for the bag and ball drop experiments; (b) shows a box plot of
the results. Note that the superposition has similar correlation to individual responses.

To evaluate the similarity between the mixed responses and the superposition responses, we compared the
frequency domain responses for each pair of signals (e.g., combined response 1 vs. superimposed response 1,
combined response 2 vs. superimposed response 2, and so on) using a correlation coefficient measurement. In
an ideal case, the correlation coefficient measurement would take a value of 1.0, and, if the signals are perfectly
uncorrelated, would take a value of 0. Figure 8b shows a box plot of the distribution of correlation coefficient
values in the experimental dataset. In this plot, the blue boxes represent the interquartile range of the correlation
coefficients, the “whiskers” (dashed lines) represent the range of values, the red asterisks show outliers, and the
red horizontal line indicates the median of the distribution. In this figure, we compare the correlation between
the mixed signal and the superimposed signal (labeled “Superpos.”), then separately considered the correlation
between the first impulses in the superposition reconstruction (i.e., reconstructed bag vs. actual bag), then did
the same analysis for the second impulse (i.e., reconstructed ball vs. actual ball), and, lastly, compared actual ball
drop and bag responses with other ball and bag drop responses (for reference information).
From this analysis, we observe a very high correlation between the superposition results and the measured

mixed response (median value of 0.96), and a similar distribution for the comparison of individual responses to
their reconstructed counterparts. Due to the nature of the bag object, there is a wider distribution of responses
(i.e., if it fell on the edge or a flat side, or if it was condensed when striking the floor), while the ball is significantly
more uniform and has more consistent responses.

Through this evaluation, we have shown that the simultaneous dropping of a ball and weighted bag produces
a comparable signal to the simulated superposition of each individual response. These results support the
assumption of superposition in our approach, and that prior steps (basis functions) can be used to represent new
steps by the same person. By using inanimate objects (the bag and ball), we further reduce the likelihood that the
validity of superposition and the basis functions is only due to the general signal similarity of footstep responses.
Lastly, the results of this evaluation support the use of the “hybrid” dataset for our 10-person experiments.
Additional details of that evaluation are provided in the next section.
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Fig. 9. Experimental Setup. Typical sensor layout and walking trajectory for the hybrid real-world and simulation data.

5.3 Hybrid Simulation and Real-World Validation
In this section, we evaluate the performance of our approach for identifying multiple concurrent walkers using
a “hybrid” dataset of 10 different walking participants. As before, we conducted this experimental evaluation
in conjunction with our approved IRBs (CMU: 2015-00000125, Stanford: IRB-54912), and an approved COVID-
19 pandemic protocol. Due to the restrictions for human subject research during the COVID-19 pandemic,
experiments that involved multiple side-by-side walkers were not permitted. Therefore, in order to demonstrate
the performance of our approach, we conducted a series of experiments with 10 individuals walking by themselves
in our laboratory space, and then simulated multiple sets of walkers walking concurrently by adding their signals
together. In this section, we refer to this combined real-world and simulated data as a “hybrid” dataset.

We conducted a series of “hybrid” experiments with this dataset to showcase the overall accuracy and robustness
of our approach. For these analyses, the “trace-level” number of concurrent walkers (from Section 4.1) was assumed
to be known. This allows comparison of the sparse representation approach directly without error propagation
due to incorrectly identifying the number of concurrent walkers, and also reduces errors due to the effect of
additive noise when adding multiple sensor signals together. First, we describe the experimental setup for this set
of data. Then, in Section 5.3.2, we evaluate the performance for each possible pair of persons walking (i.e., 𝑃1𝑃2,
𝑃1𝑃3, .... 𝑃𝑛−1𝑃𝑛). Next, in Section 5.3.3, we explore the performance of our model with respect to the amount of
signal overlap. Finally, in Section 5.3.4 we explore the model accuracy with respect to each sensor in the sensing
area and compare results with additional numbers of concurrent walkers.

