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ABSTRACT

Releasing the result size of conjunctive queries and graph pattern

queries under differential privacy (DP) has received considerable

attention in the literature, but existing solutions do not offer any

optimality guarantees. We provide the first DP mechanism for

this problem with a fairly strong notion of optimality, which can

be considered as a natural relaxation of instance-optimality to a

constant.
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1 INTRODUCTION

The bulk of work on differential privacy (DP) has been devoted to

counting queries [17, 35]. For a query 𝑞, let 𝑞(I) be the results of
evaluating 𝑞 on database instance I, and let |𝑞(I) | be the cardinality
of 𝑞(I). A DP mechanism M𝑞 (I) for a counting query 𝑞 aims to

release |𝑞(I) | masked with noise so as to satisfy the DP requirement.

Formally, M𝑞 (·) is 𝜀-differentially private if

Pr[M𝑞 (I) = 𝑦] ≤ 𝑒𝜀 Pr[M𝑞 (I′) = 𝑦] (1)

for any 𝑦 and any pair of neighboring instances I, I′, i.e., 𝑑 (I, I′) = 1.

Here,𝑑 (I, I′) denotes the minimum number of changes to turn I into

I′. DP policies may vary depending on what constitutes a łchangež.

In strict DP [22, 26], a change can be inserting a tuple, deleting a

tuple, or substituting a tuple by another, while in a relaxed version,

only substitutions are allowed [6, 25]. The latter is more relaxed
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since there are less neighboring instances that must satisfy (1). In

particular, neighboring instances must have the same size, so a DP

mechanism may use the instance size 𝑁 = |I| directly; on the other

hand, 𝑁 must be protected in strict DP. All the positive results in

this paper hold for strict DP, while negative results hold even for

the relaxed version. The privacy parameter 𝜀 is usually taken as a

constant, which in practice ranges from 0.1 to 10.

Any (nontrivial) DP mechanism must be probabilistic by defini-

tion. Thus, the most common measure of the utility of M𝑞 (·) is its
expected ℓ2-error:

Err(M𝑞, I) =
√︃
E

[
(M𝑞 (I) − |𝑞(I) |)2

]
=

√︃
(E[M𝑞 (I)] − |𝑞(I) |)2 + Var[M𝑞 (I)],

which consists of a bias term and a variance term. Between two

mechanisms with the same Err(M𝑞, I), the unbiased one is often

preferred. All our DP mechanisms will be unbiased, in which case

Err(M𝑞, I) =
√︁
Var[M𝑞 (I)], while our lower bounds hold even for

biased mechanisms.

The problem is now well understood for selection queries with

various types of selection conditions [7, 10, 20, 31, 32, 36, 38]. How-

ever, the case when 𝑞 is a conjunctive query (CQ) is still largely

open. Existing solutions [22, 28, 30] are heuristics without any no-

tion of optimality. Notably, there have been extensive studies on

graph pattern counting queries [8, 9, 11, 23, 24, 33, 37], which are a

special case of CQs equipped with inequalities. But none of them

has any theoretical guarantee on the utility, either.

1.1 Sensitivity-based DP Mechanisms

Let I be a database instance and 𝑞 a counting query. A widely used

framework for designing anM𝑞 is to first compute some measure

of sensitivity 𝑆𝑞 (I), and then add noise drawn from a certain zero-

mean distribution calibrated to 𝑆𝑞 (I). From now on, we may omit

the subscript 𝑞 fromM𝑞 and 𝑆𝑞 when the context is clear. Note that

all sensitivity-based mechanisms are unbiased. Various noise distri-

butions (Section 2 gives more details) have been studied and they

can all achieve Err(M, I) = Θ(𝑆 (I)), where the hidden constant

depends on 𝜀 and the particular distribution. Thus, the problem

essentially boils down to finding the smallest 𝑆 (I) that satisfies the
DP requirement. When we say that a particular sensitivity measure

𝑆 (·) is optimal, this actually means that the DP mechanismM(I)
that adds noise drawn from a certain distribution calibrated to 𝑆 (I)
achieves the optimal (in whatever sense) Err(M, I).

The main reason for the lack of a good theoretical analysis for

CQs under DP is that standard notions of optimality are either

useless or unattainable. It is well known that the global sensitivity

𝐺𝑆 , which is defined as the maximum difference between the query



answers on any two neighboring instances, is worst-case optimal.

Note that 𝐺𝑆 is an instance-independent sensitivity measure. How-

ever, for any nontrivial CQ involving two or more relations,𝐺𝑆 = ∞
in strict DP, as changing one tuple may affect an unbounded num-

ber of query results. In relaxed DP, where it is safe to use 𝑁 in

designing the mechanism, 𝐺𝑆 can be bounded, but can still be as

high as 𝑂 (𝑁𝑛−1), where 𝑛 is the number of relations in 𝑞.

For queries where𝐺𝑆 is unbounded or too high, a natural idea is

to use an instance-specific sensitivity measure [23, 29, 37]. The local

sensitivity (definition given in Section 2.3) 𝐿𝑆 (I) is the most natural

choice, and it can be much smaller than 𝐺𝑆 on most real-world

instances. However, Nissim et al. [29] point out that using 𝐿𝑆 (I) to
calibrate noise violates DP; instead, they propose smooth sensitivity

𝑆𝑆 (I), which is always higher than 𝐿𝑆 (I) but lower than 𝐺𝑆 , and

show that it satisfies DP.

How do we quantify the utility of a DP mechanism that adds

instance-specific noise? Ideally, we would like it to be instance-

optimal [18]. More formally, a DP mechanism M(·) is said to be

𝑐-instance-optimal if

Err(M, I) ≤ 𝑐 · Err(M ′, I),
for every instance I and every DP mechanismM ′(·).

Unfortunately, as pointed out by Asi and Duchi [4], instance-

optimal DP mechanisms do not exist, unless the query is trivial (i.e.,

it returns the same count on all instances), because for an I, one

can always design a trivial DP mechanismM ′(·) ≡ |𝑞(I) |. It works
perfectly on I but fails miserably on other instances. Yet, such a

trivialM ′ rules out instance-optimal mechanisms.

1.2 Neighborhood-optimal DP Mechanisms

To eliminate such a trivial M ′, Asi and Duchi [4] propose the

following natural relaxation of instance-optimality, which requires

M ′ to not just work well for I, but also in its neighborhood.

Definition 1.1 ((𝑟, 𝑐)-neighborhood optimal DP mechanisms). An

𝜀-DP mechanismM(·) is said to be (𝑟, 𝑐)-neighborhood optimal if

for any instance I and any 𝜀-DP mechanism M ′(·), there exists an
instance I′ with 𝑑 (I, I′) ≤ 𝑟 such that

Err(M, I) ≤ 𝑐 · Err(M ′, I′). (2)

Note that neighborhood optimality smoothly interpolates be-

tween instance optimality (𝑟 = 0) and worst-case optimality (𝑟 = 𝑁 ).

It is also called local minimax optimality in [4], as it minimizes (up

to a factor of 𝑐) the maximum error in the local neighborhood of I.

We adopt the convention of data complexity, i.e., all asymptotic

notations suppress dependencies on the query size.We also take 𝜀 to

be a constant, as with most work on differential privacy. Thus, when

we say that an 𝜀-DP mechanism is (𝑂 (1),𝑂 (1))-neighborhood op-

timal, this means that 𝑟 and 𝑐 may depend on 𝑞 and 𝜀, but are

independent of 𝑁 . As we are most interested in constant-factor

approximations, we often use ł𝑟 -neighborhood optimalž as a short-

hand of ł(𝑟,𝑂 (1))-neighborhood optimalž.

While more relaxed than instance optimality, neighborhood op-

timality is still not easy to achieve (for small 𝑟 ). For example, we

can show that theMedian query (i.e., returning the median of 𝑁 el-

ements in [0, 1], for odd 𝑁 ) does not have any (𝑟, 𝑐)-neighborhood
optimal mechanisms for 𝑟 ≤ ⌊𝑁 /2⌋ and any 𝑐 . To see this, con-

sider I = (0, . . . , 0) and M ′(·) ≡ 0. Note that all instances in the

𝑟 -neighborhood of I have output 0, so Err(M ′, I′) = 0 for all I′

with 𝑑 (I, I′) ≤ 𝑟 . Thus, we must set M(I) = 0 to satisfy (2). We

can apply the same argument on I′′ = (1, . . . , 1) and conclude that

M(I′′) = 1. We have thus found two instances on which M(·)
returns different deterministic values, thusM cannot be DP by a

standard argument [17].

Acute readers would realize that the negative result for Median

relies on the fact that there are certain instances (like (0, . . . , 0))
with a łflatž neighborhood, i.e., the query output is the same within

the neighborhood. Fortunately, for full CQs, which are the focus of

this paper, these flat neighborhoods do not exist. This is because

in any instance I, one can always add/remove a constant number

(depending on 𝑞) of tuples to change |𝑞(I) |. However, this is merely

a necessary condition for a query to admit neighborhood-optimal

DP mechanisms. To actually design such a mechanism M(·), we
need an upper bound on Err(M, I), as well as a neighborhood

lower bound on minM′ maxI′:𝑑 (I,I′) ≤𝑟 Err(M ′, I′). Note that both
the upper bound and the lower bound are instance specific (i.e.,

functions of I), and the worst-case (over all I) gap between the upper

and lower bounds would become the optimality ratio 𝑐 .

1.3 DP Mechanisms for Full CQs

We relate both the upper and the lower bounds to the smooth

sensitivity 𝑆𝑆 (·). On the lower bound side, in Section 4, we show

that 𝑆𝑆 (·) is an𝑂 (1)-neighborhood lower bound. Thus, the smooth

sensitivity based mechanism [29] is 𝑂 (1)-neighborhood optimal.

However, 𝑆𝑆 (·) in general requires exponential time to compute. In

Section 3, we extend the residual sensitivity 𝑅𝑆 (·) [13] to arbitrary

full CQs, and show that it (1) satisfies DP, (2) is a constant-factor

upper bound of 𝑆𝑆 (·), and (3) can be computed in polynomial time.

