
No Keys to the Kingdom Required:
A Comprehensive Investigation of Missing
Authentication Vulnerabilities in the Wild

Manuel Karl∗
TU Braunschweig

m.karl@tu-braunschweig.de

Marius Musch∗
TU Braunschweig

m.musch@tu-braunschweig.de

Guoli Ma
Google

magl@google.com

Martin Johns
TU Braunschweig

m.johns@tu-braunschweig.de

Sebastian Lekies
Google

slekies@google.com

ABSTRACT
Nowadays, applications expose administrative endpoints to theWeb
that can be used for a plethora of security sensitive actions. Typi-
cal use cases range from running small snippets of user-provided
code for rapid prototyping, administering databases, and running
CI/CD pipelines, to managing job scheduling on whole clusters of
computing devices. While accessing these applications over the
Web make the lives of their users easier, they can be leveraged
by attackers to compromise the underlying infrastructure if not
properly configured.

In this paper, we comprehensively investigate inadequate authen-
tication mechanisms in such web endpoints. For this, we looked
at 25 popular applications and exposed 18 of them to the Internet
because they were either vulnerable in their default configuration
or were easy to misconfigure. We identified ongoing attacks against
7 of them, some were even compromised within a few hours from
the deployment. In an Internet-wide scan of the IPv4 address space,
we examine the prevalence of such vulnerable applications at scale.
Thereby, we found 4,221 vulnerable instances, enough to create a
small botnet with little technical knowledge. We observed these
vulnerable instances and found that even after four weeks, more
than half of them were still online and vulnerable.

Currently, most of the identified vulnerabilities are seen as fea-
tures of the software and are often not yet considered by common
security scanners or vulnerability databases. However, via our ex-
periments, we found missing authentication vulnerabilities to be
common and already actively exploited at scale. They thus represent
a prevalent but often disregarded danger.

CCS CONCEPTS
• Security and privacy → Web application security; Vulnera-
bility scanners;

∗Both authors contributed equally to this research.

IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9259-4/22/10.
https://doi.org/10.1145/3517745.3561446

ACM Reference Format:
Manuel Karl, Marius Musch, Guoli Ma, Martin Johns, and Sebastian Lekies.
2022. No Keys to the Kingdom Required: A Comprehensive Investigation
of Missing Authentication Vulnerabilities in the Wild. In Proceedings of the
22nd ACM Internet Measurement Conference (IMC ’22), October 25–27, 2022,
Nice, France. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3517745.3561446

1 INTRODUCTION
Remotely administering software, servers, or whole clusters of
computing devices can be a difficult task. Thus, a plethora of appli-
cations offer easy and convenient remote access to administrative
functions such as querying a database, uploading files to a server,
or executing OS commands via a HTTP(S) endpoint. Examples for
such applications are CI/CD interfaces, content management sys-
tems, cluster management systems, notebooks for code, or database
control panels. Many of these applications have been designed for
usage within an intranet or on localhost and thus most of them
are lacking strong authentication mechanisms. However, with the
advent of cloud computing, more and more of these applications
are getting deployed to the cloud and need to be accessed remotely.

Due to the lack of authentication mechanisms, it is dangerous to
expose such applications to the Internet. For example, an exposed
CI/CD admin panel can be leveraged by an attacker to push a
malicious binary to a build server. Most administrative operations,
such as querying a database, uploading a file, or running jobs on
a computing cluster, can be turned into arbitrary code execution.
Therefore, exposing an administrative web endpoint to the Internet
without an authentication mechanism in place can easily lead to
exposing a remote code execution vulnerability.

In this paper, we study the exploitation and prevalence of such
missing authentication vulnerabilities in the wild. To the best of our
knowledge, we are the first to systematically investigate this prob-
lem at scale and to quantify the potential of maliciously exploiting
it. For this, our paper makes the following contributions:

• First, wemanually investigated 25 popular applications across
five categories for publicly exposed sensitive functional-
ity. Thereby, we found that 18 out of 25 software products
contain sensitive endpoints without authentication. Hence,
when exposed to the Internet, such applications can be com-
promised by attackers (Section 2).

619

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3517745.3561446
https://doi.org/10.1145/3517745.3561446
https://doi.org/10.1145/3517745.3561446
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3517745.3561446&domain=pdf&date_stamp=2022-10-25

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

• Subsequently, we scanned the entire IPv4 range for missing
authentication vulnerabilities. Our scan took less than one
day to complete and discovered 4,221 instances that exposed
sensitive application functionality without authentication.
Effectively, each of these instances is vulnerable to remote
code execution and we could have created a small botnet by
abusing these vulnerabilities (Section 3).

• To study whether attackers actively exploit administrative
web endpoints in practice, we set up honeypots for the 18 vul-
nerable applications. Within four weeks we recorded 2,195
attacks leading to compromises of 7 of the 18 vulnerable
applications, often even within a few hours of exposure (Sec-
tion 4).

• Finally, we use two commercial industry-leading security
scanners to show that defenders are mostly not aware of the
risks, as they only detect 5 and 3 out of the 18 vulnerabil-
ities. Our data analysis shows that applications relying on
secure-by-default mechanisms are considerably less prone
to compromises (Section 5 and Section 6).

2 MISSING AUTHENTICATION
VULNERABILITIES

In this paper, we focus on applications that expose administrative
web endpoints (AWEs). Conducting administrative actions over them
can either be their main purpose, e.g., managing a single server or
a whole cluster, or these endpoints can be part of a larger applica-
tion in the form of an additional admin panel, e.g., a management
interface for a blog. Note web endpoints does not only include tradi-
tional web applications likeWordPress, but also applications that
additionally expose an HTTP API like Kubernetes or Docker.

Due to their powerful capabilities, accessing these endpoints
should only be allowed for the legitimate owner of the application.
An attacker would not need to abuse "real" vulnerabilities such
as buffer overflows to gain control of the program flow, as these
applications provide arbitrary code execution by design. We call
the absence of an authentication mechanism in AWEs a missing
authentication vulnerability (MAV). As this attack vector is based on
a feature and not a bug, even keeping the system up-to-date does
not prevent exploitation of MAVs. Simply exposing these AWEs to
the Internet is already a security risk, as an attacker can use the
provided functionality to run malicious code.

Flavors of MAVs In the simplest case, AWEs allow their users to
directly execute system commands on the server via a web interface,
such as a Web page or an HTTP endpoint. For example, by offering
a terminal to execute bash commands or the possibility to write
code that is executed on the server. Others offer their administra-
tive capabilities through an HTTP API which basically serves as a
wrapper for the system commands. This is a bit more hidden than
a graphical interface and sometimes not clear to the user that an
HTTP API even exists by default after installation.

A special case is the lack of authentication during installation
only. This happens, if the installation starts with extracting the
application files on the web server and then configuring the rest,
including the admin password, in the browser. In this case, the first

person connecting to the server is assumed to be the legitimate
owner, so these applications basically rely on trust on first use.
It should be noted that once the installation is complete, these
applications require authentication and are secure by default.

Out of scope For this paper, we consider insecure default creden-
tials that can be easily guessed or found in the documentation, like
admin:admin, to be out of scope. While the employed authentica-
tion is weak, these systems are notmissing authentication. Another
more practical reason is that we would not be able to test for de-
fault credentials in an ethical and non-invasive manner, i.e., without
conducting POST requests. Moreover, we also do not investigate
authentication bypasses, where a strong but buggy authentication
mechanism exists. However, we do consider applications that can
be misconfigured in a way that skips the authentication, e.g., by
providing an empty password.

2.1 Manual Investigation of MAVs
We divided the AWEs into five different categories and selected the
five most popular open source representatives based on their num-
ber of Github stars. We outline if and how they are affected byMAVs
and investigate if they are insecure in their default configuration.
Moreover, we discuss if this changed over time, e.g., because they
changed their defaults or introduce other countermeasures to pre-
vent attacks. If the application is insecure by default, we investigate
if there are any warnings, e.g., in their installation documentation,
during startup, or when first visiting the application. We summarize
our findings in Table 1.

Continuous Integration (CI) These systems help to automate the
deployment of software through automatic builds of the project
each time the code changes or on a certain schedule. For this cate-
gory, we analyzed Gitlab, Drone CI, Jenkins, Travis CI, and GoCD. By
default, only GoCD allows unauthenticated users to run arbitrary
commands as part of the build process. Their documentation [30]
states that “A newly installed GoCD server does not require users to
authenticate. This is great for a trial. However, it is one of the first
things you should change [...]”. Older versions of Jenkins before v2.0
were also vulnerable, however they introduced a countermeasure
and now create an admin account with a random password during
the installation [56].

