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ABSTRACT
In this paper, we present an approach to integer factorization using
distributed representations formed with Vector Symbolic Architec-
tures. The approach formulates integer factorization in a manner
such that it can be solved using neural networks and potentially
implemented on parallel neuromorphic hardware. We introduce a
method for encoding numbers in distributed vector spaces and ex-
plain how the resonator network can solve the integer factorization
problem. We evaluate the approach on factorization of semiprimes
by measuring the factorization accuracy versus the scale of the
problem. We also demonstrate how the proposed approach general-
izes beyond the factorization of semiprimes; in principle, it can be
used for factorization of any composite number. This work demon-
strates how a well-known combinatorial search problem may be
formulated and solved within the framework of Vector Symbolic
Architectures, and it opens the door to solving similarly difficult
problems in other domains.
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1 INTRODUCTION
Distributed information processing and distributed representations
were proposed in the 1980s for solving optimization and factoriza-
tion problems. For example, associative networks [21] can solve
optimization problems like the traveling salesman problem [22].
This research direction continues to draw interest for many rea-
sons. First, it can provide insights into how biological neural circuits
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solve optimization problems occurring in cognitive tasks. Second,
distributed representations are well-suited for implementation in
unconventional parallel hardware [24, 40], such as neuromorphic
hardware [5, 14, 39], potentially providing scalable and low-energy
solutions to challenging computing problems [6].

In this paper, we use a framework for forming structure-sensitive
distributed representations that can flexibly encode compositional
data structures [46] known as Vector Symbolic Architectures (VSA)
a.k.a. Hyperdimensional Computing [13, 18, 25]. In VSAs, the es-
sential operation for forming distributed representations of com-
positional data structures is the binding operation [29]. However,
many VSA data structures require parsing, which amounts to a chal-
lenging combinatorial factorization problem that must be solved.
Recently, resonator networks [10] were proposed that can efficiently
factor compositional representations into their constituents [28].
Here, we demonstrate how the VSA technique fractional power en-
coding (FPE) [9, 11, 44] can be used to represent integers as vectors
and we show how the problem of factorizing integers can be ex-
pressed as the problem of factorizing vectors. We then explain how
resonator networks can be extended to solve prime factorization
of integers, and we measure the performance and scaling of our
method.

2 METHODS
2.1 Vector Symbolic Architectures and Fourier

Holographic Reduced Representations
First in this section, we provide a brief overview of the required
components from VSAs [29]. Please consult [32, 33] for a com-
prehensive survey. The key components of any VSA model are: a
high-dimensional vector space where random vectors are pseudo-
orthogonal (𝑛 denotes the dimensionality); symbol representations
with randomized atomic vectors (a.k.a. hypervectors; bold lower-
case letters, e.g., a); item memory for storing atomic hypervectors
and performing auto-associative search (matrices indicated by bold
uppercase letters, e.g., A).

Here, we are utilizing a version of VSA known as Fourier Holo-
graphic Reduced Representations (FHRR) [44]. In FHRR [44, 45], the
atomic hypervectors are complex-valued random vectors, where
each vector component can be considered as an angle (phasor) ran-
domly and independently selected from the uniform distribution
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over (0, 2𝜋] and with magnitude of one. The similarity measure is
expressed by the normalized inner product between two phasor hy-
pervectors (a and b) as 1

𝑛ℜ(a†b), where a† is the complex conjugate
transpose, andℜ denotes the real part of the inner product. Each
VSA model defines key operations used to manipulate atomic hy-
pervectors. In FHRR, these are: binding (denoted as ⊙), which is im-
plemented as component-wise multiplication (Hadamard product);
inverse and unbinding, which in FHRR corresponds to taking the
complex conjugate of the vector to unbind (inverse a/a−1) and ap-
plying the Hadamard product (b⊙ a); superposition, (a.k.a. bundling,
denoted as +) which is implemented as component-wise complex
addition, possibly followed by some normalization function; and
permutation, which can be implemented through a convolution
operation or permutation (denoted as 𝜌 but we do not use it here).

