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Abstract

An oblivious subspace embedding (OSE), characterized by parameters m,n, d, ε, δ, is a random
matrix Π ∈ Rm×n such that for any d-dimensional subspace T ⊆ Rn, PrΠ[∀x ∈ T, (1 − ε)‖x‖2 ≤
‖Πx‖2 ≤ (1 + ε)‖x‖2] ≥ 1− δ. For ε and δ at most a small constant, we show that any OSE with one
nonzero entry in each column must satisfy that m = Ω(d2/(ε2δ)), establishing the optimality of the
classical Count-Sketch matrix. When an OSE has 1/(9ε) nonzero entries in each column, we show it
must hold that m = Ω(εO(δ)d2), improving on the previous Ω(ε2d2) lower bound due to Nelson and
Nguyẽ̂n (ICALP 2014).

1 Introduction

Subspace embedding is a fundamental technique in dimensionality reduction which has been successfully
applied to a variety of tasks on large data sets, including clustering [BZMD15, CEM+15], correlation
analysis [ABTZ14] and typical linear algebraic problems such as regression and low-rank approxima-
tion [CW17]. In general, the subspace embedding technique “compresses” a large-scale problem, which
is computationally prohibitive, into a smaller one so that the result of the original problem can be ob-
tained from the compressed version and the computation on the compressed version is affordable. A
survey of subspace embedding techniques and their applications can be found in [Woo14].

More specifically, we define the notion of oblivious subspace embedding as follows.

Definition 1. An (n, d, ε, δ)-oblivious-subspace-embedding is a random matrix Π ∈ Rm×n such that for
any fixed d-dimensional subspace T ⊆ Rn, it holds that

Pr {∀x ∈ T, (1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2} ≥ 1− δ. (1)

When n and d are clear from the context, we abbreviate an (n, d, ε, δ)-oblivious-subspace-embedding
to an (ε, δ)-oblivious-subspace-embedding. Very often, the subspace T is the column space of a matrix
A ∈ Rn×d and the subspace embedding property (1) thus becomes

Pr
{
∀x ∈ Rd, (1− ε)‖Ax‖2 ≤ ‖ΠAx‖2 ≤ (1 + ε)‖Ax‖2

}
≥ 1− δ. (2)

A typical construction of Π is a random Gaussian matrix of i.i.d. N(0, 1/m) entries with m = Θ((d+
log(1/δ))/ε2). This target dimension m is known to be optimal up to a constant [NN14]. However, it is a
dense matrix and computing ΠA could be computationally expensive. As a result, having a sparse matrix
Π, which is commonly characterized by the maximum number of nonzero entries in each column, denoted
by s, is highly desirable. OSNAP [NN13a, Coh16] and Count-Sketch [CW17] are two classical sparse
constructions. In the OSNAP construction, m = Θ(d log(d/δ)/ε2) and Π has s = Θ(log(d/δ)/ε) nonzeros
per column, whose positions are chosen uniformly in each column and whose values are Rademacher
variables; alternatively, m = Θ(d1+γ log(d/δ)/ε2) and s = Θ(1/(γε)) for any constant γ > 0. The
column sparsity allows for computing ΠA in O(nnz(A) · s) time, where nnz(A) denotes the number
of nonzero entries of A. The Count-Sketch construction is a special and extreme case of the OSNAP
construction in which the column sparsity parameter s = 1. It has, however, m = Θ(d2/(δε2)) rows,
which is quadratic in d/ε. Despite this, the matrix Π is extremely sparse and computing ΠA takes only
O(nnz(A)) time, making Count-Sketch indispensable in several fastest algorithms. A natural question
is, therefore,
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Is it possible to further reduce the target dimension m in the sparse constructions of Π?

To answer the question, one can consider the lower bound for the target dimension m, that is, to
show that an oblivious subspace embedding cannot exist if m is less than a certain threshold. So far only
a few results have been known in this direction. Nelson and Nguyẽ̂n proved that for s = 1 and constant
ε, δ, any (ε, δ)-oblivious-subspace-embedding must have m = Ω(d2) [NN13b], showing the tightness of the
quadratic dependence on d for Count-Sketch. When combined with the general (unconstrained column
sparsity) lower bound of m = Ω(d/ε2), the best previously known lower bound for the case of s = 1 is
Ω(d2 +d/ε2), assuming that δ is a constant. This does not preclude a smaller dimension for Count-Sketch
or, in general, extreme sparse constructions with s = 1. For larger s, the same authors showed that for δ a
constant and n = Ω(d2), any (ε, δ)-oblivious-subspace-embedding must have m = Ω(ε2d2) when s ≤ α/ε
for some constant α > 0 [NN14]. Recall the general Ω(d/ε2) bound without the sparsity constraint, the
Ω(ε2d2) bound is stronger only when d = Ω(1/ε4). We also note that the sparsity constraint s ≤ α/ε is
optimal up to a constant factor for the quadratic dependence on d due to the aforementioned OSNAP
construction, where s = Θ(1/(γε)) and m = Θ(d1+γ(log d)/ε2).

Our contributions. We obtain the following improvements on the lower bounds on m for any (ε, δ)-
oblivious-subspace-embedding.

(i) When s = 1, we show a lower bound of m = Ω(d2/(ε2δ)) for n = Ω(d2/(ε2δ)), which implies that
the target dimension of Count-Sketch is tight up to a constant factor.