Content Management Systems (CMS) These systems allow users
to create and upload new content such as text and media, orga-
nize this content and provide extensive capabilities to customize
the appearance of this content. By far, the most popular CMS is
WordPress, which is estimated to manage content on over 40% of all
websites worldwide [78]. In the CMS category we selected Ghost,
WordPress, Grav, Joomla, and Drupal for manual analysis. All five
include an password-protected admin panel. However, this pass-
word is initially set during the installation process on a publicly
reachable web page, meaning an attacker can just set whatever they
want. Therefore, the CMSes are generally in scope, as long as they
have not yet been installed. While Ghost offers an admin panel to
edit the content, it does not allow the user to change the actual
code of the application and is therefore out of scope. On the other
hand, all other four CMSes offer the ability to add or edit PHP code
either directly or through the upload of custom extensions and thus

620

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

allow an attacker to execute arbitrary code on the server. Joomla
is the only one to include a countermeasure to such installation
hijacks since version v3.7.4. If you do not know the password of the
local MySQL server and want to connect to a remote one, then the
installation will only continue if you delete a file with a random
name on the server, proving your ownership [44].
Cluster Management (CM) Software in this category allows man-
aging clusters by creating, updating or deleting nodes of the clus-
ter or running jobs on the nodes. For the CM category, we look
into Kubernetes, Docker, HashiCorp Consul, Apache Hadoop, and
HashiCorp Nomad. Each of them offers an API that is enabled by
default and allows code execution. By default, only Kubernetes
does not expose this API to the Internet. However, this can be
changed via the configuration [50]. Consul exposes its API by de-
fault, but is only vulnerable if either the enableScriptChecks or the
enableRemoteScriptChecks option is manually enabled [10]. Both
these options allow an remote attacker to execute arbitrary code:
The first enables health checks that regularly execute previously the
provided code, while the latter is just outright designed to execute
code from remote sources. Of the remaining three products, we
only found a prominent warning for Nomad, which said “Nomad is
not secure-by-default” [55].
Notebooks (NB) Notebooks typically allow to write documents
that contain a mix of text, code, and figures. To ease debugging and
other administrative tasks, they often even provide a web terminal
to execute bash commands on the server. We looked at Jupyter Lab,
Jupyter Notebook, Apache Zeppelin, Polynote, and Spark Notebook.
Both Jupyter products can be misconfigured by passing an empty
string via the –NotebookApp.password option to disable all authenti-
cation. For Jupyter Notebook, the generation of a random password
during the installation was only later introduced in the update
v4.3 [63]. On the other hand, Zeppelin and Polynote do not enable
any authentication by default. However, Polynote has a warning
on the download page that says “Like other notebook tools, a large
part of its usefulness relies on arbitrary remote code execution [...]
and relies entirely on the user deploying and configuring it in a
secure way” [62]. Spark Notebook seems to be discontinued with
no updates since February 2019 and was thus excluded from our
study.
Control Panels (CP) In this category, we include all other control
panels with administrative functionality that are not part of one
of the previous four categories. This include generic admin panels
which provide system statistics and control panels to manage data-
base servers. We looked at Ajenti, phpMyAdmin (PMA), Adminer,
VestaCP, and OmniDB. Ajenti requires the credentials of a local
OS account by default. It comes with an –autologin option, but
the documentation explicitly warns that “this is a security issue if
your system is public” [3]. PMA and Adminer both require valid
credentials for a SQL user. PMA does not allow supplying an empty
password unless the allowNoPassword option is explicitly enabled.
By default, the option is set to false to prevent logging in without
a password and prevent unwanted access to the MySQL server.
Adminer does not allow an empty password at all anymore since
mid 2018 [76]. VestaCP and OmniDB automatically set or generate
a password during the installation, with no option to misconfigure,
and are therefore out of scope.

Out of scope We have chosen the five categories carefully to
address a large number of different sensitive functionalities that
should be protected by authentication. We consider applications in
similar categories or with a similar functionality to be out of scope
for this paper. For example, in the case of CMSes we are looking at
indirect code execution via the modification of template files or via
installing malicious plugins. It makes little difference whether the
vulnerable application allows the management of a blog, a forum,
or any other type of web presence, as the attack vector is the same.
Summary of our manual analysis Overall, we looked at 25 popular
products in five different categories and found that 18 are in scope
for our study on missing authentication vulnerabilities. Of these,
9 are insecure by default, 4 were insecure by default in an older
version, and another 5 are easy to misconfigure by exposing a port
or changing a setting.
Table 1: Summary of all investigated applications with their
corresponding attack vector and Github ranking.

Type App Stars Vuln Default MAV Warn

CI Gitlab [29] 23k — — —
CI Drone [15] 23k — — —
CI Jenkins [42] 18k Syscmd < 2.0 (2016) —
CI Travis [74] 8k — — —
CI GoCD [72] 6k Syscmd ✓ ✓

CMS Ghost [28] 38k — — —
CMS WordPress [80] 15k Install ✓ ✗
CMS Grav [27] 13k Install ✓ ✗
CMS Joomla [43] 4k Install < 3.7.4 (2017) —
CMS Drupal [16] 4k Install ✓ ✗

CM Kubernetes [49] 78k API ✗ —
CM Docker [12] 23k API ✓ ✗
CM Consul [36] 22k API ✗ —
CM Hadoop [6] 12k API ✓ ✗
CM Nomad [37] 9k API ✓ ✓

NB J-Lab [46] 11k Syscmd ✗ —
NB J-Notebook [45] 8k Syscmd < 4.3 (2016) —
NB Zeppelin [7] 5k Syscmd ✓ ✗
NB Polynote [61] 4k Syscmd ✓ ✓
NB Spark NB [5] 3k — — —

CP Ajenti [2] 6k Syscmd ✗ ✓
CP phpMyAdmin [60] 6k SQL ✗ ✗
CP Adminer [77] 5k SQL < 4.6.3 (2018) —
CP VestaCP [75] 3k — — —
CP OmniDB [58] 3k — — —

On the other hand, 7 of these 18 AWEs allows the attacker to
directly execute system commands, 5 expose a critical API, 2 allow
to execute SQL commands and 4 are unsafe in their pre-installation
state. While on the surface an unfinished WordPress installation
might appear to be quite different from a Jupyter Notebook server,
when exposed to the Internet their impact is actually the same as
they both give the attacker the ability to execute arbitrary code.

2.2 Research Questions
So far, our manual analysis confirmed that with 18 out of 25 AWEs
being vulnerable by default or easy to misconfigure, MAVs are, at
least in theory, a common occurence. In the remainder of this paper,
we will now investigate how this relates to the practice conducted
by users, attackers, and defenders in the real world.

To comprehensively explore this phenomenon, we ask and an-
swer seven research questions (RQs) on the following three major

621

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

aspects. First of all, in Section 3, we determine the usage of AWEs
in the wild to see how often and for how long these endpoints are
exposed in a vulnerable state.

• RQ1: Is this a prevalent issue, i.e., how often are AWEs and
their MAVs exposed on the Internet?

• RQ2: How many of them are up-to-date but vulnerable due
to insecure defaults or misconfiguration?

• RQ3: How long do endpoints with MAVs stay online and
exposed in a vulnerable state?

Then, in Section 4, we also want to find out if attackers are aware of
this problem and if so, how the attacks are distributed across both
time and malicious actors.

• RQ4: Are administrative endpoints compromised in the wild
and to what purpose?

• RQ5: How long does a vulnerable application survive with-
out getting compromised?

• RQ6: How is the attack landscape shaped, e.g., how many
attackers compete for the same vulnerabilities?

Finally, we also briefly investigate if defenders are already aware of
this problem in Section 5.

• RQ7:Are defenders aware of MAVs, i.e., do security scanners
detect this vulnerability?

3 PREVALENCE OF MAVS
To comprehensively answer RQ1-3, we used an Internet-wide scan
of all IPv4 hosts, as we do not expect AWEs to attract enough visi-
tors to be represented in lists such as the Tranco Top 1 Million [51].
In the following, we describe our three-stage methodology for this
data collection, as well as briefly outline the setup of our experiment.
Finally, we report on our results in detail.

3.1 Scanning Methodology
On a high level, our methodology consists of three stages that each
act as a filter, i.e., the earlier stages remove targets that are out of
scope for the later, slower stages. Finally, we use a fingerprinter to
extract version information from the scanned application for an
analysis on their default settings.
Stage I - Masscan As the first step, we checked which hosts are ac-
tually online and exposing an endpoint to the Internet. For this, we
made use of the existing tool Masscan [34], which is an extremely
fast port scanner written in C. We excluded all IANA reserved allo-
cations [39], such as those reserved for Multicast, private use, or
the US Department of Defense, leaving us with roughly 3.5B IPv4
addresses. We limited our scan to the 12 most important ports for
our study: 80, 443, and all default ports of the 18 selected appli-
cations (which have some overlap). To prevent running the next
two stages on hosts that went offline in the meantime, we always
selected and scanned a fraction of all hosts with our full pipeline
before we continued the port scan with the next batch.
Stage II - Prefilter For all open ports identified by the first stage,
we then checked if they speak HTTP or HTTPS, except port 80
where we only tested HTTP, and port 443 where we only tested
for HTTPS. If one or both connections succeeded, we followed
redirects until we received a response body and searched it with our
prefilter signatures. These signatures are short regular expressions,

e.g., wp-json for WordPress and /static/yarn.css for Hadoop, were
crafted manually to indicate that the response was generated by
one of the 18 applications of our study. In total, we created 90 such
signatures, an average of 5 per application. This stage thus acts as
a prefilter that discards all hosts that are not relevant for our study.

Stage III - Tsunami At this point, we confirmed that the applica-
tion is in scope for our study and now need to verify whether it
suffers from a MAV. For this, we created and open sourced a generic
network security scanner called Tsunami [33]. It has an extensible
plugin system and each MAV verification logic is implemented as
a dedicated plugin. Based on the port and application information
from Stage I and Stage II, Tsunami selects the appropriate MAV
detection plugins for each matching application. For example, in
order to check whether a WordPress installation can be hijacked,
we have a plugin that queries the /wp-admin/install.php page and
checks whether the WordPress installation process is served on
that link. The full details of all detection steps of all the plugins
can be found in Appendix A. Moreover, we are in the process of
open-sourcing all detection plugins and many of them are already
available [32].

Version fingerprinting For more detailed analyses of the hosts,
we also tried to determine the version of all applications that are
in scope for our study to infer their default settings (which could
have changed over time), as well as their up-to-dateness in general.
Therefore, we first try to extract the exact version number from
the 13 applications where this information is usually voluntarily
revealed, e.g., Kubernetes has the /version API endpoint while
Consul includes a HTML comment. For the five remaining applica-
tions, as well as cases where this version number was removed, we
employed a more elaborate fingerprinting mechanism. It is based
on two major components, a knowledge base and a crawler, and
is implemented as an additional Tsunami plugin. The knowledge
base is built using the repositories of the open-source applications
and includes hashes of their static files such as images, scripts and
stylesheets. To identify an unknown application we first crawl the
application and collect all static files from the responses. Then we
match their hashes against the knowledge base to identify the ap-
plication and version. This fingerprinter is also publicly available,
including our knowledge base for all the applications [31].