2.2 Fractional Power Encoding
In standard VSA methods, randomized atomic vectors act as sym-
bols and can be manipulated like traditional symbolic representa-
tions. However, when sub-symbolic data or continuous values need
to be represented (e.g., to solve machine learning problems [19,
30, 48]), it is important to form a similarity-preserving encoding.
Fractional power encoding (FPE) is a method for such a similarity-
preserving encoding, originally proposed in [44] (see Section 5.6) as
a generalization of the fractional power vector [43]. This approach
has recently received renewed interest for representing continuous
manifolds, such as location in an environment [37], and has been
connected to kernel methods for describing continuous functions
[9, 11].

The idea behind the fractional power encoding starts with a sin-
gle atomic hypervector z. This vector can then be used to represent
different integers through self-binding, where each self-binding
step creates a new hypervector that is dissimilar to all the others.
For instance, the value of 2 is represented by z ⊙ z; 3 is represented
by z ⊙ z ⊙ z, and so on. This can be expressed as exponentiating the
vector (component-wise) with the integer value, i.e. the hypervector
representation of integer 𝑖 is formed as: z(𝑖) = z𝑖 .

It was recognized [44] that this exponentiation process can be
defined continuously when using complex-valued FHRR vectors.
Thus, the same scheme can be easily generalized to encoding any
scalar 𝑥 as: z(𝑥) = z𝛽𝑥 , where we introduced a parameter 𝛽 that
controls the similarity-preserving properties of the resulting encod-
ing. Hypervectors obtained with FPE preserve similarity between
nearby values of 𝑥 , while values further away have reduced similar-
ity. The exact shape of this similarity metric defines the similarity
kernel, and 𝛽 regulates the width of this similarity kernel.

Another important property of FPE that we leverage is that it
defines a systematic relationship between the binding operation and
FPEs of scalars. In particular, binding the hypervectors representing
two scalars 𝑥 and 𝑦 results in a hypervector representing 𝑥 + 𝑦:

z(𝑥) ⊙ z(𝑦) = z𝛽𝑥 ⊙ z𝛽𝑦 = z𝛽 (𝑥+𝑦) = z(𝑥 + 𝑦) . (1)

There is much more to be said about uses of FPE, including the
representation of functions, the shape of the similarity kernel, and
representations of multi-dimensional numerical data. We kindly
refer interested readers to a recent thorough treatment of FPE
in [9, 11].

2.3 Resonator Networks
In VSA, the representation of a conjunction of two or more hy-
pervectors (e.g., a, and b) is achieved by binding: s = a ⊙ b. The
resulting hypervector s is pseudo-orthogonal to the argument hy-
pervectors (factors), and every combination of arguments results
in a unique s. The binding operation is invertible; when given all
but one factor (b), one can simply compute the unknown factor (a)
from the bound representation by unbinding: s ⊙ b = a ⊙���b ⊙ b = a.

However, if none of the factors are given, then while decoding
the vector is still feasible, it becomes a combinatorial search problem
whose complexity grows exponentially with the number of factors.
For instance, if there are 100 possibilities for factor a and 100 for
b, then the challenge is to search over all 10,000 combinations of
two factors. Recent work [10, 28] proposed an elegant mechanism,
called the resonator network, to address the challenge of factorizing
s into its arguments.

To factor the representation from the input hypervector s, the
resonator network uses multiple populations, â(𝑡), and b̂(𝑡), each
of which tries to infer a particular factor from the input hypervector.
Each factor that is a possibility is stored in a separate factor item
memory (A, B). Each population, called a resonator, communicates
with the input hypervector and the other populations using the
following dynamics:

â(𝑡 + 1) = 𝑓𝑛

(
Aℜ

(
A† (s ⊙ b̂(𝑡))

))
;

b̂(𝑡 + 1) = 𝑓𝑛

(
Bℜ

(
B† (s ⊙ â(𝑡))

))
.

(2)

The process is iterative and progresses in discrete time steps, 𝑡 .
In essence at time 𝑡 , each population can hold multiple weighted
estimates for one of the factors through the VSA principle of super-
position [12, 35]. This allows a population to test multiple guesses
for factor identity simultaneously. Each resonator uses the current
estimates from the other populations to invert the input hypervec-
tor and infer the factor of interest.1 The cost of superposition is
crosstalk noise, making the inference step noisy when many esti-
mates are tested at once. Therefore, the next step uses the factor
item memory to remove the extraneous estimates. The estimate
for each factor is cleaned up by constraining the resonator activity
only to the allowed atomic hypervectors stored in the correspond-
ing factor item memory. Finally, a regularization step (denoted as
𝑓𝑛 (∗)) limiting the values of components of new estimates is needed.
Successive iterations of this inference and clean up procedure (2)
eliminate the noise as the factors become identified and find their
place in the input vector. When the factors are fully identified, the
resonator network reaches a stable equilibrium, and the factors can
be deduced from the stable activity pattern.