Together with the lower bound, this yields our first main result:

Theorem 1.2. For any full CQ 𝑞, there is an 𝜀-DP mechanism

M(·) that is 𝑂 (1)-neighborhood optimal. For any instance I,M(I)
can be computed in poly(𝑁 ) time.

1.4 CQs with Predicates

Next, we consider CQs with predicates. A predicate 𝑃 (y) is a com-

putable function 𝑃 : dom(y) → {True, False} for a set of variables
y. A valuation of y is a valid query result only if 𝑃 (y) evaluates to
True.

Predicates are important for expressing graph pattern counting

queries. Suppose we would like to count the number of length-

3 paths (no repeated vertices) in a directed graph whose edges

are stored in a relation Edge. However, the CQ Edge(𝑥1, 𝑥2) Z
Edge(𝑥2, 𝑥3) Z Edge(𝑥3, 𝑥4) would not just count the number of

length-3 paths, but also length-1 paths, length-2 paths, and triangles.

We have to equip the CQ with inequalities, i.e., 𝑥𝑖 ≠ 𝑥 𝑗 for all 𝑖 ≠ 𝑗 ,

to exclude these false positives. Another type of predicates are

comparisons, i.e., 𝑥𝑖 ≤ 𝑥 𝑗 or 𝑥𝑖 < 𝑥 𝑗 , which are common in queries

over spatiotemporal databases.

In Section 5 we show how to modify 𝑅𝑆 (·) to take these pred-

icates into consideration, while preserving its neighborhood op-

timality. The idea is conceptually easy: we just materialize each

predicate 𝑃 (y) into a relation {𝑡 ∈ dom(y) | 𝑃 (𝑡)}, and then apply

our DP mechanism in Theorem 1.2. However, this poses a compu-

tational issue, since this relation can be infinite (assuming infinite



domains). To address this issue, we show that it is actually possible

to compute 𝑅𝑆 (·) without materializing the 𝑃 (y)’s.

Theorem 1.3. For any full CQ𝑞 with predicates 𝑃1 (y1), . . . , 𝑃𝜅 (y𝜅 ),
there is an 𝑂 (1)-neighborhood optimal 𝜀-DP mechanism M(·), if for
any z ⊆ 𝑣𝑎𝑟 (𝑞), the satisfiability of 𝜑1 ∧ · · · ∧ 𝜑𝑆 is decidable, where

each 𝜑𝑖 is 𝑃 𝑗 (u𝑖 ) for any 𝑗 and u𝑖 is y𝑗 after replacing all variables

not in z by any constants. Furthermore, M(I) can be computed in

poly(𝑁 ) time if all predicates are inequalities or comparisons.

1.5 Non-full CQs

To complete the picture, we finally study non-full CQs in Section 6.

Prior work on non-full CQs simply ignores the projection, and

uses the sensitivity of the full CQ to calibrate noise. We show how

to extend 𝑅𝑆 (·) to handle the projection more effectively so as to

reduce the noise. Unfortunately, our lower bound no longer holds

for non-full CQs, hence losing neighborhood optimality. However,

we show that this is unavoidable. In particular, even for the simple

non-full query 𝜋𝑥2 (𝑅1 (𝑥1) Z 𝑅2 (𝑥1, 𝑥2)), we show that it does not

admit any 𝑜 (
√
𝑁 )-neighborhood optimal DP mechanisms.

1.6 Related Work

The notion of neighborhood optimality has been recently proposed

in the machine learning community [4]. However, their focus is on

high-dimensional queries whose output domainmust be continuous.

In particular, their lower bound does not hold for any query that

returns discrete outputs, in particular, counting queries. Our lower

bound (Section 4.1) holds for arbitrary 1-dimensional queries (with

either continuous or discrete outputs), and is also better than their

lower bound. On the upper bound side, their algorithm in general

requires exponential time to compute, although they show how it

can be made to run in polynomial time for some machine learning

problems like mean-estimation and PCA.

Our work builds upon smooth sensitivity 𝑆𝑆 (·) [29] and residual
sensitivity 𝑅𝑆 (·) [13]. Although 𝑆𝑆 (·) has been shown to preserve

DP in [29], two issues remain: whether it is optimal (in any sense)

and whether it can be computed in polynomial time. We provide

positive answers to both questions in the context of CQs. While our

optimality of 𝑆𝑆 (·) is the first of its kind, the computational issue

has been addressed for some specific queries, such as Median (but

𝑆𝑆 (·) is not neighborhood-optimal for Median!), triangle counting

[29], and 𝑡-star counting [23], the latter two being special cases

of CQs (with inequalities). However, it is still an open problem

whether 𝑆𝑆 (·) can be computed in polynomial time for an arbitrary

CQ in terms of data complexity. To dodge the computational diffi-

culty, elastic sensitivity 𝐸𝑆 (·) [22] was introduced as a replacement.

However, in Appendix C we show that 𝐸𝑆 (·) is not even worst-

case optimal. Residual sensitivity 𝑅𝑆 (·) was proposed in [13], and

it has been shown to be a constant-factor approximation of 𝑆𝑆 (·)
while being polynomially computable. However, 𝑅𝑆 (·) as defined
in [13] does not allow self-joins, which are challenging under DP,

since changing one tuple corresponds to changing multiple logi-

cal relations when there are self-joins. This can be tricky for both

the privacy guarantee and the mechanism’s optimality. Second, no

lower bound was provided in [13], so the optimality of 𝑅𝑆 (·) is
not known until this paper. Thirdly, we extend 𝑅𝑆 (·) to CQs with

predicates and non-full CQs.

The DP policy considered in this paper treats a change as the

insertion, deletion, or substitution of a tuple, hence also called tuple-

DP. In user-DP [26, 34], there is a designated primary private relation

𝑅𝑃 ∈ R that contains all the users, while tuples in other relations

with a foreign key (FK) referencing the primary key (PK) of a tu-

ple (user) 𝑡𝑃 ∈ I(𝑅𝑃 ), directly or indirectly, are considered as data

belonging to 𝑡𝑃 . Two instances I and I′ are considered neighbors

if I′ can be obtained from I by adding/deleting/substituting a set

of tuples, all of which reference the same user 𝑡𝑃 ∈ I(𝑅𝑃 ). Apply-
ing user-DP and tuple-DP on the graph schema R = {Node(ID),
Edge(src, dst)}, where src and dst are both FKs referencing ID,

yields the two well-known DP policies for graph data: node-DP

[24] and edge-DP [23]. By designating Node as the primary private

relation, user-DP on R becomes node-DP; by setting R𝑃 = {Edge},
tuple-DP becomes edge-DP (note that in tuple-DP, we ignore the

FK constraints, which effectively means that Node is irrelevant).

User-DP is more general than tuple-DP, hence potentially incurring

a higher privacy cost. Very recently, a logarithmic-neighborhood

optimal mechanism has been proposed for CQs under user-DP [12].

Meanwhile, it has also been shown that 𝑂 (1)-neighborhood opti-

mality is not achievable under user-DP [14] even for the simple

query 𝑅1 (𝑥1) Z 𝑅2 (𝑥1, 𝑥2) where 𝑅1 is the primary private relation

and 𝑅2 .𝑥1 is an FK referencing 𝑅1 .𝑥1. Therefore, combined with the

result obtained in this paper, we now have a separation for CQs

under tuple-DP and user-DP.

2 PRELIMINARIES

2.1 Conjunctive Queries

Let R be a database schema. A full conjunctive query (CQ) has the

form

𝑞 := 𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛),
where 𝑅1, . . . , 𝑅𝑛 are relation names in R, and each x𝑖 is a set of

𝑎𝑟𝑖𝑡𝑦 (𝑅𝑖 ) variables/attributes1. We call each 𝑅𝑖 (x𝑖 ) an atom. We

use [𝑛] to denote {1, . . . , 𝑛}, and [𝑖, 𝑗] = {𝑖, . . . , 𝑗}. For any 𝐸 ⊆ [𝑛],
𝐸 = [𝑛] − 𝐸. For a variable 𝑥 , we use dom(𝑥) to denote the domain

of 𝑥 . For x = (𝑥1, . . . , 𝑥𝑘 ), let dom(x) = dom(𝑥1) × · · · × dom(𝑥𝑘 ).
Let 𝑣𝑎𝑟 (𝑞) denote the set of variables in 𝑞.

When considering self-joins, there can be repeats, i.e., 𝑅𝑖 = 𝑅 𝑗 .

In this case, we assume x𝑖 ≠ x𝑗 ; otherwise one of the two atoms

is redundant. Let I be a database instance over R. For a relation

name 𝑅 ∈ R, let I(𝑅) denote the relation instance of 𝑅. We use 𝐼𝑖
as a shorthand for I(𝑅𝑖 ). I and the 𝐼𝑖 ’s are called physical instances.

On the other hand, we use 𝐼𝑖 (x𝑖 ) to denote 𝐼𝑖 after renaming its

attributes to x𝑖 . The 𝐼𝑖 (x𝑖 )’s are called the logical instances. Note

that if 𝑅𝑖 and 𝑅 𝑗 are the same relation name, then 𝐼𝑖 = 𝐼 𝑗 , but

𝐼𝑖 (x𝑖 ) ≠ 𝐼 𝑗 (x𝑗 ), as 𝐼𝑖 (x𝑖 ) and 𝐼 𝑗 (x𝑗 ) have different attributes. For a
self-join-free query, we may without loss of generality assume that

x𝑖 = 𝑠𝑜𝑟𝑡 (𝑅𝑖 ) for all 𝑖 ∈ [𝑛] so the logical instances are the same

as the physical instances, but for queries with self-joins, one phys-

ical relation instance may correspond to multiple logical relation

instances. This distinction makes the problem more difficult under

DP, as the distance between two logical instances may be larger

than between the physical instances.

1If x𝑖 has constants, we can preprocess 𝑅𝑖 (x𝑖 ) in linear time so that only tuples that
match these constants remain.



By rearranging the atoms, wemay assume that all appearances of

the same relation name are consecutive. Suppose𝑚 distinct relation

names are mentioned in 𝑞, and for 𝑖 = 1, . . . ,𝑚, 𝑅𝑙𝑖 , . . . , 𝑅𝑙𝑖+1−1 are
the same relation name (set 𝑙𝑚+1 = 𝑛 + 1). Let 𝐷𝑖 = [𝑙𝑖 , 𝑙𝑖+1 − 1] and
𝑛𝑖 = 𝑙𝑖+1 − 𝑙𝑖 , which is the number of copies of 𝑅𝑙𝑖 mentioned in 𝑞.