5.3.1 Hybrid Data Experimental Setup. As described in Section 5.1.1 above, our work uses SM-24 geophone
sensors to collect footstep-induced floor vibration data. For the “hybrid” dataset, we collected walking data from
10 different experimental participants on an elevated wood-framed floor structure in our laboratory space. As
previously discussed, due to COVID-19 restrictions, only one walker was permitted to walk in the experimentation
area at a time. Each participant walked from one side of the floor structure to the other at a normal, natural
walking pace. In each set of experiments, the participants were not required to wear any specific shoes, but
were asked to use the same shoe for each walking iteration for consistency of data collection. Figure 9 shows
an example of the typical walking path for the participants as well as the sensor layout. At least 12 walking
repetitions were collected from each walker, for a total of approximately 840 footstep responses. These signals
are then used in the hybrid analysis described below.

5.3.2 Performance for Two Concurrent Walkers. We first evaluate the performance of our model in the hybrid
dataset for situations involving two concurrent walkers. To simulate the “two walkers” data, we combined
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(a) Two different walkers’ raw vibration signals.
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(b) Simulated “mixed” signal from two walkers.

Fig. 10. Simulation Raw Data. a) shows the raw signal from one person in blue, and the additional raw signal from another
person in orange; b) shows the resulting combined signal from the two signals from (a) are added together to create the
’hybrid’ overlapping data.

the vibration responses from each possible combination of the 10 total participants (45 total pairs). In each
combination, three of the walking repetitions from each person were randomly selected for test data, and the
other nine were used for training data. To prevent each footstep response from perfectly overlapping the other
person, an initial offset of the signals was applied (empirically set at 0.2s), and the order of the two signals was
randomized (e.g., P1 first then P3, or P3 first then P1). Figure 10 shows an example of this procedure. In Figure 10a
the blue signal represents one walkers series of footstep responses, while the orange signal shows a different
person. Note the initial offset (separation between initial peaks). Despite this initial offset, many of the latter
footstep responses have a large amount of overlap. Figure 10b shows the ensuing “simulated” signal which is
used for further analysis.
To evaluate the performance of our approach, we aggregated the results of each combination of walkers.

When there were instances of completely overlapping steps (e.g., P1+P2), we separately evaluate if our approach
correctly identified Person 1 and Person 2. For example, if the system identified P1+P3, but the actual footstep
event was generated by Person 1 and Person 2, our systemwould have correctly identified Person 1, but incorrectly
identified Person 2. As described in Section 4.1, we empirically set the threshold for completely overlapping steps
as 3000 samples (0.11s).

Figure 11 shows two confusion matrices summarizing the results. In Figure 11a we show the results using the
full 10-person basis function dictionary, while in Figure 11b we show the results after the dictionary updating
step (as described in Section 4.4). In this case, we are showing the results when the dictionary is updated to the
two walkers identified at the trace level. In this hybrid dataset, a “trace” of footsteps was considered to be the
entire test dataset (approximately 25 total footstep events, on average). The “trace level” predictions were then
calculated using the process outlined in Section 4.4 above. Of the 45 test datasets, we note that 21 of them met
the confidence threshold for trace-level updating within 10 total step events, 15 required just 6 footstep events,
and the median number of step events was 12. This shows that our approach can accurately identify the two
persons walking with a small number of footstep events. In each confusion matrix, the “No Step” class is the
same as described in Section 5.1.2 above.
We compared the results of our model predictions to those obtained using a naive baseline approach. In

this case, the baseline approach is one where the superposition/reconstruction step is used, but a multi-class
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(a) Hybrid data model performance with 2 concurrent
walkers without trace-level updating.
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(b) Hybrid data model performance with 2 concurrent
walkers after trace-level updating.