3 RESULTS
3.1 Logarithmic FPE for encoding integers
We will use the problem of factorizing semiprimes (composite in-
tegers with exactly 2 prime factors) to demonstrate how FPE and
resonator networks can interact together to solve this problem. A

1Note that in (2) the update is synchronous, i.e., estimates at 𝑡 + 1 are based on the esti-
mates from the previous 𝑡 th iteration. It is possible to update estimates asynchronously.
We use this asynchronous mode to perform the evaluation (see Section 3.1).
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Figure 1: An example of varying behavior of the superposition of FPEs corresponding to a set of scalars:
{log(2), log(3), log(5), log(11)}; 𝑦-axis depicts the average cosine similarity (thick lines) between the superposition hyper-
vector and FPEs of scalars in 𝑥-axis. Thin vertical lines correspond to the locations of the elements of the considered set. The
corresponding panels show cosine similarities for FPEs formed with different values of 𝛽 . The reported values are averages
computed from 30 simulation runs; 𝑛 = 512.

semiprime 𝑠 is obtained simply by multiplying two primes 𝑥 and 𝑦:

𝑠 = 𝑥𝑦. (3)

We use P(𝑠) to denote the set of all primes that are potential
factors of 𝑠 (since the minimum prime factor is two, all primes less
than or equal to 𝑠/2 are possible factors). The 𝑖th element of the set
is denoted as P(𝑠)𝑖 . When setting up the factorization search, the
set P(𝑠) should be known. The set is used to form the item memory
Φ containing hypervectors for all primes in P(𝑠). The hypervector
of P(𝑠)𝑖 (denoted as Φ𝑖 ) is formed with FPE (see Section 2.2) as:

Φ𝑖 = z(log(P(𝑠)𝑖 )) = z𝛽 log(P (𝑠)𝑖 ) . (4)

Critically, the combination of the properties of the log transforma-
tion and FPE (see (1)) results in the following behavior of hyper-
vectors:

z(log(𝑠)) = z𝛽 log(𝑠) = z𝛽 log(𝑥𝑦) = z𝛽 (log(𝑥)+log(𝑦))

= z𝛽 log(𝑥) ⊙ z𝛽 log(𝑦) = z(log(𝑥)) ⊙ z(log(𝑦)) .
(5)

In other words, the log transformation combined with FPE results
in the binding between vectors being equivalent to the FPE vector
of the product. This allows one to express the problem of semiprime
factorization in terms of vector factorization, which can be solved
through the resonator network formulation as in Section 2.3, where
each resonator uses the codebook Φ.

3.2 FPEs in superposition
Traditionally in VSA, the most straightforward use of the super-
position operation is to represent a set of elements [25, 34]. As
with any other VSA representation, FPEs can also be used with
the superposition operation to, e.g., represent a set of scalar val-
ues. However, due to the similarity-preserving properties of FPEs,
the hypervector resulting from the superposition of several FPEs
might exhibit counter-intuitive “hybrid” behavior, which is neither
fully symbolic nor fully subsymbolic. When utilizing the resonator
network to solve the factorization problem, we need to account for
the behavior of FPE superpositions.

Consider an example of the following set:
{log(2), log(3), log(5), log(11)}, where the hypervector s represent-
ing the set is formed using the FPEs corresponding to the elements

of the set as:

s = z𝛽 log(2) + z𝛽 log(3) + z𝛽 log(5) + z𝛽 log(11) . (6)

Fig. 1 presents the average cosine similarity between s and the
corresponding FPEs of scalars along the 𝑥-axis for different values of
𝛽 . The first thing to notice in Fig. 1 is that the choice of 𝛽 profoundly
affects the obtained similarity distributions. When 𝛽 = 2.1, FPEs
of {log(2), log(3), log(5)} are similar to each other, and so when
superimposed together, they interact in such a way that there is one
large peak of similarity near their mean. Increasing 𝛽 to 3.1 splits the
large peak into two: one for log(5) and one in between log(2) and
log(3). This is intuitive since log(2) and log(3) are closer to each
other than log(3) and log(5). Finally, once 𝛽 is large enough (e.g.,
𝛽 = 5.0) all four peaks become clearly distinct and they correspond
to the values of the elements in the set.