(ii) When s ≤ 1/(9ε), we show a lower bound of m = Ω(εΘ(δ)d2) for d = Ω(1/ε2), n = Ω(d2/ε2)
and constant δ. This is almost a quadratic improvement on dependence on ε compared with the
previous lower bound of Ω(ε2d2). Our result also reduces the effective constraint d = Ω(1/ε4)
to d = Ω(1/ε2+O(δ)), again almost a quadratic improvement. Furthermore, we obtain a trade-off
between m and s, namely m = Ω((log s)−Θ(1)s−Θ(δ)d2), when s ≤ 1/(9ε).

1.1 Our Techniques

We give a brief overview of the techniques for our new lower bounds, assuming that δ is a small constant.
First of all, to show a lower bound of m ≥ M(d, ε, δ) for an (ε, δ)-oblivious-subspace-embedding, it
suffices, by Yao’s minimax principle, to construct a distribution D over n× d matrices (called the hard
instance) and show that if a deterministic matrix Π ∈ Rm×n is an (ε, δ)-subspace-embedding for A ∼ D,
i.e., if (2) holds for probability taken over A ∼ D, then Π must have at least M(d, ε, δ) rows. Without
loss of generality, we may assume that D is supported on isometries. Here, an isometry U ∈ Rn×d has
orthonormal columns.

1.1.1 Tight lower bound for s = 1

We first review an easy proof of the m = Ω(d2) lower bound for s = 1. Intuitively, if Π is a subspace
embedding for a deterministic isometry U , there cannot be a row l and two columns i, j of ΠU such
that |(ΠU)l,i| and |(ΠU)l,j | are both large, because the “collision” would make the norm ‖ΠUu‖2 not
concentrate around 1 for some unit vector u ∈ Rd. For example, consider the simple case of s = 1,
V = (Id 0)T and U = S · V , where S ∈ Rn×n is a diagonal matrix of i.i.d. Rademacher variables on its
diagonal line, and suppose that |(ΠU)l,i|, |(ΠU)l,j | ∈ [1 − ε, 1 + ε]. Then for u , (ei + ej)/

√
2 we have

‖ΠUu‖22 ≥ 2(1 − ε)2 with probability 1/2 and ‖ΠUu‖22 ≤ 2ε2 with 1/2. Observe that 2(1 − ε)2 and 2ε2

are 2− 4ε apart from each other, which contradicts the fact that ‖ΠUu‖22 falls in [(1− ε)2, (1 + ε)2], an
interval of length 4ε < 2− 4ε.1 Based on this observation, in the case of s = 1, one can choose the hard
instance U to be U = SV , where S is as before but V is the induced distribution by randomly permuting
the rows of (Id 0)T . Since ΠU behaves like hashing d coordinates into m buckets and the subspace
embedding property implies that there should be no collision with a large probability, the lower bound
of m = Ω(d2) follows easily from the birthday paradox.

To obtain a better lower bound for s = 1, the hard instance U has to capture more than d dimensions
in its rows. Hence, we replicate the identity matrix 1/(8ε) times and normalize it, that is, let V be
a row-permuted version of (Id Id · · · Id 0)T and U =

√
8εSV , so that every column of U has

1In the case of s = 1, Nelson and Nguyẽ̂n proved m = Ω(d2) by observing that the rank of ΠU would be less than d if
a “collision” exists [NN13b]. Their argument seems difficult to apply to more complicated hard instances, while our type
of contradiction is more amenable and plays a central role in proving higher lower bounds in our work.
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exactly 1/(8ε) nonzero entries, each being ±
√

8ε. Similarly to before, we seek to prove that no collisions
should exist. Here, a collision means that Π has large values at some row l ∈ [m] and some columns
i′, j′ ∈ [n] and, simultaneously, Ui′,i, Ui′,j 6= 0.2 If there ever exists a “collision”, we would like to argue

that we can find a unit vector u and a real number o such that ‖ΠUu‖22 > o + 2ε with probability at

least 1/4 and ‖ΠUu‖22 < o − 2ε with probability at least 1/4 (over the randomness of S), and thus

reach a contradiction. We still set u , (ei + ej)/
√

2. However, an important difference from before,
thus the main difficulty, is that ΠUu now may have nonzero coordinates other than the l-th coordinate
since U has more than one nonzero entry in each column, and so ‖ΠUu‖22 cannot be easily controlled by
observing the l-th coordinate with an easy bound or a concentration bound for the other coordinates.
Even the l-th coordinate (ΠUu)l itself may contain a hard-to-control contribution from columns other
than columns i′, j′ in Π since there may exist k′ 6= i′, j′ such that Πl,k′Uk′,i 6= 0. Our key observation
is the following. Conditioning on that Πl,i′ ,Πl,j′ , Ui′,i, Uj′,j 6= 0, for any fixing of the random variables

other than Si′,i′ , Sj′,j′ , we can find a real number o such that ‖ΠUu‖22 > o+ 2ε with probability 1/4 and

‖ΠUu‖22 < o− 2ε with probability 1/4. This suffices to derive a contradiction. Hence, all d/(8ε) nonzero
entries of U must be isolated under the hashing matrix Π and the lower bound m = Ω(d2/ε2) follows
again from the birthday paradox.

1.1.2 New lower bound for s ≤ 1/(9ε)

Generalizing hard distribution. We generalize the hard instance U above with parameter β. Let Dβ
be the distribution of random matrices U containing 1/β copies of Id, normalized by

√
β and multiplied

by independent Rademacher variables, that is, V is a row-permuted version of (Id Id · · · Id 0)T

and U ,
√
βSV . A formal definition can be found in Definition 2.3 We observe that OSNAP with

column sparsity s ≤ 1/(8ε) requires m = Ω(d2/ε2) rows for U ∼ D8εs. This suggests the following
conjecture: if Π has many entries of large absolute value, then D1 is a hard distribution. Therefore, we
start by proving a lower bound for the hard instance U ∼ D1 under an “abundance assumption” that
Π has Ω(n/ε) entries of absolute value Ω(

√
ε), and remove the assumption later at the cost of losing an

εO(δ) factor in the lower bound.