2.2 Differential Privacy in Relational Databases

Differential privacy is already defined in (1). This notion can be

applied to any problem by properly defining the distance function

𝑑 (·, ·). As a database may contain both public and private relations,

we use a more refined definition of 𝑑 (·, ·). For two relation instances
over the same relation name 𝐼 , 𝐼 ′, we use 𝑑 (𝐼 , 𝐼 ′) to denote the

distance between 𝐼 and 𝐼 ′, which is the minimum number of steps

to change 𝐼 into 𝐼 ′. Note that 𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 ) is the same for all 𝑗 ∈ 𝐷𝑖 , for

any 𝑖 ∈ [𝑚], as they are the same physical relation instance.

We use 𝑃𝑚 ⊆ [𝑚] to denote the set of private physical rela-

tions, while 𝑃𝑛 = ∪𝑖∈𝑃𝑚𝐷𝑖 is the set of private logical relations. Let

𝑚𝑃 = |𝑃𝑚 |, 𝑛𝑃 = |𝑃𝑛 |. Two database instances can only differ in the
private relations, i.e., 𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 ) = 0 for every 𝑗 ∈ 𝑃𝑛 . In the DP defi-

nition (1), we must use the distance between the physical database

instances, i.e., 𝑑 (I, I′) =
∑
𝑖∈[𝑚] 𝑑 (𝐼𝑙𝑖 , 𝐼 ′𝑙𝑖 ). Note that the distance

between the logical instances, namely
∑
𝑖∈[𝑛] 𝑑 (𝐼𝑖 (x𝑖 ), 𝐼 ′𝑖 (x𝑖 )), can

be larger than 𝑑 (I, I′) when self-joins are present.

A simple but important observation is that a query with self-joins

on instance {𝐼𝑖 }𝑖 can be considered as a query without self-joins

on instance {𝐼𝑖 (x𝑖 )}𝑖 . This allows us to reuse some of the technical

results from [13] on self-join-free queries. However, the critical

difference is that this conversion enlarges the distance, while the

DP guarantee must hold with respect to the distance on the original,

physical instance.

2.3 Sensitivity-based DP Mechanisms

As mentioned in Section 1, the most common technique for design-

ing DP mechanisms is to first compute some measure of sensitivity

𝑆 (·) of the query, and then add noise drawn from a certain distribu-

tion calibrated to 𝑆 (·).
The local sensitivity of 𝑞 at instance I is how much |𝑞(I) | can

change if we change one tuple in I, i.e.,

𝐿𝑆 (I) = max
I′,𝑑 (I,I′)=1

��|𝑞(I) | − |𝑞(I′) |
�� . (3)

However, using 𝐿𝑆 (·) directly breaches privacy [29], because two
neighboring instances may have very different 𝐿𝑆 (·). On the other

hand, it is safe to use the global sensitivity, which is the maximum

𝐿𝑆 (·) over all instances:

𝐺𝑆 = max
I

𝐿𝑆 (I) .

It is well known that one can achieve 𝜀-DP with Err(M, I) =

𝑂 (𝐺𝑆) by drawing noise from the Laplace distribution calibrated

to𝐺𝑆/𝜀 [16]. However, this loses the utility: the𝐺𝑆 for CQs can be

as large as 𝑂 (𝑁𝑛𝑃−1) under relaxed DP, and∞ under strict DP.

To address this issue, Nissim et al. [29] propose the smooth sen-

sitivity 𝑆𝑆𝛽 (·). To define 𝑆𝑆𝛽 (·), we first define the local sensitivity
at distance 𝑘 :

𝐿𝑆 (𝑘) (I) = max
I′,𝑑 (I,I′) ≤𝑘

𝐿𝑆 (I′). (4)

Note that for CQs, (4) can be rewritten as

𝐿𝑆 (𝑘) (I) = max
I′,𝑑 (I,I′)=𝑘

𝐿𝑆 (I′), (5)

because if 𝑑 (I, I′) < 𝑘 , we can always insert dummy tuples so that

𝑑 (I, I′) = 𝑘 . Then for a parameter 𝛽 , the smooth sensitivity is

𝑆𝑆𝛽 (I) = max
𝑘≥0

𝑒−𝛽𝑘𝐿𝑆 (𝑘) (I). (6)

It is clear that 𝑆𝑆𝛽 (I) ≤ 𝐺𝑆 . More importantly, 𝑆𝑆𝛽 (·) is łsmoothž,

in the sense that 𝑆𝑆𝛽 (I) ≤ 𝑒𝛽𝑆𝑆𝛽 (I′) for any two neighboring

instances I and I′. Due to its smoothness, it has been shown that

setting 𝛽 = 𝜀/10 and drawing noise calibrated to 𝑆𝑆𝛽 (I)/𝛽 from a

general Cauchy distribution, which has pdf ℎ(𝑧) ∝ 1
1+|𝑧 |4 , achieves

𝜀-DP with Err(M, I) =
𝑆𝑆𝛽 (I)

𝛽
= 𝑂 (𝑆𝑆𝛽 (I)). The choice of the

constant 10 is arbitrary, which affects the tail properties of the

noise distribution, but not the variance (asymptotically). In the rest

of the paper, we omit the subscript 𝛽 from 𝑆𝑆𝛽 (·) for brevity.
However, computing 𝑆𝑆 (I) is very costly. The definition (6) does

not yield an efficient (or even computable) algorithm. To address

this issue, Nissim et al. [29] show that any smooth upper bound of

𝑆𝑆 (·) can be used. Specifically, let

𝑆𝑆 (I) = max
𝑘≥0

𝑒−𝛽𝑘𝐿𝑆
(𝑘) (I). (7)

It has been shown that as long as 𝐿𝑆
(𝑘) (·) is an upper bound of

𝐿𝑆 (𝑘) (·) and satisfies the smoothness property, i.e., for any neigh-

bors I and I′,

𝐿𝑆
(𝑘) (I) ≤ 𝐿𝑆

(𝑘+1) (I′), (8)

then one can use 𝑆𝑆 (·) in place of 𝑆𝑆 (·) to calibrate noise while pre-
serving 𝜀-DP. The error becomes Err(M, I) = 10𝑆𝑆 (I)

𝜀 accordingly.

3 RESIDUAL SENSITIVITY FOR FULL CQs

3.1 Residual Queries

The residual sensitivity 𝑅𝑆 (·) can be considered as an instantiation

of 𝑆𝑆 (·) for CQs, i.e., it is defined as in (7) with a particular choice

of 𝐿𝑆
(𝑘) (·) that has the smoothness property (8). Our 𝐿𝑆

(𝑘) (·) is
based on the residual queries of a given CQ 𝑞.

A residual query of 𝑞 on a subset 𝐸 ⊆ [𝑛] of relations is 𝑞𝐸 :=

Z𝑖∈𝐸 𝑅𝑖 (x𝑖 ). Its boundary, denoted 𝜕𝑞𝐸 , is the set of attributes

that belong to atoms both in and out of 𝐸, i.e., 𝜕𝑞𝐸 = {𝑥 | 𝑥 ∈
x𝑖 ∩ x𝑗 , 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐸}. For a residual query 𝑞𝐸 on database instance

I, its maximum multiplicity over the boundary is defined as

𝑇𝐸 (I) = max
𝑡 ∈dom(𝜕𝑞𝐸 )

|𝑞𝐸 (I) Z 𝑡 |.

A witness tuple of the maximum multiplicity over the boundary of

𝑞𝐸 (I) is
𝑡𝐸 (I) = argmax

𝑡 ∈dom(𝜕𝑞𝐸 )
|𝑞𝐸 (I) Z 𝑡 |. (9)

Per convention, when 𝐸 = ∅, we set 𝑞𝐸 (I) = {⟨⟩}, where ⟨⟩ denotes
the empty tuple, so 𝑇∅ (I) = 1.

We note that 𝑇𝐸 (I) is exactly an AJAR/FAQ query [3, 21], where

the annotations of all tuples are 1 with two semiring aggregations

+ and max. The + aggregation is done group-by 𝜕𝑞, followed by a

max over all the + aggregates. Such a query can be computed in



𝑂 (𝑁𝑤) time, where𝑤 is its AJAR/FAQwidth, a constant depending

on the query only.

To develop 𝑅𝑆 (·), we need some properties of 𝑇𝐸 (·). We start

with a simple one:

Lemma 3.1. Given any CQ 𝑞, 𝐸 ⊆ [𝑛], and two database instances
I, I′, if 𝐼𝑖 (x𝑖 ) ⊆ 𝐼 ′𝑖 (x𝑖 ) for all 𝑖 ∈ 𝐸, then𝑇𝐸 (I) ≤ 𝑇𝐸 (I′). In particular,
if 𝐼𝑖 (x𝑖 ) = 𝐼 ′𝑖 (x𝑖 ) for all 𝑖 ∈ 𝐸, then 𝑇𝐸 (I) = 𝑇𝐸 (I′).

As will become clear, the sensitivity of 𝑞 depends on the sensitiv-

ity of𝑇𝐸 (·). The following technical lemma provides such an upper

bound (proofs of all lemmas and theorems are provided in [15].):

Lemma 3.2. For any CQ 𝑞, 𝐸 ⊆ [𝑛], and two instances I, I′,

|𝑇𝐸 (I) −𝑇𝐸 (I′) | ≤
∑︁

𝐸′⊆𝐸,𝐸′≠∅

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 (x𝑖 ), 𝐼 ′𝑖 (x𝑖 ))
)
.

3.2 Local Sensitivity of CQs

We first consider the local sensitivity 𝐿𝑆 (·). For a CQ without self-

joins, its local sensitivity is precisely characterized by the 𝑇𝐸 (·)’s.

Lemma 3.3 ([13]). For a CQ without self-joins,

𝐿𝑆 (I) = max
𝑖∈𝑃𝑛

𝑇{𝑖 }(I) .

