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ABSTRACT
In their classical 1993 paper [1] Chaudhuri and Vardi notice that
some fundamental database theory results and techniques fail to
survive when we try to see query answers as bags (multisets) of
tuples rather than as sets of tuples.

But disappointingly, almost 30 years after [1], the bag-semantics
based database theory is still in the infancy. We do not even know
whether conjunctive query containment is decidable. And this is not
due to lack of interest, but because, in themultiset world, everything
suddenly gets discouragingly complicated.

In this paper we try to re-examine, in the bag semantics sce-
nario, the query determinacy problem, which has recently been
intensively studied in the set semantics scenario. We show that
query determinacy (under bag semantics) is decidable for boolean
conjunctive queries and undecidable for unions of such queries (in
contrast to the set semantics scenario, where the UCQ case remains
decidable even for unary queries). We also show that – surprisingly
– for path queries determinacy under bag semantics coincides with
determinacy under set semantics (and thus it is decidable).

1 INTRODUCTION
1.1 The context
This paper is about the query determinacy problem. So let us maybe
start with a definition:

Definition 1. • For a query 𝑞 and a finite set of queries𝑉 , we say
that 𝑉 determines 𝑞 (denoted as 𝑉 −→ 𝑞) if the implication:

(∀𝑣 ∈ 𝑉 𝑣 (𝐷) = 𝑣 (𝐷 ′)) =⇒ 𝑞(𝐷) = 𝑞(𝐷 ′) (♠)

holds for every pair 𝐷, 𝐷 ′ of finite1 structures2.
• An instance of the determinacy problem, for a query language

L, consists of a query 𝑞 ∈ L and a finite set of views 𝑉 ⊆ L. We ask
whether 𝑉 −→ 𝑞.

Many different variants of the determinacy problem, for various
query languages, and (when applicable) various arities of queries,
have been studied in the last three decades. And the point has
been reached, where we have a pretty complete classification of the
variants, in the sense that we know which of them are decidable
(few) and which are not (most).

So, for example, as observed in [2], the problem is decidable if
the queries in 𝑉 are unary UCQs3 (unions of conjunctive queries)
and 𝑞 is any UCQ. Let us outline how one can prove this:

As noticed in he paper [4], 𝑉 −→ 𝑞 holds if and only if:
(*) 𝐶ℎ𝑎𝑠𝑒 (𝑇𝐺𝐷 (𝑉 ), 𝑔𝑟𝑒𝑒𝑛(𝑞)) |= 𝑟𝑒𝑑 (𝑞)

where 𝑔𝑟𝑒𝑒𝑛(𝑞) and 𝑟𝑒𝑑 (𝑞) are some structures that can easily be

1Both “finite” and “unrestricted” versions of this problem were considered, but in this
paper let us concentrate on the finite one, which is the only one to make sense in the
multiset scenario.
2Where 𝑣 (𝐷) is the result of applying 𝑣 to 𝐷 .
3“Unary” means that they have one free variable. Similar result for unary conjunctive
queries was proven in [3].

constructed from 𝑞 and 𝑇𝐺𝐷 (𝑉 ) is some set of Tuple Generat-
ing Dependencies which can easily be constructed from 𝑉 , and
where 𝐶ℎ𝑎𝑠𝑒 (𝑇𝐺𝐷 (𝑉 ), 𝑔𝑟𝑒𝑒𝑛(𝑞)) is a result of applying the TGDs
from 𝑇𝐺𝐷 (𝑉 ) to 𝑔𝑟𝑒𝑒𝑛(𝑞) until the fixpoint is reached. Then, it is
easy to see that if the queries from 𝑉 are unary then the TGDs in
𝑇𝐺𝐷 (𝑉 ) are frontier one. And query entailment4 is decidable for
sets of such TGDs [5]. Then, if one is unhappy with the fact that
𝐶ℎ𝑎𝑠𝑒 (𝑇𝐺𝐷 (𝑉 ), 𝑔𝑟𝑒𝑒𝑛(𝑞)) is potentially infinite, leading to infinite
𝐷 and 𝐷 ′, the finite controlabillity result for frontier-one TGDs
(implied by [6]) can be used to replace 𝐶ℎ𝑎𝑠𝑒 (𝑇𝐺𝐷 (𝑉 ), 𝑔𝑟𝑒𝑒𝑛(𝑞))
with a finite structure with the desired properties.

We do not really want our readers to understand this complicated
reasoning (unless they already do). We only outline it in order to
show that database theory has reached the point where it is no
longer merely a set5 of results about the fundamental notions and
phenomena, but a real scientific theory, able to explain and interpret
facts which are apparently totally unrelated: we do not believe that
the authors of [5] and [6] ever expected their results to be used in
a decidability proof of a variant of the determinacy problem.

Unfortunately, this beautiful palace of database theory, both the
results and the tools, collapses like a house of cards when we try to
be slightly more realistic and assume that the queries do not return
sets of tuples, but they returnmultisets (or bags) of tuples.

And this is not a new observation. It was already spotted in [1],
where the authors try to see what happens to the most important
database theory fundamental, query containment, if bag semantics
is assumed, concluding that the “techniques from the set-theoretic
setting do not carry over to the bag-theoretic setting”.

The paper [1] was understood, at least by part of the commu-
nity, as a call “for a re-examination of the foundations of databases
where the fundamental concepts and algorithmic problems are inves-
tigated under bag semantics, instead of set semantics” (see [7], page
2). But only rather limited progress has been achieved. Even the
decidability of conjunctive query containment problem remains
open in the multiset world. And this is in spite of a considerable
effort, which is reflected by a list of publications.

First, in 1995 [8] show that containment of UCQs, which is in
NP when the classical (set) semantics is considered, becomes un-
decidable for the multiset semantics. Then (among other papers)
there are [9] where it is shown that containment is undecidable
if inequalities are allowed in conjunctive queries and [10] which
shows decidability (and establishes complexity) for several simple
subcases. And then, finally, there is a paper [11], where query con-
tainment is in an elegant way related to the information-theoretic
notion of entropy, and it is shown that decidability of even a quite
limited subproblem of query containment would imply a solution
to a long standing open problem in information theory.

4That is, condition (*) above.
5Or maybe “multiset” would be a better term in this context, as some of the results
were produced more than once.
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Apart from the line of research focused on the query contain-
ment problem, the number of such re-examination attempts, while
growing, remains low. And this is – we understand – not because
of lack of interest, but because (as the containment problem illus-
trates) everything suddenly gets very complicated when multiset
semantics is assumed. One example we know about is the recent
paper [7] where the authors re-examine the old result from [12],
that a database schema is acyclic if and only if the local-to-global
consistency property for relations over that schema holds.

1.2 Our contribution (and the future work).
In this paper we attempt a re-examination, under multiset semantics,
of the query determinacy problem.

This means that we now read the equalities in formula ♠ as
equalities of multisets. To distinguish we will use the symbol set−−−−→
to denote the old style set-semantics determinacy and bag−−−−→ for
determinacy under multi-set semantics.

The first question one naturally needs to ask here is whether
bag−−−−→ is really a different notion than set−−−−→. And, if they are indeed

different, the second question is: does at least one implication hold?
Like in the case of query containment, where, as noticed already
in [1], containment under multiset semantics is a strictly stronger
property than containment under set semantics?

To show that the two versions are really different let us use:

Example 2. Let 𝑞 be the query ∃𝑢,𝑦, 𝑧 𝑃 (𝑢, x), 𝑅(x, 𝑦), 𝑆 (𝑦, 𝑧) and
let 𝑉 consist of two conjunctive queries:

∃𝑢,𝑦 𝑃 (𝑢, x), 𝑅(x, 𝑦) ∃𝑦, 𝑧 𝑅(x, 𝑦), 𝑆 (𝑦, 𝑧)

Then is is easy to see that 𝑉 set−−−−→ 𝑞 but 𝑉 \bag−−−−→ 𝑞.

Regarding the second question notice that while equality of𝜓 (𝐷)
and 𝜓 (𝐷 ′) (for some query 𝜓 ) under multiset semantics implies
that they are also equal under set semantics, the formula ♠ has both
positive and negative occurrence of equality of the answer sets. So
it is not obvious at all that multiset determinacy always implies
determinacy in the set semantics world. And indeed:

Example 3. Let 𝑞 be the query ∃𝑥 𝑅(𝑥) and let 𝑉 consist of two
queries:

𝑣1 = ∃𝑥 𝑃 (𝑥) 𝑣2 = ∃𝑥 𝑃 (𝑥) ∨ ∃𝑥 𝑅(𝑥)

Then it is easy to see that 𝑉 \set−−−−→ 𝑞. But under the multiset
semantics for each 𝐷 we have 𝑞(𝐷) = 𝑣2 (𝐷) − 𝑣1 (𝐷) (since we
consider boolean queries here, the answers are natural numbers),
which implies that 𝑉 bag−−−−→ 𝑞.

Can such example be constructed for conjunctive queries rather
than UCQs?We do not know. We conjecture that the answer is “no”,
but proving it will probably be hard. What we can show (and we
find it a bit surprising, because the situations where set-semantics
based notions coincide with their multiset-semantics counterparts
seem to be rare) is:

Theorem 1. If 𝑉 is a set of path queries, and 𝑞 is a path query6

then 𝑉 set−−−−→ 𝑞 if and only if 𝑉 bag−−−−→ 𝑞.

6For a definition of path queries see Section 3

Determinacy of path queries (under the set semantics) is one of
the few decidable cases [13], and, as Theorem 1 implies, it remains
decidable in the multiset semantics world. For the proof of Theorem
1 see Section 3. Notice also that the queries from Example 2 are not
far from being path queries, but still, for some reason, the thesis of
Theorem 1 does not hold for them.

But the main focus of this paper is on understanding query
determinacy in the case of boolean queries. We first present:

Theorem 2. The problem whether, for a set𝑉 of boolean UCQs and
for another boolean UCQ 𝑞, it is true that 𝑉 bag−−−−→ 𝑞, is undecidable.

This is in stark contrast to the situation in the set semantics
world where, as we already mentioned in Section 1.1, determinacy
is decidable even for unary UCQs, not just boolean. But the proof of
Theorem 2 is not hard. In order to show it, it was enough to notice
that the “𝑝1 ∨ 𝑝2 trick” from [14] (or the “cold-hot” trick from [2])
can be safely used in the multiset semantics world. And then to
reuse the Hilbert 10th problem encoding from [8].

Finally, our main technical contribution is:

Theorem 3. The problem whether, for a set 𝑉 of boolean CQs and
for another boolean CQ 𝑞, it is true that 𝑉 bag−−−−→ 𝑞, is decidable.

The proof of Theorem 3 is presented in Sections 4-7. A corollary
from the proof of Theorem 3 is that for boolean conjunctive queries

bag−−−−→ is a strictly stronger property than set−−−−→.

Future work. The natural open question we leave is the decidabil-
ity status of the CQ determinacy for the multiset semantics, that is
of the problem whether, for a set𝑉 of CQs (with free variables) and
for another CQ 𝑞, it is true that 𝑉 bag−−−−→ 𝑞. The encoding method
from the proof of Theorem 2 is useless when disjunction is no longer
available. And also the techniques from the proof of Theorem 3 do
not seem to generalize to the scenario with free variables.

1.3 The tools. And related works.
Regarding the tools used in the proofs of Theorem 1 and Theorem
3, let us quote [1] again: techniques from the set-theoretic setting
do not carry over to the bag-theoretic setting. The green-red chase
(mentioned in Section 1.1), which is a fundamental tool to study de-
terminacy in the set-semantics world, just vanishes in the multiset
setting, together with the results that depend on it, like undecid-
ability for the CQ case. And in general, the importance of concepts
that stem from the first order logic diminishes in this new world.
Instead, tools based on notions from linear algebra arise in a very
natural way here. This is not at all a new observation: in order to
read [7] one also needs to dust off the linear algebra textbook.