Threats to validity To ensure that our prefilter signatures and
Tsunami’s MAV detection plugins work on older versions of the
targeted software, we tested them on both the newest and oldest
stable releases we could find, as well as random samples collected
during preliminary, smaller scans. We refined them and added
additional checks and signatures as needed, looking for strings
and endpoints that appeared stable across all the different versions.
However, there is a small chance that some version in between
introduced a breaking change that was later rolled back, meaning
we would miss some results.

3.2 Experiment Setup
Using the three-stage scanning methodology described above, we
conducted a scan of all IPv4 addresses on June 03, 2021. To conduct
this large scan within one day we spun up 64 machines through
a large cloud provider, each with 48 cores and 384 GB of memory.

622

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

With this setup, the experiment lasted about 22 hours. Additionally,
we used a smaller machine to act as an observer to periodically
repeat the scan of the vulnerable machines, to see whether they
were still running and vulnerable.

Ethical considerations As the first two stages only conduct a port
scan and a maximum of three HTTP(S) requests, the burden on one
individual system is small. Moreover, to prevent flooding a whole
network with our requests, we scanned the IPv4 range in a random
order of 24 blocks instead of scanning them sequentially. The third
stage of our scanning pipeline only verifies the existence of sensitive
UIs or APIs in a non-intrusive way. To prevent both ethical and
legal issues, we did not try to circumvent existing authentication
mechanisms, nor didwe abuse theMAVs to gathermore information
about the system, e.g., by extracting hardware information of the
host. Instead, our scanner is limited to non-state-changing GET
requests and thus acts very similar to a general Web crawler. This is
even true for PhpMyAdmin and Adminer, which do not need POST
requests to test if an empty password would be accepted. Therefore,
we can only infer the presence of a MAV from the presence of
the web pages that contain the vulnerable functionality without
actually executing that functionality. The potential consequences of
this on our scanning results are further discussed in the limitations
section.

Responsible disclosure Reporting vulnerabilities discovered during
an IP scan is a non-trivial problem, as no direct connection to a
domain name and thus email address exists. To nevertheless notify
as many owners of vulnerable servers as possible, we first checked
if the IP address belongs to one of the large cloud providers and
contacted them with a list of all their affected assets. For all other
IPs, we try to connect to each via HTTPS and inspected the returned
certificate (if any) to see if it contains a domain we can contact. In
these cases, we directly contacted the owners via security@domain

about the vulnerable server. Moreover, we are in the process of
reporting the results of our studies to the vendors of the affected
software, in particular those that are currently insecure by default,
to make them consider switching to a securer alternative.

3.3 Scanning Results
Prevalence of endpoints and vulnerabilities (RQ1) First, we investi-
gated the number of open ports and subsequent HTTP(S) responses
on those ports as shown in Table 2. Unsurprisingly, the generic
ports 80 and 443 were most commonly available, together making
up for about two thirds of all open ports and 85% of all responses.
On the other hand, Docker’s 2375 and Nomad’s 4646 were seen
the fewest times, probably because they are rather exotic ports
compared to the 8XXX range, which is more commonly associated
with HTTP(S) traffic. It should be noted that some applications an-
swered both HTTP and HTTPS on the same port, however usually
only to tell the user that the application is only served via HTTPS.
Moreover, we found 3.0M hosts that appeared to always have all
ports open. However, when actually trying to connect to some of
these hosts, we did not find any of the applications that are usually
associated with the respective ports and conclude this was either
an accidental or intentional network misconfiguration. Therefore,
we excluded them from Table 2, as they distorted the results.

Table 2: Open ports and corresponding amount of HTTP(S)
responses we received.

Port # Open # HTTP # HTTPS

80 56.8M 51.3M —
443 50.1M — 35.9M
2375 120k 11k 2k
4646 180k 24k 4k
6443 553k 304k 322k
8000 5.5M 1.6M 293k
8080 9.0M 7.6M 667k
8088 2.6M 857k 943k
8153 291k 171k 3k
8192 331k 175k 7k
8500 384k 62k 107k
8888 2.4M 1.8M 192k

Total 164.8M 64.0M 38.5M

In the following, we only focus on those hosts that run at least
one of the in-scope AWEs on one of the ports we scanned. If the
same application was running on multiple ports of the same host,
we counted it only once. As shown in Table 3, we found around
2.5M hosts running an AWE, of which WordPress and Kubernetes
were by far the most commonly found applications. WordPress
alone was responsible for over half of all results in the second stage
of our scanning pipeline. Combined, the five most common AWEs
were responsible for over 98% of all findings. Overall, we can see
that the frequency of these applications varies widely. However,
just because an AWE was infrequently represented in our results,
that does not mean that it is seldom used, but rather means that it
is seldom exposed to the Internet.
Table 3: Prevalence of AWEs on the Internet and howmany of
them suffered from a vulnerability. The default row indicates
whether the endpoint is secure by default (✓), had changed
over time (†), or a MAV exists by default (✗)

Type App # Hosts # MAVs Default

CI Jenkins 2,440 (0.10%) 80 (3.3%) †
CI Gocd 587 (0.02%) 36 (6.1%) ✗

CMS WordPress 1,462,625 (58.33%) 345 (0.0%) ✗
CMS Grav 2,617 (0.10%) 4 (0.2%) ✗
CMS Joomla 50,274 (2.00%) 16 (0.0%) †
CMS Drupal 65,414 (2.61%) 258 (0.4%) ✗

CM Kubernetes 706,235 (28.16%) 495 (0.1%) ✓
CM Docker 893 (0.04%) 657 (73.6%) ✗
CM Consul 9,447 (0.38%) 190 (2.0%) ✓
CM Hadoop 923 (0.04%) 556 (60.2%) ✗
CM Nomad 1,231 (0.05%) 729 (59.2%) ✗

NB J-Lab 1,369 (0.05%) 53 (3.9%) ✓
NB J-Notebook 9,549 (0.38%) 313 (3.3%) †
NB Zeppelin 1,033 (0.04%) 82 (7.9%) ✗
NB Polynote 8 (0.00%) 8 (100.0%) ✗

CP Ajenti 1,292 (0.05%) 0 (0.0%) ✓
CP Phpmyadmin 184,968 (7.38%) 396 (0.2%) ✓
CP Adminer 6,621 (0.26%) 3 (0.0%) †

Total 2,507,526 4,221

As shown in Table 3, we found 4,221 hosts with a MAV. The
relative prevalence of the vulnerabilities is very different between
applications and also between their larger categories. For example,
MAVs in CMSes could be found only very infrequently, as they
are only vulnerable in their pre-installation state, which they usu-
ally do not reside in for a long time. On the other hand, the CM

623

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

products Docker, Hadoop, and Nomad, if exposed to the Internet,
were vulnerable in the majority of cases. Compared to their overall
prevalence, Kubernetes and Consul were a lot less often vulnerable.
However, they still contributed to the total of all MAVs, with the
cluster management software being responsible for roughly half of
all discovered MAVs. Furthermore, comparing the last column in
Table 3 with the relative number of MAVs shows that applications
with a default MAV were most frequently found to be vulnerable,
except for the short-lived installation pages for CMSes.

Overall, only a fraction of all running software was found to be
vulnerable, but, on the other hand, those vulnerable hosts would
be trivial to abuse, e.g., as part of a botnet, as they do not have
any form of protection at all. Moreover, we used an IP meta data
service [40] to determine the location of these vulnerable hosts and
found that approximately 64% of them are running in the network
of a dedicated hosting provider. On one hand, these are valuable
for attackers as they are more likely to provide a static IP address
and continuous uptime. On the other hand, compromised servers in
what appears to be residential and smaller company networks can
be useful in circumventing bot detection mechanisms based on IP
reputation. A breakdown of the most commonly affected countries
and autonomous systems can be found in Table 4.

Table 4: The five most common countries hosting vulnerable
applications on the left side and the five most common au-
tonomous systems on the right side.

Country Hosts

United States 2104
China 1000
Germany 172
Singapore 97
France 96

AS Provider Hosts

AS16509 Amazon EC2 913
AS37963 Alibaba 542
AS14618 Amazon AES 329
AS14061 DigitalOcean 244
AS396982 Google Cloud 221

Deployed software versions (RQ2) Next, we use the results from our
version fingerprinter to investigate how up-to-date the discovered
software is. To make the versions of all the different software com-
parable, we only report on their release date and not the version
numbers themselves. Overall, we found that about 65% of the discov-
ered versions had been updated or newly installed within the last
6 months. Moreover, 25% were released in 2020, while only about
10% of all discovered versions were released before 2020. However,
these numbers are biased as the software has widely different preva-
lence and WordPress, with its automatic updates, is responsible for
most of these results. Looking into the different categories in more
detail, we found CMSes to be the most up-to-date of all the five
categories, with their median release date in May 2021. Software
of the continuous integration and cluster management categories
were also rather new, both with a median release date pointing to
January 2021. On the other hand, notebooks were running much
older versions with a median of January 2020 and control panels
were most often out-of-date with half of them older than September
2019.

Next, we investigated how this differs between secure1 installa-
tions and those suffering from aMAV. As Figure 1 shows, hosts with
1In this case, secure only means not suffering from a MAV. Especially if they are
out-of-date, other vulnerabilities could exist.

a MAV are, in general, older than those without one. Looking more
specifically into Jupyter Notebook, which changed their insecure
defaults in December 2016, we can see the impact this change had
on MAVs in the wild, as most vulnerable instances are running very
old versions. However, interestingly most of the insecure notebooks
are now actually running releases slightly after this change that
require a password by default. When investigating this issue, we
found many reports of users who suddenly could no longer access
the Notebook they had used for years. The accepted answer to this
problem in a StackOverflow question with over 80,000 views says
“The following is very unsafe, but you can remove the password
completely with [...]” [69] and reveals the problems of changing
the default settings of widely used software. On the other hand,
when we compare these results with Hadoop, which did not change
their insecure defaults over the years, we can see that MAVs are
rather evenly distributed across the different releases, with new
and insecure instances still getting installed and exposed to the
Internet. For Jupyter Notebook it’s mostly the older versions that
are problematic.