Thus, setting the value of 𝛽 allows traversing between two ex-
tremes: when 𝛽 is very small, FPEs of scalars that are far away
from each other are still very similar (subsymbolic behavior) while
when 𝛽 is very large, FPEs of scalars that are near each other are
dissimilar (symbolic behavior). In other contexts, we expect that
different applications might favor different modes. For example,
when working with clustering problems [3, 20, 23, 31, 41], there is
potential that subsymbolic merging would be useful for generating
centroids and computing means. On the other hand, for integer
factorization, it is important to choose 𝛽 such that we only oper-
ate in the symbolic mode, as we desire that each different value
is treated as a distinct alternative within the solution space of the
factorization problem. Practically, this means we have chosen 𝛽 to
be large so that the inner product between the hypervectors of any
two adjacent primes would be close to zero. This was achieved by
setting 𝛽 as :

𝛽 =
104

min𝑖 (log(P(𝑠)𝑖+1) − log(P(𝑠)𝑖 ))
(7)

The extra factor of 104 was added to ensure that 𝛽 was always
sufficiently large.
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Figure 2: Left panel (A): an example of a resonator network with two factors for integer factorization according to (8). Each
resonator uses the estimate from the other resonator to infer one of the factors (e.g. z(log(𝑠)) ⊙ ŷ), these estimates are then
cleaned-up by limiting them to the span of the codebook (ΦℜΦ†), andfinally the vector elements are restored to unitmagnitude
phasors (𝑓𝑛 (𝑥𝑖 ) = 𝑥𝑖/|𝑥𝑖 |). Right panel (B): an example of convergence of a resonator network. Color values correspond to the
normalized inner product between x̂ (Factor # 1) and ŷ (Factor # 2) and the entries of the codebook Φ corresponding to the
primes depicted on 𝑥-axis. A small range of primes are shown for visualization. The dynamics are initially very chaotic until
around iteration 30 where the network identifies the solution and quickly reaches a stable equilibrium.

3.3 Factorization of semiprimes with the
resonator network

In this case, the dynamics of the resonator network factorizing 𝑠
into 𝑥 and 𝑦 is described as follows:

x̂(𝑡 + 1) = 𝑓𝑛

(
Φℜ

(
Φ† (z(log(𝑠)) ⊙ ŷ(𝑡))

))
;

ŷ(𝑡 + 1) = 𝑓𝑛

(
Φℜ

(
Φ† (z(log(𝑠)) ⊙ x̂(𝑡 + 1))

))
,

(8)

where x̂(𝑡) and ŷ(𝑡) denote the hypervectors corresponding to
the current estimates of the resonator network for z(log(𝑥)) and
z(log(𝑦)); 𝑓𝑛 (𝑥𝑖 ) = 𝑥𝑖/|𝑥𝑖 | normalizes each component to unit mag-
nitude. Note that in (8) both factors use the same item memory Φ
since both 𝑥 and 𝑦 are present in P(𝑠). Once the resonator network
converges or reaches the maximum number of iterations, the most
recent estimates of the resonator network are used to obtain the
predictions 𝑥 and 𝑦 corresponding to the primes in P(𝑠) whose
hypervectors in Φ are the most similar to x̂(𝑡) and ŷ(𝑡). In the ex-
periments, the maximum number of iterations was 100. A schematic
overview of the resonator is shown in Fig. 2.

Let us walk-through an example of the factorization process
described above. Assume that we would like to factorize semiprime
𝑠 = 603, 329 into its factors (𝑥 = 757 and 𝑦 = 797). First, we need to
define all the primes in P(𝑠) that will be used to form the itemmem-
ory Φ. In this case, the cardinality of P(𝑠) will be |P(𝑠) | = 26, 135
with the smallest prime being 2 and the largest one being 301, 657.
Once P(𝑠) is fixed, we can use our equation for 𝛽 (7) to calculate
𝛽 ≈ 1.5 × 109. Next, we need to choose a suitable dimensionality of
hypervectors 𝑛 (see the next section for performance evalutation
of different values of 𝑛). Then, a random 𝑛-dimensional base vec-
tor z is generated. The base vector z is used to populate the item
memory Φ with hypervectors corresponding to FPEs of logarithms
of elements of P(𝑠) according to (4). We also form the FPE of the
given semiprime 𝑠 as z(log(𝑠)) = z𝛽 log(𝑠) . The final step is to setup
and run the resonator network according to (8) using the obtained
z(log(𝑠)) and Φ. The initial estimates for x̂(0) and ŷ(0) are set to
the normalized superposition of all hypervectors in Φ. If 𝑛 is large