Generalizing the collision. To handle the case s > 1, we generalize the notion of collision of large
entries. Instead of looking for two large entries in the same row, we look for two columns with a large
inner product in absolute value. Assuming the large inner product, we can show, using an argument
analogous to the case s = 1, a contradiction to the assumption that ‖ΠUu‖22 is contained in an interval
of length 4ε for some unit vector u (See Lemma 4 for a precise statement). Therefore, it suffices to show
that, if m is small, with constant probability, there exist two columns of Π chosen by U whose inner
product is at least 5ε in absolute value. Observe that the collision of two entries of absolute value at
least

√
8ε contributes at least 8ε to the inner product. Thus, it suffices to prove that the inner product

among the remaining entries does not cancel the 8ε by more than 3ε. To this end, we adopt an idea from
Nelson and Nguyẽ̂n [NN14] and show that the inner product between two columns, after removing the
two large colliding entries, is close to zero with good probability. Now, if we assume that m = O(d2), Π
has sufficiently many entries of absolute value Ω(

√
ε) and U ∼ D1, there will be many collisions of large

entries with constant probability. For each such collision, as previously argued, with good probability,
the inner product of the corresponding columns has absolute value at least 5ε. Therefore, with constant
probability, we can find a pair of columns of Π chosen by U such that their inner product has absolute
value at least 5ε, assuming that m is small and Π has many entries of large absolute values.

Finding colliding column pairs. The central work to prove the lower bound for s = O(1/ε), under
the “abundance assumption”, lies in finding and analyzing the distributions of the random column pairs
(i, j) of Π given the existence of a row l such that |Πl,i|, |Πl,j | are both large. In fact, using Nelson and
Nguyẽ̂n’s idea to obtain a stronger lower bound is highly non-trivial. (One can refer to Lemma 3 for
the formal statement of a proposition akin to their idea.) This idea works only when columns i, j are
drawn from the same set uniformly without replacement. However, this may indeed not be satisfied by
a random colliding column pair. For instance, suppose that Πl1,i = Πl1,j = Πl2,j = Πl2,k =

√
8ε and the

remaining entries are zero, then (i, j), (j, k) are colliding pairs but (i, k) is not.

2Throughout this paper, we let [n] , {1, . . . , n}.
3The distribution of U in Definition 2 is not strictly supported on isometries but is an isometry with an overwhelming

probability, which suffices for our purpose.

3



A simple workaround is to limit the collisions between a column i and other columns to some fixed
row l(i). Let l(i) be such that Πl(i),i has the largest absolute value among the m entries in column i and
consider only the collisions between column i and columns j where l(j) = l(i). Under this restriction,
the columns are partitioned into disjoint groups based on l(i)’s, and the distribution of colliding column
pair can be viewed as sampling a group followed by sampling uniformly at random two columns i, j in
the group. A critical drawback of this solution is that we can merely find ≈

√
d2/m colliding column

pairs, and each pair yields large inner product with probability ≈ ε, so Nelson and Nguyẽ̂n obtained a
lower bound of m = Ω(ε2d2) only.

To obtain a higher lower bound, we shall balance (i) the number of colliding column pairs we examine
and (ii) the probability of each pair having a large inner product in absolute value, so that we can
maximize the probability that we find a pair of columns whose inner product is large in absolute value.
To maximize (i), we adopt the following greedy strategy. Recall that the matrix U in the definition of D1

has d nonzero rows at random positions and let C1, . . . , Cd ∈ [n] be the indices of these rows. Initialize
S , [d]. We iterate over i ∈ [d]. If i ∈ S, we find j ∈ S \ {i} such that the columns Ci and Cj collide,
output a pair (Ci, Cj) and remove i, j from S. Indeed, this greedy strategy would result in a large number
of colliding pairs, but the problem is how to show (ii) is large. A challenge is that the distribution of the
column pairs found by the greedy strategy is rather involved. To see this, let φc denote the conditional
probability of a random Cj collides with Ci given that Ci = c, then the marginal distribution of Ci of a
random colliding pair (Ci, Cj) has probability mass function p(c) = φc/

∑
c φc. The greedy strategy, on

the other hand, induces a marginal probability q(c) = ψc/
∑
c ψc for C1, conditioned on that C1 collides

with Cj for some j > 1, where ψc , 1− (1−φc)d−1 is the probability that there exists j > 1 such that Cj
collides with C1 = c. Thus, the colliding pair found by the greedy strategy has a different distribution
from the true distribution D′ of a colliding pair (C1, Cj). To overcome this challenge, we observe that
(i) if φc = Ω(1/d) for some c, there will exist a row l such that |Πl,i| is large for Ω(1/(sd))-fraction of
columns i ∈ [n] and we can then apply Nelson and Nguyẽ̂n’s idea on row l; (ii) if φc = O(1/d) for all c,
then ψc = Θ(d · φc) and q(c) = Θ(p(c)) for all c, hence the distribution of a colliding column pair found
by the greedy strategy is close to the true distribution D′. Assuming that φc = O(1/d) for all c, it is
sufficient to analyze D′, which is another technical innovation of this work. Below we assume that it
always holds φc = O(1/d) for all c and analyze the pairs found in this case.