While we are (as far as we know) the first to consider query
determinacy undermultiset semantics, there exists a line of research
in database theory which concentrates on the number of answers to
a query (homomorphisms), including paper [15] (again in a natural
way using arguments from linear algebra). And also, due to solely
mathematical motivations, such homomorphism counts (and some
related numbers) were studied by researchers in combinatorics,
with numerous papers published, including [16] and [17], and a
book7 [18]. Some of the results regarding homomorphism counts
7We only had access to a free version of this book available on the web.
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are useful for us (see Section 6 where we use the main result from
[16]). Some, while not directly useful, are related to our paper, for
example there is a construction in [15] resembling Step 1 (and
partially also Step 2) from our construction in Section 6.

The title of [17] may suggest that there is a connection to deter-
minacy and (as we learned) some less careful readers can have an
impression that the main result from [17] is almost our Theorem 3.
So let us take some space here to explain why this is not the case8.

A set of connected non-isomorphic graphs H = {𝐻1, . . . 𝐻𝑚} is
consideerd in [17]. For 𝐻 ∈ H and for another graph𝐺 the number
𝑡 (𝐻,𝐺) („homomorphism density”) is defined as the probability
that a random mapping from the set of verticies of 𝐻 to the set of
verticies of 𝐺 will be a homomorphism.

Let now 𝑆 be the set {⟨𝑡 (𝐻1,𝐺), . . . , 𝑡 (𝐻𝑚,𝐺)⟩ : 𝐺 is a graph},
which clearly is a subset of [0, 1]𝑚 or, to be more precise, of (Q ∩
[0, 1])𝑚 . The main theorem of [17] (Theorem 1 there) says that:
(*) 𝑆 contains a subset 𝐵 which is dense in some ball.

Then, it seems to be claimed9 in [18] that it follows from (*) that
no functional dependence between the numbers 𝑡 (𝐻1,𝐺), . . . , 𝑡 (𝐻𝑚,𝐺)
can exist, meaning that 𝑡 (𝐻𝑚,𝐺) cannot be a function of arguments
𝑡 (𝐻1,𝐺), . . . , 𝑡 (𝐻𝑚−1,𝐺). In our language this would mean that:
(**) 𝑡 (𝐻1,𝐺), . . . , 𝑡 (𝐻𝑚−1,𝐺) do not determine 𝑡 (𝐻𝑚,𝐺) .

If this was indeed true that (*) implied (**) then one could use
the graph blow-up technique from [18] (Theorem 5.32) to translate
the language of „homomorphism densities” into the language of
homomorphism counts and, as a result, prove our Corollary 33,
which is a very special case of our Theorem 3.

But (*) does not imply (**). Let us define 𝐶 as the projection
of 𝑆 on the first m-1 coordinates, that is 𝐶 = {⟨𝑞1, . . . , 𝑞𝑚−1⟩ :
∃𝑞𝑚 ⟨𝑞1, ..., 𝑞𝑚−1, 𝑞𝑚⟩ ∈ 𝑆}.

Then (**) means that 𝑆 cannot be the graph of some function
𝑓 : 𝐶 → Q. But all (*) tells us about 𝑆 is that its topological closure
contains a ball. And it is easy to construct such a function 𝑓 :
( [0, 1] ∩ Q)𝑚−1 → Q ∩ [0, 1] that the topological closure of the
graph of 𝑓 not only contains a ball but is actually the entire cube
[0, 1]𝑚 .

What does indeed follow from (*) is that no such continuous func-
tion 𝑓 can exist, so in particular 𝑡 (𝐻𝑚,𝐺) cannot be expressed from
𝑡 (𝐻1,𝐺), . . . , 𝑡 (𝐻𝑚−1,𝐺) by operations which preserve continuous-
ness. But then it is a completely different story, as continuousness
may make sense when talking about homomorphisms density, but
not in the context of homomorphism count.

2 PRELIMINARIES
2.1 Database Theory Notions
Multisets. A multiset 𝑋 is a mapping 𝑌 → N where 𝑌 is some
specified set10.With𝑋 [𝑎] wewill denote the number of occurrences
of 𝑎 in 𝑋 . We write that 𝑋 [𝑎] = 0 if 𝑎 ∉ 𝑌 . A union 𝑋 ∪ 𝑋 ′ of
two multisets 𝑋 and 𝑋 ′ is a multiset such that (𝑋 ∪ 𝑋 ′) [𝑎] =

𝑋 [𝑎] + 𝑋 ′[𝑎]. We define other multiset operators analogously.

8It may be a good idea to skip the rest of this Section now and come back here after
you read Section 4 at the earliest.
9Remarks after Corollary 5.45 in [18]; unfortunately the language is quite sloppy there,
and it is not entitely clear for us how this part of text should correctly be interpreted.
10We (of course) think that 0 ∈ N.

Structures. A schema Σ is a finite set of relational symbols. A
schema Σ is 𝑛-ary if an arity of its relations is at most 𝑛. A structure
(or database) 𝐷 over schema Σ is a finite set11 consisting of facts. A
fact is simply an atom 𝐴(®𝑡) where ®𝑡 is a tuple of terms from some
fixed infinite set of constants. The active domain of 𝐷 (denoted with
𝑑𝑜𝑚(𝐷)) is the set of constants that appear in facts of 𝐷 .

Homomorphisms. For two structures 𝐷 and 𝐷 ′ over schema Σ, a
homomorphism from𝐷 to𝐷 ′ is a function ℎ : 𝑑𝑜𝑚(𝐷) → 𝑑𝑜𝑚(𝐷 ′)
such that for each atom 𝐴(®𝑡) ∈ 𝐷 it holds that 𝐴(ℎ(®𝑡)) ∈ 𝐷 ′. A
set of homomorphisms from 𝐷 to 𝐷 ′ is denoted with ℎ𝑜𝑚(𝐷, 𝐷 ′).
Note, that |ℎ𝑜𝑚(∅, 𝐷) | = 1 for the empty structure ∅.

Conjunctive Queries (CQs). A conjunctive query Φ = ∃®𝑦 𝜙 ( ®𝑥, ®𝑦)
is a first order formula such that 𝜙 ( ®𝑥, ®𝑦) is a conjunction of atoms
over variables from ®𝑥 and ®𝑦. With 𝑣𝑎𝑟𝑠 (Φ) we will denote the set
of variables of 𝜙 ( ®𝑥, ®𝑦). The arity of CQ Φ is simply | ®𝑥 |.

The frozen body of a CQ Φ = ∃®𝑦 𝜙 ( ®𝑥, ®𝑦) is a structure obtained
from 𝜙 ( ®𝑥, ®𝑦) by bijective replacement of variables with fresh con-
stants. For a CQ Φ = ∃®𝑦 𝜙 ( ®𝑥, ®𝑦) and a structure 𝐷 , with ℎ𝑜𝑚(Φ, 𝐷)
we denote the set of all homomorphisms from the frozen body of Φ
to 𝐷 . A result Φ(𝐷) of a CQ Φ over a structure 𝐷 is a multiset such
that Φ(𝐷) [®𝑎] = |{ℎ ∈ ℎ𝑜𝑚(Φ, 𝐷) : ®𝑎 = ℎ( ®𝑥)}|.

Path Queries. For a binary schema Σ a path query Λ is a CQ of
the form ∃𝑥1, . . . , 𝑥𝑛−1 𝑅1 (𝑥, 𝑥1), 𝑅2 (𝑥1, 𝑥2), . . . , 𝑅𝑛 (𝑥𝑛−1, 𝑦).

Let Σ∗ denote the set of all words over relational symbols from
Σ. Given the nature of path queries wewill identify themwithwords
from Σ∗, so instead ofwritingΛ = ∃𝑥1, 𝑥2𝐴(𝑥, 𝑥1), 𝐵(𝑥1, 𝑥2),𝐶 (𝑥2, 𝑦)
we may conveniently write12 Λ = 𝐴𝐵𝐶 .

Boolean Queries. A CQ 𝑞 with no free variables is called boolean.
Boolean CQs will be always identified with their frozen bodies.

Accordingly to previous definitions a result 𝑞(𝐷) of a boolean
CQ 𝑞 over some structure 𝐷 is a multiset containing |ℎ𝑜𝑚(𝑞, 𝐷) |
copies of the empty tuple. For brevity we write 𝑞(𝐷) instead of
𝑞(𝐷) [⟨⟩], so 𝑞(𝐷) = |ℎ𝑜𝑚(𝑞, 𝐷) |.

A union of boolean conjunctive queries (boolean UCQ) Ψ is a dis-
junction of a finite number of boolean CQs. A result Ψ(𝐷) of a
boolean UCQ Ψ over a 𝐷 is the natural number

∑
Φ∈Ψ Φ(𝐷).

A boolean CQ𝑞 is contained under set semantics in a boolean
CQ 𝑞′ (denoted as 𝑞 ⊆set 𝑞′) if for every structure 𝐷 it holds that
𝑞(𝐷) > 0 ⇒ 𝑞′(𝐷) > 0. It is well-known that 𝑞 ⊆set 𝑞′ if and only
if ℎ𝑜𝑚(𝑞′, 𝑞) is non-empty.

2.2 Graph Theoretic Tools
Operations on Structures. Following [16] we will use some op-
erations on structures. For structures 𝐴 and 𝐵 over schema Σ:
• 𝐴 + 𝐵 is a disjoint union13 of 𝐴 and 𝐵;
•𝐴×𝐵 is a structure such that 𝑑𝑜𝑚(𝐴×𝐵) = 𝑑𝑜𝑚(𝐴) ×𝑑𝑜𝑚(𝐵) and
for any 𝑅 ∈ Σ the following holds: 𝑅(⟨𝑎1, 𝑏1⟩, . . . , ⟨𝑎𝑘 , 𝑏𝑘 ⟩) is an
atom of𝐴×𝐵 if and only if 𝑅(𝑎1, . . . , 𝑎𝑘 ) ∈ 𝐴 and 𝑅(𝑏1, . . . , 𝑏𝑘 ) ∈ 𝐵;

11Which means that we assume that answers to the queries are multisets, but the
structures are sets. However, all our results and techniques would survive if we defined
structures which are multisets of facts.
12Note however, that an empty word Y is identified with the query Λ(𝑥, 𝑦) = ”𝑥 = 𝑦”,
although it is not a valid path query.
13That is if 𝑑𝑜𝑚 (𝐴) ∩ 𝑑𝑜𝑚 (𝐵) ≠ ∅ we bijectively rename variables of 𝐵 with fresh
ones and then make𝐴 + 𝐵 = 𝐴 ∪ 𝐵
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•we use symbols
∑

and
∏

as generalized + and × in the usual way;
• for 𝑡 ∈ N+, 𝑡𝐴 =

∑𝑡
𝑖=1 𝐴 and 𝐴𝑡 =

∏𝑡
𝑖=1 𝐴. Furthermore, 0𝐴 is an

empty structure and 𝐴0 is a singleton {𝛼} such that for any 𝑅 ∈ Σ
𝑅(𝛼, 𝛼, . . . , 𝛼) ∈ 𝐴0 (𝛼 has loops of all types).