0.0 0.2 0.4 0.6 0.8 1.0
Percentile

All secure

All vuln

J-Notebook secure

J-Notebook vuln

Hadoop secure

Hadoop vuln

Unknown
<= 2016

2017
2018

2019
2020

2021

Figure 1: Software release dates separated into 7 bins and com-
pared between secure and vulnerable instances. For brevity,
only two relevant software products are shown in detail.

Longevity of vulnerabilities (RQ3) Another goal of our study was
to analyze how long the discovered instances with a MAV stayed
online and vulnerable. For this, we repeated our scan on the 4,221
vulnerable hosts every three hours over a time span of four weeks.
We found that initially, there is a quick decrease and about 10% of
them were no longer vulnerable within the first six hours. However,
after that the number of machines only decreases by 5-10% per week
and, as the first row in Figure 2 shows, over two thirds of them are
still online and vulnerable after two weeks and over half of them

624

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

after four weeks. While initially, the insecure-by-default instances
decrease quicker on the first day, they afterward decrease at roughly
the same rate as their explicitly modified instances. Moreover, there
is also a considerable difference between the CI and the notebook
category, with the notebooks staying vulnerable for much longer
overall.

0 1 2 3 4
Time in weeks

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 h

os
ts

 s
til

l v
ul

ne
ra

bl
e

All
CI
CMS

CM
NB
CP

0 1 2 3 4
Time in weeks

0

2

4

6

8

10

12

P
er

ce
nt

ag
e

of
 h

os
ts

 fi
xe

d
an

d
st

ill
 o

nl
in

e

0 1 2 3 4
Time in weeks

0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 h

os
ts

 o
ffl

in
e

0 1 2 3 4
Time in weeks

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 h

os
ts

 s
til

l v
ul

ne
ra

bl
e

Insecure by default
Modified to insecure

0 1 2 3 4
Time in weeks

0

2

4

6

8

10

12

P
er

ce
nt

ag
e

of
 h

os
ts

 fi
xe

d
an

d
st

ill
 o

nl
in

e

0 1 2 3 4
Time in weeks

0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 h

os
ts

 o
ffl

in
e

Figure 2: Longevity of the detected MAVs. The left column is
grouped by application, the right columngrouped by defaults.
The legend is shared across graphs in the same columns. The
rows are separated into percentage of vulnerable, fixed, and
offline hosts.

For the hosts that are no longer vulnerable, we have to differ-
entiate between those that fixed the MAV and continued to stay
online and those that just disappeared, e.g., because they were shut
down or firewalled. As the second row in Figure 2 shows, the num-
ber of fixed hosts is tiny with just 139 hosts (3.2%). Most of those
within the first few days are caused by the CMS category, where
completing the installation "fixes" the vulnerability as initializing
the admin credentials can only be done once. Unfortunately, we
can not tell how many of these installations were completed by
the original owners. Therefore, the number of fixed vulnerabilities

is likely even lower as some of them were actually attackers that
completed the installation, thus locking out everyone else. This
means, that in almost all cases where a vulnerable instance stopped
being vulnerable, it was no longer reachable instead, because the
application was either firewalled or taken offline on 1,823 hosts
(43.2%) by the end of the four weeks. We can also see that on the
first day of exposure more insecure-by-default instances are quickly
taken offline again. Afterward, those instances that were explicitly
modified to be insecure are a bit more likely to be fixed than taken
offline compared to their insecure-by-default counterparts.

Overall, Jenkins and WordPress were on average vulnerable for
the shortest time while Joomla and Drupal remained vulnerable for
the longest time. However, this might only mean that attackers are,
so far, not focusing on those products that remain online for the
longest. Moreover, we also continued to apply our fingerprinter to
all vulnerable hosts, to see if some of them were updated, but found
only a small number of 101 hosts (2.4%) where their version was
updated during the four weeks of observation.

4 ATTACKER AWARENESS
In this section, we investigate whether attackers are aware of these
vulnerable applications, thereby answering RQ4-6. For this, we set
up the 18 applications as high-interaction honeypots to observe
and monitor potential attackers in a four weeks-long study. In the
following, we first describe our methodology and briefly outline
our setup. Finally, we report on the results in detail.

4.1 Methodology
On one hand, studying the attacker awareness requires setting up
the 18 applications in a vulnerable state. On the other hand, we
need a monitoring that intervenes as soon as we detected actual
abuse of the system.
Vulnerable applications We installed each application on a sepa-
rate server hosted by a large cloud provider. To observe potential
attacks, we either left the applications in an insecure-by-default
state, or enabled insecure settings for secure-by-default applications.
Due to the nature of this study, where we included many different
applications from different categories, interactions with them are
also very different. For example, in the case of the notebooks a
command can be executed directly via the terminal, whereas in
WordPress the installation must be completed before the PHP tem-
plates can be edited to run arbitrary commands. Therefore, different
interactions count as an attack, depending on the targeted appli-
cation. In general, we are only interested in invasive interactions
that are not triggered by a normal web scanner and show signs
of malicious or illegal behavior. Moreover, we intentionally did
not limit the interaction possibilities with the applications to the
execution of a single command, because often a payload script is
loaded during first interaction, for example via wget or curl.
Monitoring To monitor our honeypots, we relied on three open-
source products: Packetbeat [22],Auditbeat[20], and ElasticSearch [21].
Packetbeat allowed us to record the network traffic, such as HTTP,
by directly reading from the network interface. This way, we obtain
much more data than would be contained in simple web server
logs, e.g. we also collect POST request bodies and WebSocket traf-
fic. Auditbeat interacts directly with the Linux audit framework

625

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

and captures data, such as system calls or file accesses, along with
information about the user and function parameters. To prevent an
attacker from changing the log afterwards, all honeypots send their
logs to a central, append-only log under our control. This central
log runs on a standalone server and uses Elasticsearch under the
hood, which subsequently allowed us to search and analyze the
indexed data.

To make sure that no interactions with our honeypots were
possible during setup, we temporarily set up a firewall to block
all incomoing requests. At the end of the installation, we took a
snapshot of the server to create a copy of the finalized honeypot.
Throughout our study, we monitored the continued availability
of the applications to detect possible attacks that prevent further
exploitation of the application. This is important because some
vulnerabilities can only be exploited once (e.g., trust on first use)
and thus reverting these applications to their initial state is critical
to observing multiple attacks. If we detected a successful attack
abusing the resources of the server, we shut down the infected
machine and restored the snapshot.

4.2 Experiment Setup
We set up 18 honeypots and ran them for four weeks from June 09,
2021 to July 07, 2021. Each was set up on a dedicated machine using
2 CPU cores and 8 GB of memory. Furthermore, each instance was
assigned a static IPv4 address and Packetbeat version 7.13.0 and
Auditbeat version 7.13.0 were deployed. Besides the honeypots, we
deployed a dedicated log server with 8 CPU cores and 64GB of mem-
ory. To analyze the logs we installed Elasticsearch in version 7.13.1.
Additionally, this machine was also responsible for monitoring the
resource utilization and restoring the snapshots.

Ethical considerations To prevent abuse, we implemented a re-
source monitor to observe CPU and network bandwidth usage.
Specifically, we wanted to ensure that the installed malware was
not able to attack additional machines or cause any other harm.
To do so, we defined thresholds based on usage patterns we have
observed before exposing the vulnerabilities to the Web. Once a
threshold was exceeded, we shut down the honeypot and restored
the initial state of the server using the previously created snapshot.
In addition to shutting down compromised machines, we preemp-
tively blocked outgoing traffic to port 22 to prevent brute-force
attacks on SSH. Importantly, both the firewall and our resource
monitoring were provided out-of-band in the administrative in-
terface of the cloud provider that hosted our servers. Therefore,
an attacker could not drop firewall rules or disable our resource
monitoring, even if they are root on the machine.

4.3 Results on Attacker Awareness
Compromised software (RQ4) First, we investigated which applica-
tionswere attacked and howmany attacks we observed by detecting
the execution of a system command through the exposed sensitive
functionality. If multiple commands were executed from the same
source IP within 15 minutes, we counted all of the commands as
a single attack. Note that we only count the successful execution
of system commands. Therefore, other requests, such as by scan-
ners not explicitly targeting our applications, are not counted as an
attack. In addition to the total number of attacks, we also tried to

determine the number of unique attacks based on grouping attacks
by payloads and source IP addresses. To ensure the accuracy of our
analysis we performed this step in a semi-automatic fashion.

Our results in Table 5 show that applications from four of our
five categories were attacked, leaving only for the control panels
completely unexploited. Looking at the individual categories and
taking into account the number of representatives of the category, it
can be seen that cluster management applications were attacked the
most, followed by notebooks, CMSes and CI systems in that order.
This shows that CMSes, which are often used as potential targets
in honeypots with known vulnerabities [e.g., 9, 52], are far from
being the most attractive targets for attackers when studying MAVs.
Looking into the individual applications, our results show that 7
of the 18 applications were attacked at least once during the four
weeks of our study. Of these, Hadoop was by far the most popular
target, followed by Docker, Jupyter Notebook, and Jupyter Lab. In
total, we observed 2,195 attacks from 160 different IP addresses.

Table 5: Attacks distributed across the different applications.
The total is not merely the sum of the rows, as some actors
attacked multiple applications.

Type App # Attacks # Uniq. Attacks # Uniq. IPs

CI Jenkins 4 3 3
CMS WordPress 9 4 5
CMS GravCMS 1 1 1
CM Docker 132 12 22
CM Hadoop 1,921 49 81
NB J-Lab 29 13 13
NB J-Notebook 99 50 50

Total 2,195 122 160

In addition to identifying the actively compromised applications,
we also wanted to discover the purpose behind these attacks. To this
end, we manually analyzed a random sample of the compromised
machines and found them mostly to be abused for cryptojacking.
In the following, we briefly describe three cases that stood out in
particular by exposing interesting characteristics. The first case is a
Monero cryptominer that terminates processes of other malicious
applications that take up valuable computing resources that their
own miner needs. Furthermore, the script creates a cronjob, thus,
even if the server is restarted, the attack persists and starts again.
We were able to observe this specific attack four times on Hadoop
executed by two different IP addresses. Moreover, we also observed
a lot of other cryptomining cases that can be attributed to the well-
known Kinsing malware campaign [65] which has been active since
the beginning of 2020. Interestingly, through our study we could
observe that the campaign, which initially focused on insecure
Docker instances, is now also spreading to Hadoop. Finally, we
also noticed a vigilante attacker during our analysis, who visited
our Jupyter Lab several times and attempted to stop our server by
executing the shutdown command in the terminal. While this can
be annoying if someone is currently using the system productively,
it also reveals that the system is insecure without any malicious
action and prevents others from abusing the server.