Analyzing random colliding column pairs. Recall that Nelson and Nguyẽ̂n’s idea works only when
columns i, j are drawn from the same set uniformly without replacement, and D′ may not be such a
distribution. Our idea is to examine a distribution D′′ which is close to D′ and is a linear combination
of distributions that sample column pairs without replacement. Specifically, we assign to each colliding
column pair (i, j) a weight which is equal to the number of rows l such that Πl,i,Πl,j are both large
in absolute value, and let D′′(i, j) be proportional to the weight of (i, j). Under this construction,
D′′ can be viewed as sampling a row l from some distribution, followed by sampling two columns i, j
uniformly without replacement from the set of large entries in row l. Note that for any (i, j), it holds
that D′(i, j) = Ω(ε · D′′(i, j)), since the column sparsity s = O(1/ε). Invoking Nelson and Nguyẽ̂n’s
idea, we can show that a colliding column pair (i, j) ∼ D′′ has a large inner product with probability
Ω(ε). Consequently, a column pair (i, j) ∼ D′ has a large inner product with probability Ω(ε2). Since an
average colliding column pair can collide in Ω(1/ε) rows, we have to set m = O(εd2) to ensure Ω(1/ε2)
colliding column pairs, and thus obtain a lower bound of m = Ω(εd2) only.

Our final solution is to further consider a quantity ∆ of Π, which is the expected number of rows l
such that |Πl,i|, |Πl,j | are simultaneously large for (i, j) ∼ D′. We take ∆ along with D′′ as a pivot for
our proof. We show that we can find Ω(d2/(ε2m∆)) colliding column pairs with high probability and,
informally, that a random pair of colliding columns (i, j) ∼ D′ has a large inner product with probability
Ω(ε2∆). Therefore, if m ≤ d2, we find a column pair with a large inner product with constant probability,
leading to the lower bound m = Ω(d2).

Removing the assumption. The key argument for removing the “abundance assumption” is the
following claim. If m is small, then for every ` ∈ {0, 1, . . . , L} (L , log(1/ε) − 3), the matrix Π cannot

have too many entries of absolute value at least
√

2`. This claim would imply that the `2-norm of an
average column of Π is less than 1− ε and thus Π cannot be a subspace embedding for U ∼ D1.

To prove the claim, we propose a new hard distribution: with probability 1/2, it isD1; with probability
1/2, it is D2−`′ for `′ uniformly chosen from {0, 1, . . . , L}. By the law of total probability, Π must be a
subspace embedding for U ∼ D1 and also a subspace embedding for U ∼ D2−`′ for (1 − O(δ))-fraction
of `′ ∈ {0, . . . , L}. Hence, for each ` ∈ {0, . . . , L}, there exists an `′ among the (1− O(δ))-fraction such
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that Π is a subspace embedding for U ∼ D2−`′ and `+ `′ ≈ L up to an additive error of O(δL), matching
our conjecture that U ∼ D2−L+` is hard for the subspace embedding Π with column sparsity s = 2`. We
can then follow the proof of the lower bound with the “abundance assumption” to show that Π cannot
have ≈ εO(δ)2`n entries of absolute value at least

√
2`, where the additional εO(δ) factor is incurred by

the aforementioned additive error O(δL). Thus, the average squared `2-norm of column vectors of Π is
εO(δ) log(1/ε) < (1−ε)2 for small enough ε, contradicting the assumption that Π is a subspace embedding
for U ∼ D1.

2 Preliminaries

For x, y ∈ R and θ > 0, we write x = y± θ if x ∈ [y− θ, y+ θ]. For a matrix A, we denote its i-th column
vector by A∗,i. For a finite set S, we denote by Unif(S) the uniform distribution on S. For a random
variable X and a probability distribution D, we write X ∼ D to denote that X follows D.

When d and ε are clear from the context, we abbreviate the event in the probability of (2) to “Π is
a subspace embedding for A”.

The following distribution Dβ on n × d matrices, parameterized by β, is fundamental in the hard
instances for the lower bounds.

Definition 2 (Distribution Dβ). The distribution Dβ (0 < β ≤ 1) is defined on matrices U ∈ Rn×d as
follows. The matrix U is decomposed as U = VW , where V ∈ Rn×d/β and W ∈ Rd/β×d. The matrix
V has i.i.d. columns, each V∗,i (i = 1, . . . , d/β) is uniformly distributed among the n canonical basis

vectors in Rn. The matrix W is distributed as follows: For each i = 1, . . . , d, set Wj,i , σj
√
β for

j = (i− 1)/β + 1, . . . , i/β, where σj ∈ {−1, 1} are independent Rademacher variables; set the remaining
entries of W to zero.

Let B denote the event that V has two identical columns. Since U = VW may not be an isometry
when B happens, we shall only consider the subspace embedding property of Π for U conditioned on B.
Note that when n ≥ Kd2/(β2δ), it holds that Pr[B] ≤ δ/(2K), which can be made an arbitrarily small
fraction of δ by setting K large enough. We shall thus assume K is large enough and ignore the event
B hereafter and pretend that V has independent columns and the full column rank.

Our strategy is to show that there are two columns i, j of ΠV such that their inner product
〈(ΠV )∗,i, (ΠV )∗,j〉 deviates from zero and that the large deviation implies that Π cannot be a subspace
embedding for U . We shall need the following lemmata.

The first lemma, inspired by Lemmata 8 and 9 in [NN14], shows that in a finite collection of vectors
of length at most 1 there always exists a small fraction of vector pairs whose inner product is not too
small. We shall use this lemma to look for an inner product away from zero.

Lemma 3. Let ε ∈ (0, 1/9) and κ = 3. Suppose that S is a finite subset of the unit `2-ball and u, v are
independent samples from Unif(S). Then 〈u, v〉 ≥ −κε with probability at least 2ε.