Graph Theoretic Lemma. From [16] we recall:

Lemma 4. Let 𝐴, 𝐵,𝐶 be structures and 𝑡 ∈ N, then:
(1) If𝐴 is connected, then |ℎ𝑜𝑚(𝐴, 𝐵+𝐶) | = |ℎ𝑜𝑚(𝐴, 𝐵) |+|ℎ𝑜𝑚(𝐴,𝐶) |
(2) If 𝐴 is connected, then |ℎ𝑜𝑚(𝐴, 𝑡𝐵) | = 𝑡 · |ℎ𝑜𝑚(𝐴, 𝐵) |
(3) |ℎ𝑜𝑚(𝐴, 𝐵 ×𝐶) | = |ℎ𝑜𝑚(𝐴, 𝐵) | · |ℎ𝑜𝑚(𝐴,𝐶) |
(4) |ℎ𝑜𝑚(𝐴, 𝐵𝑡 ) | = |ℎ𝑜𝑚(𝐴, 𝐵) |𝑡
(5) |ℎ𝑜𝑚(𝐴 + 𝐵,𝐶) | = |ℎ𝑜𝑚(𝐴,𝐶) | · |ℎ𝑜𝑚(𝐵,𝐶) |

2.3 Basic Mathematical Tools and Notations
We are going use standard notation from linear algebra, which
should be clear in most cases. Belowwe describe all the conventions
that might be non-obvious:
• For a set 𝐴 ⊆ R𝑘 , span(𝐴) means the linear span of 𝐴 (i.e. the
smallest linear space containing 𝐴). For a set 𝐵 ⊆ R, we define
span𝐵 (𝐴) = {𝑏1 ®𝑎1 + ...+𝑏𝑛 ®𝑎𝑛 | 𝑛 ∈ N; ®𝑎1, ..., ®𝑎𝑛 ∈ 𝐴;𝑏1, ..., 𝑏𝑛 ∈ 𝐵}.
• For two vectors ®𝑢, ®𝑢 ′ ∈ R𝑘 , ⟨®𝑢, ®𝑢 ′⟩ denotes the dot product of
®𝑢, ®𝑢 ′. Vector ®𝑢 is orthogonal to ®𝑢 ′ if and only if ⟨®𝑢, ®𝑢 ′⟩ = 0.
• For a vector ®𝑢 ∈ R𝑘 , 𝑖 ∈ {1, . . . , 𝑘}, 𝑢 (𝑖) denotes the value of the
𝑖-th coordinate of ®𝑢.
• For a matrix𝑀 ∈ R𝑘×𝑘 , 𝑖, 𝑗 ∈ {1, . . . , 𝑘},𝑀 (𝑖, 𝑗) denotes the value
of the element in the 𝑖-th row and 𝑗-th column of𝑀 .
• For a matrix𝑀 ∈ R𝑘×𝑘 and a set𝐴 ⊆ R𝑘 ,𝑀 (𝐴) = {𝑀 ®𝑥 | ®𝑥 ∈ 𝐴}.

We will use the following well-known mathematical facts:

Fact 5. Let ®𝑢1, ..., ®𝑢𝑛, ®𝑢 ∈ Q𝑘 such that ®𝑢 ∉ span{®𝑢1, ..., ®𝑢𝑛}. Then
there is a vector ®𝑧 ∈ Q𝑘 such that ®𝑧 is orthogonal to ®𝑢1, ..., ®𝑢𝑛 but is
not orthogonal to ®𝑢.

Fact 6. If matrix 𝑀 ∈ R𝑘×𝑘 is nonsingular, then the mapping
®𝑥 ↦→ 𝑀 ®𝑥 is a homeomorphism (a continuous bijection whose inverse
function is continuous too).

Fact 7. Q𝑘 is a dense subset of R𝑘 , i. e., for any ®𝑥 ∈ R𝑘 and 𝑟 > 0
there is ®𝑦 ∈ Q𝑘 such that ∥ ®𝑥 − ®𝑦∥ < 𝑟 .

Corollary 8. Suppose 𝑀 ∈ R𝑘×𝑘 is nonsingular. Then there is
®𝑝 ∈ 𝑀 (R𝑘≥0) ∩ Q

𝑘 such that

∃𝑟 > 0 ∀®𝑥 ∈ R𝑘 ∥ ®𝑥 − ®𝑝 ∥ < 𝑟 ⇒ ®𝑥 ∈ 𝑀 (R𝑘≥0) (★)

Proof. From Fact 6 we know that the set𝑀 (R𝑘≥0) has non-empty
interior (i. e. the set of points satisfying ★), since it is a homeomor-
phic image of a set with non-empty interior. By Fact 7 we get that
this interior must contain a point with rational coordinates. □

Important Notational Convention. 00 equals 1 in this paper.

3 THE PATH QUERIES CASE
In this section we prove:

Theorem 1. If 𝑉 is a set of path queries, and 𝑞 is a path query,
then 𝑉 set−−−−→ 𝑞 if and only if 𝑉 bag−−−−→ 𝑞.

One can find this theorem a bit surprising. Path queries are a
reasonably wide class of queries. And we have already learned that
one should not expect a set-semantics based notion to agree with
its multi-set based counterpart on a wide class of objects14. But, as
it turns out, both versions of determinacy for path queries enjoy
the same elegant combinatorial characterisation:

Definition 9. For a set 𝑉 of path queries and for another path
query 𝑞 we define an undirected graph 𝐺𝑞,𝑉 as follows:

• 𝑑𝑜𝑚(𝐺𝑞,𝑉 ) = {𝑤 ∈ Σ∗ | 𝑤 is a prefix of 𝑞}. In particular, the
empty word Y and 𝑞 itself15 are elements of 𝑑𝑜𝑚(𝐺𝑞,𝑉 ).

• There is an edge between𝑤 and𝑤 ′ if and only if𝑤 ′ = 𝑤𝑣 for
some 𝑣 ∈ 𝑉 .

The following fact is well known [2, 13]:

Fact 10. 𝑉 set−−−−→ 𝑞 iff there is a path in 𝐺𝑞,𝑉 from Y to 𝑞.

In order to prove Theorem 1 we will show that the same is true
for determinacy in the multiset setting:

Lemma 11. 𝑉 bag−−−−→ 𝑞 iff there is a path, in 𝐺𝑞,𝑉 , from Y to 𝑞.

The rest of this section is devoted to the proof of Lemma 11.
It turns out that the (simple) proof of the (⇒) direction for the

set semantics survives also in the multiset context. We include it
here for the sake of completeness, but due to the space limitations
defer it to Appendix B.

Let us now deal with the (⇐) direction. Assume that 𝑞 and 𝑉
are fixed and such that there is a path in 𝐺𝑞,𝑉 , of some length𝑚,
from Y to 𝑞. This means that there exist:
• a sequence𝑤0,𝑤1, ...𝑤𝑚 of prefixes of 𝑞, with Y = 𝑤0 and𝑤𝑚 = 𝑞;
• a sequence of numbers 𝜖 𝑗 , for 𝑗 ∈ {1, . . .𝑚}, each of them either
equal 1 or −1;
• a sequence 𝑣𝑝1 , . . . 𝑣𝑝𝑚 of elements of 𝑉 such that, for each 𝑗 ∈
{1, . . .𝑚}, one of the conditions is true:

• 𝜖 𝑗 = 1 and𝑤 𝑗 = 𝑤 𝑗−1𝑣𝑝 𝑗
; • 𝜖 𝑗 = −1 and𝑤 𝑗𝑣𝑝 𝑗

= 𝑤 𝑗−1.

We are going to show that in such case there will also be𝑉 bag−−−−→ 𝑞.
So we assume that there are two stuctures 𝐷 and 𝐷 ′ such that
𝑣 (𝐷) = 𝑣 (𝐷 ′) for each 𝑣 ∈ 𝑉 . Without loss of generality we can
also assume that domains of 𝐷 and 𝐷 ′ are equal16, so let 𝑑𝑜𝑚(𝐷) =
𝑑𝑜𝑚(𝐷 ′) = {𝑎1, ..., 𝑎𝑛}.

3.1 The 𝑞-walks and how to reduce them.
Let Σ̄ = Σ ∪ Σ−1 be a new alphabet17, where Σ−1 = {𝑅−1 | 𝑅 ∈ Σ}.

Definition 12. Let𝑤 ∈ Σ̄∗ and𝑤 = 𝐴
]1
1 ...𝐴

]𝑘
𝑘
for some𝐴1, ..., 𝐴𝑘 ∈

Σ and for some ]1, ..., ]𝑘 ∈ {1,−1}. Then𝑤 is called a 𝑞-walk if:

(1) for each 𝑖 ∈ {1, . . . , 𝑘} it holds that 0 ≤ ∑𝑖
𝑗=1 ] 𝑗 ≤ |𝑞 |;

(2)
∑𝑘

𝑗=1 ] 𝑗 = |𝑞 |;

14On the other hand, for path queries, query containment under set semantics also
(trivially) coincides with query containment under bag semantics. We have no idea
whether there is any relation between this observation and Theorem 1.
15Recall that we identify path queries with words over alphabet Σ.
16By domain we do not mean the active domain here: we accept that there are elements,
in 𝑑𝑜𝑚 (𝐷) or 𝑑𝑜𝑚 (𝐷′) which do not appear in any facts.
17Or schema, in the world of path queries words and queries are the same thing.
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(3) for each 𝑖 ∈ {1, . . . , 𝑘} it holds that𝐴𝑖 =

{
𝑄𝑠𝑖+1 if ]𝑖 = 1
𝑄𝑠𝑖 if ]𝑖 = −1

where 𝑠𝑖 =
∑𝑖−1

𝑗=1 ] 𝑗 and 𝑄 𝑗 is the 𝑗-th symbol in 𝑞.

Our path in 𝐺𝑞,𝑉 , leading from Y to 𝑞, induces, in a natural way,
a 𝑞-walk18 (𝑣𝑝1 )𝜖1 (𝑣𝑝2 )𝜖2 . . . (𝑣𝑝𝑚 )𝜖𝑚 . For clarity, let us illustrate
this with:

Example 13. Imagine that 𝑞 = 𝐴𝐵𝐶𝐷 and 𝑉 = {𝐴𝐵𝐶, 𝐵𝐶, 𝐵𝐶𝐷}.
Then there is a path Y → 𝐴𝐵𝐶 → 𝐴 → 𝐴𝐵𝐶𝐷 in𝐺𝑞,𝑉 . This path in-
duces a𝑞-walk (𝐴𝐵𝐶) (𝐵𝐶)−1 (𝐵𝐶𝐷), which is equal to𝐴𝐵𝐶𝐶−1𝐵−1𝐵𝐶𝐷 .

Now we are going to explain how each 𝑞-walk can be turned
into 𝑞 by a sequence of simple reductions:

Definition 14. For any𝑤,𝑤 ′ ∈ Σ̄∗ and for any 𝐴 ∈ Σ we define:
𝑤𝐴𝐴−1𝑤 ′

+/-−−→ 𝑤𝑤 ′ and 𝑤𝐴−1𝐴𝑤 ′
-/+−−→ 𝑤𝑤 ′.

Relations +/-−−→* and -/+−−→* are defined as the reflexive transitive
closure of +/-−−→ and of -/+−−→, respectively.

Lemma 15. If𝑤 ∈ Σ̄∗ is a 𝑞-walk, then𝑤 +/-−−→* 𝑞 and 𝑤 -/+−−→* 𝑞.

For the proof of Lemma 15 see Appendix C.

3.2 Seeing 𝐷 (and 𝐷 ′) as relations in Q𝑛 × Q𝑛.
Definition 16. Let 𝑅 ∈ Σ. Then𝑀𝐷

𝑅
is the incidence matrix of the

relation 𝑅 in structure 𝐷 , that is𝑀𝐷
𝑅

∈ Q𝑛×𝑛 and𝑀𝐷
𝑅
(𝑖, 𝑗) = 1 if and

only if 𝑅(𝑎𝑖 , 𝑎 𝑗 ) ∈ 𝐷 and𝑀𝐷
𝑅
(𝑖, 𝑗) = 0 if and only if 𝑅(𝑎𝑖 , 𝑎 𝑗 ) ∉ 𝐷 .

Definition 17. Let𝑤 ∈ Σ∗. Then we define a matrix𝑀𝐷
𝑤 ∈ Q𝑛×𝑛

in the inductive way: • 𝑀𝐷
Y is the 𝑛 × 𝑛 identity matrix.

• For 𝑅 ∈ Σ,𝑤 ∈ Σ∗,𝑀𝐷
𝑅𝑤

= 𝑀𝐷
𝑅
𝑀𝐷

𝑤 .