To extend this result to CQs with self-joins, we need to bound

how much |𝑞(I) | can change when multiple relations change si-

multaneously, as a change in one physical relation instance may

correspond to changes in multiple logical relations when self-joins

are present. We first consider the case for self-join-free queries.

Lemma 3.4. Let 𝑞 be a CQ 𝑞 without self-joins, 𝐵 ⊆ [𝑛], 𝐵 ≠ ∅,
and let I, I′ be instances such that 𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 ) = 1 for all 𝑗 ∈ 𝐵 while

𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 ) = 0 otherwise. Then��|𝑞(I) | − |𝑞(I′) |
�� ≤ ∑︁

𝐸⊆𝐵,𝐸≠∅
𝑇𝐸 (I) .

Based on this and (3), we can derive an upper bound on 𝐿𝑆 (I)
for CQs with self-joins.

Theorem 3.5. For a CQ 𝑞,

𝐿𝑆 (I) ≤ max
𝑖∈𝑃𝑚

∑︁
𝐸⊆𝐷𝑖 ,𝐸≠∅

𝑇𝐸 (I) .

Remark. Note that when self-joins are present, we can no longer

obtain an exact formula for 𝐿𝑆 (I) like for self-join-free queries in
Lemma 3.3. This is precisely due to the fact that self-joins induce

changes in multiple logical relations that may interact in complex

manners.

3.3 Global Sensitivity of CQs

Because𝐺𝑆 = maxI 𝐿𝑆 (I), a by-product of Theorem 3.5 is an upper

bound on𝐺𝑆 under relaxed DP where the instance size 𝑁 is public.

This upper bound can be much smaller than the trivial upper bound

𝑂 (𝑁𝑛𝑃−1) mentioned in Section 2.3 for many CQs.

By Theorem 3.5, we have

𝐺𝑆 ≤ max
I

max
𝑖∈𝑃𝑚

∑︁
𝐸⊆𝐷𝑖 ,𝐸≠∅

𝑇𝐸 (I) ≤ max
𝑖∈𝑃𝑚

∑︁
𝐸⊆𝐷𝑖 ,𝐸≠∅

max
I

𝑇𝐸 (I). (10)

Observe that maxI𝑇𝐸 (I) is upper bounded by the maximum join

size of the residual query 𝑞𝐸 , when the logical relations of the

same physical relation are allowed to be instantiated differently

and the domain size of each variable in 𝜕𝑞𝐸 = 𝜕𝑞𝐸 is set to 1,

which is equivalent to removing these variables. We can bound the

maximum join size using the AGM bound [5]. Together with (10)

this yields an upper bound on 𝐺𝑆 .

Example 3.6. We illustrate how this is done on the triangle

query 𝑞 = Edge(𝑥1, 𝑥2) Z Edge(𝑥2, 𝑥3) Z Edge(𝑥1, 𝑥3) on a sin-

gle physical relation Edge. For 𝐸 = {3}, i.e., 𝑞𝐸 = Edge(𝑥1, 𝑥2) Z
Edge(𝑥2, 𝑥3) and 𝜕𝑞𝐸 = {𝑥1, 𝑥3}, we have

max
I

𝑇𝐸 (I) =max
I

max
𝑡 ∈dom(𝑥1,𝑥3)

|Edge(𝑥1, 𝑥2) Z Edge(𝑥2, 𝑥3) |

≤max
I

max
𝑡 ∈dom(𝑥1,𝑥3)

|Edge1 (𝑥1, 𝑥2) Z Edge2 (𝑥2, 𝑥3) |

=max
I

(Edge1 (𝑥2) Z Edge2 (𝑥2)) .

=AGM(Edge1 (𝑥2) Z Edge2 (𝑥2)) .

We can similarly derive a bound for other 𝐸’s. Note that when 𝐸

consists of 2 relations, maxI𝑇𝐸 (I) ≤ 1. Thus,

𝐺𝑆 ≤AGM(Edge1 (𝑥2) Z Edge2 (𝑥2))
+ AGM(Edge2 (𝑥3) Z Edge3 (𝑥3))
+ · · ·

=𝑂 (𝑁 ).

Another example using the path-4 query is given in Appendix A.

Furthermore, any join size upper bound can be plugged into (10).

For example, when degree information or functional dependen-

cies are publicly available, tighter upper bounds can be derived

[2, 19]. Although DP mechanisms based on 𝐺𝑆 are not as accurate

as our 𝑅𝑆 (·)-based mechanisms to be presented next, they can be

computed in 𝑂 (1) time (excluding the time for computing |𝑞(I) |).

3.4 Deriving 𝐿𝑆
(𝑘) (·)

Theorem 3.5 has provided an upper bound for 𝐿𝑆 (I). The next step
is to derive 𝐿𝑆

(𝑘) (I), an upper bound for 𝐿𝑆 (𝑘) (I).
For any two instances I, I′, define their distance vector as

s = (𝑑 (𝐼1, 𝐼 ′1), 𝑑 (𝐼2, 𝐼
′
2), . . . , 𝑑 (𝐼𝑛, 𝐼

′
𝑛)) .

For any s = (𝑠1, . . . , 𝑠𝑛), let Is
= {I′ : 𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 ) = 𝑠 𝑗 , 𝑗 ∈ [𝑛]} be the

set of instances whose distance vectors are s from I. Note that when

self-joins are present, not any s ∈ N𝑛 is a valid distance vector. We

must ensure 𝑠𝑙𝑖 = 𝑠𝑙𝑖+1 = · · · = 𝑠𝑙𝑖+𝑛𝑖−1, for any 𝑖 ∈ [𝑚]. Let S𝑘 be

the set of valid distance vectors such that the total distance of all

private relations is 𝑘 , i.e.,

S𝑘 =

{
s :

∑︁
𝑖∈𝑃𝑚

𝑠𝑙𝑖 = 𝑘 ; 𝑠 𝑗 = 0, 𝑗 ∈ 𝑃𝑛 ;∀𝑖 ∈ [𝑚], 𝑗 ∈ 𝐷𝑖 , 𝑠 𝑗 = 𝑠𝑙𝑖

}
.

Denote the set of instances at 𝑘 distance from I as I𝑘
= {I′ :

𝑑 (I, I′) = 𝑘}, i.e.,
I𝑘

= ∪s∈S𝑘Is .

We now derive an upper bound of 𝐿𝑆 (𝑘) (·) in terms of 𝑇𝐸 (·).



Lemma 3.7.

𝐿𝑆 (𝑘) (I) ≤ max
s∈S𝑘

max
𝑖∈𝑃𝑚

∑︁
𝐸⊆𝐷𝑖 ,𝐸≠∅

max
I′∈Is

𝑇𝐸 (I′).

Let 𝑇𝐸,s (I) be an upper bound of maxI′∈Is 𝑇𝐸 (I′). Then

𝐿𝑆
(𝑘) (I) := max

s∈S𝑘
max
𝑖∈𝑃𝑚

∑︁
𝐸⊆𝐷𝑖 ,𝐸≠∅

𝑇𝐸,s (I′), (11)

is clearly an upper bound of 𝐿𝑆 (𝑘) (I).
Now, it remains to find a valid 𝑇𝐸,s (I). By Lemma 3.2, we have

for any 𝐸 ⊆ [𝑛] and any I′ ∈ Is,

𝑇𝐸 (I′) ≤ 𝑇𝐸 (I) +
∑︁

𝐸′⊆𝐸,𝐸′≠∅

©­
«
𝑇𝐸−𝐸′ (I)

∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®
¬
.

So we set 𝑇𝐸,s (I) as

𝑇𝐸,s (I) :=
∑︁
𝐸′⊆𝐸

©­«
𝑇𝐸−𝐸′ (I)

∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬
, (12)

where we define
∏

𝑗 ∈∅ 𝑠 𝑗 = 1.

Finally, the residual sensitivity is defined as in (7) by setting

𝐿𝑆
(𝑘) (I) as in (11):

𝑅𝑆 (I) = max
𝑘≥0

𝑒−𝛽𝑘𝐿𝑆
(𝑘) (I) . (13)

The following theorem shows that 𝐿𝑆
(𝑘) (·) is smooth, so 𝑅𝑆 (·)

satisfies 𝜀-DP.

Theorem 3.8. For any CQ and any I, I′ such that 𝑑 (I, I′) = 1,

𝐿𝑆
(𝑘) (I) ≤ 𝐿𝑆

(𝑘+1) (I′) for any 𝑘 ≥ 0.

3.5 Computing 𝑅𝑆 (·)
Recall that for any given 𝑘 , 𝐿𝑆

(𝑘) (I) can be computed in polynomial

time since each𝑇𝐸 (I) is an AJAR/FAQ query [3, 21]. The last missing

piece is to bound the range of 𝑘 that one has to consider when

computing 𝑅𝑆 (I) using (13). The following lemma implies that we

only need to consider 𝑘 = 0, . . . , 𝑘 = 𝑂 (1) when computing 𝑅𝑆 (I).

Lemma 3.9. For any 𝑘 ≥ 𝑘 =
𝑚𝑝

1−exp(−𝛽/max𝑖∈[𝑚] 𝑛𝑖 ) ,

𝑒−𝛽𝑘𝐿𝑆
(𝑘) (I) ≤ 𝑒−𝛽 (𝑘−1)𝐿𝑆

(𝑘−1) (I) .

Remark. In actual implementation, we first compute𝑇𝐸 (I) for all
𝐸 ⊆ 𝐷𝑖 , 𝐸 ≠ ∅. After that, it only takes 𝑂 (1) time to compute 𝑅𝑆 (I)
using formulas (11), (12), and (13). Thus, the concrete computational

complexity of 𝑅𝑆 (·) for a CQ 𝑞 is 𝑂 (𝑁𝑤max ), where 𝑤max is the

maximum AJAR/FAQ width [3, 21] of the residual queries of 𝑞.