Proof. Note that

0 ≤

∥∥∥∥∥∑
u∈S

u

∥∥∥∥∥
2

2

=
∑
u,v∈S

〈u, v〉.

Thus
E
u,v

[〈u, v〉] ≥ 0.

Since ‖u‖2 ≤ 1 for all u ∈ S, it holds that 〈u, v〉 ≤ 1. If Pr[〈u, v〉 ≥ −κε] ≤ 2ε for some κ > 0, then

0 ≤ E
u,v

[〈u, v〉] ≤ 2ε+ (1− 2ε)(−κε)

which is true only if κ < 2/(1− 2ε). That is, when κ = 3 and ε ∈ (0, 1/9), the inequality above will not
hold and therefore Pr[〈u, v〉 ≥ −κε] > 2ε.

The next lemma states that, if two columns of ΠV have a large inner product, then this large deviation
implies the anti-concentration of ‖ΠUv‖22 for some v, which refutes the existence of a good Π.

Lemma 4. Suppose that |〈A∗,p, A∗,q〉| ≥ λε/β for some distinct columns p, q of a matrix A ∈ Rm×d/β,
where λ > 2. Then there exists a unit vector u ∈ Rd such that with probability at least 1/4 (over W )

‖AWu‖22 /∈ [(1− ε)2, (1 + ε)2].
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Proof. Let p′, q′ be the columns of W such that Wp,p′ 6= 0 and Wq,q′ 6= 0. First we assume that p′ 6= q′.

Let u , (ep′ + eq′)/
√

2, S , {i ∈ [d/β] : Wi,p′ 6= 0 or Wi,q′ 6= 0} and ν ,
∑
i∈S\{p,q} σiA∗,i. Then

‖AW (ep′ + eq′)‖22 /β = ‖σpA∗,p + σqA∗,q + ν‖22 = ‖A∗,p‖22 + ‖A∗,q‖22 + ‖ν‖22 + 2(X + Y + Z), (3)

where
X , σpσq 〈A∗,p, A∗,q〉 , Y , σp 〈A∗,p, ν〉 , Z , σq 〈A∗,q, ν〉 .

The assumption states that |X| ≥ λε/β and thus max{|X|, |Y |, |Z|} ≥ λε/β. We arbitrarily fix σi’s for
all i ∈ S \ {p, q} and then apply the following fact.

Fact 5. Suppose that x1, x2, x3 ∈ R satisfy |x1| ≥ |x2| ≥ |x3| and |x1| ≥ a. Let σ1, σ2 be independent
Rademacher variables. Then Pr[σ1x1 +σ2x2 +σ1σ2x3 ≥ a] ≥ 1/4 and Pr[σ1x1 +σ2x2 +σ1σ2x3 ≤ −a] ≥
1/4.

Note that O , ‖A∗,p‖22 + ‖A∗,q‖22 + ‖ν‖22 is constant conditioned on {σi}i∈S\{p,q}. We conclude that

Pr

[
‖AWu‖22 ≥

Oβ

2
+ λε

∣∣∣∣ {σi}i∈S\{p,q}] ≥ 1

4
and Pr

[
‖AWu‖22 ≤

Oβ

2
− λε

∣∣∣∣ {σi}i∈S\{p,q}] ≥ 1

4
.

(4)
Observe that [(1− ε)2, (1 + ε)2] is an interval of length 4ε < 2λε, it follows that

Pr
{
‖AWu‖22 /∈ [(1− ε)2, (1 + ε)2]

∣∣∣ {σi}i∈S\{p,q}} ≥ 1/4.

The claimed result then follows from the law of total probability. This completes the proof for the case
p′ 6= q′.

Next we consider the case p′ = q′. Let u , ep′ and S , {i ∈ [d/β] : Wi,p′ 6= 0}. Then the preceding

argument goes through almost identically as ‖AWep′‖22 /β has exactly the same expansion as in (3).
Instead of (4) we shall have

Pr
[
‖AWu‖22 ≥ Oβ + 2λε

∣∣∣ {σi}i∈S\{p,q}] ≥ 1

4
and Pr

[
‖AWu‖22 ≤ Oβ − 2λε

∣∣∣ {σi}i∈S\{p,q}] ≥ 1

4
.

3 Lower Bound for s = 1

Our hard instance D is D1 with probability 1/2 and D8ε with probability 1/2, where Dβ is defined in
Definition 2.

Lemma 6. If Π ∈ Rm×n is an (ε, δ)-subspace-embedding for U ∼ D with column sparsity s = 1, then
(1−2δ/d)-fraction of the column vectors of Π has `2-norm of 1±ε, i.e. (1−2δ/d)-fraction of the nonzero
entries of Π have absolute value 1± ε.

Proof. By the law of total probability,

1− δ ≤ Pr[Π is a subspace embedding for U ]

=
1

2
Pr[Π is a subspace embedding for U |U ∼ D1] +

1

2
Pr[Π is a subspace embedding for U |U ∼ D8ε].

Thus we have Pr[Π is a subspace embedding for U |U ∼ D1] ≥ 1− 2δ.
Suppose that σ fraction of the nonzero entries of Π have the absolute value outside [1− ε, 1 + ε], then

we have Pr[‖ΠUei‖2 ∈ [1− ε, 1 + ε] | U ∼ D1] = 1− σ for each i ∈ [d]. Hence,

Pr[∀i ∈ [d], ‖ΠUei‖2 ∈ [1− ε, 1 + ε] | U ∼ D1] = (1− σ)d,

and consequently, it must hold that σ ≤ 1− (1− 2δ)1/d ≤ 2δ/d.