It is well-known that:

Fact 18. If𝑤 ∈ Σ∗ then𝑤 (𝐷) [𝑎𝑖 , 𝑎 𝑗 ] = 𝑀𝐷
𝑤 (𝑖, 𝑗).

Matrices𝑀𝐷′
𝑅

and𝑀𝐷′
𝑤 are defined analogously, and, obviously,

Fact 18 remains true for them.
Of course in general we cannot assume that 𝑀𝐷

𝑤 = 𝑀𝐷′
𝑤 for

𝑤 ∈ Σ∗. But, since for each 𝑣 ∈ 𝑉 we have 𝑣 (𝐷) = 𝑣 (𝐷 ′), we know
that for each 𝑣 ∈ 𝑉 we have 𝑀𝐷

𝑣 = 𝑀𝐷′
𝑣 , so we can write just 𝑀𝑣

instead of𝑀𝐷
𝑣 or𝑀𝐷′

𝑣 . Recall that we need to show that𝑀𝐷
𝑞 = 𝑀𝐷′

𝑞 .
So, if we manage to somehow present𝑀𝐷

𝑞 (and hence also𝑀𝐷′
𝑞 ) as

a function of arguments {𝑀𝑣 | 𝑣 ∈ 𝑉 }, then we are done.
Let us also remark that if𝑀𝑣 were invertible, for all 𝑣 ∈ 𝑉 , then

it would be easy to see that𝑀𝐷
𝑞 = 𝑀

𝜖1
𝑣𝑝1

...𝑀
𝜖𝑚
𝑣𝑝𝑚

and likewise𝑀𝐷′
𝑞 .

However, in the general case, there is of course no reason to think
that the matrices𝑀𝑣 are invertible, and thus we need our argument
to be a little bit more sophisticated.

Now the matrices will be understood as linear functions. And
these functions will be understood as relations. And, while we know
that not all matrices are invertible, and in consequence not all the
functions under consideration are, relations can always be inverted!

By 𝐼 we will denote the identity relation: 𝐼 = {⟨𝑥, 𝑥⟩ | 𝑥 ∈ Q𝑛}.
Definition 19. (1) For a matrix 𝑀 ∈ Q𝑛×𝑛 let the function

ℎ𝑀 : Q𝑛 → Q𝑛 be defined as ℎ𝑀 (𝑣) = 𝑀𝑣 .
18If 𝑤 ∈ Σ∗ , by 𝑤−1 we mean 𝑤 reversed with every letter 𝛼 replaced with 𝛼−1 .

(2) For a function 𝑓 let 𝑓 denote the relation equal19 to 𝑓 .
(3) For 𝑅 ∈ Σ let 𝐻𝑅 = ℎ𝑀𝐷

𝑅
and 𝐻𝑅−1 = 𝐻−1

𝑅

(4) For𝑤 ∈ Σ̄∗ we define 𝐻𝑤 inductively:
• 𝐻Y = 𝐼 • 𝐻𝛼𝑤 = 𝐻𝑤𝐻𝛼 for 𝛼 ∈ Σ̄,𝑤 ∈ Σ̄∗

The relations 𝐻𝑤 depend on 𝐷 (in the sense that they would not
be equal if we computed them in 𝐷 ′ instead of 𝐷), so the reader
may think that there should be 𝐻𝐷

𝑤 instead of 𝐻𝑤 . But omitting the
superscript leads to no confusion: 𝐷 is the only structure for which
the relations 𝐻𝑤 are ever considered.

Observation 20. For𝑤 ∈ Σ∗, 𝐻𝑤 = ℎ𝑀𝐷
𝑤
and 𝐻𝑤−1 = (𝐻𝑤)−1

For the proof of the Observation use (easy) induction and the fact
that for 𝑤,𝑤 ′ ∈ Σ∗ it holds that 𝐻𝑤𝑤′ = 𝐻𝑤′𝐻𝑤 = ℎ𝑀𝐷

𝑤′
ℎ𝑀𝐷

𝑤
=

ℎ𝑀𝐷
𝑤
◦ ℎ𝑀𝐷

𝑤′
= ℎ𝑀𝐷

𝑤𝑤′
. □

It is well-known that the correspondence𝑀 ↦→ ℎ𝑀 is 1-1. Also the
correspondence 𝑓 ↦→ 𝑓 is 1-1. So in order to represent 𝑀𝐷

𝑞 as a
function of arguments {𝑀𝑣 | 𝑣 ∈ 𝑉 } it is enough to represent 𝐻𝑞

as a function of {𝐻𝑣 | 𝑣 ∈ 𝑉 }. Which we do in the next subsection.

3.3 Using Lemma 15.
Let us start this subsection with a really very simple lemma:

Lemma 21. Let 𝑓 : Q𝑛 → Q𝑛 . Then 𝑓 (𝑓 )−1 ⊇ 𝐼 and (𝑓 )−1 𝑓 ⊆ 𝐼 .

Proof. 𝑓 (𝑓 )−1 = {⟨𝑥,𝑦⟩ | ∃𝑧 𝑓 (𝑥) = 𝑧 ∧ 𝑓 (𝑦) = 𝑧} =
= {⟨𝑥,𝑦⟩ | 𝑓 (𝑥) = 𝑓 (𝑦)} ⊇ 𝐼

(𝑓 )−1 𝑓 = {⟨𝑥,𝑦⟩ | ∃𝑧 𝑓 (𝑧) = 𝑥 ∧ 𝑓 (𝑧) = 𝑦} =
= {⟨𝑥, 𝑥⟩ | ∃𝑧 𝑓 (𝑧) = 𝑥} ⊆ 𝐼 □

Now we will see what the relations 𝐻𝑤 are good for:

Lemma 22. For 𝑢,𝑢 ′ ∈ Σ̄∗:
(1) if 𝑢 +/-−−→ 𝑢 ′ then 𝐻𝑢 ⊆ 𝐻𝑢′ ;
(2) if 𝑢 -/+−−→ 𝑢 ′ then 𝐻𝑢 ⊇ 𝐻𝑢′ .

For the proof of Lemma 22 see Appendix C. Notice that, for a
𝑞-walk𝑤 , Lemmas 22 and 15 give us two approximations of 𝐻𝑤 :

Lemma 23. If𝑤 is a 𝑞-walk, then 𝐻𝑞 ⊆ 𝐻𝑤 ⊆ 𝐻𝑞 . □

Our next corollary is certainly not going to come as a surprise:

Corollary 24. If𝑤 is a 𝑞-walk, then 𝐻𝑞 = 𝐻𝑤 .

Now, recall that (𝑣𝑝1 )𝜖1 (𝑣𝑝2 )𝜖2 . . . (𝑣𝑝𝑚 )𝜖𝑚 is a 𝑞-walk. So, by the
last corollary 𝐻𝑞 = 𝐻

𝜖𝑚
𝑣𝑝𝑚

. . . 𝐻
𝜖2
𝑣𝑝2

𝐻
𝜖1
𝑣𝑝1

.
Which shows that 𝐻𝑞 is indeed a function of {𝐻𝑣 | 𝑣 ∈ 𝑉 } and

ends the proof of Lemma 11(⇐) and of Theorem 1.

4 THE BOOLEAN CASE. OUR MAIN RESULTS.
In contrast to the set-semantics world, where determinacy is easily
decidable for unary UCQs, and trivially decidable for boolean UCQs,
in the multiset setting already the boolean case is undecidable:

Theorem 2. The problem whether, for a set 𝑉 of boolean UCQs
and for another boolean UCQ 𝑞, it holds that𝑉 bag−−−−→ 𝑞 is undecidable.

19This means that 𝑓 = { ⟨𝑥, 𝑦⟩ | 𝑓 (𝑥) = 𝑦 }. We make such distinction since
composition and inversion work for functions slightly differently than for relations.
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This negative result is not really hard to prove (see Appendix A).
The main technical result of this paper, however, is:

Theorem 3. The problem whether, for a given set 𝑉0 of boolean
conjunctive queries and for a given boolean conjunctive query 𝑞, it
holds that 𝑉0

bag−−−−→ 𝑞, is decidable.

The rest of this section, and Sections 5-7 are devoted to the proof of
Theorem 3. A set 𝑉0 of boolean conjunctive queries and a boolean
conjunctive query 𝑞 are fixed from now on.

Definition 25. Let 𝑉 be the set {𝑣 ∈ 𝑉0 | 𝑞 ⊆set 𝑣}. Let us also
denote 𝑉 ′ = 𝑉 ∪ {𝑞}.

Queries from 𝑉 are the ones that cannot return 0 in any inter-
esting (from the point of view of this proof) structure 𝐷 . Queries
from 𝑉\𝑉 are free to return 0, and they actually will.

Observation 26. If 𝐷 is any structure, 𝑣 ∈ 𝑉 and 𝑣 (𝐷) = 0 then
also 𝑞(𝐷) = 0.

Definition 27. Let𝑊 = {𝑤1, ...,𝑤𝑘 } be the set20 of all connected
components of the query21

∑
𝑣∈𝑉 ′ 𝑣 . In other words,𝑊 is a minimal

set of structures such that for every connected component𝑢 of
∑

𝑣∈𝑉 ′ 𝑣

there is𝑤 ∈𝑊 isomorphic to 𝑢. From now on, the letter 𝑘 will always
denote the cardinality of𝑊 .

Queries from𝑊 are going to serve us as basis queries, in the
linear algebra sense:

Observation 28. Let 𝑣 ∈ 𝑉 ′. Then 𝑣 =
∑𝑘
𝑖=1 𝑎𝑖𝑤𝑖 for some

𝑎1, ..., 𝑎𝑘 ∈ N.

Note, that such representation is unique. Thus:

Definition 29. For a query 𝑣 ∈ 𝑉 ′ we define the vector repre-

sentation of 𝑣 as ®𝑣 =


𝑎1
.
.
.

𝑎𝑘

 , where 𝑎1, ..., 𝑎𝑘 are as in Observation 28.

So all the queries of interest are now seen as vectors in some
𝑘-dimensional vector space.

Observation 30. If 𝐷 is any structure and 𝑣 ∈ 𝑉 ′ then 𝑣 (𝐷) =∏𝑘
𝑖=1𝑤𝑖 (𝐷)®𝑣 (𝑖) .

Proof: Notice that 𝑣 (𝐷) = |ℎ𝑜𝑚(𝑣, 𝐷) | = |ℎ𝑜𝑚(∑𝑘
𝑖=1 ®𝑣 (𝑖)𝑤𝑖 , 𝐷) | =∏𝑘

𝑖=1𝑤𝑖 (𝐷)®𝑣 (𝑖) . The last equality follows from Lemma 4. □

Now we are ready for ourMain Lemma:

Lemma 31. 𝑉0
bag−−−−→ 𝑞 if and only if

⃗⃗
𝑞 ∈ span{ ⃗⃗𝑣 | 𝑣 ∈ 𝑉 }.

Clearly, Theorem 3 easily follows from Lemma 31 as finding𝑉 is of
course decidable (in Σ𝑃2 – we first need to guess a set of homomor-
phisms and then check that we guessed all of them), while finding
𝑊 and testing whether ⃗⃗𝑞 ∈ span{ ⃗⃗𝑣 | 𝑣 ∈ 𝑉 } are polynomial.

In Sections 5–7 we present the (more complicated) (⇒) part of
the proof of Lemma 31. The (much easier) (⇐) part is deferred to
Appendix D. We however illustrate the idea of the (⇐) part with:
20When we say “set” we mean that each such connected component only occurs once
in𝑊 . And we think that isomorphic structures are equal.
21∑ is an operation on structures here, as defined in Section 2.2.

