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ABSTRACT
The BrainScaleS-2 (BSS-2) Neuromorphic Computing System cur-
rently consists of multiple single-chip setups, which are connected
to a compute cluster via Gigabit-Ethernet network technology. This
is convenient for small experiments, where the neural networks fit
into a single chip. When modeling networks of larger size, neurons
have to be connected across chip boundaries. We implement these
connections for BSS-2 using the EXTOLL networking technology.
This provides high bandwidths and low latencies, as well as high
message rates. Here, we describe the targeted pulse-routing imple-
mentation and required extensions to the BSS-2 software stack. We
as well demonstrate feed-forward pulse-routing on BSS-2 using a
scaled-down version without temporal merging.

CCS CONCEPTS
• Hardware → Networking hardware; Neural systems; • Net-
works → Network protocol design; Naming and addressing; • Com-
puter systems organization→ Neural networks; • Software and
its engineering→ Software functional properties.
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1 INTRODUCTION
The EXTOLL network technology [2, 5, 8, 9] is based on the Tour-
malet Network Interface Card (NIC). It offers 7 links and implements
all the switching and interfacing capabilities, necessary to build an
HPC network. Each EXTOLL link can comprise up to 12 lanes of
8.4Gbit s−1 each. The NIC can be connected to a host computer
through its PCIe x16 Gen3 connector. In an EXTOLL network, the
nodes are usually, but not necessarily connected in a 3D-Torus
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topology, which offers good scaling characteristics. Routing of mes-
sages through the network is done by the Tourmalet chips and is
based on the 16 bit destination node-address.
BSS-2 as a mixed-signal neuromorphic computing system is built
upon the HICANN-X (HX) chip which features 512 adaptive expo-
nential integrate and fire (AdEx) neuron-circuits and 512 × 256 =

131 072 synapses [7]. Up to 16 k synaptic inputs per neuron are
configurable by combining neuron circuits. Realizing large net-
works with such neurons requires a multi-chip system. [1, 3, 10, 12]
Recently the BSS-2 system development advanced to a multi-chip
system featuring 46 HX chips, each connected to a Kintex 7 FPGA
through 8 1Gbit s−1 serial links. These systems make use of the
BSS-1 wafer module infrastructure, imitating a full wafer-scale
implementation by placing many chips on a large PCB of the ex-
act same size and pin-configuration as a BSS-1 wafer [13, 15]. We
consider the topology described in [16] to be optimal for intercon-
necting multiple FPGAs on wafer modules regarding bandwidth
and network diameter.
Figure 1 shows the current lab setup for testing the BSS-2 EXTOLL
networking [7, 14]. It is physically connected to the EXTOLL net-
work via USB 3.0 plugs attached to the FPGAs’ MGT-ports. Addi-
tionally it is still connected to an Ethernet network for FPGA bitfile
flashing purposes. This setup contains four FPGAs and two chips.

2 HOST COMMUNICATION
In order to integrate the EXTOLL network with the existing BSS-2
software stack [6], we use the custom protocol layer Neuromorphic
Hardware Transport Layer for EXTOLL (NHTL EXTOLL). This layer
sits on top of the EXTOLL network’s API for Remote Direct Mem-
ory Access (RDMA), librma2 [9], and beneath the FPGA software

Figure 1: BSS-2 Lab Setup connected to EXTOLL network.
Membrane-traces on two connected HX-chips are shown.
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Figure 2: Experiment Setup for an inter-chip feed forward neural network. The Inter-Spike-Interval (ISI), given in bio-time
units, is higher at target neurons, as they do not fire with each received input-event.

interface (hxcomm) [6]. Thereby, the existing experiment-flow can
transparently use the EXTOLL network.

2.1 The EXTOLL Protocol
The EXTOLL network chip uses RDMA to facilitate low-latency
communication using its Remote Memory Access (RMA) unit. The
RMA unit consists of three sub-units, the Requester, Responder, and
Completer. These handle the different aspects of each RDMA put
or get operation. Messages can be issued with flags such that the
sub-units produce notifications upon forwarding them. [9] These
notifications are used to ensure that API commands are properly
executed. Additionally, as they can carry small amounts of payload
data, we use notification packets to synchronize the FPGA’s send
queue with a ring buffer in the host memory, where the FPGA sends
its data using RMA-messages.

2.2 Interaction with the BSS Software Stack
For integration with the BSS-2 software stack, NHTL EXTOLL pro-
vides two main functionalities: First, it creates and manages the
necessary buffers on the host node and configures the FPGAs using
the EXTOLL network’s Remote Registerfile Access (RRA) feature.
Second, it provides wrapper functions for receiving and sending
data via RDMA with the same syntax used by the higher level com-
ponents of the software stack. With this, the EXTOLL network can
be used without having to touch the pre-existing infrastructure
provided by the higher abstraction levels [7].

3 INTER-FPGA COMMUNICATION
The pulse-communication architecture described for the BSS-1 sys-
tem in [16] can easily be adapted for BSS-2. Events from the chip
now arrive at the FPGAwith rates of up to two events per 125MHz
FPGA clock cycle and comprise of a 14 bit source neuron address
and an 8 bit timestamp [4]. The latter has to be converted to an
arrival deadline by adding a modeled axonal delay. The lookup table
at the source-node now no longer yields a GUID as in [16], since
the destination multicast is not needed with a single chip per FPGA.
Instead, the lookup now provides a freely remappable destination
neuron address.

3.1 Event Aggregation
Figure 2 shows the flow of event-streams through the system with
ascending timestamps. As described in [16], pulse events are ag-
gregated into larger network packets [11] using bucket-buffers.
The number of events to accumulate is subject to a trade-off be-
tween minimizing header-overhead and avoiding congestion when
merging packetized event-streams at the destination. Also, to avoid
timestamp expiration and resulting event-loss, the possible time
for aggregation is limited by the modeled axonal delays.
To keep the first prototype implementation simple, the bucket-
renaming proposed in [16] and the merging (gray boxes in Figure 2)
are not yet realized. Instead, the destination lookup simply yields a
bucket-index and the network addresses are statically configured
in the buckets. In this simplified approach, the required numbers of
bucket-units and merge-buffers scale with the number of desired
destinations and source-streams per chip.

4 INTER-CHIP FEED-FORWARD NEURAL
NETWORK

Here we present a technical demonstration of a feed forward neural
network spanning two or more HICANN-X chips. A population of
neurons on a first chip, driven by external input emits spikes that
are then transmitted to a second chip. There, they trigger a second
population of neurons to answer this firing. First measurements
using an oscilloscope, attached to analog probing pins yield an
overall inter-chip-latency of approximately 8 µs (Figure 1). The
membrane-voltage traces in Figure 2 have been recorded using
the on-chip Membrane Analog to Digital Converter (MADC). The
synapses have been configured for high technical efficacy in this
demo to reliably elicit spikes.

5 SUMMARY AND OUTLOOK
We have presented a first hardware implementation and the ac-
cording software integration of a low-latency, high-bandwidth
communication strategy for multi-chip BSS-2 systems. HICANN-X
chips can be interconnected by transmitting pulse events between
FPGAs through a packet-based HPC network. This is done using
the EXTOLL networking technology. At the conference we present
a technical demonstration of these first experiments.
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