Time until compromise (RQ5) Another important goal of our study
was to measure how long applications with a MAV survive in the
wild until they get compromised. As Table 6 shows, with Hadoop

626

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

the first application was successfully exploited less than one hour
after our study began. WordPress followed within approximately
three hours and Docker after about six hours. On the other hand,
for the remaining 4 applications that were attacked at least once,
it took at least two days until the first attack. For GravCMS it was
over two weeks until we observed an attack. As the full timeline
of all attacks in Figure 3 shows, the fast attack on WordPress is
likely a coincidence, as after the initial fast attack, no more attacks
happened for over one week.

Table 6: Time until compromise in hours. First contains the
whole time since the start of our study, the other columns
contain the time between attacks.

Application All attacks Unique attacks
First Average Shortest Longest Average

Jenkins 172.4 159.9 90.1 377.0 213.1
WordPress 2.8 70.7 2.8 451.0 159.2
GravCMS 355.1 355.1 355.1 355.1 355.1
Docker 6.7 5.0 6.5 193.2 59.4
Hadoop 0.8 0.3 0.7 94.3 18.0
J-Lab 133.7 22.6 2.5 173.0 50.4
J-Notebook 48.0 6.7 0.1 58.8 13.4

Therefore, we also have to investigate the time between all at-
tacks over the whole span of our study. As Table 6 also shows, the
average time between attacks is as low as approximately 20 minutes
for Hadoop, if we count all attacks. The table also reports on the
times between unique attacks, which excludes attacks from known
IPs as well as attacks with known payloads that we observed before.
For half of the applications, we observed at least one very fast attack
happening within less than 3 hours after another attack. If we look
at the longest time without a new attack, it usually took at least 3-4
days, often even over one week until a new attack occurred.

Overall, we can see both in the table and the corresponding
timeline graph, that Hadoop is constantly attacked, while Docker
and J-Notebook are attacked at least every other day and there
are no longer breaks without attacks for these applications. On
the other hand, especially for the CMSes and Jenkins, scanning for
vulnerable targets seems to happen at a much slower rate on the
attackers side. Jupyter Lab has the most conspicuous timeline of
the 7 applications, where in the beginning attacks are very rare, but
then happen much more frequently towards the end of our study.
Attack landscape (RQ6) Next, we analyzed the attackers behind
the observed compromises. Only five attackers were responsible for
1,492 (67%) of all compromises listed in Table 5, while the ten most
active attackers were responsible for 1,845 (84%) of all compromises.
Our results demonstrate that there is a small group of attackers
performing most attacks. On the other hand, the number of unique
attacks, 122, implies that there were also several attackers who
only interacted with our honeypots once or twice. If we look at the
attack behavior for the individual applications, Hadoop stands out
with one attacker who performed 719 attacks. This is also the most
frequently observed attacker. For Docker, the most active attacker
performed a total of 63 attacks. We assume that these attackers
regularly scan the IPv4 range for vulnerable applications and thus
frequently attack all exposed instances on the internet.

In addition to the pure number of attacks by individual attackers,
we analyzed whether the unique attackers used multiple IPs for

Table 7: The ten countries with the most attacks and the
respective number of involved ASes from that country.

Country # Attacks # AS Country # Attacks # AS

Netherlands 496 10 Moldova 136 2
Brazil 398 4 United Kingdom 71 2
United States 359 36 Poland 69 4
Russia 192 11 India 52 22
Singapore 168 3 Switzerland 51 1

their attacks and if they attacked different applications. To group
the unique attackers, we used the same methodology as for RQ4.
Figure 4 shows unique attackers who attack at least two different
applications. It is noticeable that only attacker I attacked Docker
and J-Notebook, all others attack either Hadoop and Docker or
J-Lab and J-Notebook. On the other hand, Jenkins, WordPress, and
GravCMS are not shown in the figure, since we did not observe any
attackers attacking more than one of these applications. In total,
the attackers shown in Figure 4 are responsible for 419 of the 2,195
attacks. Attacker II, in particular, stands out, with a total of 326
attacks on Hadoop and Docker, followed by attacker III with 35
attacks on Docker and Hadoop. In the ranking of the ten most active
attackers from above, attacker II is in second place and attacker III is
in ninth place. Attacker I represents the largest attacker regarding
the number of IP addresses, with a total of 14 different IP addresses
used. However, in the ranking of the most active attackers, attacker
I is only in 11th place, which shows that the number of IPs used is
not in direct proportion to the number of attacks.

Additionally, we used an IP meta data service [40] to obtain more
information about the observed attacks. Thereby, we found that the
2195 attacks from Table 5 originated from 66 different autonomous
systems across 28 countries. In Table 7, we list the ten most common
countries from which the we observed attacks, which together
make up 1992 of the attacks. Moreover, we also took a look at the
distribution of the attacks among the different ASes. The result is
shown in Table 8, where we list the five ASes with the most attacks
and the number of involved countries. However, we do not want to
imply that these countries and ASes are actually "responsible" for
the attacks, as attackers often use proxies and previously hacked
servers to commit further attacks. Instead, this merely represents
the attack origins that we could observe and should not be used to
reason about attacker locations.
Table 8: The top five ISPs from which most attacks originate
and the number of involved countries.

AS Provider # Attacks # Countries

AS211252 Serverion BV 469 2
AS268624 Gamers Club 396 2
AS14061 DigitalOcean 351 14
AS200019 Alexhost 135 1
AS16509 Amazon EC2 78 4

1429 23

5 DEFENDER AWARENESS
Finally, to answer RQ7 on whether defenders are aware of miss-
ing authentication vulnerabilities in the investigated software, we
analyzed whether commercial security scanners could detect the

627

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

Jun 10
Jun 11

Jun 12
Jun 13

Jun 14
Jun 15

Jun 16
Jun 17

Jun 18
Jun 19

Jun 20
Jun 21

Jun 22
Jun 23

Jun 24
Jun 25

Jun 26
Jun 27

Jun 28
Jun 29

Jun 30
Jul 01

Jul 02
Jul 03

Jul 04
Jul 05

Jul 06
Jul 07

Time of attack

J-Lab

J-Notebook

Hadoop

Docker

GravCMS

WordPress

Jenkins

A
pp

lic
at

io
n

Figure 3: Distribution of attacks during our four weeks of study. Each star represents one attack on the respective application:
Yellow stars represent a new attack, black stars represent repeated attacks with known payloads.

Hadoop J_Notebook J_labDocker

I II III IV V VI VII VIII IXX

Figure 4: Unique attackers numbered from I to X with their used IP addresses as dots connected to the target applications. For
brevity, only attackers who attack at least two different applications are listed.

identified vulnerabilities. To do so, we scanned all our honeypots
with two commercial, industry-leading security scanners. As our
main goal here is to determine defender awareness and not to blame
vendors for missing scanning capabilities, we decided to not dis-
close their names. Moreover, we do not want to imply that the
following findings are in any way correlated to the capabilities of
attackers, as they are unlikely to employ enterprise scanning tools
intended for defenders.

When configuring the scanners, we aimed at enabling as many
scanning capabilities as possible, such as special web scanning
features or scanning of extended port ranges. Subsequently, we per-
formed a scan with the most detailed reporting level and manually
analyzed the results:

Scanner 1 The first scanner identified 5 out of 18 vulnerabilities:
Consul, Docker, Jupyter Notebook, WordPress, and Hadoop. Inter-
estingly, we have observed active attacks on all but one of these
applications. However, the scanner did not identify issues in actively
exploited applications, such as Jenkins, GravCMS, and Jupyter Lab,
as well as most of the non-exploited vulnerabilities.

Scanner 2 The second scanner detected and flagged 3 out of 18
vulnerabilities: Consul, Docker, and Jenkins. Additionally, the scan-
ner flagged installations of Joomla, PhpMyAdmin, Kubernetes, and
Hadoop as an informational finding. However, the scanner did not
raise a vulnerability for them. Our results suggest that the corre-
sponding vendor is not aware of the missing authentication issues
in the listed software. Moreover, entire scan took several hours
to complete. During the time of the scan, multiple instances got

compromised by malicious actors. Hence, a scan with this scan-
ner would be too slow to detect and remediate internet-exposed
vulnerabilities.

Given the low detection rates of 5 and 3 vulnerabilities out of
18, we conclude that defenders who rely on these security scan-
ners to prevent compromise will not be made aware of missing
authentication vulnerabilities in many cases.

6 DISCUSSION
In the following, we condense the results of the studies into com-
bined insights and discuss limitations of our approach.

6.1 Insights and Lessons Learned
Table 9 summarizes our most important findings of the previous
four chapters and reveals insight only possible due to our compre-
hensive investigation of MAVs combining prevalence, attack, and
defender awareness.

Defaults are important The relative number of vulnerable AWEs
is much higher for those insecure by default. Expect for the cases
with short-lived insecure installation processes, all products where
about 5% or more of the exposed AWEs were vulnerable, they were
so because of insecure defaults. This demonstrates that defaults
are rarely changed by their users even for critical security settings
and suggest that requiring authentication by default is a good solu-
tion and thus should become commonplace for all administrative
software.

628

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

Table 9: Summary of our results. The default row indicates
whether the endpoint is secure by default (✓), had changed
over time (†), or a MAV exists by default (✗). S1 and S2 are the
two scanners from Section 5.