Example 32. Let 𝑤1,𝑤2,𝑤3 be some non-empty, pairwise non-
isomorphic structures and let: 𝑞 = 𝑤1 +𝑤2 + 2𝑤3

𝑣1 = 2𝑤1 +𝑤2 + 3𝑤3 𝑣2 = 5𝑤1 + 2𝑤2 + 7𝑤3
Then for a structure 𝐷 : 𝑞(𝐷) = 𝑤1 (𝐷)𝑤2 (𝐷)𝑤3 (𝐷)2,

𝑣1 (𝐷) = 𝑤1 (𝐷)2𝑤2 (𝐷)𝑤3 (𝐷)3 and 𝑣2 (𝐷) = 𝑤1 (𝐷)5𝑤2 (𝐷)2𝑤3 (𝐷)7.

If 𝑣2 (𝐷) ≠ 0, then 𝑞(𝐷) = 𝑣1 (𝐷)3/𝑣2 (𝐷) so it is uniquely de-
termined by 𝑣1 (𝐷), 𝑣2 (𝐷). This equality corresponds to the equality
of vector representations ®𝑞 = 3®𝑣1 − ®𝑣2. If 𝑣2 (𝐷) = 0, then for some
𝑖 ∈ {1, 2, 3},𝑤𝑖 (𝐷) = 0, so 𝑞(𝐷) = 0 and it is determined again.

It easily follows from Lemma 31 that in the very specific case of
connected queries no non-trivial determinacy is possible:

Corollary 33. If all the queries in 𝑉0 are connected, and 𝑞 is
connected, then 𝑉0

bag−−−−→ 𝑞 if and only if 𝑞 ∈ 𝑉0.

5 PROOF OF LEMMA 31 (⇒). PART 1.
In this section we assume that ®𝑞 ∉ span{®𝑣 | 𝑣 ∈ 𝑉 }. And we are
going to show that𝑉0 \bag−−−−→ 𝑞. To this end we need to find a pair of
structures 𝐷 and 𝐷 ′ which is a counterexample for determinacy,
which means that:

(A) 𝑞(𝐷) ≠ 𝑞(𝐷 ′)
(B) ∀𝑣 ∈ 𝑉 𝑣 (𝐷) = 𝑣 (𝐷 ′) (B0) ∀𝑣 ∈ 𝑉0 \𝑉 𝑣 (𝐷) = 𝑣 (𝐷 ′)
Notice that there is nothing in Definition 1 that would tell us

where to look for such a counterexample: 𝐷 and 𝐷 ′ are just any
structures in this definition. Our main discovery is that if such
𝐷 and 𝐷 ′, forming a counterexample, can be found at all, then a
counterexample can also be found in some 𝑘-dimensional22 vector
space that we are now going to introduce. And this is convenient,
because living in a vector space one can use linear algebra tools.

Definition 34. For any set 𝑆 of 𝑘 structures (call them basis
structures) let S be the set of all structures which can be represented
as sums of elements of 𝑆 , that is S = spanN (𝑆).

Now, the totally informal idea is as follows. We know that ®𝑞 ∉

span{®𝑣 | 𝑣 ∈ 𝑉 }. So there is vector ®𝑧 which is orthogonal to ®𝑣 for
each 𝑣 ∈ 𝑉 but not to ®𝑞. Let us somehow define 𝐷 and 𝐷 ′ in such a
way that ®𝑧 is “the difference” between 𝐷 and 𝐷 ′. Then none of the
𝑣 ∈ 𝑉 will spot the difference between 𝐷 and 𝐷 ′ but 𝑞 will.

Definition 35. Set 𝑆 of basis structures is decent if for each 𝑠 ∈ 𝑆

and for each 𝑣 ∈ 𝑉0 \𝑉 we have 𝑣 (𝑠) = 0.

It is easy to see that:

Observation 36. If 𝑆 is decent, then for each 𝐷 ∈ S and for each
𝑣 ∈ 𝑉0 \𝑉 we have 𝑣 (𝐷) = 0. In consequence, if 𝑆 is decent, then any
pair 𝐷, 𝐷 ′ of structures from S satisfies condition (B0) above.

Definition 37. For a set of structures 𝑆 = {𝑠1, ..., 𝑠 |𝑆 |} we define
its evaluation matrix𝑀𝑆 ∈ R𝑘×|𝑆 | by the formula𝑀𝑆 (𝑖, 𝑗) = 𝑤𝑖 (𝑠 𝑗 ).

In other words, the (𝑖, 𝑗)-entry of𝑀𝑆 is defined as the number
of homomorphisms from𝑤𝑖 to 𝑠 𝑗 .

Definition 38. 𝑆 is good when 𝑆 is decent and𝑀𝑆 is nonsingular.

22Recall, that 𝑘 denotes, as always, the cardinality of𝑊 , the set of basis queries.
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w1 w2

Figure 1: (Example 39) Here,𝑀𝑊 is singu-
lar (𝑤1 and𝑤2 are structures over a schema
consisting of two binary relations, with𝑤2
having three additional green edges, com-
pared to𝑤1).

Recall that the set𝑊 , consisting of 𝑘 queries, is also a set of
𝑘 structures. What would happen if we just took𝑊 as our set 𝑆
of basis structures?𝑊 is of course always decent: if there were
𝑤 ∈𝑊, 𝑣 ∈ 𝑉0 \𝑉 such that 𝑣 (𝑤) > 0, then, because𝑤 (𝑞) > 0, we
would get 𝑣 (𝑞) > 0. But𝑀𝑊 is not always nonsingular:

Example 39. Let𝑊 consist of𝑤1 and𝑤2 as in Fig. 1, then:

𝑀𝑊 =

[ 𝑤1 𝑤2

𝑤1 2 4
𝑤2 1 2

]
where𝑀𝑊 (𝑖, 𝑗) = |ℎ𝑜𝑚(𝑤𝑖 ,𝑤 𝑗 ) |.

Now, proof of Lemma 31 will be completed once we prove the
following two lemmas:

Lemma 40. There exists a good set 𝑆 of basis structures.

Lemma 41. If ®𝑞 ∉ span{®𝑣 | 𝑣 ∈ 𝑉 } and 𝑆 is a good set of basis
structures then there exist 𝐷,𝐷 ′ ∈ S satisfying conditions (𝐴) and
(𝐵) above.

For the proof of Lemma 40 see Section 6, and for the proof of
Lemma 41 see Section 7. Notice that Lemma 41 would not be true
without the assumption that𝑀𝑆 is nonsingular:

Example 42. Let 𝑞 = 𝑤1 and 𝑉0 = {𝑤2} (𝑤1,𝑤2 are still as in
Fig. 1), so that (according to Definition 27)𝑊 = {𝑤1,𝑤2}. Also, since
𝑤1 ⊆𝑠𝑒𝑡 𝑤2, we get that 𝑉 = 𝑉0.

Since ®𝑞 ∉ span{®𝑣 | 𝑣 ∈ 𝑉 }, it follows from our Main Lemma that
𝑉 \bag−−−−→ 𝑞. So couldn’t we just take 𝑆 =𝑊 (notice that, since 𝑉 = 𝑉0,
such 𝑆 is trivially decent) and look for the counterexample structures
𝐷 and 𝐷 ′ in S = spanN (𝑆)?

This would be in vain. For any structure 𝐷 ∈ S the equality
|ℎ𝑜𝑚(𝑤1 = 𝑞, 𝐷) | = 2 · |ℎ𝑜𝑚(𝑤2, 𝐷) | holds. So for any pair of struc-
tures 𝐷,𝐷 ′ ∈ S there will be 𝑉0 (𝐷) = 𝑉0 (𝐷 ′) ⇒ 𝑞(𝐷) = 𝑞(𝐷 ′) .

Let us however reiterate: the above example does not contradict
our Main Lemma. It only shows that 𝑆 = {𝑤1,𝑤2} is not good
enough to serve as a basis for a counterexample pair 𝐷,𝐷 ′.

6 PROOF OF LEMMA 40
Our proof relies on the following lemma stated in [1] and proved,
as [19] report, in the paper [20], which is not easy to access.

Lemma 43. Two structures 𝐺,𝐺 ′ are isomorphic if and only if
|ℎ𝑜𝑚(𝐺,𝐻 ) | = |ℎ𝑜𝑚(𝐺 ′, 𝐻 ) | for every structure23 𝐻 .

However, the proof of Lemma 43 is analogous to the proof of:
23We of course assume here that all the structures in question are over some fixed
relational schema.

Lemma 44. Two structures 𝐺,𝐺 ′ are isomorphic if and only if
|ℎ𝑜𝑚(𝐻,𝐺) | = |ℎ𝑜𝑚(𝐻,𝐺 ′) | for every structure 𝐻 .

in the paper [16], so we think we can skip it here.

A good 𝑆 will now be constructed in four steps:

Step 1. 𝑆 (1) = {𝑠 (1)1 , ..., 𝑠
(1)
𝑚 } can be any finite set such that

∀𝑤 ≠ 𝑤 ′ ∈𝑊 ∃𝑖 ≤ 𝑚 |ℎ𝑜𝑚(𝑤, 𝑠
(1)
𝑖

) | ≠ |ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)
𝑖

) |

Such 𝑆 (1) can be found thanks to Lemma 43. Indeed, because ele-
ments of𝑊 are pairwise non-isomorphic, for any𝑤 ≠ 𝑤 ′ there is
a structure 𝐻 such that 𝑤 (𝐻 ) ≠ 𝑤 ′(𝐻 ) - it is enough to take one
such structure for every pair𝑤 ≠ 𝑤 ′ ∈𝑊 .

In the Steps 2-4 we construct a good 𝑆 from 𝑆 (1) using addition
and multiplication of structures. And, by Lemma 4, addition and
multiplication of structures correspond to addition and multiplica-
tion (elementwise) of columns of the evaluation matrix. So this part
is more about linear algebra than about homomorphism counting.

Step 2. Let 𝑇 ∈ N be greater than any element of the matrix𝑀𝑆 (1) .
Then the set 𝑆 (2) consists of a single structure 𝑠 (2) where:

𝑠 (2) =
𝑚∑︁
𝑖=1

𝑇 𝑖𝑠
(1)
𝑖

Observation 45. Suppose 𝑤,𝑤 ′ ∈ 𝑊 and 𝑤 ≠ 𝑤 ′. Then
|ℎ𝑜𝑚(𝑤, 𝑠 (2) ) | ≠ |ℎ𝑜𝑚(𝑤 ′, 𝑠 (2) ) |.

For the proof of Observation 45 see Appendix D.
Step 3. Let now 𝑆 (3) = {𝑠 (3)1 , ..., 𝑠

(3)
𝑘

} be a set of 𝑘 structures, where

𝑠
(3)
𝑖

=

(
𝑠 (2)

)𝑖−1
. We are going to prove that the matrix 𝑀𝑆 (3) is

nonsingular. Recall that𝑀𝑆 (3) (𝑖, 𝑗) = |ℎ𝑜𝑚(𝑤𝑖 , 𝑠
(3)
𝑗

) |. Notice that:

|ℎ𝑜𝑚(𝑤𝑖 , 𝑠
(3)
𝑗

) | = |ℎ𝑜𝑚(𝑤𝑖 ,

(
𝑠 (2)

) 𝑗−1
) | = |ℎ𝑜𝑚(𝑤𝑖 , 𝑠

(2) ) | 𝑗−1

Then use the following lemma, which is proven in Appendix D:

Lemma 46. Let 𝑎1, ..., 𝑎𝑘 be pairwise-distinct real numbers. Then
the matrix 𝐴 ∈ R𝑘×𝑘 defined as 𝐴(𝑖, 𝑗) = 𝑎

𝑗−1
𝑖

is nonsingular.