4 NEIGHBORHOOD OPTIMALITY

In this section we prove Theorem 1.2. This is done in three steps: We

first derive a sufficient condition for 𝑆𝑆 (·) to be an 𝑟 -neighborhood

lower bound. Next, we show that this condition holds for full CQs

with 𝑟 = 𝑂 (1). Finally, we show that 𝑅𝑆 (·) is at most a constant

factor larger than 𝑆𝑆 (·),

4.1 General Neighborhood Lower Bounds

We first develop two general neighborhood lower bounds that hold

for arbitrary queries (not necessarily CQs), one based on 𝐿𝑆 (𝑘) (·)
while the other based on 𝑆𝑆 (·). These lower bounds hold for an ar-

bitrary query 𝑞 with vectored outputs. We start with an observation

from [35]:

Lemma 4.1 ([35]). For any 𝜀-DP mechanism M ′(·) and any in-

stance I, there exists an I′ with 𝑑 (I, I′) ≤ 1 such that

Pr

[��M ′(I′) − 𝑞(I′)
�� ≥ 𝐿𝑆 (I)

2

]
≥ 1

1 + 𝑒𝜀
.

This implies that 𝐿𝑆 (·) is an 1-neighborhood lower bound, i.e.,

max
I′:𝑑 (I,I′) ≤1

Err(M ′, I′) ≥ 1

2
√
1 + 𝑒𝜀

· 𝐿𝑆 (I), (14)

for any I and any M ′. We generalize this result, showing that

𝐿𝑆 (𝑟−1) (·) is an 𝑟 -neighborhood lower bound:

Lemma 4.2. For any I, any 𝜀-DP mechanismM ′, and any 𝑟 ≥ 1,

max
I′:𝑑 (I,I′) ≤𝑟

Err(M ′, I′) ≥ 1

2
√
1 + 𝑒𝜀

· 𝐿𝑆 (𝑟−1) (I) . (15)

Note that (14) is the special case of (15) with 𝑟 = 1.

Previously, Asi and Duchi [4] also derive a neighborhood lower

bound. In Appendix B, we show that our lower bound is always no

worse than theirs for 𝜀 = 𝑂 (1), while can be polynomially better for

certain queries. Furthermore, their lower bound requires a technical

condition on 𝑞 while our lower bound holds for an arbitrary 𝑞.

To show that 𝑆𝑆 (·) is an 𝑟 -neighborhood lower bound, we need

a condition on 𝐿𝑆 (𝑘) (·), that they do not grow more than exponen-

tially quickly when 𝑘 ≥ 𝑟 .

Lemma 4.3. Given any 𝜀, 𝛽 > 0 and any instance I, if for some

𝑟 ≥ 1 (possibly depending on 𝛽 and I),

𝐿𝑆 (𝑘) (I) ≤ 𝑒𝛽𝑘𝐿𝑆 (𝑟−1) (I), (16)

for any 𝑘 ≥ 𝑟 , for any 𝜀-DP mechanismM ′,

max
I′:𝑑 (I,I′) ≤𝑟

Err(M ′, I′) ≥ 1

2
√
1 + 𝑒𝜀

· 𝑆𝑆 (I).

Remark 1. Recall from Section 2.3 that 𝛽 and 𝜀 are just a constant-

factor apart, so 𝛽 is also a constant if 𝜀 is considered a constant.

Remark 2. The restriction of the growth rate is very mild, except

that it also forbids 𝐿𝑆 (𝑘) (·) to go from zero to nonzero. This is why

we impose this restriction only for 𝑘 ≥ 𝑟 . For certain problems like

Median, this requires a large 𝑟 , which is actually unavoidable since

a large flat neighborhood will rule out 𝑟 -neighborhood optimal

mechanisms for small 𝑟 anyway, as we argued in Section 1.

Before considering CQs, as a warm-up, we apply Lemma 4.3 to

the triangle counting problem. Here, the instance I is a simple graph

(i.e., no self-loops and multi-edges), and the query 𝑞 returns the

number of triangles in I.

Lemma 4.4. For the triangle counting problem, the condition in

Lemma 4.3 holds with 𝑟 = max
{
3,

⌈
4
ln(1/𝛽)

𝛽

⌉}
.



Note that the 𝑟 needed in the lemma above is independent of I.

Thus, 𝑆𝑆 (·) is an 𝑂 (1)-neighborhood lower bound for the triangle

counting problem, i.e., the previous 𝑆𝑆-based DP-mechanism for

triangle counting [29] is 𝑂 (1)-neighborhood optimal. This is the

first optimality guarantee for triangle counting under DP, while

our main optimality result is a vast generalization of this.

4.2 Neighborhood Lower Bound for CQs

To show that 𝑆𝑆 (·) is an 𝑂 (1)-neighborhood lower bound for CQs,

we need to show that the condition in Lemma 4.3 holds with some

constant 𝑟 . This requires an upper bound on 𝐿𝑆 (𝑘) (·), as well as a
lower bound on 𝐿𝑆 (𝑟−1) (·). For the upper bound on 𝐿𝑆 (𝑘) (·), we
use the 𝐿𝑆

(𝑘) (·) developed in Section 3.4. For the lower bound, we

first consider the case 𝑟 = 𝑛𝑃 . Recall that 𝑛𝑃 = |𝑃𝑛 | is the number

of private logical relations.

Lemma 4.5. For any CQ, any instance I, and any 𝐸 ⊆ 𝑃𝑛 , 𝐸 ≠ ∅,
we have 𝐿𝑆 (𝑛𝑃−1) (I) ≥ 𝑇𝐸 (I).

To prove this lemma, we need to make no more than 𝑛𝑃 − 1

changes to I to obtain an I′ that is highly sensitive, i.e., there is one

tuple in I′ that is involved in at least𝑇𝐸 (I) join results, or one tuple

not in I′ that would produce at least 𝑇𝐸 (I) join results if inserted.

The technical construction of such an I′ is given in [15].

Next, recall from equations (11) and (12) that 𝐿𝑆
(𝑘) (I) is also

defined in terms of the𝑇𝐸 (I)’s. Together with Lemma 4.5, this allows

us to build a connection between 𝐿𝑆
(𝑘) (I) and 𝐿𝑆 (𝑛𝑃−1) (I):

Lemma 4.6. For any CQ, any instance I, and any 𝑘 ≥ 1, we have

𝐿𝑆
(𝑘) (I) ≤ (4𝑘)𝑛𝑃−1𝐿𝑆 (𝑛𝑃−1) (I).

Lemma 4.6 almost meets the condition of Lemma 4.3, except that

(4𝑘)𝑛𝑃−1 is not necessarily smaller than 𝑒𝛽𝑘 . But as the former is a

polynomial while the latter is exponential, this is not an issue as

long as 𝑘 is larger than a constant.

Theorem 4.7. For any CQ 𝑞, any 𝜀, 𝛽 > 0, there exist a constant

𝑟 > 0 (depending on 𝑞, 𝜀, 𝛽) such that for any I and any 𝜀-DP mecha-

nism M ′,

max
I′:𝑑 (I,I′) ≤𝑟

Err(M ′, I′) ≥ 1

2
√
1 + 𝑒𝜀

· 𝑆𝑆 (I).

4.3 Optimality of 𝑅𝑆 (·)
To complete the proof of Theorem 1.2, we show that 𝑅𝑆 (·) is at
most a constant-factor larger than 𝑆𝑆 (·).

Lemma 4.8. For any CQ and any I, 𝑅𝑆 (I) ≤
(
4(𝑛𝑃−1)
𝛽𝑒1−𝛽

)𝑛𝑃−1
𝑆𝑆 (I).

In Appendix C, we give an example on which the elastic sensi-

tivity 𝐸𝑆 (·) [22], which is the only known DP mechanism for CQs

with self-joins, is asymptotically larger than 𝐺𝑆 . This means that

𝐸𝑆 (·) is not even worst-case optimal.

5 CQs WITH PREDICATES

A CQ with predicates (CQP) has the form

𝑞 := 𝜎𝑃1 (y1)∧···∧𝑃𝜅 (y𝜅 ) (𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛)),

where each 𝑃 𝑗 : dom(y𝑗 ) → {True, False} is a computable function

for some y𝑗 ⊆ 𝑣𝑎𝑟 (𝑞) = x1 ∪ · · · ∪ x𝑛 . By a slight abuse of notation,

we also use 𝑃 (y) to denote the (possibly infinite) relation {𝑡 ∈
dom(y) | 𝑃 (𝑡)}. This way, a CQP can be written as a normal CQ:

𝑞 := 𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛) Z 𝑃1 (y1) Z · · · Z 𝑃𝜅 (y𝜅 ) . (17)

Note that the 𝑃 𝑗 (y𝑗 )’s are all public, since they only depend on the

query and the domain, not on the instance.

The current approach to dealingwith a CQP under DP [13, 22, 26]

is to evaluate the CQP as given, but compute the sensitivity without

considering the predicates. This yields a valid DP mechanism, but

loses optimality. To see this, just consider an extreme case where a

predicate always returns False. Then the query becomes a trivial

query and the optimal (under any notion of optimality) mechanism

is M(·) ≡ 0, i.e., Err(M, I) = 0 for all I, but the sensitivity of the

query without the predicate must be nonzero.

In this section, we show how to extend 𝑅𝑆 (·) to CQPs while

preserving its 𝑂 (1)-neighborhood optimality. The idea is simple,

we just consider a CQP as a CQ as defined in (17), so optimality

immediately follows from Theorem 1.2. The issue, however, is how

to compute 𝑅𝑆 (·) when some relations are infinite. In Section 5.1

we first give a general algorithm, which may take exponential

time, to compute 𝑅𝑆 (·) for arbitrary predicates under the technical

condition of Theorem 1.3; in Section 5.2 we give a polynomial-time

algorithm for the case where all the predicates are inequalities or

comparisons, which proves the second part of Theorem 1.3.

5.1 General Predicates

The first observation is that, when the 𝑃 (y𝑗 )’s are arbitrary, no

optimal (under any notion of optimality) DP mechanisms for CQPs

exist (see Appendix D for a proof). However, the situation is not

hopeless. Below we show how to compute 𝑅𝑆 (I) for any CQP if

for any z ⊆ 𝑣𝑎𝑟 (𝑞), the satisfiability of 𝜑1 ∧ · · · ∧ 𝜑𝑆 is decidable,

where each 𝜑𝑖 is 𝑃 𝑗 (u𝑖 ) for any 𝑗 and u𝑖 is y𝑗 after replacing all

variables not in z by any constants. This is a very mild condition; in

fact, the entire literature on constraint satisfaction problems (CSPs)

is devoted to designing efficient algorithms for determining the

satisfiability of 𝜑1 ∧ · · · ∧ 𝜑𝑆 when the 𝜑𝑖 ’s take certain forms, and

finding a satisfying valuation for z, if one exists.