Type App Default Vulnerable Attack Defend

CI Jenkins † 80 (3.3%) 4 S2
CI Gocd ✗ 36 (6.1%) 0 ✗

CMS WordPress ✗ 345 (0.0%) 9 S1
CMS Grav ✗ 4 (0.2%) 1 ✗
CMS Joomla † 16 (0.0%) 0 ✗
CMS Drupal ✗ 258 (0.4%) 0 ✗

CM Kubernetes ✓ 495 (0.1%) 0 ✗
CM Docker ✗ 657 (73.6%) 132 S1&2
CM Consul ✓ 190 (2.0%) 0 S1&2
CM Hadoop ✗ 556 (60.2%) 1,921 S1
CM Nomad ✗ 729 (59.2%) 0 ✗

NB J-Lab ✓ 53 (3.9%) 29 ✗
NB J-Notebook † 313 (3.3%) 99 S1
NB Zeppelin ✗ 82 (7.9%) 0 ✗
NB Polynote ✗ 8 (100%) 0 ✗

CP Ajenti ✓ 0 (0.0%) 0 ✗
CP Phpmyadmin ✓ 396 (0.2%) 0 ✗
CP Adminer † 3 (0.0%) 0 ✗

Changing defaults is effective, but slow When taking a closer look
at the software that instead changed their defaults over its lifetime,
we found that for Jupyter Notebook this was indeed effective at
reducing MAVs in the wild. As our fingerprinting of the affected
servers revealed in Figure 1, the less than 5% of all instances running
very old versions were responsible for 80% of all vulnerable Jupyter
Notebook servers in the wild. On the other hand, we still observed
hundreds of vulnerable-by-default notebooks, despite them having
fixed this over 5 years ago. This means that even if other vendors
would react now and change their defaults, it will take many years
to completely get rid of the problem.

Defenders are behind We observed attacks for 7 of the MAVs, but
the security scanners only detected 3 to 5 of these applications
as insecure, thus missing vulnerable applications that are already
under attack. Even more importantly, with the exception of Consul,
none of them support vulnerable applications that have not yet
been exploited in the wild. This shows how defenders are behind,
as they only react after exploitation is already happening in the
wild and miss cases such as Jupyter Lab. To be ahead in this cat-
and-mouse game, defenders must stop reacting and roll out more
proactive defenses.

There is no consensus on MAVs The overlap of the detected vul-
nerabilities by the two scanners is also low, with only Docker and
Consul detected by both and 4 other applications only detected
by one scanner. This shows a lack of consensus on the question
whether missing authentication in these applications should be con-
sidered a vulnerability. Moreover, some websites of the vulnerable
applications still sell the missing authentication as a feature that
allows a quick and convenient setup. However, our scanning study
has shown that many users are unaware of the risks as we found
4,221 vulnerable instances on the Internet.

Data on warnings is inconclusive Some of the applications opted
to show explicit warnings, either directly when downloading the

software or at least in their documentation. Regarding the effec-
tiveness of these warnings, when looking at Polynote it appears
like the warnings on their website had no effect because 100% of
the Polynote installations we found were vulnerable. However, as
we only discovered 8 of these installations in total, it could also be
the case the warnings were effective and most of the installations
were not exposed to the Internet in the first place, thus missing from
our statistics. Without knowing the overall installation numbers of
these applications, the effectiveness of warnings remains unclear
and is left for future work.

6.2 Limitations of our Studies
Completeness First of all, our results might be biased because we
were limited to open source software, as setting up the honeypots
requires access to the product free of charge. Furthermore, the
correlation between Github stars and actual usage appears to be
low. Nevertheless, we think our selection comprises a representative
sample for the respective categories, but the results might not
necessarily generalize for other types of software.

False positives The MAV detection plugins in our pipeline make
very specific requests to the application, which makes it highly
unlikely that a false positive ocurs. Though without actually ex-
ploiting the vulnerability by running code ourselves, which would
be neither ethical nor legal, we cannot guarantee a zero false posi-
tive rate. We are in the process of open-sourcing the MAV detection
plugins [32] so that interested readers can verify the code. Moreover,
due the static IPs we used for our honeypots, we have observed
many repeated attacks, which might have inflated our results. Nev-
ertheless, we think this is the most realistic scenario, as real servers
would also have used a static IP address. Additionally, dynamic IP
addresses in the vulnerable hosts that we found could have led to
counting the same application twice, though we tried to avoid this
by conducting the whole scan as fast as possible.

False negatives We tested our scanning pipeline on both the newest
and oldest available versions, however there is no guarantee that
all versions in between are also correctly detected. Moreover, we
performed only a single Internet-wide scan and this only on the com-
mon ports like 80 and 443, and the default ports of the applications.
Therefore, we missed hosts that were unresponsive, temporarily
unavailable, or not running on the default port.

Under counting Furthermore, we conducted our scan only on IP
addresses and not domain names, thus, e.g., missing applications
running on shared hosting services that are distinguished by the
Host header. In particular, attackers could increase the likelihood to
discover unsecured applications and unfinished installations by us-
ing Certificate Transparency (CT) logs to discover newly registered
domains [8] and scan those preferably instead of a full sweep of
the IPv4 space. Overall, our scanning results should thus be seen as
a lower bound and the actual number of MAVs in the wild is likely
even higher.

7 RELATEDWORK
Honeypots Honeypots are used to analyze attacks on a wide va-
riety of targets, like IoT or embedded devices [e.g., 25, 35, 70], In-
dustrial Control Systems [53] or Instant Messaging services [4].

629

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

In this work, we are only concerned with high-interaction web
application honeypots. Back in 2008, Müter et al. [54] presented a
toolkit to convert arbitrary PHP applications into high-interaction
honeypots. Closer related to our experiments, Canali and Balzarotti
[9] ran 500 honeypot websites with known vulnerabilities, such
as SQL injection, to analyze the behavior of the attackers after a
successful exploit. Our honeypot study is orthogonal to their work,
as we study compromises due to missing authentication, which is
not widely considered a vulnerability yet. Recently, Li et al. [52]
characterized requests to CMSes to detect malicious bots. While
there are some similarities to our approach to identify attackers, we
are also interested in manual attacks and investigate a much wider
range of application categories and compare them with each other.

Internet-wide Security Scanning The two most popular tools to
conduct fast port scans are masscan [34] and ZMap [17]. Similarly
notable are the search engines Shodan [67] and Censys [19], which
conduct regular scans and support researchers without the means
to conduct scans themselves. Subsequent works tried to reduce the
time needed to conduct a scan [e.g., 1, 41, 48, 66], used large net-
work telescopes to observe the scanning behaviors of others [18, 64],
and investigated biases introduced by the origin of the scan [79].
The second stage of our scanning pipeline, on the other hand, is
more related to fingerprinting tools like WhatWeb [38] and Blin-
dElephant [71]. However, WhatWeb can only extract voluntarily
disclosed version information. BlindElephant relies on file hashes of
resources embedded on the website, but is severely outdated with
the last update almost 10 years ago. Therefore, we created our own
fingerprinting pipeline, which combines the advantages of both
these approaches into one. Finally, we try to identify whether the
deployed application suffers from a missing authentication vulner-
ability, which makes it related to works on black-box web security
scanners [e.g., 13, 14, 23, 47, 59]. However, these tools mostly focus
on more widely known vulnerabilities like SQL injection and cross-
site scripting. Our tool, on the other hand, tries to detect MAVs in
web applications, which were, to the best of our knowledge, not
yet studied by the academic community and are also often not yet
considered by commercial scanning tools, as our experiment in
Section 5 has shown.

Vulnerability Research and Software Misconfigurations So called
Google Dorks use specific search engines queries to automatically
locate vulnerable targets, without the need to conduct a scan them-
selves [73]. Others tried to automatically match known vulnera-
bilities from CVE feeds with the results indexed by Shodan and
Censys [26, 57]. In contrast to these works, we focus on missing
authentication vulnerabilities, which are usually not assigned a
CVE as they are just seen as a missing feature rather than a real vul-
nerability. Thus, studies of sensitive information disclosure without
authentication, such as a study of the FTP ecosystem by Springall
et al. [68], or a study of Amazon S3 buckets by Continella et al.
[11], are more related to us. Most recently in 2020, Ferrari et al. [24]
investigated the prevalence of misconfigured NoSQL databases. In
contrast to these previous works that studied specific protocols
with a limited number of possible interactions like FTP and NoSQL,
we studied the prevalence and exploitation of misconfigurations in
18, in some cases totally different, Web applications of five different
categories. Moreover, we do not focus on leaks of sensitive data, but

attackers that achieve remote code execution through the affected
administrative web endpoints.

8 SUMMARY & CONCLUSION
In this paper, we comprehensively investigated missing authentica-
tion vulnerabilities. For this, we looked at 25 popular applications
in 5 different categories and found that 18 of them are prone to such
MAVs. Our scanning study revealed 4,221 vulnerable instances in
the wild, confirming that this is not a theoretical risk. We found
that default settings play an important role, with vulnerabilities in
insecure by default applications being significantly more prevalent
during our scans. Moreover, we show these instances would be
a valuable target for attackers, as more than half of them were
still exposed in a vulnerable state after four weeks of observation.
Our study on the attacker’s awareness revealed that 7 of these ap-
plications are already actively exploited. Exploitation can happen
quickly, sometimes within one hour of exposure, meaning attack-
ers are using considerable resources to continually scan the whole
Internet for these vulnerable applications. Furthermore, we found
that relatively few attackers are responsible for most observed at-
tacks and that they even target multiple vulnerable applications at
the same time. Finally, we investigated if defenders are aware of
this problem and discovered that two state-of-the-art commercial
security scanners only found 3 and 5 of these 18 vulnerabilities.

Overall, we found MAVs to be a prevalent, overlooked and un-
derrated problem in application security. It seems that, so far, our
community focuses so much on insecure programming practices
that insecure configuration and sane defaults receive too little at-
tention. Therefore, we think it is important to raise awareness and
to consider missing authentication as a vulnerability rather than a
feature, so that more software products require authentication by
default and more security scanners look for these flaws.