Step 4. Now, 𝑆 (3) is almost good. Almost, because we are still not
sure if it is decent. So let 𝑆 (4) = {𝑠 (4)1 , ..., 𝑠

(4)
𝑘

} where 𝑠 (4)
𝑖

= 𝑠
(3)
𝑖

×𝑞.
Observe that𝑀𝑆 (4) is just𝑀𝑆 (3) where 𝑖-th row has been multiplied
by𝑤𝑖 (𝑞). However we know that𝑤𝑖 is a subquery of some query
𝑣 ∈ 𝑉 ∪ {𝑞} - such a 𝑣 satisfies 𝑣 (𝑞) > 0. Therefore,𝑤𝑖 (𝑞) > 0 and
it is well-known that multiplying a matrix row by a non-zero factor
doesn’t affect its (non)singularity.

Let’s observe that 𝑆 (4) is decent, that is,∀𝑣 ∈ 𝑉0\𝑉 , 𝑠 ∈ 𝑆 (4) 𝑣 (𝑠) =
0. Indeed, any 𝑠 ∈ 𝑆 is of form 𝑠 = 𝑠 ′ × 𝑞, so for any 𝑣 ∈ 𝑉0 \𝑉 we
have 𝑣 (𝑠) = 𝑣 (𝑠 ′)𝑣 (𝑞) and, by definition of 𝑉 , 𝑣 (𝑞) = 0.

To sum up, we have found a good set of basis structures 𝑆 (4) .
From now on, we put 𝑆 = 𝑆 (4) and 𝑠𝑖 = 𝑠

(4)
𝑖

for 𝑖 ∈ {1, . . . , 𝑘}. We
will also write𝑀 instead of𝑀𝑆 .

7 PROOF OF LEMMA 41
First some formulae which we will need:
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Definition 47 (Vector representation of a structure 𝑠 ∈ S).

For 𝑠 =
∑𝑘
𝑖=1 𝑎𝑖𝑠𝑖 we define ®𝑠 =


𝑎1
.
.
.

𝑎𝑘


Definition 48.

(1) Let ®𝑢, ®𝑣 ∈ R𝑘 . Then ®𝑢 ◦ ®𝑣 =


®𝑢 (1)®𝑣 (1)

.

.

.

®𝑢 (𝑘)®𝑣 (𝑘)


(2) Let ®𝑢, ®𝑣 ∈ R𝑘≥0. Then ®𝑢 ♂ ®𝑣 =

∏𝑘
𝑖=1 ®𝑢 (𝑖)®𝑣 (𝑖) .

(3) Let 𝑡 ∈ R+, ®𝑢 ∈ R𝑘 . Then 𝑡 ®𝑢 =


𝑡 ®𝑢 (1)

.

.

.

𝑡 ®𝑢 (𝑘)


Observation 49. (1) (®𝑢 ◦ ®𝑣) ♂ ®𝑤 = (®𝑢 ♂ ®𝑤) (®𝑣 ♂ ®𝑤)
(2) 𝑡 ®𝑢 ♂ ®𝑣 = 𝑡 ⟨®𝑢,®𝑣⟩

Lemma 50. Let 𝑣 ∈ 𝑉 , 𝑠 ∈ S. Then 𝑣 (𝑠) = (𝑀®𝑠) ♂ ®𝑣 .

For the proof of Lemma 50 see Appendix D.

7.1 The set P and the cone C
So far the objects of our interest in this proof lived in two 𝑘-
dimensional vector spaces. One was the space of queries, with
𝑊 as the basis. Another one was the space S of structures, with
basis 𝑆 , where we are looking for the candidates for 𝐷 and 𝐷 ′.

But we also need the third such 𝑘-dimensional space. Imagine
you take some structure 𝑠 ∈ S. And you ask what will be the
results of applying the 𝑘 queries from𝑊 to 𝑠 . What you get is a
𝑘-dimensional vector of natural numbers, which lives in the space
of all possible (and impossible) answer vectors.

Definition 51. P = {𝑀®𝑠 | 𝑠 ∈ S} = {𝑀 ®𝑢 | ®𝑢 ∈ N𝑘 }

P is the subset of our new space consisting of the actual answer
vectors, generated by real structures from S. A related notion is:

Definition 52. C = spanR≥0 {𝑀®𝑠 | 𝑠 ∈ 𝑆} = spanR≥0 {𝑀𝑒𝑖 | 𝑖 ∈
{1, . . . , 𝑘}}. In other words, C is a convex cone generated by basis
standard vectors multiplied by matrix𝑀 .

The following easy observation shows that P is a subset of C. A
proper subset, since only vectors of natural numbers can be in P.
And there is even no reason to think that P = C ∩ N𝑘 .

Observation 53 (easy). C = 𝑀 (R𝑘≥0) = spanR≥0 {𝑀®𝑠 | 𝑠 ∈ S}

Example 54. Let 𝑤1,𝑤2 be as in Fig. 1. Let 𝑠1 be a single vertex,
with red and green loops and let 𝑠2 = 𝑤2 Then:

𝑀𝑆 =

[ 𝑠1 𝑠2

𝑤1 1 4
𝑤2 1 2

]
Then C and P are as in 𝐹𝑖𝑔. 2. Notice that𝑀𝑆 is now non-singular.

This observation is not unrelated to the fact that the grey area in
𝐹𝑖𝑔. 2 has non-empty interior.

Figure 2: (Example 54) The
𝑥-coordinate represents the
answer to 𝑤1, and the 𝑦-
coordinate to 𝑤2. Red dots
correspond to P and the
gray area to C. The arrows
represent column vectors of
𝑀𝑆 . 𝑥

𝑦

7.2 It is here where things finally happen
We spent several pages pushing a rabbit into the hat. Now we are
finally going to pull it out. First, we notice that while not all the
vectors in C ∩ Q𝑘 are in P, all of them are somehow related to P:

Lemma 55. Let ®𝑢 ∈ C ∩Q𝑘 . Then there exists 𝑐 ∈ N+ with 𝑐 ®𝑢 ∈ P.

Proof. 𝑀 is nonsingular24 so there exists 𝑀−1 ∈ Q𝑘×𝑘 . Let
®𝛼 = 𝑀−1®𝑢. Since ®𝑢 ∈ C ∩ Q𝑘 we have that ®𝛼 ∈ C ∩ Q𝑘 . Since
®𝑢 ∈ {𝑀®𝑣 | ®𝑣 ∈ R𝑘≥0} we know that ®𝛼 ∈ R𝑘≥0. So there is 𝑐 ∈ N+
such that25 𝑐 ®𝛼 ∈ N+. Now, 𝑐 ®𝑢 = 𝑐 (𝑀 ®𝛼) = 𝑀 (𝑐 ®𝛼) ∈ P. □

Lemma 56. There are ®𝑝, ®𝑝 ′ ∈ C ∩ Q𝑘 such that:
(1) ∀𝑣 ∈ 𝑉 ®𝑝 ♂ ®𝑣 = ®𝑝 ′ ♂ ®𝑣 (2) ®𝑝 ♂ ®𝑞 ≠ ®𝑝 ′ ♂ ®𝑞

Before we prove Lemma 56 let us show that it implies Lemma 41:
Indeed, if we find 𝑝, 𝑝 ′ as in Lemma 56, then, by Lemma 55 we can
find 𝑐, 𝑐 ′ ∈ N+ such that 𝑐 ®𝑝, 𝑐 ′ ®𝑝 ′ ∈ P. Of course then 𝑐𝑐 ′®𝑝, 𝑐𝑐 ′ ®𝑝 ′ ∈

P too. Let ®𝑐𝑐 ′ =

𝑐𝑐 ′

.

.

.

𝑐𝑐 ′

 . Then, for 𝑣 ∈ 𝑉 ∪ {𝑞} we have

(𝑐𝑐 ′®𝑝 ♂ ®𝑣) − (𝑐𝑐 ′ ®𝑝 ′ ♂ ®𝑣) =

= ( ®𝑐𝑐 ′ ♂ ®𝑣) ( ®𝑝 ♂ ®𝑣) − ( ®𝑐𝑐 ′ ♂ ®𝑣) ( ®𝑝 ′ ♂ ®𝑣) (by Observation 49)

= ( ®𝑐𝑐 ′ ♂ ®𝑣) (( ®𝑝 ♂ ®𝑣) − ( ®𝑝 ′ ♂ ®𝑣))

Because 𝑐𝑐 ′ > 0, also ( ®𝑐𝑐 ′ ♂ ®𝑣) > 0 and we get:
(𝑐𝑐 ′®𝑝 ♂ ®𝑣) − (𝑐𝑐 ′ ®𝑝 ′ ♂ ®𝑣) = 0 iff ( ®𝑝 ♂ ®𝑣) − ( ®𝑝 ′ ♂ ®𝑣) = 0.
Then we take 𝑠, 𝑠 ′ ∈ S such that 𝑀®𝑠 = 𝑐𝑐 ′®𝑝,𝑀 ®𝑠 ′ = 𝑐𝑐 ′ ®𝑝 ′. By
Lemma 50 we have:

(1) for 𝑣 ∈ 𝑉 , 𝑣 (𝑠) = 𝑐𝑐 ′®𝑝 ♂ ®𝑣 = 𝑐𝑐 ′ ®𝑝 ′ ♂ ®𝑣 = 𝑣 (𝑠 ′)
(2) 𝑞(𝑠) = 𝑐𝑐 ′®𝑝 ♂ ®𝑞 ≠ 𝑐𝑐 ′ ®𝑝 ′ ♂ ®𝑞 = 𝑞(𝑠 ′)

So 𝐷 = 𝑠, 𝐷 ′ = 𝑠 ′ are the structures as postulated by Lemma 41.
The last thing needed for the proof of Lemma 41 is:
proof of Lemma 56. Take ®𝑧0 ∈ Q𝑘 such that (1) ∀𝑣 ∈ 𝑉 ⟨ ®𝑧0, ®𝑣⟩ = 0
and (2) ⟨ ®𝑧0, ®𝑞⟩ ≠ 0. Such ®𝑧0 exists thanks to Fact 5 and to the
assumption that ®𝑞 ∉ span{®𝑣 | 𝑣 ∈ 𝑉 }. Then take 𝑑 ∈ N+ such that
𝑑 ®𝑧0 ∈ Z𝑘 . Let ®𝑧 = 𝑑 ®𝑧0. Clearly, ®𝑧 satisfies conditions (1) and (2) too.

Let ®𝑝 and 𝑟 be as in Corollary 8. This means that ®𝑝 ∈ C ∩Q𝑘 and
the ball with center ®𝑝 and radius 𝑟 is contained in C, with 𝑟 > 0. So
we already have ®𝑝 and we will find ®𝑝 ′ in this ball.

Lemma 57. There exists 𝑡 ∈ R+ \ {1} such that 𝑡 ®𝑧 ◦ ®𝑝 ∈ C ∩ Q𝑘 .
24Finally we are using this nonsingularity. But it is the proof of Lemma 56 where it is
really fundamentally needed.
25Take a common multiple of all denominators of the coordinates of ®𝛼 .
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Proof. Observe that the function 𝑡 ↦→ 𝑡 ®𝑧 ◦ ®𝑝 is continuous and
it maps 1 to ®𝑝 . Thus there is 𝛿 > 0 such that:

∀𝑡 ∈ (1 − 𝛿, 1 + 𝛿) ∥𝑡 ®𝑧 ◦ ®𝑝 − ®𝑝 ∥ < 𝑟

It is now enough26 to take any 𝑡 ≠ 1 in (1 − 𝛿, 1 + 𝛿) ∩ Q. □

Let ®𝑝 ′ = 𝑡 ®𝑧 ◦ 𝑝 where 𝑡 is as in Lemma 57. By Observation 49:
• For 𝑣 ∈ 𝑉 , ®𝑝 ′ ♂ ®𝑣 = (𝑡 ®𝑧 ◦ 𝑝) ♂ ®𝑣 = (𝑡 ®𝑧 ♂ ®𝑣) ( ®𝑝 ♂ ®𝑣) =

𝑡 ⟨®𝑧,®𝑣⟩ ( ®𝑝 ♂ ®𝑣) = ®𝑝 ♂ ®𝑣
• ®𝑝 ′ ♂ ®𝑞 = (𝑡 ®𝑧◦𝑝) ♂ ®𝑞 = (𝑡 ®𝑧 ♂ ®𝑞) ( ®𝑝 ♂ ®𝑞) = 𝑡 ⟨®𝑧,®𝑞⟩ ( ®𝑝 ♂ ®𝑞) ≠ ®𝑝 ♂ ®𝑞
This ends the proof of Lemma 56, of Lemma 41 and of Theorem 3.
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8 APPENDIX A — THE UCQ CASE
This section is entirely devoted to the proof of Theorem 2.