Fig. 11. Overall hybrid data results with 10 different walkers. (a) shows the step-level performance without trace-level
dictionary updating; (b) shows the step-level performance after trace-level dictionary updating to 2 walkers.

support vector machine classifier is used to identify footstep responses in lieu of the cosine distance-based sparse
representation proposed by our work. For the trace-level updating results, our approach achieved an average
F1 score across all 10 persons of 0.81, which is a 2.9× reduction in error from the naive baseline approach (avg.
F1 score of 0.44). Further, we note that our approach has similar performance for each of the 10 participants,
indicating that it is robust to different persons and different walking styles.

5.3.3 Influence of Amount of Signal Overlap. In this section, we further investigate the performance of our
approach with respect to the degree of signal overlap between concurrent walkers. As described above, the
simulated data was generated by adding two different walkers signals together with some small amount of initial
signal offset. This was done to best represent real world walking conditions, where it is unusual for individuals
to begin walking at exactly the same time. Instead, it is common for persons to begin walking at approximately
the same time, and they may continue walking asynchronously, or may begin to synchronize as they walk
side-by-side. As such, the actual degree of signal overlap varies on a step-by-step basis.
We evaluate our model performance with respect to the amount of signal overlap for each step. We compute

this amount of overlap by taking the difference (in time) between the signal onset for each walkers step. Based on
the observed distribution of these offsets, the steps were then clustered into 4 distinct bins: 1) a ‘single step’ where
there is enough separation between consecutive footsteps from each walker that the entire signal from each is
clear and distinct; 2) when the amount of offset is greater than 0.4s; 3) when the amount of offset is between 0.2
and 0.4s; and 4) when the amount of offset is less than 0.2s.
Figure 12 shows a summary of these results for three different scenarios: 1) where there is no trace-level

dictionary updating (Figure 12a); 2) where the dictionary is updated to be limited to the two most likely walkers
(Figure 12b); and 3) where the dictionary is updated to be limited to the three most likely walkers (i.e., the total
number of walkers plus one; Figure 12c). In each case, we compare the overall results with those for varying
degrees of offset and compare our approach to the SVM-based naive baseline approach. Note that undetected
steps (i.e., those that are considered “no step” in Section 5.3.2 above) are excluded from this analysis, as there
is not any footstep present to determine the “offset”. We observe that our approach has similar performance
across each amount of offset in each scenario, and consistently outperforms the naive baseline approach. These
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(a) Overlap Analysis without trace-
level updating.
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(b) Overlap Analysis with trace-level
updating to 2 persons.
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(c) Overlap Analysis with trace-level
updating to 3 persons.

Fig. 12. Overlap Analysis. Our approach significantly outperforms the baseline approach across varying amounts of signal
overlap for two concurrent walkers.

results show that our superposition-based sparse representation and signal reconstruction accurately isolates
and identifies individual footstep responses even in cases where there is significant signal overlap due to multiple
concurrent walkers.

5.3.4 Influence of Sensors and Step Breakdown Analysis. To further evaluate the performance of our approach
with the hybrid dataset, we explored the impact of the sensor vote and the performance across each step inside of
a footstep event (i.e. the “first” and “second” step if a footstep event contains multiple footstep responses. For this
analysis, we are using the results when a 2 person trace-level dictionary updating is performed.

For the sensor comparison, we considered the accuracy of our approach (which uses a plurality vote across all
four sensors) and compare that to the average and per-person F1 score for each individual sensor by itself. The
results are shown in Figure 13a. We observe that the sensor vote has better or comparable accuracy for each
person (and the average) when compared to the “best” sensor of the four. This indicates that the sensor vote
helps improve model performance and reduce the likelihood of erroneous identification (i.e., performs better
than the “worst” sensor in each instance). However, it is interesting to note that the “best” sensor has similar
performance to the sensor vote in each case, and, most cases (e.g., P3, P4, P5, P6, P7, P8, P9), outperforms the
sensor vote. This indicates that as few as one sensor can be used to identify walkers in multiple walker scenarios
with high accuracy. However, when the “best” sensor outperforms the sensor vote, it is not the same sensor each
time. As a result, the challenge with using one sensor is determining where to place the solitary sensor, and how
to choose which one to use (in cases where multiple are in a sensing area). In our future work, we plan to explore
these concepts of sensor selection/placement further. Some preliminary related work in this area suggests that
sensing signal quality can be used to optimize sensor layout/placement in a given structure [87].