ACKNOWLEDGEMENTS
We would like to thank our shepherd Robert Beverly and all anony-
mous reviewers for their valuable comments and suggestions. The
authors gratefully acknowledge funding from the German Fed-
eral Ministry of Education and Research (BMBF) under the project
IVAN (16KIS1168) and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972.

A MAV DETECTION DETAILS
Table 10 provides a short description of the steps taken to identify
MAVs in the 18 applications. Many of them have already been open-
sourced and can be found in the Tsunami plugins repository [32].

REFERENCES
[1] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman. Zippier zmap: internet-

wide scanning at 10 gbps. In Proc. of USENIX Workshop on Offensive Technologies
(WOOT), 2014.

[2] Ajenti. Ajenti. Online https://github.com/ajenti/ajenti, 2021.
[3] Ajenti Docs. Running ajenti. Online https://docs.ajenti.org/en/latest/man/

run.html, 2021.
[4] S. Antonatos, I. Polakis, T. Petsas, and E. P. Markatos. A systematic characteriza-

tion of im threats using honeypots. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2010.

[5] Apache. Spark notebook. Online https://github.com/spark-notebook/spark-
notebook, 2019.

630

https://github.com/ajenti/ajenti
https://docs.ajenti.org/en/latest/man/run.html
https://docs.ajenti.org/en/latest/man/run.html
https://github.com/spark-notebook/spark-notebook
https://github.com/spark-notebook/spark-notebook

No Keys to the Kingdom Required IMC ’22, October 25–27, 2022, Nice, France

Table 10: The MAV detection steps from our Tsunami plugins in pseudo-code. Unless otherwise noted, we only detect a MAV if
all steps are successful.

Application MAV detection steps

Jenkins
1. Visit ‘/view/all/newJob‘
2. Check that body contains ‘Jenkins‘ and is valid HTML
3. Parse HTML response and verify that element ‘form#createItem‘ exists

GoCD
1. Visit ‘/go/home‘
2. Check that body contains ‘Create a pipeline - Go‘ and ‘pipelines-page‘, or ‘Add Pipeline‘ and ‘admin_pipelines‘,
or ‘Dashboard - Go‘ and ‘/go/admin/pipelines/‘, or ‘Pipelines - Go‘ and ‘/go/admin/pipelines‘

WordPress
1. Visit ‘/wp-admin/install.php?step=1‘
2. Check that body contains ‘WordPress‘ and is valid HTML
3. Parse HTML response and verify that elements ‘form#setup‘ and ‘form#setup input#pass1‘ exist

Grav 1. Visit ‘/‘ and check that body contains ‘The Admin plugin has been installed‘ and ‘Create User‘
2. If step 1 is not successful, visit ‘/admin‘ and check that body contains ‘No user accounts found‘ and ‘create one‘

Joomla 1. Visit ‘/installation/index.php‘
2. Check that the body contains ‘Joomla! Web Installer‘ or ‘Enter the name of your Joomla! site‘

Drupal
1. Visit ‘/core/install.php?langcode=en&profile=standard&continue=1‘
2. Remove all whitespace from response, as their placement differs across versions
3. Check that body contains ‘<liclass="is-active">Setupdatabase‘

Kubernetes
1. Visit ‘/‘ and check that body contains ‘certificates.k8s.io‘ and ‘healthz/ping‘
2. Visit ‘/api/v1/pods‘, remove all whitespace from the response and check that it contains ‘"phase":"Running"‘
3. Parse the response as JSON and check that the ‘items‘ array exists and is not empty

Kubernetes
1. Visit ‘/‘ and check that body contains ‘certificates.k8s.io‘ and ‘healthz/ping‘
2. Visit ‘/api/v1/pods‘, remove all whitespace from the response and check that it contains ‘"phase":"Running"‘
3. Parse the response as JSON and check that the ‘items‘ array exists and is not empty

Docker 1. Visit ‘/‘ and check that body contains ‘{"message":"page not found"}‘
2. Visit ‘/version‘, convert response to lower case and check that it contains ‘minapiversion‘ and ‘kernelversion‘

Consul
1. Visit ‘/v1/agent/self‘ and check that response is valid JSON
2. Parse JSON response and check that the ‘debugConfig‘ property does exist
3. Check that at least one of ‘debugConfig.enableScriptChecks‘ and ‘debugConfig.enableRemoteChecks‘ is enabled

Hadoop
1. Visit ‘/cluster/cluster‘ and convert response to lower case
2. Check that response contains ‘hadoop‘, ‘resourcemanager‘ and ‘logged in as: dr.who‘
3. Visit ‘/ws/v1/cluster/apps/new-application‘ and check that it is valid JSON
4. Parse the JSON response and check that it contains the ‘application-id‘ object

Nomad 1. Visit ‘/v1/jobs‘
2. Check that response contains ‘<title>Nomad</title>‘

J-Lab 1. Visit ‘/api/terminals‘
2. Check that response contains ‘JupyterLab‘

J-Notebook 1. Visit ‘/api/terminals‘
2. Check that response contains ‘Jupyter Notebook‘

Zeppelin 1. Visit ‘/api/notebook‘
2. Check that response contains ‘{"status":"OK",‘

Polynote 1. Visit ‘/‘
2. Check that response contains ‘<title>Polynote</title>‘

Ajenti 1. Visit ‘/view/‘
2. Check that response contains ‘customization.plugins.core.title || ’Ajenti’‘ and ‘ajentiPlatformUnmapped‘

phpMyAdmin 1. Visit ‘/‘ and check that it contains ‘Server connection collation‘ and ‘phpMyAdmin documentation‘
2. If step 1 is not successful, visit ‘/phpmyadmin‘ and check that it contains the same two strings

Ajenti 1. Visit ‘/adminer.php?username=root‘ and check that it contains ‘through PHP extension‘ and ‘Logged as‘
2. If step 1 is not successful, visit ‘adminer/adminer.php?username=root‘ and check that it contains the same two strings

[6] Apache. Hadoop. Online https://github.com/apache/hadoop, 2021.
[7] Apache. Zeppelin. Online https://github.com/apache/zeppelin, 2021.
[8] H. Böck. Hacking web applications before they are installed. On-

line https://www.golem.de/news/certificate-transparency-hacking-web-
applications-before-they-are-installed-1707-129172.html, 2017.

[9] D. Canali and D. Balzarotti. Behind the scenes of online attacks: an analysis of
exploitation behaviors on the web. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2013.

[10] Consul Docs. Configuration. Online https://www.consul.io/docs/agent/options,
2021.

[11] A. Continella, M. Polino, M. Pogliani, and S. Zanero. There’s a hole in that bucket!
a large-scale analysis of misconfigured s3 buckets. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2018.

[12] Docker. Docker. Online https://github.com/docker/compose, 2021.
[13] A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis of

black-box web vulnerability scanners. In Proc. of Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2010.

[14] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the state: A state-aware
black-box web vulnerability scanner. In Proc. of USENIX Security Symposium,
2012.

[15] Drone. Drone. Online https://github.com/drone/drone, 2021.
[16] Drupal. Drupal. Online https://github.com/drupal/drupal, 2021.
[17] Z. Durumeric, E. Wustrow, and J. A. Halderman. Zmap: Fast internet-wide

scanning and its security applications. In Proc. of USENIX Security Symposium,
pages 605–620, 2013.

631

https://github.com/apache/hadoop
https://github.com/apache/zeppelin
https://www.golem.de/news/certificate-transparency-hacking-web-applications-before-they-are-installed-1707-129172.html
https://www.golem.de/news/certificate-transparency-hacking-web-applications-before-they-are-installed-1707-129172.html
https://www.consul.io/docs/agent/options
https://github.com/docker/compose
https://github.com/drone/drone
https://github.com/drupal/drupal

IMC ’22, October 25–27, 2022, Nice, France Karl and Musch, et al.

[18] Z. Durumeric, M. Bailey, and J. A. Halderman. An internet-wide view of internet-
wide scanning. In Proc. of USENIX Security Symposium, 2014.

[19] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by internet-wide scanning. In Proc. of ACMConference on Computer
and Communications Security (CCS), 2015.

[20] Elasticsearch. Lightweight shipper for audit data. Online https://www.elastic.co/
beats/auditbeat, 2021.

[21] Elasticsearch. The heart of the free and open elastic stack. Online https://
www.elastic.co/elasticsearch/, 2021.

[22] Elasticsearch. Lightweight shipper for network data. Online https://
www.elastic.co/beats/packetbeat, 2021.

[23] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black widow: Blackbox data-driven
web scanning. Proc. of IEEE Symposium on Security and Privacy, 2021.

[24] D. Ferrari, M. Carminati, M. Polino, and S. Zanero. Nosql breakdown: A large-
scale analysis of misconfigured nosql services. In Proc. of Annual Computer
Security Applications Conference (ACSAC), 2020.

[25] D. Fraunholz, D. Krohmer, H. D. Schotten, and C. Nogueira. Introducing fal-
com: A multifunctional high-interaction honeypot framework for industrial and
embedded applications. In 2018 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), 2018.

[26] B. Genge and C. Enăchescu. Shovat: Shodan-based vulnerability assessment tool
for internet-facing services. Security and communication networks, 2016.

[27] Getgrav. Grav cms. Online https://github.com/getgrav/grav, 2021.
[28] Ghost. Ghost. Online https://github.com/TryGhost/Ghost, 2021.
[29] Gitlab. Gitlab. Online https://github.com/gitlabhq/gitlabhq, 2021.
[30] GoCDDocs. Authentication. Online https://docs.gocd.org/current/configuration/

dev_authentication.html, 2021.
[31] Google. Tsunami web service fingerprinter. Onlince https://github.com/google/

tsunami-security-scanner-plugins/tree/master/google/fingerprinters/web, 2022.
[32] Google. Tsunami security scanner plugins. Onlince https://github.com/google/

tsunami-security-scanner-plugins, 2022.
[33] Google. Tsunami security scanner. Onlince https://github.com/google/tsunami-

security-scanner, 2022.
[34] R. D. Graham. Masscan: Mass ip port scanner. Online https://github.com/

robertdavidgraham/masscan, 2013.
[35] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,

and Y. Elovici. Siphon: Towards scalable high-interaction physical honeypots. In
Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security, 2017.