As our source of undecidability we take Hilbert’s Tenth Prob-
lem. It is well known that the following problem is undecidable:

Problem 58. Given a polynomial equation with finite number of
unknowns and integer coefficients, determine whether it has a solution
such that every unknown is a natural number.

An instances of Hilbert’s Tenth Problem can be seen as a set
of monomials (with integer coefficients). For a given monomial𝑚
we will denote with 𝑐 (𝑚) its coefficient and with𝑚(𝑥) we denote
degree of𝑚 with respect to 𝑥 in𝑚 (if 𝑥 in not present in𝑚 then
𝑚(𝑥) = 0).

In order to prove Theorem 2 we will construct a reduction from
(the complement) of Hilbert’s Tenth Problem. As an instance of
that problem we are given a set 𝐼 = {𝑚1,𝑚2, . . . ,𝑚𝑘 } of monomials.
Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be the unknowns present in 𝐼 . We are going to
produce a schema Σ, a boolean UCQ 𝑞 and a set 𝑉 of boolean UCQ
such that 𝐼 has no solution if and only if 𝑉 bag−−−−→ 𝑞.

We start with Σ, which will consist27 of nullary and unary predi-
cates: 𝐻,𝐶,𝑋1 (𝑥), . . . , 𝑋𝑛 (𝑥). For a structure 𝐷 and for 𝑅 ∈ Σ let us
denote, with 𝐷𝑅 , the number of atoms of relation 𝑅 in structure 𝐷 .
Notice that, since 𝐻 and 𝐶 are nullary, 𝐷𝐻 , 𝐷𝐶 ∈ {0, 1} for each 𝐷 .

Now. the general idea, that one could have in mind, is that the
upcoming set of boolean CQs 𝑉 will make sure that any pair of
distinct structures 𝐷, 𝐷 ′ over Σ satisfying 𝑉 (𝐷) = 𝑉 (𝐷 ′) is equal
on 𝑋𝑖 and differs on 𝐻 and 𝐶 .

Before we can define 𝑉 let us construct two UCQs Ψ𝑁 and Ψ𝑃 .
First, for every monomial𝑚 we define the following boolean CQ:

Φ𝑚 = ∃∗
∧
𝑋𝑖 ∈Σ

𝑚 (𝑥𝑖 )∧
𝑗=1

𝑋𝑖 (𝑦𝑖, 𝑗 )

where the quantifier ∃∗ binds all the variables 𝑦𝑖, 𝑗 that occur in
the formula.

For a structure 𝐷 over Σ and for𝑚 ∈ 𝐼 let𝑚𝐷 be the value of
𝑚 after substituting, for each unknown 𝑥𝑖 in𝑚, the number 𝐷𝑋𝑖

.
For a solution 𝑓 of instance 𝐼 we write𝑚𝑓 to denote the value of𝑚
after substituting each unknown 𝑥𝑖 with its value in solution 𝑓 .

Lemma 59. For each 𝐷 and each𝑚 ∈ 𝐼 :

𝑚𝐷 = 𝑐 (𝑚) · Φ𝑚 (𝐷)

Proof. It follows from Lemma 4 (5). □

Let 𝑃 be subset of 𝐼 containing monomials with positive coeffi-
cients and let 𝑁 contain monomials with negative coefficients, then
define:

Ψ𝑃 =
∨
𝑚∈𝑃

𝑐 (𝑚)∨
𝑖=1

Φ𝑚 ∧ 𝐻, Ψ𝑁 =
∨
𝑚∈𝑁

𝑐 (𝑚)∨
𝑖=1

Φ𝑚 ∧𝐶.

Lemma 60. For each 𝐷 it holds that:

𝐷𝐻 ·
∑︁
𝑚∈𝑃

𝑚𝐷 = Ψ𝑃 (𝐷) .

27One needs to mention here that our nullary predicates come from [14] and [2] and
our unary predicates come from [8].
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Proof.

Ψ𝑃 (𝐷) =
∑︁
𝑚∈𝑃

𝑐 (𝑚)∑︁
𝑖=1

(Φ𝑃 ∧ 𝐻 ) (𝐷) (Lemma 4)

=
∑︁
𝑚∈𝑃

𝑐 (𝑚)∑︁
𝑖=1

𝐷𝐻 · Φ𝑃 (𝐷)

= 𝐷𝐻 ·
∑︁
𝑚∈𝑃

𝑐 (𝑚)∑︁
𝑖=1

Φ𝑃 (𝐷)

= 𝐷𝐻 ·
∑︁
𝑚∈𝑃

𝑐 (𝑚) · Φ𝑃 (𝐷)

= 𝐷𝐻 ·
∑︁
𝑚∈𝑃

𝑚𝐷 (Lemma 59)

□

Lemma 61. For each 𝐷 it holds that:

𝐷𝐶 ·
∑︁
𝑚∈𝑁

𝑚𝐷 = −Ψ𝑁 (𝐷)

Proof. Analogous to the proof of Lemma 60. □

Finally we are able to define a query 𝑞 and a set of queries𝑉 . Our
boolean UCQ 𝑞 will simply be equal to 𝐻 . The set 𝑉 will contain
the following boolean UCQs :

• 𝑉1 = 𝐻 ∨𝐶 ,
• 𝑉𝑥𝑖 = ∃𝑦 𝑋𝑖 (𝑦) for each 𝑋𝑖 in schema Σ,
• 𝑉𝐼 = Ψ𝑃 ∨ Ψ𝑁 .

The above definition of 𝑉 implies the following property:

Lemma 62. For every pair of distinct structures 𝐷,𝐷 ′ such that
𝑉 (𝐷) = 𝑉 (𝐷 ′) the following holds:

𝐷𝑋𝑖
= 𝐷 ′

𝑋𝑖
, 𝐷𝐻 = 𝐷 ′

𝐶 , 𝐷𝐶 = 𝐷 ′
𝐻 , 𝐷𝐻 ≠ 𝐷𝐶

Proof. Property 𝐷𝑋𝑖
= 𝐷 ′

𝑋𝑖
is obvious given views 𝑉𝑥𝑖 . From

𝑉1 (𝐷) = 𝑉1 (𝐷 ′) we get following possibilities:
(1) 𝐷𝐻 = 𝐷 ′

𝐶
, 𝐷𝐶 = 𝐷 ′

𝐻
, 𝐷𝐻 ≠ 𝐷𝐶 (𝑉1 (𝐷) = 1)

(2) 𝐷𝐻 = 𝐷 ′
𝐻
, 𝐷𝐶 = 𝐷 ′

𝐶
, 𝐷𝐻 ≠ 𝐷𝐶 (𝑉1 (𝐷) = 1)

(3) 𝐷𝐻 = 𝐷 ′
𝐻

= 𝐷𝐶 = 𝐷 ′
𝐶
= 0 (𝑉1 (𝐷) = 0)

(4) 𝐷𝐻 = 𝐷 ′
𝐻

= 𝐷𝐶 = 𝐷 ′
𝐶
= 1 (𝑉1 (𝐷) = 2)

From 𝐷𝑋𝑖
= 𝐷 ′

𝑋𝑖
and the fact that 𝐷 ≠ 𝐷 ′ we conclude that only

(1) can hold. □

Thus whenever we will have two different structures 𝐷,𝐷 ′ sat-
isfying 𝑉 (𝐷) = 𝑉 (𝐷 ′) we will assume without loss of generality
that: 𝐷𝐻 = 𝐷 ′

𝐶
= 1 and 𝐷𝐶 = 𝐷 ′

𝐻
= 0. Notice that this implies that

𝑞(𝐷) ≠ 𝑞(𝐷 ′) for such 𝐷 and 𝐷 ′.
To finish the proof of Theorem 2 it is now enough to show:

Lemma 63. There exists a pair of different structures 𝐷,𝐷 ′ over
schema Σ that satisfies 𝑉 (𝐷) = 𝑉 (𝐷 ′) if and only if 𝐼 has a solution
over natural numbers.

Proof. (⇐). Let 𝑓 be a solution over N of 𝐼 and let 𝑎𝑖 be a value
of 𝑥𝑖 in 𝑓 . Then let 𝐷 and 𝐷 ′ be such that:

• 𝐷𝐻 = 1, 𝐷 ′
𝐻

= 0, 𝐷𝐶 = 0, 𝐷 ′
𝐶
= 1,

• 𝐷𝑋𝑖
= 𝐷 ′

𝑋𝑖
= 𝑎𝑖 ,

From Lemmas 60 and 61 we show that:

𝑉𝐼 (𝐷) −𝑉𝐼 (𝐷 ′) =
∑︁
𝑚∈𝑃

𝑚𝑓 +
∑︁
𝑚∈𝑁

𝑚𝑓 =
∑︁
𝑚∈𝐼

𝑚𝑓 = 0

(⇒). Now we will show that
∑
𝑚∈𝐼 𝑚𝐷 = 0. From Lemmas 60

to 62 we get:

𝑉𝐼 (𝐷) = 𝑉𝐼 (𝐷 ′)
Ψ𝑃 (𝐷) + Ψ𝑁 (𝐷) = Ψ𝑃 (𝐷 ′) + Ψ𝑁 (𝐷 ′)

Ψ𝑃 (𝐷) = Ψ𝑁 (𝐷 ′)∑︁
𝑚∈𝑃

𝑚𝐷 = −
∑︁
𝑚∈𝑁

𝑚𝐷∑︁
𝑚∈𝑃

𝑚𝐷 +
∑︁
𝑚∈𝑁

𝑚𝐷 = 0∑︁
𝑚∈𝐼

𝑚𝐷 = 0

□

9 APPENDIX B. PROOF OF LEMMA 11(⇒).
Suppose there is no path, in𝐺𝑞,𝑉 , from Y to 𝑞. We will show that in
such case𝑉 does not determine 𝑞. Let structure 𝐷 be defined in the
following way:

• 𝑑𝑜𝑚(𝐷) = {[𝑤, 𝑗] | 𝑤 is a prefix of 𝑞, 𝑗 ∈ {0, 1}}
• For [𝑤, 𝑖], [𝑢, 𝑗] ∈ 𝑑𝑜𝑚(𝐷), 𝑅 ∈ Σ we have 𝑅( [𝑤, 𝑖], [𝑢, 𝑗]) ∈
𝐷 if and only if 𝑢 = 𝑤𝑅 and 𝑖 = 𝑗 .

So 𝐷 is just 𝑞 + 𝑞, that is the union of two disjoint frozen bodies
of 𝑞. It follows easily from the definition that ⟨[Y, 0], [𝑞, 0]⟩ ∈ 𝑞(𝐷)
with multiplicity 1.

For𝑤,𝑢 ∈ 𝐺𝑞,𝑉 we define𝑤 ∼ 𝑢 if either both𝑤 and𝑢 are reach-
able, in graph 𝐺𝑞,𝑉 , from Y or if none of them is. Clearly, 𝑤 ∼ 𝑤 ′

is an equivalence relation with two equivalence classes, and with
Y ̸∼ 𝑞.

We will now define the second structure, our 𝐷 ′, with the same
domain as 𝐷 , but different atoms:

For 𝑢 = 𝑤𝑅:

• 𝑅( [𝑤, 𝑖], [𝑢, 𝑖]) ∈ 𝐷 ′ if and only if 𝑢 = 𝑤𝑅 and𝑤 ∼ 𝑢;
• if 𝑖 ≠ 𝑗 then 𝑅( [𝑤, 𝑖], [𝑢, 𝑗]) ∈ 𝐷 ′ if and only if 𝑢 = 𝑤𝑅 and
𝑤 ̸∼ 𝑢.