For the step-breakdown analysis, we compare the F1 score for our approach to the SVM-based naive baseline
approach. The per-person F1 scores are broken down into separately evaluating the total results for each person,
the results when that person’s step was the first step in a footstep event window, and then when that person’s
step was the second step inside of a footstep event window. For example, if a footstep event contained two steps
generated by Person 3 and Person 7, with Person 3’s step being the first in the window and Person 7’s step being
second, that would be considered a “First Step” for Person 3 and a “Second Step” for Person 7.

The results of this analysis are shown in Figure 13b. From this figure, we observe that our approach achieves
similar performance for the overall F1 score, the “First Step” F1 score, and the “Second Step” F1 score for each of
the 10 experimental participants, and displays significant improvement over the naive baseline approach in each
instance, in particular for the second step case. These results indicate that our recursive signal reconstruction for
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Fig. 13. Comparison of 2 concurrent walker results. (a) shows the sensor vote accuracy compared to each individual sensor,
and (b) compares our approach with a naive baseline approach for per-person ID accuracy and with respect to first or second
step in a footstep event window.

identified footstep removal step allows us to remove/reduce the influence of the initial step(s) in a window so
that the latter step(s) can be more accurately identified, and that we do so with consistently high accuracy across
each participant.
The individual results of Persons 6, 9, and 10 are particularly interesting and warrant further discussion. For

Person 6, we observe that the “First Step” for P6 has similar accuracy for our approach (0.86 F1 score) and the
baseline approach (0.85 F1 score). This likely is a result of the very high magnitude responses from P6 as compared
to the other walking participants, which means that, when the steps from P6 are first, they dominate the overall
response and are easily distinguished with either the sparse representation or a SVM classifier. Also of interest
are the results from Persons 9 and 10, where we observe that the baseline approach does not correctly identify
any steps from either person. This is due to the dictionary updating step, where the baseline approach does not
ever identify Person 9 or Person 10 at the trace level, and, as a result, once the dictionary is updated there are
no predictions for steps due to those persons. This likely occurs because the responses from Persons 9 and 10
are of relatively low magnitude, so they tend to be more difficult to distinguish from other steps, particularly
when they are significantly overlapping. By using a cosine distance-based error function, our approach is able to
overcome these differences in relative magnitude of the footstep responses in the combined signal, and produces
more accurate predictions.

5.3.5 Robustness to Number of Concurrent Walkers. In the final evaluation with the “hybrid” dataset, we explored
the performance of our system with respect to the number of concurrent walkers. For this analysis, we considered
four scenarios: 1) one walker (for reference purposes); 2) two concurrent walkers; 3) three concurrent walkers; and
4) four concurrent walkers. To generate the datasets for scenarios 3) and 4), we randomly selected combinations
of 3 and 4 of the 10 walkers in our dataset and combined their signals (in the same manner as described in
Section 5.3.2). For initial signal offset, a similar approach was also taken to the one described above, with each
signal being offset approximately 0.2s from the preceding one. In addition, similar to above, for testing data, 3
repetitions were randomly chosen from each concurrent walkers’ data and combined to form one “trace” of test
data, while the remaining 9 were used for training data (i.e., the basis function dictionary). For each of these

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 10. Publication date: March 2022.



10:24 • Fagert et al.