For each i ∈ [m], let Bi denote the number of distinct j ∈ [n] such that |Πi,j | ∈ [1 − ε, 1 + ε] and
Πi,jVj,l 6= 0 for some l ∈ [d]. Since Π can be viewed as a hashing matrix of hashing n items into m
buckets, Bi can be viewed as the number of distinct dimensions which are hashed into the i-th bucket
with small distortion (multiplied by 1± ε or −(1± ε)).
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Lemma 7. Let ε ∈ (0, 1/8), δ ∈ (0, 1/4) and n ≥ Kd2/(ε2δ) for some absolute constant K > 0 large
enough. If Π ∈ Rm×n is an (ε, δ)-subspace-embedding for U ∼ D with column sparsity s = 1, then
conditioned on U ∼ D8ε, with probability at most 2δ/(1− 4δ), there exists an i such that Bi > 1.

Proof. A similar argument to the beginning of the proof of Lemma 6 yields that

Pr[Π is a subspace embedding for U |U ∼ D8ε] ≥ 1− 2δ.

We define an event E to be that Bi > 1 for some i ∈ [m]. Let σ , Pr[E | U ∼ D8ε]. Again by the law of
total probability,

1− 2δ ≤Pr[Π is a subspace embedding for U | U ∼ D8ε]

= Pr[Π is a subspace embedding for U | U ∼ D8ε, E ] · σ
+ Pr[Π is a subspace embedding for U | U ∼ D8ε, E ] · (1− σ).

It follows that

Pr[Π is a subspace embedding for U | U ∼ D8ε, E ] ≥ 1− 2δ − σ
1− σ

=: 1− σ′.

It suffices to show that Π cannot be a subspace embedding for U ∼ D8ε, conditioning on E and an arbi-
trarily fixed V , with large probability. When E happens, there exist i 6= j such that |〈(ΠV )∗,i, (ΠV )∗,j〉| ≥
(1−ε)2 > 3/4. Invoking Lemma 4, we conclude that Π is not a subspace embedding for U with probability
at least (1− σ′)/4.

Thus we have (1− σ′)/4 ≤ δ, which implies that 1− σ ≤ 2δ/(1− 4δ).

Theorem 8. Let ε ∈ (0, 1/8), δ ∈ (0, 1/8), and n ≥ Kd2/(ε2δ) for some absolute constant K > 0
large enough. If Π ∈ Rm×n is an (ε, δ)-subspace-embedding for U ∼ D with column sparsity s = 1, then
m = Ω(d2/(ε2δ)).

Proof. It follows from Lemma 6, together with linearity of expectation and Markov’s inequality, that
when conditioned on U ∼ D8ε, with probability at least 1 − 4δ/d, there are d/(16ε) entries of U which
are multiplied by 1 ± ε or −(1 ± ε) in ΠU . By Lemma 7 and a union bound, with probability at least
1 − 2δ/(1 − 4δ) − 4δ/d ≥ 1 − 8δ, for any two distinct columns i, j among the d/(16ε) columns of V ,
there does not exist k ∈ [m] such that (ΠV )k,i 6= 0 and (ΠV )k,j 6= 0. The folklore lower bound for the
birthday paradox immediately implies that the matrix Π must have Ω(d2/(ε2δ)) rows.

4 Lower Bound for s = 1/(9ε) with Abundance Assumption

In this section we shall show an Ω(d2) lower bound for all Π with column sparsity 1/(9ε) and an additional
“abundance assumption” that Π has many large entries in most columns (formalized as Assumption (ii)
in Theorem 9). We shall remove this assumption in the next section and obtain an Ω(εO(δ)d2) lower
bound.

For these lower bounds, we use the same distribution Dβ in Definition 2 and consider a constant δ.
As explained after Definition 2, we pretend that V has independent columns and the full column rank
by assuming n ≥ Kd2/(β2δ) for some K large enough.

We say that a matrix entry is θ-heavy if its absolute value is at least θ. We define the average number
of θ-heavy entries of a matrix A of n columns as Ej [|{i : |Ai,j | ≥ θ}|], where j ∼ Unif([n]). We say that
two columns i, j of A share k θ-heavy rows if there exist k distinct values l ∈ [m] such that both Al,i
and Al,j are θ-heavy.

Below is the main theorem of the section.

Theorem 9. There exist absolute constants ε0, δ0,K0 > 0 such that the following holds. For all ε ∈
(0, ε0), δ ∈ (0, δ0), d ≥ 1/ε2 and n ≥ K0d

2/δ, if (i) the column sparsity of Π is at most 1/(9ε), (ii) the
average number of

√
8ε-heavy entries of Π is at least 1/(12ε), and (iii) Π is an (ε, δ)-subspace-embedding

for U ∼ D1, then Π must have more than d2 rows.

Remark 10. The d2 lower bound is tight up to a constant factor, demonstrated by the following example.
Let H be a Hadamard matrix of order 1/(8ε). We define Π to be the horizontal concatenation of copies
of an m ×m block diagonal matrix, where m = O(d2) and each diagonal block is

√
8εH. Clearly each

column of Π contains 1/(8ε) entries of absolute value
√

8ε. It can be easily verified that Π is a (0, δ)-
subspace-embedding for U ∼ D1 and constant δ.
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Algorithm 1: Finding disjoint good column pairs

1 Let g be the number of good columns chosen by V and let S1 ← [g];
2 Let (C1, C2, . . . , Cg) ∈ [n]g be the good columns among the d columns chosen from [n] by V in

the order they are sampled;
3 G1 ← G;
4 k ← 1;
5 foreach j ∈ [d/16] do
6 while true do