It suffices to show how to compute 𝑇𝐸 (I) for any 𝐸 ⊆ 𝑃𝑛 . Since

all the predicates correspond to public relations, the residual query

has the form

𝑞𝐸 = (Z𝑖∈𝐸 𝑅𝑖 (x𝑖 )) Z (Z𝑗 ∈[𝜅 ] 𝑃 𝑗 (y𝑗 )) .

We split the boundary variables as 𝜕𝑞𝐸 = 𝜕𝑞1
𝐸
∪ 𝜕𝑞2

𝐸
, where

𝜕𝑞1
𝐸
= {𝑥 | 𝑥 ∈ x𝑖 ∩ x𝑗 , 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐸},

and

𝜕𝑞2
𝐸
= {𝑥 | 𝑥 ∈ x𝑖 ∩ y𝑗 , 𝑖 ∈ 𝐸, 𝑗 ∈ [𝜅]} − 𝜕𝑞1

𝐸
.

Let

𝑞◦
𝐸
= (Z𝑖∈𝐸 𝑅𝑖 (x𝑖 ))

be the CQ part of 𝑞𝐸 .

Example 5.1. Figure 1 illustrates these concepts with the query

𝑞 =𝑅1 (𝑥1, 𝑥2, 𝑥3) Z 𝑅2 (𝑥3, 𝑥4, 𝑥5) Z 𝑅3 (𝑥5, 𝑥6, 𝑥7) Z 𝑅4 (𝑥1, 𝑥7, 𝑥8)
Z 𝑃1 (𝑥2, 𝑥4) Z 𝑃2 (𝑥2, 𝑥8) Z 𝑃3 (𝑥3, 𝑥7) Z 𝑃4 (𝑥4, 𝑥6),



Figure 1: 𝑞𝐸 , 𝑞
◦
𝐸
, 𝜕𝑞1

𝐸
and 𝜕𝑞2

𝐸
.

where we set 𝐸 = {1}.

The following observations about the boundary variables are

straightforward.

Lemma 5.2. For any CQP 𝑞 and any 𝐸 ⊆ [𝑛],
(1) 𝜕𝑞2

𝐸
⊆ y1 ∪ · · · ∪ y𝜅 ⊆ 𝜕𝑞2

𝐸
∪ 𝑣𝑎𝑟 (𝑞◦

𝐸
);

(2) 𝜕𝑞1
𝐸
⊆ 𝑣𝑎𝑟 (𝑞◦

𝐸
);

(3) 𝑣𝑎𝑟 (𝑞◦
𝐸
) ∩ 𝜕𝑞2

𝐸
= ∅.

Now, we look at how to compute 𝑇𝐸 (I):

Lemma 5.3.

𝑇𝐸 (I) = max
𝑡1∈𝜋𝜕𝑞1

𝐸

𝑞◦
𝐸
(I)

𝑡2∈dom(𝜕𝑞2
𝐸
)

���𝑞◦
𝐸
(I) Z (Z𝑗 ∈[𝜅 ] 𝑃 𝑗 (y𝑗 )) Z 𝑡1 Z 𝑡2

��� . (18)

Since |𝑞◦
𝐸
(I) | is bounded by 𝑂 (𝑁𝑛), the choices of 𝑡1 are limited.

The difficulty is that 𝑡2 ∈ dom(𝜕𝑞2
𝐸
) has infinitely many choices.

The idea is to flip the problem around. For any 𝐵 ⊆ 𝑞◦
𝐸
(I), we check

if there exist 𝑡1, 𝑡2 such that

|𝐵 Z (Z𝑗 ∈[𝜅 ] 𝑃 𝑗 (y𝑗 )) Z 𝑡1 Z 𝑡2 | = |𝐵 |. (19)

This is equivalent to checking if 𝑡𝐵 Z 𝑡1 Z 𝑡2 can pass all predicates

for every 𝑡𝐵 ∈ 𝐵. Since 𝜕𝑞1
𝐸
⊆ 𝑣𝑎𝑟 (𝑞◦

𝐸
), for each 𝑡𝐵 ∈ 𝐵, 𝑡1 must be

𝜋𝜕𝑞1
𝐸
𝑡𝐵 . Thus the problem boils down to deciding if∧

𝑡𝐵 ∈𝐵,𝑗 ∈[𝜅 ]
𝑃 𝑗 (y𝑗 (𝑡𝐵)) (20)

is satisfiable, where y𝑗 (𝑡𝐵) denotes y𝑗 after replacing its variables

by the corresponding constants if they appear in 𝑡𝐵 . Note that

free variables in (20) are z = 𝜕𝑞2
𝐸
. This is precisely the technical

condition we impose on the predicates. Finally, we enumerate all

𝐵, and return the maximum |𝐵 | for which (20) is satisfiable. This

proves the first part of Theorem 1.3. However, this algorithm runs

in exponential time since there are 2
|𝑞◦

𝐸
(I) |

= 2poly(𝑁 ) 𝐵’s that need
to be considered.

5.2 Comparison and Inequality Predicates

For CQPs where the predicates are inequalities or comparisons,

we may without loss of generality assume that the domain of all

attributes in y1 ∪ · · · ∪ y𝜅 is Z. We show in this subsection how

to reduce the running time of the algorithm to poly(𝑁 ) in this

case. Let 𝜌 = |𝜕𝑞2
𝐸
|. Then 𝑡2 takes values from Z

𝜌 . The key to an

efficient algorithm is thus to reduce this domain, and then apply

the algorithm in [3, 21].

To reduce the domain of 𝑡2, one natural idea is to only consider

the active domain [1]. Let Z∗ (I) be the set of integers appearing
in I on attributes y1 ∪ · · · ∪ y𝜅 , and let Z∗ (𝑞) be the set of inte-

gers appearing in the predicates of 𝑞. Then the active domain is

Z
∗ (𝑞, I) = Z

∗ (𝑞) ∪ Z∗ (I) ∪ {−∞,∞}. However, only considering

𝑡2 ∈ (Z∗ (𝑞, I))𝜌 is not enough; Appendix E gives an example show-

ing that 𝑇𝐸 (I) may attain its maximum at some value between two

consecutive values in the active domain. Thus, we augment the ac-

tive domain to Z+ (𝑞, I), as follows. Let Z∗ (𝑞, I, 𝑖) be the 𝑖th elements

in Z∗ (𝑞, I) in order. Z+ (𝑞, I) includes all elements in Z∗ (𝑞, I, 𝑖), plus
2𝜅 arbitrary distinct elements between Z∗ (𝑞, I, 𝑖) and Z∗ (𝑞, I, 𝑖 + 1)
for all 𝑖 ∈ [|Z∗ (𝑞, I) | −1]. If there are less than 2𝜅 elements between

Z
∗ (𝑞, I, 𝑖) and Z∗ (𝑞, I, 𝑖 + 1), all elements in between are included.

We show that it suffices to use Z+ (𝑞, I) as the domain of 𝑡2.

Lemma 5.4. When all the predicates are inequalities and compar-

isons,

𝑇𝐸 (I) = max
𝑡1∈𝜋𝜕𝑞1

𝐸

𝑞◦
𝐸
(I)

𝑡2∈(Z+ (𝑞,I))𝜌

���𝑞◦
𝐸
(I) Z (Z𝑗 ∈[𝜅 ] 𝑃 𝑗 (y𝑗 )) Z 𝑡1 Z 𝑡2

��� . (21)

Since Z+ (𝑞, I) = 𝑂 (𝑁 + 𝜅) = 𝑂 (𝑁 ), we can simply materialize

each 𝑃 𝑗 (y𝑗 ) into {𝑡 ∈ (Z+ (𝑞, I))2 | 𝑃 𝑗 (𝑡)}, which has size 𝑂 (𝑁 2).
Thus, evaluating (21) using the algorithm in [3, 21] also takes poly-

nomial time, and we have concluded the proof of the second part

of Theorem 1.3.

As a practical improvement, observe that if a variable 𝑦 ∈ 𝜕𝑞2
𝐸

is only involved in inequality predicates, then it can always take a

value such that all these inequalities hold. Thus, there is no need

to materialize these predicates. In particular, we arrive at a simpler

formula for computing 𝑇𝐸 (I) when all predicates are inequalities,

e.g., graph pattern counting queries.

Corollary 5.5. For a CQP where all predicates are inequalities,

𝑇𝐸 (I) = max
𝑡1∈dom(𝜕𝑞1

𝐸
)

���𝑞◦
𝐸
(I) Z (Z𝑗 ∈[𝜅 ],y𝑗 ⊆𝑣𝑎𝑟 (𝑞◦

𝐸
) 𝑃 𝑗 (y𝑗 )) Z 𝑡1

��� .
To compute𝑇𝐸 (I), we compute𝑞◦

𝐸
(I), apply all predicates 𝑃 𝑗 (y𝑗 ))

for 𝑗 ∈ [𝜅], y𝑗 ⊆ 𝑣𝑎𝑟 (𝑞◦
𝐸
)), do a count group-by 𝜕𝑞1

𝐸
, and return

the maximum count.



6 NON-FULL CQs

A non-full CQ has the form

𝑞 := 𝜋o (𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛)) ,
where o ⊆ x denotes the set of output variables.

Similarly, the current approach [13, 22, 26] simply computes

the noise ignoring the projection. This performs badly as the pro-

jection usually reduces the true count significantly, so the noise

becomes relatively much larger. In this section, we show how to

add projection into the residual sensitivity framework.

For any 𝐸 ⊆ [𝑛], define
o𝐸 = o ∩ (∪𝑖∈𝐸x𝑖 ) .