enough, then after several iterations with high probability the res-
onator network will converge. The final state of x̂(𝑡) and ŷ(𝑡) can
be matched to the closest hypervectors in Φ, which will correspond
to primes 757 and 797 (Fig. 2). Note that in this configuration, x̂ and
ŷ can converge to either one of the primes.

3.4 Empirical evaluation of performance and
scaling

In this section, we report the results of the empirical evaluation
of the proposed approach. In the experiments below, we need to
measure the success of the factorization by the average accuracy of
correctly factorizing many semiprimes 𝑠 = 𝑥𝑦 (where 𝑥 and 𝑦 are
chosen randomly from P(𝑠)).

First, we examine the factorization accuracy against the number
of elements in P(𝑠) and as a function of dimensionality, reported in
left panel in Fig. 3. For each value of𝑛, we can identify three regimes
with respect to the accuracy: high-fidelity, where the accuracy
is nearly perfect, low-fidelity, where the accuracy is not perfect
but above chance, and random guessing, where the accuracy is
effectively chance. It is evident that with increased 𝑛, the maximum
size of P(𝑠) within the high-fidelity regime also increased.

It is also important to estimate how the complexity of the ap-
proach scales. To do so, we consider the dimensionality of hypervec-
tors required to perform the factorization successfully for the given
cardinality of P(𝑠). We have defined the successful factorization as
the accuracy that is greater than or equal to 0.95. The scaling of the
required dimensionality of hypervectors converges to a line with
slope of approximately 1 with respect to cardinality of P(𝑠) (central
panel in Fig. 3). This observation is in line with the experiments
reported in [28], where random hypervectors were used to form an
abstract factorization problem. Practically, this also means that for
large |P(𝑠) |, reasonable values of 𝑛 would be sufficient to perform
the factorization.

Recall that in Section 3.1, we discussed the choice of suitable
𝛽 for a given P(𝑠) to continue operating in the symbolic mode.
Intuitively, the potential issue with scaling 𝛽 is that when P(𝑠)
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Figure 3: Left panel (A): the accuracy of semiprimes factorization against the cardinality of P(𝑠). The reported values are
averages computed from 4, 000 random semiprimes. Central panel (B): average minimal dimensionality of hypervectors (𝑦-
axis) required to achieve at least 95% successful factorization for the given cardinality of P(𝑠) (𝑥-axis). Thin black dashed
line depicts the linear relation between 𝑛 and |P(𝑠) |. The colored lines correspond to different starting points used to form
P(𝑠). The reported values are averages computed from 10 simulation runs. During each simulation run, 1, 000 randomly chosen
semiprimeswere used to assess the factorization accuracy for every considered value of𝑛. Right panel (C): number of iterations
used by the resonator network to either converge to a solution or to reach the maximum number of iterations (set to 100).

contains large primes, 𝛽 will also be large due to the use of the
log transformation. Large values of 𝛽 could cause numerical issues
when performing the FPE. In order to demonstrate the potential
role of 𝛽 on the factorization performance, Fig. 3B also depicts
the required dimensionalities of hypervectors for primes in P(𝑠)
that were picked using different starting points, which following
(7) leads to different values for 𝛽 . First, the results suggest that
the ranges of primes requiring the use of larger values of 𝛽 did
not incur a drastic increase in dimensionality of hypervectors, so
factorization performance is mainly limited by the capacity of the
resonator. Second, since larger values of 𝛽 are not an issue, the
proposed approach can handle varying ranges of primes.

In addition to the factorization accuracy, it is also worth looking
at the average number of iterations used by the resonator network
to converge (right panel in Fig. 3). There is a clear correspondence
between the accuracy and the number of iterations of the resonator
network. When the resonator network was in the high-fidelity
regime, only a few iterations were required to find a solution, and
|P(𝑠) | increased the number of iterations also increased. Finally,
once |P(𝑠) | was too large for a chosen 𝑛, the resonator converged
to the wrong answer or reached the iteration limit.