7 Compute φk,c , Prc′∼Unif(Gk)[c
′ ↔ c] for all c ∈ Gk;

8 for all l ∈ [m], Glk ← {c ∈ Gk : |Πl,c| ≥
√

8ε};
9 `← arg maxl |Glk|;

10 S′k ← {i ∈ Sk : |Π`,Ci
| ≥
√

8ε};
11 if φk,c ≤ η/d for all c ∈ Gk then
12 S′k ← ∅;
13 break;

14 else if S′k 6= ∅ then break;
15 output (`,⊥);
16 Sk+1 ← Sk;

17 Gk+1 ← Gk \G`k;
18 k ← k + 1;

19 end
20 if S′k 6= ∅ then
21 if |S′k| ≥ 2 then
22 sample two distinct j′, j′′ ∈ S′k;
23 output (Cj′ , Cj′′);
24 Sk+1 ← Sk \ {j′, j′′};
25 Gk+1 ← Gk;

26 else
27 output (`,⊥);
28 Sk+1 ← Sk \ S′k;

29 Gk+1 ← Gk \G`k;

30 end

31 else if j /∈ Sk then
32 Sk+1 ← Sk;
33 Gk+1 ← Gk;
34 output (⊥,⊥);

35 else
36 S′k ← {i ∈ Sk \ {j} : Ci ↔ Cj};
37 if S′k 6= ∅ then
38 sample a j′ ∼ Unif(S′k);
39 output (Cj′ , Cj);
40 Sk+1 ← Sk \ {j, j′};
41 Gk+1 ← Gk;

42 else
43 output (⊥, Cj);
44 Sk+1 ← Sk \ {j};
45 Gk+1 ← Gk \ {c ∈ Gk : c↔ Cj};
46 end

47 end
48 k ← k + 1;

49 end
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We shall prove Theorem 9 by contradiction. Assume that Π has m = d2 rows in the rest of this
section.

We say that two columns i, j collide with each other, denoted by i ↔ j, if they share at least one√
8ε-heavy row. We call a column good if it has at least 1/(16ε)

√
8ε-heavy entries and its `2-norm is

1± ε. Let G ⊆ [n] be the set of indices of the good columns of Π. It follows from an averaging argument
together with Lemma 6 that at least (1/3)-fraction of the columns of Π are good.

We are going to adopt the idea of the proof of Theorem 7 in [NN14] to show that there is a pair of
columns (i, j) of ΠV such that |〈(ΠV )∗,i, (ΠV )∗,j〉| = Ω(ε) with probability at least a constant. To this
end, we are going to find colliding column pairs and analyze their distributions.

4.1 Finding colliding column pairs

This subsection is devoted to analyzing Algorithm 1 and proving Lemmas 12 and 13, i.e. showing that
Algorithm 1 finds many colliding pairs and they are well distributed.

For a sequence of column indices (C1, C2, . . . , ) ∈ [n]∗, we say that two column pairs (Ca, Cb), (Cc, Cd) ∈
[n]2 are disjoint if a, b, c, d are distinct. We select disjoint good column pairs among the good columns
chosen by V using the random process presented in Algorithm 1, in which we set η , 3. Our goal is to
show that with constant probability, there is a column pair (Ci, Cj), found by Algorithm 1, such that
|〈Π∗,Ci

,Π∗,Cj
〉| = Ω(ε).

Suppose that the output of Algorithm 1 are Y1, . . . , Yd/16. Each Yi is a random pair over ({⊥
} ∪ [n])× ({⊥} ∪ [n]). We have the following lemma on the guarantee of Algorithm 1.

Lemma 11. The set sequences {Gk} and {Sk} are both decreasing and nonempty. Furthermore, con-
ditioned on Y1, . . . , Yk−1, the set Gk is determined and the random variables {Ci}i∈Sk

are independent
and uniformly distributed over Gk.

Proof. It is clear from the algorithm that Gk is determined by Y1, . . . , Yk−1 and both {Gk} and {Sk}
are non-increasing and nonempty. It remains to show that {Ci}i∈Sk

are i.i.d. Unif(Gk), which we shall
prove by induction on k.

The base case is k = 1. Indeed, all the g Ci’s are independent and uniformly distributed over G.
Since G1 = G, the base case is verified.

For the induction step, we fix a k such that 1 ≤ k. We also fix Y1, . . . , Yk−1.
If there exists c ∈ Gk such that φk,c > η/d and Yk = (·,⊥), then we know that Sk+1 = Sk \ S′k and

Gk+1 = Gk \ G`k, where G`k and S′k are as defined in Lines 8 and 10. For each i ∈ Sk+1 = Sk \ S′k, we
know that Π`,Ci

is not heavy and thus Ci /∈ G`k. Since Ci is uniform on Gk given Y1, . . . , Yk−1, we know
that Ci is uniform on Gk \G`k when further conditioned on that Ci 6∈ G`k. The induction hypothesis also
implies that {Ci}i∈Sk+1

are independent.
If there exists c ∈ Gk such that φk,c > η/d and Yk 6= (·,⊥), we know that Gk+1 = Gk and Sk+1 ⊂ Sk.