Trace Level Step Level
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
v
e

ra
g

e
 F

1
 S

c
o

re

1 Walker

2 Walkers

3 Walkers

4 Walkers

Fig. 14. Occupant ID results for different numbers of concurrent walkers. “Trace Level” shows accuracy for identifying the
correct “n” walkers in the trace, and “Step Level” refers to the accuracy in identifying each individual step after trace-level
dictionary updating.

scenarios, we considered a total of 10 random combinations of different concurrent walkers, which provides at
least 3 instances of each participant in the testing data.
We compared occupant identification results at the “trace level” and the “step level” after the dictionary

updating step. At the trace level, we compute the average accuracy for identifying the correct “n” walkers out of
10 total walking participants. Then, at the step level, we compute the average F1 score for identifying each of the
10 walking participants. In each variation of the number of concurrent walkers, the dictionary updating step
restricted the dictionary to the “n” most prominent predictions, where “n” is the number of concurrent walkers
in the test dataset, following the procedure outlined in Section 4.4.

Figure 14 provides a summary of the evaluation results. From this figure, we observe that the model accuracy
has high accuracy at the “trace level” with up to three concurrent walkers (100%, 100%, 93.3% avg. accuracy),
and, even with four concurrent walkers, is able to accurately identify the correct 4 out 10 walkers with an
average accuracy of 73%. At the step level, the model performance follows a consistent trend with increasing
number of concurrent walkers, with a decrease in average F1 score of approximately 0.2 with each additional
concurrent walker. This behavior follows the expected behavior; with each additional concurrent walker, there is
an increasing likelihood of significant signal overlap, and instances where several steps occur at approximately
the same time (i.e., multiple perfectly overlapping steps). In these cases, it is difficult to accurately extract each
individual’s components of the signal with high accuracy. In addition, the model performance for instances of
several concurrent walkers for the hybrid dataset is likely worse than what would be observed in real-world
conditions. This is due to the nature of the simulation, where multiple walker signals are generated by adding
each individual signal. As more signals are added, this simulation process also increases the amount of noise
(i.e., ambient noise is added “n” times to the combined signal). As such, the simulated signals are more adversely
affected by the environmental noise than their real-world counterparts would be. Part of our future work will
be to explore the limits of our multiple walker approach in real-world settings as there are increasingly more
concurrent walkers in the sensing area. These results show that our approach is suitable for various scenarios of
multiple concurrent walkers, and is able to correctly identify the persons walking in the sensing area (i.e., at the
trace level) with high accuracy with as many as four concurrent walkers.
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(a) Comparison of footstep responses with (1) the same
person in the same structure; (2) two different persons
when the walkers are in the same structure; and (3) two
different persons when the walkers are in different struc-
tures.

(b) Comparison of footstep responses with (1) the same
person in the same structure; (2) the same person in two
different structures; and (3) two different persons when
the walkers are in different structures.

Fig. 15. Structural Co-Dependency. (a) shows the correlation between responses across different persons; and (b) shows
the correlation between responses for the same person across different structures. We note that the change in structure
significantly reduces correlation between signals.

5.4 Structure Co-Dependence Evaluation
In the final evaluation of our approach, we consider the assumption and physical insight that individual vibration
responses are co-dependent on the dynamic behavior of the underlying structure. As discussed above, this behavior
results in failure to achieve independence of the excitation source-induced signals (which is a requirement for
many Blind Source Separation approaches). Overcoming this challenge of structural co-dependence is one of
the primary contributions of this work. In this section, we evaluate this assumption as well as our approach for
reducing the effect of the structure codependency.
We first evaluate the assumption of codependency on the underlying structure. For this evaluation, we

conducted a series of walking experiments with two different individuals across two different structures. One
structure is the wood framed test structure (as described above), and the other is on the second floor of a steel
framed building with metal deck and concrete topping slab for its floor structure. Each person walked at a normal,
comfortable walking pace for several steps in both structures.
To understand the influence of structure codependency on the signal similarity, we computed the pairwise