3.5 Factoring composite numbers beyond
semiprimes

The proposed approach is not limited to semiprimes. In principle,
it can be applied on any 𝑘-almost prime. In Fig. 4, we report the
case of factorization of integers with three factors (𝑠 = 𝑎𝑏𝑐) using a
similar setup as above. Now there are three resonators, and each
resonator is designed for three factors. They each have a similar
update dynamics, for instance for the first factor:

â(𝑡 + 1) = 𝑓𝑛

(
Φℜ

(
Φ† (z(log(𝑠)) ⊙ b̂(𝑡)) ⊙ ĉ(𝑡)

))
. (9)

The observed results are consistent with that obtained for the case of
semiprimes in Fig. 3. Note that compared to the case of semiprimes,
for 3-almost primes larger values of 𝑛 were required to get to the
high-fidelity regime. This is expected since for the semiprimes the
search space grows as |P(𝑠) |2 while for 3-almost primes it grows

much faster as |P(𝑠) |3. The approach can be extended to other
composite numbers by including more resonators in the network.
Again, the capacity and likelihood of solving the factorization prob-
lem depend on the combinatorics of the factors, and this grows
exponentially with number of factors. Further, the identity vector
(vector of all 1s, a.k.a. z(log(1)) = z0) can be added to Φ to enable
solving problems with unknown number of factors.

4 DISCUSSION
4.1 Summary of the study
Our goal was to demonstrate that while Vector Symbolic Architec-
tures (VSA) [25, 29] were originally proposed to solve problems in
cognition, VSAs are a highly flexible and powerful framework for ex-
pressing challenging computational problems in high-dimensional
vector spaces. We used integer factorization to showcase both the
expressiveness of VSAs and novel techniques of representing num-
bers in high-dimensional vectors. VSAs are now well-known as
frameworks for many novel computational devices that are de-
signed for highly efficient and parallel computations [6, 47, 49].
Using VSAs to express challenging computational problems that
can be solved by neural network architectures, like the resonator
network, brings out the potential of utilizing neuromorphic hard-
ware. It is relatively straight-forward to scale VSA algorithms like
the resonator network – this simply means expanding the dimen-
sionality of the vector representations. This ease of scalability is
compatible with large scale meshes of neuromorphic chips [14].
While we did not execute these experiments on neuromorphic hard-
ware, there are several previous models [7] and novel proposals
[13, 15] that neuromorphically perform VSA computations.

One of our main contributions was expanding our understanding
of how number systems can be expressed in vector spaces. Recently
the technique of fractional power encoding (FPE) has been gaining
new attention as a way to represent geometrical spaces, maps, man-
ifolds and functions [9, 11, 38, 44]. Integers are the ordinal data type,
and, therefore, their distributed representation should preserve the
data topology, which provides a proper setup for the use of frac-
tional power encoding. Previously integers were easily represented
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Figure 4: Left panel: the accuracy of 3-almost primes factorization against the cardinality of P(𝑠). Right panel: number of
iterations used by the resonator network to either converge to a solution or to reach the maximum number of iterations (set
to 100). The values are averages from 1, 000 randomly chosen 3-almost primes.

by the integer powers of an FPE, but in this formulation the binding
operation results in the FPE of the integer sum. By expressing the
FPE with the logarithms of integers, we enabled a representation
of integer values where the binding operation now leads to the
FPE of the integer product. With this formulation for representing
integers, we could then express the integer factorization problem
as the problem of vector factorization, which can be solved using
resonator networks [10].

This FPE representation of logarithmic integers meant we needed
to examine the consequences of superpositions of FPE vectors. The
resonator network uses the principle of search in superposition, and
for it to successfully solve the factorization problem, the individual
factors need to be uniquely identifiable by their FPE vectors. We
used the parameter 𝛽 to rescale the FPE vectors so that the logarith-
mic FPE representations were sufficiently spaced such that their
similarity kernels were not overlapping. There is a simple strategy
for scaling 𝛽 based on the minimum log distance between neigh-
boring primes, but we also showed that there are few side-effects
for making 𝛽 much larger, and generally factorization performance
is not too dependent on 𝛽 as long as it is sufficiently large.