Note that o = o[𝑛] .
Given 𝐸 ⊆ [𝑛], the residual query with projection is

𝑞𝐸 := 𝜋o𝐸 (Z𝑖∈𝐸 𝑅𝑖 (x𝑖 )) .
The boundary variables 𝜕𝑞𝐸 = {𝑥 |𝑥 ∈ x𝑖 ∩ x𝑗 , 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐸}

remain unchanged, but the maximum boundary 𝑇𝐸 (I) and witness

𝑡𝐸 (I) are modified as

𝑇𝐸 (I) = max
𝑡 ∈dom(𝜕𝑞𝐸 )

|𝜋o𝐸 (Z𝑖∈𝐸 𝐼𝑖 (x𝑖 ) Z 𝑡) |

and

𝑡𝐸 (I) = argmax
𝑡 ∈dom(𝜕𝑞𝐸 )

|𝜋o𝐸 (Z𝑖∈𝐸 𝐼𝑖 (x𝑖 ) Z 𝑡) |.

If o𝐸 = ∅, there is always a 𝑡 ∈ dom(𝜕𝑞𝐸 ) such that (Z𝑖∈𝐸 𝐼𝑖 (x𝑖 )) Z
𝑡 ≠ ∅, which becomes {⟨⟩} after the projection, so 𝑇𝐸 (I) = 1.

Note that these definitions degenerate into the full-CQ case when

o = 𝑣𝑎𝑟 (𝑞).
We as before compute 𝐿𝑆

(𝑘) (I) by (11), (12), and then 𝑅𝑆 (I) by
(13), but using the new definition of 𝑇𝐸 (I) with projection. Below

we show that 𝑅𝑆 (·) is still a valid 𝜀-DP mechanism and it can be

computed efficiently. Recall that the validity of 𝑅𝑆 (·) is based on

(1) 𝐿𝑆
(𝑘) (·) is an upper bound of 𝐿𝑆 (𝑘) (·); and (2) 𝐿𝑆 (𝑘) (·) satisfies

the smoothness property (8). The first depends on Lemma 3.2 and

Theorem 3.5 while the second depends on Lemma 3.2. One can

verify that, as long as Lemma 3.2 and Theorem 3.5 hold for non-full

CQs, the rest of the validity proof will go through. We thus focus

on verifying Lemma 3.2 and Theorem 3.5 on non-full CQs.

Lemma 6.1. For non-full CQs, Lemma 3.1, and 3.2 still hold.

Theorem 6.2. For non-full CQs, Theorem 3.5 still holds.

In terms of computation, we observe that 𝑇𝐸 (I) with projection

is still an AJAR/FAQ query, but now with 3 semiring aggregations

(max, +,max), so it can still be computed by the algorithm in [3, 21]

in polynomial time. Furthermore, one can verify that Lemma 3.9

still holds non-full queries, so it takes 𝑂 (1) time to compute 𝑅𝑆 (·)
after all the 𝑇𝐸 (I)’s have been computed.

Theorem 6.3. For any non-full CQ 𝑞, 𝑅𝑆 (·) is an 𝜀-DP mechanism

that can be computed in poly(𝑁 ) time.

Non-full CQs with predicates can be handled by combining the

methods described in this and Section 5. More precisely, for a non-

full CQ with general predicates, we add 𝜋o𝐸 on both sides of (19);

if the predicates are inequalities and comparisons, we materialize

each predicate and then apply the algorithm above. The resulting

𝑅𝑆 (·) is still 𝜀-DP, and can be much smaller than that on the full

CQ. However, the lower bound Theorem 4.7 no longer holds for

non-full CQs, thus 𝑅𝑆 (·) is not 𝑂 (1)-neighborhood optimal. We

complement this with the following negative result.

Theorem 6.4. For any 𝜀 > 0, any (𝑟, 𝑐)-neighborhood optimal

𝜀-DP mechanismM(·) for the query 𝑞 := 𝜋𝑥1 (𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2)),
where 𝑅1 is the private relation, must have 𝑐𝑟2 ≥ 𝑁 .

Thus, if one still desires 𝑐 = 𝑂 (1), 𝑟 must be at least Ω(
√
𝑁 ). We

also remark that this negative result holds even under relaxed DP,

since only substitutions are used when defining the neighborhoods

in the proof.

7 PRACTICAL PERFORMANCE

Besides its theoretical optimality, our DP mechanism also enjoys

excellent practical performance compared with prior work. Some

preliminary experimental results are provided in Appendix F, which

show that the accuracy of 𝑅𝑆 (·) is very close to that of 𝑆𝑆 (·) with
order-of-magnitude reduction in computational cost. In fact, for

most queries, 𝑆𝑆 (·) is not even known to be polynomially com-

putable. For these queries, 𝐸𝑆 (·) is the only known DP mechanism,

and 𝑅𝑆 (·) offers drastic improvement in terms of utility. Finally, it is

worth pointing out that our mechanism just requires the evaluation

of a number of residual queries, whose results are then combined

using a certain formula. Hence, it can be implemented in a relational

DBMS easily (e.g., using PL/SQL or a plug-in).
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A ANOTHER EXAMPLE ON COMPUTING GS

Example A.1. Consider the path-4 query

𝑞 = Edge(𝑥1, 𝑥2) Z Edge(𝑥2, 𝑥3) Z Edge(𝑥3, 𝑥4) Z Edge(𝑥4, 𝑥5) .

We have

𝐺𝑆 ≤AGM(Edge2 (𝑥3) Z Edge3 (𝑥3, 𝑥4) Z Edge4 (𝑥4, 𝑥5))
+ AGM(Edge1 (𝑥1) Z Edge3 (𝑥4) Z Edge4 (𝑥4, 𝑥5))
+ AGM(Edge1 (𝑥1, 𝑥2) Z Edge2 (𝑥2) Z Edge4 (𝑥5))
+ · · ·

=𝑂 (𝑁 2) .

B COMPARISONWITH THE NEIGHBORHOOD

LOWER BOUND IN [4]

The 𝑟 -neighborhood lower bound by Asi and Duchi (Lemma C.1

in [4]), when specialized to the 1-dimensional case, is as follows.

Given a query 𝑞, for any 𝑘 and any instance I, define

𝜔 (I, 𝑟 ) := max
I′,𝑑 (I,I′) ≤𝑘

|𝑞(I) − 𝑞(I′) |.

If {𝑞(I′) : 𝑑 (I, I′) ≤ 𝑘} contains an interval of length 𝑐 · 𝜔 (I, 𝑘) for
some 𝑐 > 0 and all 𝑘 ≤ 𝑟 , then

max
I′:𝑑 (I,I′) ≤𝑟

Err(M ′, I′) ≥ 𝑐

16
max
𝑘≤𝑟

𝑒−𝜀𝑘𝜔 (I, 𝑘). (22)

Our lower bound, which does not require any condition on 𝑞, is

max
I′:𝑑 (I,I′) ≤𝑟

Err(M ′, I′) ≥ 1

2
√
1 + 𝑒𝜀

· 𝐿𝑆 (𝑟−1) (I) . (23)

Next we compare (22) and (23). By the definition of 𝐿𝑆 (𝑘) (I) and
𝜔 (I, 𝑘), we have

𝜔 (I, 𝑘) ≤
∑︁

0≤𝑘′≤𝑘−1
𝐿𝑆 (𝑘

′) (I) ≤ 𝑘 · 𝐿𝑆 (𝑘−1) (I) .

Then,

(22) ≤ 𝑐

16
max
𝑘≤𝑟

(𝑒−𝜀𝑘 ·𝑘 ·𝐿𝑆 (𝑘−1) (I)) ≤ 𝑐

16
·max
𝑘≤𝑟

(𝑘𝑒−𝜀𝑘 ) ·𝐿𝑆 (𝑟−1) (I),

which is asymptotically upper bounded by (23) as long as

𝑘𝑒−𝜀𝑘 ≤ 𝑂

(
1

√
1 + 𝑒𝜀

)
,

which is true when 𝜀 = 𝑂 (1).
On the other hand, the gap between (22) and (23) can be poly(𝑁 ).

Consider theMedian query with a constant 𝜀. Let I consist of log𝑁

copies of 0.5, while the remaining entries are half 0 and half 1. For

any 𝑟 ≥ log𝑁 , our lower bound (23) is 𝐿𝑆 (𝑟 ) (I) = 0.5, while their

lower bound (22) is

max
𝑘≤𝑟

𝑒−𝜀𝑘𝜔 (I, 𝑘) ≤ 𝑒−𝜀 log𝑁 · 0.5 = 1/𝑁Ω (1) .

Nevertheless, Lemma C.1 in [4] yields better lower bounds for

high-dimensional queries.



C NON-OPTIMALITY OF ELASTIC

SENSITIVITY

Elastic sensitivity [22], denoted as 𝐸𝑆 (·), is the only other DP

mechanism for CQs with self-joins. It is also a version of 𝑆𝑆 (·),
but defined using a different 𝐿𝑆

(𝑘) (·). For 𝑖 ∈ [𝑛], x ⊆ x𝑖 , let

𝑚𝑓 (x, 𝐼𝑖 (x𝑖 )) be the maximum frequency in 𝐼𝑖 (x𝑖 ) on attributes x,

i.e.,𝑚𝑓 (x, 𝐼𝑖 (x𝑖 )) = max𝑡 ∈dom(x) |𝐼𝑖 (x𝑖 ) ⋉ 𝑡 |. For 𝐸𝑆 (·), 𝐿𝑆
(𝑘) (·) is

defined as a product of a number of maximum frequencies; please

see [22] for the exact formula.

We give an example below showing that 𝐸𝑆 (I) can be asymptot-

ically larger than 𝐺𝑆 . This means that 𝐸𝑆 (·) is not even worst-case

optimal (i.e., not 𝑁 -neighborhood optimal).

Example C.1. Consider the path-4 query:

𝑞 = Edge(𝑥1, 𝑥2) Z Edge(𝑥2, 𝑥3) Z Edge(𝑥3, 𝑥4) Z Edge(𝑥4, 𝑥5) .
We showed that 𝐺𝑆 = 𝑂 (𝑁 2) in Example A.1. Now consider the

following instance I on Edge relation (assume the domain is N):

I(Edge) ={(0, 1), (0, 2), . . . , (0, 𝑁
2
),

(𝑁
2
+ 1, 𝑁 + 1), . . . , (𝑁, 𝑁 + 1)}.