correlation coefficient between footstep responses. We computed these pairwise correlation coefficient values
between different steps from Person 1, then did the same exercise for Person 1 compared to Person 2 when
each person was in the same structure, and, lastly for Person 1 compared to Person 2 when Person 1 was in
one structure, and Person 2 in the other. The resulting distribution of correlation coefficient values is shown in
the histogram in Figure 15a. We observe a high correlation on average for both comparisons with persons in
the same structure, and a significantly lower correlation when the two persons are in different structures. This
reduction in correlation in different structures implies that the similarity between signals in the same structure is
due to the codependency of responses on the dynamic properties of the structure itself.
We next compared the correlation coefficient values for Person 1 in the two different structures. First, we

again considered different steps from Person 1 in the same structure, then compared steps from Person 1 in one
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Fig. 16. Correlation between three walker’s responses using (a) Eucldean distance; and (b) Cosine Distance. Numbers
represent (1 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) for graphical representation purposes. Ideal measurements are shown in (c) and would be “0” for
steps from the same person and “1” for steps from different person. Each block represents 1 step.

structure with steps from Person 1 in the other structure, and, finally, the comparison of Person 1 and Person
2 in different structures (for reference). The resulting distribution of correlation coefficient values is shown in
Figure 15b. In this figure, we observe a drop in correlation for Person 1 in two different structures, and further
observe that this drop is lower than the decrease in correlation for two different persons in the same structure
(from Figure 15a). These results and the observation of the general decrease in correlation in different structures
help support the validity of our insight regarding structural codependency, and our assumption of the dominant
effect of the structure components of the signal. Part of our future work will focus on characterizing the structural
component and footstep-induced component of signals, which will allow us to further study and validate these
assumptions. We discuss this future work in more detail in Section 6.1.3.
In addition to evaluating the assumption of structure codependency, we evaluated the effectiveness of our

cosine distance-based error function. To do this, we compared the similarity between footstep-induced vibration
responses from three of our experimental participants. For this similarity comparison, we computed the pairwise
distance between time series data for two different footstep responses using a Euclidean distance measurement
and a cosine distance measurement. We repeated this for 30 total footsteps from each of the three persons for a
total of 900 step comparisons.

Figure 16 summarizes the results of these comparisons. For visualization purposes, the values shown represent
1 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 so that a value of 1.0 represents a perfect correlation between responses (i.e., zero distance), and a
value of 0 represents perfectly dissimilar responses (i.e. distance value of 1.0). For reference purposes, the ideal
case is shown in Figure 16c. The ideal case would be for responses from the same person to be perfectly correlated
with themselves (i.e., all of Person 1’s steps are perfectly correlated with other steps from Person 1; distance of 0
and graphical value of 1.0), and responses between different people (e.g., Person 1 compared to Person 2) would
have a value of 0 (i.e., perfectly dissimilar).

We can then compare this ideal case to the values obtained using a Euclidean distance measurement (Figure 16a)
and a cosine distance measurement (Figure 16b). In this way, we observe that nearly all of the distance values
using the Euclidean distance take a value of nearly 1.0, even when different pairs of participants are considered.
This is likely the effect of the structural codependency previously discussed, and would result in confusion
between the responses from different people when this distance metric is used for identification purposes. In
contrast, the cosine distance metric used by our approach results in values much closer to the ideal case, and
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there is a clear distinction between distance values for same- and different-participant comparisons. As a result,
by using the cosine distance error function, our approach is able to reduce the influence of the codependency on
the underlying structure and improve multiple walker identification accuracy.

6 DISCUSSION AND FUTURE WORK
In this paper we present a novel approach for separating footstep-induced vibration signals from multiple
concurrent walkers, which enables unique identification of each walker. Through a real-world experimental
evaluation we showed that our approach achieves high accuracy for identifying up to 3 concurrent walkers.
Further, using a hybrid dataset, up to 10 different walkers were uniquely identified in multiple walker scenarios.
Based on these results, our approach shows promise for use in signal separation and identification applications.
In this section, we discuss relevant assumptions and limitations of our approach, as well as potential future
research directions. These future directions can be categorized in two main directions: 1) System Scalability/Model
Transfer; and 2) Newcomer Identification. The following sections explore each of these topics in more detail.