The way the factorization problem is solved by the resonator
network is best described via the concept of search in superposition.
During this process, many number combinations may be considered
simultaneously, something that is not possible with conventional
digital number representations. We believe that the extended idea
of computing in superposition [29] is a particularly important aspect
of VSAs that should be investigated further. It is also worth empha-
sizing, that the resonator network can be used beyond semiprimes
(i.e., with more than two factors; see Section 3.4).

4.2 Related work
Our main contribution is a formalism for using VSAs to solve inte-
ger factorization, providing a way to solve classical factorization
problems with distributed representations. Though our formalism
benefits from the properties of VSAs (such as being distributed,
robust, and computing in superposition), it was not our goal to
demonstrate the superiority to other algorithms. The promise of our
approach is really the potential of scalable and efficient execution
of such an algorithm on neuromorphic hardware. It is important to
keep in mind that the proposed approach should not be considered
as a panacea in terms of providing a straight-forward polynomial

solution to the semiprimes factorization problem. The number of
primes grows exponentially w.r.t. the number of bits used to repre-
sent a number, which also implies the exponential growth of the
resonator.

This work expands on previous efforts to solve optimization
and factorization problems with neural attractor networks and
physics-based architectures. Early work proposed to design neural
attractor networks based on matrix-type auto-associative mem-
ories [16, 17, 21, 36, 42] so that their dynamics is governed by a
Lyapunov function that represents the objective of a particular
optimization problem, for example, the path length in a traveling-
salesman problem [22]. The fixed point attractor dynamics of such
networks searches the solution space and settles at an approximate
solution. The resonator network similarly settles at a solution if
there is one. However, its dynamics is not governed by an energy
landscape/Hamiltonian, if there is no solution, it can converge to
limit cycles or chaotic orbits. It has been shown empirically that
this richer dynamic repertoire accelerates the search and, as a result,
outperforms gradient-based optimization significantly [28].

Quantum computing has been proposed as a physics-basedmethod
for solving combinatorial optimization problems [2, 50]. There are
some similarities between quantum algorithms and the working
principles of the resonator network used in this paper. The res-
onator network operates on sums of complex numbers to solve
factorization problems, which can be regarded a classical analog of
the superposition principle used in quantum computing. Adiabatic
quantum annealing [2] methods solve an optimization problem by
using the quantum tunneling effect. The optimization problem can
be mapped to the Hamiltonian of a quantum system. The optimal
solution or global minimum of the problem objective is found by
slowly evolving the potential from an initial easy Hamiltonian to a
more complicated Hamiltonian. Due to the challenge of building
reliable and large quantum computers, there is a renewed interest
in classical physics-based solvers, such as networks of coupled oscil-
lators [1, 51]. The variables in the described resonator networks are
complex-valued phasors, which can be represented by oscillators
or by spiking neural networks [15].

4.3 Future work
There are several extensions of our approach, including subsequent
analyses, that seem especially promising: While we presented the



Integer Factorization with Distributed Representations NICE 2022, March 28-April 1, 2022, Virtual Event, USA

algorithmic approach and its realization on the conventional paral-
lel hardware (GPU), the real promise is in the implementing VSAs
in neuromorphic hardware. To this date, it is still an open question
how to implement a VSA system in such hardware in full. Probably
the closest mapping to spiking hardware is provided via the Neural
Engineering Framework [4, 8], although the potential challenge
of this approach is spike efficiency. An alternative mapping pro-
posal that is spike efficient is via representing FHRR phasors with
spike times [15], but this approach is not yet extended to account
for all VSA operations. Another promising hardware direction is
in-memory computing [26, 27]. Since the above hardware is inher-
ently noisy, it would provide a natural setup for demonstrating
the robustness of our proposed factorization approach to noise (as
expected from simulations performed in [28]). Another important
direction is to design mapping of other difficult problems, such
as the subset-sum problem and other combinatorial optimization
problems, to resonator networks with FHRR. A particular challenge
for designing mappings for other problems is the absence of strict
guidelines directing mapping development, so for each problem the
mapping has to be done ad hoc. Another limitation is that although
resonator networks are well-suited for finding exact solutions (i.e.,
solving equality problems), it is less obvious how to formulate the
problem of finding a maximum or minimum.
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