[36] Hashicorp. Consul. Online https://github.com/hashicorp/consul, 2021.
[37] Hashicorp. Nomad. Online https://github.com/hashicorp/nomad, 2021.
[38] A. Horton and B. Coles. Whatweb. Online https://github.com/urbanadventurer/

WhatWeb, 2021.
[39] IANA. Ipv4 address space registry. Online https://www.iana.org/assignments/

ipv4-address-space/ipv4-address-space.xhtml, 2021.
[40] IPHub. Proxy & vpn detection api. Onlince https://iphub.info/, 2022.
[41] L. Izhikevich, R. Teixeira, and Z. Durumeric. LZR: Identifying unexpected internet

services. In Proc. of USENIX Security Symposium, 2021.
[42] Jenkins. Jenkins. Online https://github.com/jenkinsci/jenkins, 2021.
[43] Joomla. Joomla cms. Online https://github.com/joomla/joomla-cms, 2021.
[44] Joomla! Documentation. Secured procedure for installing joomla with a remote

database. Online https://docs.joomla.org/J3.x:Secured_procedure_for_installing_
Joomla_with_a_remote_database, 2017.

[45] Jupyter. Notebook. Online https://github.com/jupyter/jupyter, 2020.
[46] Jupyter. Lab. Online https://github.com/jupyterlab/jupyterlab, 2021.
[47] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnerability

scanner. In Proc. of the International World Wide Web Conference (WWW), 2006.
[48] J. Klick, S. Lau, M. Wählisch, and V. Roth. Towards better internet citizenship:

Reducing the footprint of internet-wide scans by topology aware prefix selection.
In Proc. of Internet Measurement Conference (IMC), 2016.

[49] Kubernetes. Kubernetes. Online https://github.com/kubernetes/kubernetes,
2021.

[50] Kubernetes. Controlling access to the kubernetes api. Online https://
kubernetes.io/docs/concepts/security/controlling-access/, 2021.

[51] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, andW. Joosen.
Tranco: A research-oriented top sites ranking hardened against manipulation. In
Proc. of Network and Distributed System Security Symposium (NDSS), 2019.

[52] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis. Good bot, bad bot: Character-
izing automated browsing activity. In Proc. of IEEE Symposium on Security and
Privacy, 2021.

[53] E. López-Morales, C. Rubio-Medrano, A. Doupé, Y. Shoshitaishvili, R. Wang,
T. Bao, and G.-J. Ahn. Honeyplc: A next-generation honeypot for industrial
control systems. In Proc. of ACM Conference on Computer and Communications
Security (CCS), 2020.

[54] M. Müter, F. Freiling, T. Holz, and J. Matthews. A generic toolkit for converting
web applications into high-interaction honeypots. University of Mannheim, 2008.

[55] Nomad Docs. Overview. Online https://www.nomadproject.io/docs/internals/
security, 2021.

[56] J. Nord. Jenkins should be secure out of the box by default. Online https:
//issues.jenkins.io/browse/JENKINS-30749, 2015.

[57] J. O’Hare, R. Macfarlane, and O. Lo. Identifying vulnerabilities using internet-
wide scanning data. In 2019 IEEE 12th International Conference on Global Security,
Safety and Sustainability (ICGS3), 2019.

[58] OmniDB. Omnidb. Online https://github.com/OmniDB/OmniDB, 2020.
[59] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jäk: Using dynamic analysis

to crawl and test modern web applications. In Proc. of International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), 2015.

[60] phpMyAdmin. phpmyadmin. Online https://github.com/phpmyadmin/
phpmyadmin, 2021.

[61] Polynote. Polynote. Online https://github.com/polynote/polynote, 2021.
[62] Polynote Docs. Installing polynote. Online https://polynote.org/docs/01-

installation.html, 2021.
[63] Project Jupyter. Security release: Jupyter notebook 4.3.1. Online https://

blog.jupyter.org/security-release-jupyter-notebook-4-3-1-808e1f3bb5e2, 2016.
[64] P. Richter and A. Berger. Scanning the scanners: Sensing the internet from

a massively distributed network telescope. In Proc. of Internet Measurement
Conference (IMC), 2019.

[65] S. Schick. Kinsing malware hits container api ports with thousands of attacks
per day. Online https://securityintelligence.com/news/kinsing-malware-hits-
container-api-ports-with-thousands-of-attacks-per-day/, 2020.

[66] Z. Shamsi, D. B. Cline, and D. Loguinov. Faulds: A non-parametric iterative
classifier for internet-wide os fingerprinting. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2021.

[67] Shodan. Search engine. Online https://www.shodan.io/, 2021.
[68] D. Springall, Z. Durumeric, and J. A. Halderman. Ftp: The forgotten cloud. In

Proc. of Conference on Dependable Systems and Networks (DSN), 2016.
[69] StackOverflow. How to disable password request for a jupyter notebook session?

Online https://stackoverflow.com/a/47509274, 2016.
[70] A. Tambe, Y. L. Aung, R. Sridharan, M. Ochoa, N. O. Tippenhauer, A. Shabtai,

and Y. Elovici. Detection of threats to iot devices using scalable vpn-forwarded
honeypots. In Proc. of ACM Conference on Data and Application Security and
Privacy (CODASPY), 2019.

[71] P. Thomas. Blindelephant. Online https://sourceforge.net/projects/
blindelephant/, 2012.

[72] ThoughtWorks. Gocd. Online https://github.com/GoCD/GoCD, 2021.
[73] F. Toffalini, M. Abbà, D. Carra, and D. Balzarotti. Google dorks: Analysis, creation,

and new defenses. In Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2016.

[74] Travis. Travis. Online https://github.com/travis-ci/travis-ci, 2020.
[75] Vesta CP. Vesta cp. Online https://github.com/serghey-rodin/vesta, 2020.
[76] J. Vrána. Accessing a database without a password. Online https://

www.adminer.org/en/password/, 2018.
[77] J. Vrána. Adminer. Online https://github.com/vrana/adminer, 2021.
[78] W3Techs. Usage statistics of content management systems. Online https://

w3techs.com/technologies/overview/content_management, 2021.
[79] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow, and Z. Du-

rumeric. On the origin of scanning: The impact of location on internet-wide
scans. In Proc. of Internet Measurement Conference (IMC), 2020.

[80] WordPress. Wordpress. Online https://github.com/WordPress/WordPress, 2021.

632

https://www.elastic.co/beats/auditbeat
https://www.elastic.co/beats/auditbeat
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/beats/packetbeat
https://www.elastic.co/beats/packetbeat
https://github.com/getgrav/grav
https://github.com/TryGhost/Ghost
https://github.com/gitlabhq/gitlabhq
https://docs.gocd.org/current/configuration/dev_authentication.html
https://docs.gocd.org/current/configuration/dev_authentication.html
https://github.com/google/tsunami-security-scanner-plugins/tree/master/google/fingerprinters/web
https://github.com/google/tsunami-security-scanner-plugins/tree/master/google/fingerprinters/web
https://github.com/google/tsunami-security-scanner-plugins
https://github.com/google/tsunami-security-scanner-plugins
https://github.com/google/tsunami-security-scanner
https://github.com/google/tsunami-security-scanner
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/hashicorp/consul
https://github.com/hashicorp/nomad
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://iphub.info/
https://github.com/jenkinsci/jenkins
https://github.com/joomla/joomla-cms
https://docs.joomla.org/J3.x:Secured_procedure_for_installing_Joomla_with_a_remote_database
https://docs.joomla.org/J3.x:Secured_procedure_for_installing_Joomla_with_a_remote_database
https://github.com/jupyter/jupyter
https://github.com/jupyterlab/jupyterlab
https://github.com/kubernetes/kubernetes
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://www.nomadproject.io/docs/internals/security
https://www.nomadproject.io/docs/internals/security
https://issues.jenkins.io/browse/JENKINS-30749
https://issues.jenkins.io/browse/JENKINS-30749
https://github.com/OmniDB/OmniDB
https://github.com/phpmyadmin/phpmyadmin
https://github.com/phpmyadmin/phpmyadmin
https://github.com/polynote/polynote
https://polynote.org/docs/01-installation.html
https://polynote.org/docs/01-installation.html
https://blog.jupyter.org/security-release-jupyter-notebook-4-3-1-808e1f3bb5e2
https://blog.jupyter.org/security-release-jupyter-notebook-4-3-1-808e1f3bb5e2
https://securityintelligence.com/news/kinsing-malware-hits-container-api-ports-with-thousands-of-attacks-per-day/
https://securityintelligence.com/news/kinsing-malware-hits-container-api-ports-with-thousands-of-attacks-per-day/
https://www.shodan.io/
https://stackoverflow.com/a/47509274
https://sourceforge.net/projects/blindelephant/
https://sourceforge.net/projects/blindelephant/
https://github.com/GoCD/GoCD
https://github.com/travis-ci/travis-ci
https://github.com/serghey-rodin/vesta
https://www.adminer.org/en/password/
https://www.adminer.org/en/password/
https://github.com/vrana/adminer
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://github.com/WordPress/WordPress

	Abstract
	1 Introduction
	2 Missing Authentication Vulnerabilities
	2.1 Manual Investigation of MAVs
	2.2 Research Questions

	3 Prevalence of MAVs
	3.1 Scanning Methodology
	3.2 Experiment Setup
	3.3 Scanning Results

	4 Attacker Awareness
	4.1 Methodology
	4.2 Experiment Setup
	4.3 Results on Attacker Awareness

	5 Defender Awareness
	6 Discussion
	6.1 Insights and Lessons Learned
	6.2 Limitations of our Studies

	7 Related Work
	8 Summary & Conclusion
	A MAV detection details
	References