Notice that this means that if there is any path in 𝐷 ′ from some
[𝑤, 𝑖] to [𝑢, 𝑗] then:

𝑖 = 𝑗 if and only if𝑤 ∼ 𝑢.

Which in particular means that ⟨[Y, 0], [𝑞, 0]⟩ ∉ 𝑞(𝐷 ′) and hence
𝑞(𝐷) ≠ 𝑞(𝐷 ′).

But on the other hand, for 𝑣 ∈ 𝑉 , it is very easy to see that if
𝑢𝑣𝑢 ′ = 𝑞 for some 𝑢,𝑢 ′ ∈ Σ∗ and if 𝑖 ∈ {0, 1} then ⟨[𝑢, 𝑖], [𝑢𝑣, 𝑖]⟩ ∈
𝑣 (𝐷), with multiplicity 1, and that there are no other tuples in𝑉 (𝐷).
And it is also not hard to verify that such𝑉 (𝐷) exacty equals𝑉 (𝐷 ′).
This is since, if 𝑢 and 𝑣 are as above, then 𝑢 ∼ 𝑢𝑣 .
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10 APPENDIX C. PROOFS OF SOME LEMMAS
NEEDED FOR THEOREM 1.

10.1 Proof of Lemma 15
We only show the first claim, as the other one is symmetric. The
proof will be by induction with respect to |𝑤 |:
(1) |𝑤 | = |𝑞 |. Then𝑤 = 𝑞 and we are done.
(2) |𝑤 | > |𝑞 |. Then there is 𝑖 such that ]𝑖 = −1. By Definition 12 (1)
we know that ]1 = 1, so there exists 𝑗 < 𝑖 such that ] 𝑗 = 1 and ] 𝑗+1 =

−1. Then, by Definition 12 (3) we conclude that 𝐴 𝑗 = 𝐴 𝑗+1 = 𝐴 for
some 𝐴 ∈ Σ. This means that 𝑤 = 𝑢𝐴𝐴−1𝑢 ′ for some 𝑢,𝑢 ′ ∈ Σ̄∗.
It is easy to see that the word 𝑢𝑢 ′ constitutes a 𝑞-walk. And it is
shorter than𝑤 . So, by the hypothesis, we have 𝑢𝑢 ′ +/-−−→* 𝑞. And of
course there is also𝑤 +/-−−→ 𝑢𝑢 ′, so we get𝑤 +/-−−→* 𝑞. *□

10.2 Proof of Lemma 22
(1) If 𝑢 +/-−−→ 𝑢 ′ then there are 𝑤,𝑤 ′ ∈ Σ̄∗ and 𝑅 ∈ Σ such that
𝑢 = 𝑤𝑅𝑅−1𝑤 ′ and 𝑢 ′ = 𝑤𝑤 ′. Then, using Lemma 21:

𝐻𝑢 = 𝐻𝑤𝑅𝑅−1𝑤′ = 𝐻𝑤′𝐻−1
𝑅

𝐻𝑅𝐻𝑤 =

= 𝐻𝑤′ℎ𝑅
−1ℎ𝑅𝐻𝑤 ⊆ 𝐻𝑤′𝐼𝐻𝑤 = 𝐻𝑤𝑤′ = 𝐻𝑢′

(2) If 𝑢 -/+−−→ 𝑢 ′ then there are 𝑤,𝑤 ′ ∈ Σ̄∗ and 𝑅 ∈ Σ such that
𝑢 = 𝑤𝑅−1𝑅𝑤 ′ and 𝑢 ′ = 𝑤𝑤 ′. Then, again using Lemma 21:

𝐻𝑢 = 𝐻𝑤𝑅−1𝑅𝑤′ = 𝐻𝑤′𝐻𝑅𝐻
−1
𝑅

𝐻𝑤 =

= 𝐻𝑤′ℎ𝑅ℎ𝑅
−1𝑊𝐻𝑤 ⊇ 𝐻𝑤′𝐼𝐻𝑤 = 𝐻𝑤𝑤′ = 𝐻𝑢′ □

11 APPENDIX D. PROOFS OF SOME LEMMAS
NEEDED FOR THEOREM 3.

11.1 Proof of Lemma 31 (⇐).
Let𝐷, 𝐷 ′ be some structures such that 𝑣 (𝐷) = 𝑣 (𝐷 ′) for each 𝑣 ∈ 𝑉0.
We need to show that 𝑞(𝐷) = 𝑞(𝐷 ′). There are two cases:

• Case 1: ∃𝑣 ∈ 𝑉 𝑣 (𝐷) = 0.
Then of course also 𝑣 (𝐷 ′) = 0. By Observation 26 this implies

that 𝑞(𝐷) = 0. Likewise we get that 𝑞(𝐷 ′) = 0, so 𝑞(𝐷) = 𝑞(𝐷 ′).

• Case 2: ∀𝑣 ∈ 𝑉 𝑣 (𝐷) ≠ 0.
Take 𝛼1, ..., 𝛼𝑘 ∈ R such that ®𝑞 =

∑ |𝑉 |
𝑖=1 𝛼®𝑣𝑖 .

𝑞(𝐷) =
𝑘∏
𝑖=1

𝑤𝑖 (𝐷) ®𝑞 (𝑖) (by Observation 30)

=

𝑘∏
𝑖=1

𝑤𝑖 (𝐷)
∑|𝑉 |

𝑗=1 𝛼 𝑗 ®𝑣𝑗 (𝑖)

=

𝑘∏
𝑖=1

|𝑉 |∏
𝑗=1

(
𝑤𝑖 (𝐷)®𝑣𝑗 (𝑖)

)𝛼 𝑗

=

|𝑉 |∏
𝑗=1

(
𝑘∏
𝑖=1

𝑤𝑖 (𝐷)®𝑣𝑗 (𝑖)
)𝛼 𝑗

=

|𝑉 |∏
𝑗=1

𝑣 𝑗 (𝐷)𝛼 𝑗 (by Observation 30 again)

Note that since for every 𝑗 ∈ {1, ..., 𝑘} we have 𝑣 𝑗 (𝐷) > 0, the
expression

∏ |𝑉 |
𝑗=1 𝑣 𝑗 (𝐷)

𝛼 𝑗 is correct, even if for some 𝑗 the number
𝛼 𝑗 is not natural.

Likewise, we show that 𝑞(𝐷 ′) = ∏ |𝑉 |
𝑗=1 𝑣 𝑗 (𝐷

′)𝛼 𝑗 . However, we
know that for 𝑗 ∈ {1, ..., 𝑘} it holds that 𝑣 𝑗 (𝐷) = 𝑣 𝑗 (𝐷 ′), so this
implies that 𝑞(𝐷 ′) = ∏ |𝑉 |

𝑗=1 𝑣 𝑗 (𝐷)
𝛼 𝑗 = 𝑞(𝐷). □

11.2 Proof of Observation 45
By Lemma 4 we have:

|ℎ𝑜𝑚(𝑤, 𝑠 (2) ) | = |ℎ𝑜𝑚(𝑤,

𝑚∑︁
𝑖=1

𝑇 𝑖𝑠
(1)
𝑖

) | =
𝑚∑︁
𝑖=1

𝑇 𝑖 |ℎ𝑜𝑚(𝑤, 𝑠
(1)
𝑖

) |

Likewise |ℎ𝑜𝑚(𝑤 ′, 𝑠 (2) ) | = ∑𝑚
𝑖=1𝑇

𝑖 |ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)
𝑖

) |.
Notice that this means that the sequence:

|ℎ𝑜𝑚(𝑤, 𝑠
(1)
𝑚 ) |; |ℎ𝑜𝑚(𝑤, 𝑠

(1)
𝑚−1) |; . . . |ℎ𝑜𝑚(𝑤, 𝑠

(1)
1 ) |; 0

is a representation28 of |ℎ𝑜𝑚(𝑤, 𝑠 (2) ) | in radix 𝑇 . And:

|ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)𝑚 ) |; |ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)
𝑚−1) |; . . . |ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)1 ) |; 0

is a representation of |ℎ𝑜𝑚(𝑤 ′, 𝑠 (2) ) | in radix 𝑇 . The two represen-
tations are different since |ℎ𝑜𝑚(𝑤, 𝑠

(1)
𝑖

) | ≠ |ℎ𝑜𝑚(𝑤 ′, 𝑠 (1)
𝑖

) | for some
𝑖 (by Step 1). So the two numbers must be different too. □

11.3 Proof of Lemma 46
Take any𝛼1, ..., 𝛼𝑘 ∈ R such that for all 𝑖 ∈ {1, . . . , 𝑘},∑𝑘

𝑗=1 𝛼 𝑗𝐴(𝑖, 𝑗) =
0. We will show that then 𝛼1 = · · · = 𝛼𝑘 = 0. Let us define a poly-
nomial 𝑃 (𝑋 ) = 𝛼1 + 𝛼2𝑋 + ... + 𝛼𝑘𝑋

𝑘−1. Then
∑𝑘

𝑗=1 𝛼 𝑗𝐴(𝑖, 𝑗) =∑𝑘
𝑗=1 𝛼 𝑗𝑎

𝑗−1
𝑖

= 𝑃 (𝑎𝑖 ). Because 𝑎1, ..., 𝑎𝑘 are pairwise distinct, we
know that 𝑃 has at least 𝑘 zeros. But the degree of 𝑃 is at most 𝑘 − 1,
hence 𝑃 = 0 and all of its coefficients are 0. □

11.4 Proof of Observation 49
(1)

(®𝑢 ◦ ®𝑣) ♂ ®𝑤 =

𝑘∏
𝑖=1

(®𝑢 (𝑖)®𝑣 (𝑖)) ®𝑤 (𝑖)

=

𝑘∏
𝑖=1

(®𝑢 (𝑖)) ®𝑤 (𝑖)
𝑘∏
𝑖=1

(®𝑣 (𝑖)) ®𝑤 (𝑖)

= (®𝑢 ♂ ®𝑤) (®𝑣 ♂ ®𝑤)

(2)

𝑡 ®𝑢 ♂ ®𝑣 =

𝑘∏
𝑖=1

(
𝑡 ®𝑢 (𝑖)

) ®𝑣 (𝑖)
=

𝑘∏
𝑖=1

𝑡 ®𝑢 (𝑖) ®𝑣 (𝑖)

= 𝑡
∑𝑘

𝑖=1 ®𝑢 (𝑖) ®𝑣 (𝑖) = 𝑡 ⟨®𝑢,®𝑣⟩

28Recall that each of |ℎ𝑜𝑚 (𝑤, 𝑠
(1)
𝑖

) | is smaller than𝑇 .
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11.5 Proof of Lemma 50

(𝑀®𝑠) (𝑖) =
𝑘∑︁
𝑗=1

𝑀 (𝑖, 𝑗)®𝑠 ( 𝑗)

=

𝑘∑︁
𝑗=1

𝑤𝑖 (𝑠 𝑗 )®𝑠 ( 𝑗) (by definition of𝑀)

= 𝑤𝑖
©«

𝑘∑︁
𝑗=1

®𝑠 ( 𝑗)𝑠 𝑗
ª®¬ (by Lemma 4)

= 𝑤𝑖 (𝑠) (by definition of ®𝑠)

(𝑀®𝑠) ♂ ®𝑣 =

𝑘∏
𝑖=1

(𝑀®𝑠) (𝑖)®𝑣 (𝑖)

=

𝑘∏
𝑖=1

𝑤𝑖 (𝑠)®𝑣 (𝑖)

=

(
𝑘∑︁
𝑖=1

®𝑣 (𝑖)𝑤𝑖

)
(𝑠) (by Lemma 4)

□
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