6.1 System Scalability
The subject of scalability in this work has three facets: 1) scalability of the sensing system, 2) scalability of the
source separation algorithm and basis function (prior step) dictionary, and 3) scalability of the approach across
different structures.

6.1.1 Scalabillity of the Sensing System. The first aspect of scalability (the sensing system) is primarily related to
the deployment and maintenance costs. The geophone vibration sensors used for this work are low-cost [64],
and have a sensing range of as much as 20 meters (depending on the structure [66]. Further, they can be easily
installed in existing structures and require only a coupling with the floor structure (typically by way of wax). As
such, the system can scale to building-wide sensing with relatively little effort and cost. In addition, we have
developed a wireless version of our sensing system to reduce cabling and maintenance costs. To achieve the
multiple walker identification discussed in this work, as little as one sensor is required in the walking area.

As discussed in Section 5.3.4, the challenge with using only one sensor, however, is how to chose the location
for deploying the sensor, and/or how to choose which sensor’s data to use (in cases where multiple sensors
have already been deployed). Prior works using footstep-induced vibration sensing suggest that signal-to-noise
ratio (SNR) alone may not be sufficient for determining which sensor to use and/or where to place it in the
structure [87]. In our future work, we plan to explore sensor selection and placement for deploying our system in
real-world environments so that the number of sensors required to achieve accurate indoor occupant monitoring
(for applications such as identification) is optimized.

6.1.2 Scalabillity of the Source Separation Algorithm. The second aspect of scalability involves the sparse
representation approach presented in this work. An important assumption in our work is that the current footstep
response from one individual is similar to a prior response from that person and that this response is included in
the basis function dictionary. For the majority of walking scenarios, this assumption is valid (e.g., when a person
is walking “normally”). However, in some instances, individuals may be walking much more quickly or slowly, or
they may have had some injury that changes how they walk. In these cases, our assumption of prior information
in the basis function dictionary may not be valid.
Additionally, with regard to “completely overlapping” footstep responses (i.e., when 2 or more steps occur

at the same time), this work addresses those situations by adding additional basis functions which are linear
combinations of the dictionary elements for each of the potential walkers. This allows us to maintain the sparsity
constraints of ∥X∥0 = 1, ∥X∥2 = 1 by selecting the overlapping step basis function. At large scale, this approach
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becomes very resource intensive (i.e., the dictionary becomes very large and the computation time will increase
significantly).
In our future work, we plan to overcome these limitations in three key ways. First, we plan to incorporate

an online updating to the basis function dictionary, which updates basis functions for individuals over time
to account for any changes in their walking patterns. This would be done by finding instances where those
individuals are walking alone, and/or situations where our model has high confidence in the identity of that
person’s footstep response. This will allow expansion of the dictionary into varying responses due to walking
speed variability, differing center of mass locations, and/or changes in walking behavior due to illness or injury.
Additionally, by incorporating an online updating of the basis function dictionary, we can account for how the
type of footwear an individual is wearing influences the vibration signal and obtain a system that is robust to
shoe type.
In conjunction with this online updating of the dictionary, the second primary future direction involves

establishing statistical models to understand “normal” walking behavior for each person and develop a distribution
of their footstep responses. This will allow us to understand and track changes to that person’s gait over time
and assist with the online updating of their basis function dictionary.

Lastly, with regards to the overlapping steps, in the future we plan to explore relaxing the sparsity constraint
to ∥X∥0 <= 𝑛𝑤, ∥X∥2 <= 𝑛𝑤 where 𝑛𝑤 is the sub-window number of steps (i.e., the number of overlapping
steps). In these cases, it would also be necessary to impose the constraint that only one basis function can be
nonzero for each walker identified. Relaxing the sparsity constraint will provide maximum flexibility of the sparse
representation algorithm in these “completely overlapping” scenarios and help reduce the overall dictionary size
and computation time as the number of persons in the dictionary grows increasingly large.