Note that𝑚𝑓 (𝑥𝑖 , 𝐸 (𝑥𝑖 , 𝑥𝑖+1)) = 𝑚𝑓 (𝑥𝑖+1, 𝐸 (𝑥𝑖 , 𝑥𝑖+1)) = 𝑁
2 for 𝑖 =

1, 2, 3, 4. By the formula in [22], we have 𝐿𝑆
(0) (I) = 4( 𝑁2 )3 =

𝑁 3

2 ,

thus

𝐸𝑆 (I) = max
𝑘≥0

𝑒−𝛽𝑘𝐿𝑆
(𝑘) (I) ≥ 𝐿𝑆

(0) (I) = Ω(𝑁 3) .

D NONEXISTENCE OF OPTIMAL DP

MECHANISMS FOR CQs WITH ARBITRARY

PREDICATES

We show that, when the 𝑃 (y𝑗 )’s are arbitrary (but still computable),

it is undecidable to check if a given CQP is a trivial query. Recall that

if the query is trivial, the optimal DP mechanismM is deterministic

and achieves Err(M, I) = 0 for all I; otherwise, the mechanismmust

be probabilistic. Since one cannot distinguish between the two cases,

optimal (under any notion of optimality) DP mechanisms do not

exist.

For the undecidability result, just consider the simple CQP 𝑞𝑀 =

𝑅(𝑥) Z 𝑃𝑀 (𝑥), where 𝑃𝑀 (𝑥) = True iff the Turing machine𝑀 ter-

minates in less than 𝑥 steps. Note that 𝑃𝑀 (𝑥) is decidable. However,
it is easy to see that |𝑞𝑀 (·) | ≡ 0 iff𝑀 does not halt.

E INCORRECTNESS OF USING ACTIVE

DOMAIN TO COMPUTE 𝑇𝐸 (·) FOR CQs

WITH COMPARISON AND INEQUALITY

PREDICATES

Example E.1. Following Example 5.1, suppose 𝑃1 (𝑥2, 𝑥4) is 𝑥2 >

𝑥4, 𝑃2 (𝑥2, 𝑥8) is 𝑥8 > 𝑥2, while ignoring 𝑃3 and 𝑃4. Consider the

following instance I:

𝑅1 (𝑥1, 𝑥2, 𝑥3) = {(0, 3, 0), (0, 5, 0)},
𝑅2 (𝑥3, 𝑥4, 𝑥5) = {(0, 1, 0), (0, 2, 0), (0, 3, 0)},
𝑅3 (𝑥5, 𝑥6, 𝑥7) = {(0, 0, 0)},
𝑅4 (𝑥7, 𝑥8, 𝑥1) = {(0, 5, 0), (0, 6, 0), (0, 7, 0)}.

For 𝐸 = {1}, 𝑇𝐸 (I) attains its maximum at 𝑥2 = 4, which is not

included in Z∗ (𝑞, I).

Figure 2: The join structure of queries.

F EXPERIMENTS

Our analysis in Section 4 shows that 𝑅𝑆 (·) is at most a constant-

factor larger than 𝑆𝑆 (·), both of which are 𝑂 (1)-neighborhood
optimal. At the same time, 𝐸𝑆 (·) does not have any optimal guaran-

tee. In this section, we conduct an experimental study on the actual

values of these sensitivities on some sub-graph counting queries

over real-world graph data. Note that since the subsequent noise

generation process is the same for all three sensitivity measures, it

suffices to only compare the sensitivities instead of the ℓ2-errors.

F.1 Setup

Datasets. Weuse five graph network datasets:CondMat,AstroPh,

HepPh,HepTh, andGrQc, which contain 23133, 18772, 12008, 9877,

5242 nodes and 186878, 396100, 236978, 51946, 28980 edges, respec-

tively. These five datasets describe the collaboration between the au-

thors on arXiv in Condensed Matter, Physics, High Energy Physics,

High Energy Physics Theory and General Relativity categories. The

datasets are obtained from SNAP [27]. The graphs are directed and

we store all edges in a relation Edge(From, To).

Queries. We experimented with 4 pattern counting queries as

shown in Figure 2. We also added all inequalities between every two

distinct variables. Since polynomial-time algorithms for computing

𝑆𝑆 (·) are known only for triangle counting [29] and 𝑡-star counting

[23], the results on 𝑆𝑆 (·) are available only on 𝑞△ and 𝑞3∗ Note that
the count returned by the graph pattern counting CQ is actually

3 times (resp. 6 times) the number of triangles and 3-stars in the

graph, so we need to scale down 𝑆𝑆 (·) and 𝐸𝑆 (·) accordingly.

F.2 Experimental Results

The experiments were conducted on a Linux server equipped with a

48-core 2.2GHz Intel Xeon CPU and 512GB of memory. For running



Dataset CondMat AstroPh HepPh HepTh GrQc

𝑞△

Query result 1,040,166 8,108,646 20,150,994 170,034 289,560

Smooth sensitivity (𝑆𝑆)
Value 489 1,050 1,350 102 183

Running Times(s) 895 615 261 171 50.7

Residual Sensitivity (𝑅𝑆)
Value 493 1,054 1,354 205 222

Running Times(s) 6.17 24 24.7 1.37 1.05

Elastic Sensitivity (𝐸𝑆)
Value 234,361 763,561 724,717 12,871 19,927

Running Times(s) 3.5 10.8 13 0.874 0.7

𝑅𝑆 vs 𝑆𝑆
Value 𝑅𝑆/𝑆𝑆 1.01× 1.00× 1.00× 2.01× 1.21×

Running Times 𝑆𝑆/𝑅𝑆 145× 25.6× 10.6× 124× 48.3×

𝑅𝑆 vs 𝐸𝑆
Value 𝐸𝑆/𝑅𝑆 475× 724× 535× 62.8× 89.8 ×

Running Times 𝑅𝑆/𝐸𝑆 1.76× 2.22× 1.9× 1.57× 1.4×

𝑞3∗

Query result 222,690,360 3,274,065,312 7,661,801,994 12,590,010 14,896,428

Smooth sensitivity (𝑆𝑆)
Value 232,686 760,536 721,770 12,480 19,440

Running Times(s) 3.09 3.08 2.47 1.92 1.52

Residual Sensitivity (𝑅𝑆)
Value 233,524 762,049 723,244 12,676 19,684

Running Times(s) 0.463 0.4 0.462 0.374 0.316

Elastic Sensitivity (𝐸𝑆)
Value 234,361 763,561 724,717 12,871 19,927

Running Times(s) 0.314 0.272 0.348 0.234 0.197

𝑅𝑆 vs 𝑆𝑆
Value 𝑅𝑆/𝑆𝑆 1.00× 1.00× 1.00× 1.02× 1.01×

Running Times 𝑆𝑆/𝑅𝑆 6.67× 7.69× 5.34× 5.13× 4.83×

𝑅𝑆 vs 𝐸𝑆
Value 𝐸𝑆/𝑅𝑆 1.00× 1.00× 1.00× 1.02× 1.01×

Running Times 𝑅𝑆/𝐸𝑆 1.47× 1.47× 1.33× 1.6× 1.6×

𝑞□

Query result 12,043,064 359,332,392 3,894,935,680 1,912,648 8,437,784

Residual Sensitivity (𝑅𝑆)
Value 12,575 72,832 313,976 7,089 8,927

Running Times(s) 41.3 296 120 6.49 2.17

Elastic Sensitivity (𝐸𝑆)
Value 87,338,719 513,622,369 474,931,535 1,124,111 2,165,455

Running Times(s) 2.62× 12.5× 11.5× 0.651× 0.388×

𝑅𝑆 vs 𝐸𝑆
Value 𝐸𝑆/𝑅𝑆 6,950× 7,050× 1,510× 159× 243×

Running Times 𝑅𝑆/𝐸𝑆 15.8× 23.8× 10.4× 9.97× 5.59×

𝑞2△

Query result 9,398,600 289,422,860 3,747,561,340 1,716,052 8,165,996

Residual Sensitivity (𝑅𝑆)
Value 308,937 361,551 515,616 279,488 285,394

Running Times(s) 20.8 84.8 118 4.37 4.6

Elastic Sensitivity (𝐸𝑆)
Value 30,514,062,601 323,903,424,601 291,786,363,781 92,041,951 220,614,031

Running Times(s) 3.79 9.57 13.2 0.75 0.669

𝑅𝑆 vs 𝐸𝑆
Value 𝐸𝑆/𝑅𝑆 98,800× 896,000× 566,000× 329× 773×

Running Times 𝑅𝑆/𝐸𝑆 5.49× 8.86× 8.92× 5.77× 6.87×
Table 1: Comparison between smooth sensitivity, residual sensitivity and elastic sensitivity when 𝛽 = 0.1.

time, we repeated each query 30 times and took the average. Table 1

gives the results for the setting 𝛽 = 0.1, which corresponds to 𝜀 = 1.

Let’s first compare 𝑅𝑆 (·) and 𝑆𝑆 (·). We see that 𝑅𝑆 (·) is only
2% larger than 𝑆𝑆 (·) in most cases, and the largest difference is 2

times for 𝑞△ on the HepTh dataset. This shows that the constant

factor derived in Lemma 4.8 is actually quite loose, and the practical

utility of 𝑅𝑆 (·) is close to that of 𝑆𝑆 (·). On the other hand, 𝑆𝑆 (·) is
much more computational costly: the time for computing 𝑆𝑆 (·) is
4.83 ∼ 145 times that of 𝑅𝑆 (·).

For the comparison between 𝑅𝑆 (·) and 𝐸𝑆 (·), for 𝑞△ , 𝑞3∗ and 𝑞2△ ,
𝐸𝑆 (·) is much larger than 𝑅𝑆 (·). On 𝑞3∗, all sensitivity measures are

very close. This is because, for this query, the query result solely

depends on the degrees (namely, this is an easy query), and so do

all three sensitivities. Actually, the formulation of 𝐸𝑆 (·) essentially
only makes use of the degree information, which can be verified by

the fact that its values on 𝑞△ and 𝑞3∗ are equal. On the other hand,

𝑅𝑆 (·) and 𝐸𝑆 (·) exploits the actual structure of the graph.

We also tested with different values of 𝛽 . The results in Figure 3

show this does not affect the sensitivity measures much, except for

very small values of 𝛽 (i.e., the high privacy regime).



Figure 3: Smooth sensitivity, residual sensitivity and elastic sensitivity with different 𝛽 under different data and queries.