6.1.3 Scalability across Different Structures. In this work, we assume that the underlying structure and sensing
area are constant across both the prior footstep dictionary and the monitored walking. Prior work with footstep-
induced structural vibration sensing has shown that it can accurately record human location, human gait, and
differentiate between different types of impulses (i.e., balls/objects dropping, footsteps, doors closing, etc.) across
the primary structural material types (wood, steel, concrete)[19, 49, 51]. However, this requires new models
and/or additional prior footstep information in each new region of the structure, in different structures, or with
each different structural material, which is often expensive and difficult to obtain. For our future work, we
aim to reduce this training data requirement by developing an approach to transfer models across different
structures/locations. Prior work in transferring structural vibration models across different structures shows
promise for gait health monitoring and footstep event detection [21, 49]. We plan to leverage these prior works
to develop a model transfer approach which learns the footstep-induced and structure-based signal components
in one structure, transfers the footstep-induced components to a new structure, and re-learns the new structural
components in an unsupervised manner. This will reduce or eliminate the need for retraining models in each
new structure.

6.2 Newcomer Identification
One of the primary insights in this work is that the multiple walker vibration responses can be represented using
basis functions generated by prior footstep responses from potential walkers in the area. This insight is based on
the key assumption that there is prior information from the current walker in the basis function dictionary. In
most cases, this is a reasonable assumption when the system is being used in an individuals’ homes, an assisted
living environment, or in an office environment. However, it is not always an appropriate assumption to make.
For example, individuals may have guests visiting their homes, offices may have clients, new workers, delivery
persons, etc., and places like assisted living and/or elder care facilities may have new residents or visitors. In
these scenarios, our system would attempt to identify these “newcomers” (new individuals for whom we have no
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prior information) using the current basis functions in the dictionary. As such, our system would not accurately
identify those persons.

To overcome this limitation, our future work has two primary directions. First, our future work aims to directly
address these “newcomer ID” situations directly by developing an approach which can determine if a person
walking is one of those for whom we have prior information (and, therefore, can identify them), or, if it is a
new person. Some of our preliminary work in this direction shows promise for newcomer ID. In a database of 6
walking participants, we were able to identify the 1 unknown person with approximately 91.7% accuracy (by
iterating 5 of the 6 as known, 1 of the 6 as a “newcomer”)[16]. Then, building off of these results, we plan to
expand our use of the prior step dictionary to include an online dictionary updating component. In this way,
when a person is identified as a “newcomer” we will revise our dictionary to include steps from that person.
As the dictionary is being developed, our intent would be to find instances where the “newcomer” is walking
independently, so that these responses can be used for the multiple walker ID approach presented in this paper.

7 CONCLUSIONS
In this paper, we present an approach for multiple person identification using footstep-induced vibration sensing.
We overcome the primary research challenge of overlapping signals with unknown mixing ratios, scaling, and
timing through a sparse representation where we sequentially and recursively identify multiple person’s footsteps,
reconstruct their portion of the signal, and remove it from the combined signal. Additionally, we reduce the
influence of structure codependency on the separation, identification, and reconstruction of individual responses
by leveraging a cosine distance-based error function in our sparse representation algorithm. Through real-world
evaluations with three concurrent walkers, our system achieves an average F1 score for identifying all three
walkers of 0.89, which is a 2.9× error reduction over a baseline multi-class SVM-based approach (0.68 avg. F1
score). Then, with a “hybrid” dataset involving simulated overlap of real-world walking data from 10 different
participants, we show that our approach achieves an average F1 score of 0.81 across each of the 10 participants
in 2-concurrent walker scenarios, which is a 2.9× reduction in error from the SVM-based baseline approach
(0.44 avg. F1 score), additionally, we observe trace-level accuracies of 100%, 93.3%, and 73% for 2, 3, and 4 person
combinations. These results indicate that our approach is effective at identifying and isolating the vibration
responses from multiple concurrent walkers.
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