Since {Ci}i∈Sk+1
is a subset of {Ci}i∈Sk

, which are i.i.d. Unif(Gk) by the induction hypothesis, it is clear
that {Ci}i∈Sk+1

are i.i.d. Unif(Gk).
Now we assume that φk,c ≤ η/d for all c ∈ Gk. When Yk = (⊥,⊥), then we know j /∈ Sk. Since

Gk+1 = Gk and Sk+1 = Sk, it follows immediately from the induction hypothesis that {Ci}i∈Sk+1
are

i.i.d. Unif(Gk+1). When Yk ∈ [n] × [n], we know that Gk+1 = Gk and Sk+1 ⊂ Sk, thus it follows from
the induction hypothesis that {Ci}i∈Sk+1

are i.i.d. Unif(Gk+1). When Yk ∈ {⊥}× [n], for each i ∈ Sk+1,
it must hold that Ci does not collide with Cj and thus Ci 6∈ {c ∈ Gk : c↔ Cj} by the Line 45. Since Ci
is uniform on Gk given Y1, . . . , Yk−1, we know that Ci is uniform on Gk+1 when further conditioned on
that Ci ∈ Gk+1. The induction hypothesis also implies that {Ci}i∈Sk+1

are independent.
The proof of the inductive step is now complete.

Let E denote the event that at least 7d/24 columns of ΠV are good. By a Chernoff bound, we know
that Pr(E) ≥ 1− exp(−Ω(d)). When E happens, the set S1 in Algorithm 1 contains at least 7d/24 good
column indices with high probability in d.

For each k and each c ∈ Gk (where Gk is as guaranteed by Lemma 11), we define

φk,c , Pr
c′∼Unif(Gk)

[c′ ↔ c]. (5)

Observe that the while-loop never shrinks Sk and the for-loop remove at least one and at most two
elements from Sk during each iteration. It is clear that |Sk \ {j}| ≥ (7d/24) − 2 · (d/16) = d/6 for all
j ≤ k. Furthermore, it is easy to see that the while-loop will also be broken. We shall discuss two cases
based on the breaking conditions of the while-loop.
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Lemma 12. Assume that E happens. For each j ∈ [d/16], if the while-loop is broken by the event S′k 6= ∅,
then with probability at least δ′ε, Algorithm 1 outputs a column pair (Cj′ , Cj′′) ∼ Unif(G`k ×G`k), where
δ′ > 0 is an absolute constant.

Proof. When the while-loop is broken by event S′k 6= ∅, it must happen that φk,c > η/d for some c ∈ Gk.

Let M , {l ∈ [m] : |Πl,c| ≥
√

8ε}. Note that {c′ ∈ Gk : c′ ↔ c} =
⋃
l∈M Glk. The choice of ` implies

that |G`k| ≥ |{c′ ∈ Gk : c′ ↔ c}|/|Mc|. Since the column sparsity of Π is s, |Mc| ≤ s = 1/(9ε) and so
|G`k| ≥ (φk,c · |Gk|)/|Mc| ≥ ηε/(9d) · |Gk|. Let p , |G`k|/|Gk|, so p ≥ ηε/(9d).

Observe that at most two elements are removed from Sk during each iteration of the for-loop. Since E
happens, it always holds that |Sk| ≥ d/6. By Lemma 11, the elements in S′k are sampled independently
from Gk with sampling probability p. Hence,

Pr[|S′k| ≥ 2 | S′k 6= ∅] = 1− Pr[|S′k| = 1]

Pr[S′k 6= ∅]
= 1− |Sk|p(1− p)

|Sk|−1

1− (1− p)|Sk|

≥ 1− |Sk|p(1− p)
|Sk|−1

p|Sk|
= 1− (1− p)|Sk|−1.

Observe that the rightmost side above is increasing w.r.t. p. When p · |Sk| ≤ 1,

Pr[|S′k| ≥ 2 | S′k 6= ∅] ≥
(

1− 1

e

)
p(|Sk| − 1) ≥

(
1− 1

e

)
η

54
ε.

Therefore, it always hold that Pr[|S′k| ≥ 2 | S′k 6= ∅] ≥ δ′ · ε, where δ′ = (1− 1/e)η/54.

Now we assume that the while-loop is broken by the event that “φk,c ≤ η/d for all c ∈ Gk”. We

further define Tk , {(i, i′) ∈ Gk × Gk : i ↔ i′}, i.e., the set of good column pairs in Gk which collide
with each other. Let D′k denote the distribution of the output (Cj′ , Cj) in Line 39 of Algorithm 1. Let
∆k be a random variable representing the conditional expected number of

√
8ε-heavy rows shared by

two random good columns from Tk given Y1, . . . , Yk−1. Note that ∀c ∈ Gk, (c, c) ∈ Tk, hence Tk 6= ∅, and
thus ∆k is well-defined.

Lemma 13. Assume that E happens. For each j ∈ [d/16], if the while-loop is broken by event “φk,c ≤ η/d
for all c ∈ Gk” and if j ∈ Sk, then with probability at least d/(Kε2m∆k), Algorithm 1 outputs a column
pair (Cj′ , Cj), where K > 0 is an absolute constant. Furthermore, the probability mass function of D′k
differs from that of Unif(Tk) by at most a factor of an absolute constant.

Proof. We claim that ∑
c∈Gk

φk,c
|Gk|

= Pr
c,c′∼Unif(Gk)

[c′ ↔ c] ≥ 1

256ε2m∆k
. (6)

Indeed, let X denote the number of
√

8ε-heavy rows shared by two random good columns i, i′ ∼ Unif(Gk).
Note that

E[X] =
∑
l∈[m]

Pr[Πl,i,Πl,i′ are
√

8ε-heavy]

=
∑
l∈[m]

Pr[Πl,i is
√

8ε-heavy]2

≥ 1

m

∑
l∈[m]

Pr[Πl,i is
√

8ε-heavy]

2

(Cauchy-Schwarz)

≥ 1

m
·
(

1

16ε

)2

=
1

256ε2m
.

Since X ≥ 0, applying the law of total expectation gives that

E[X] = E[X|X = 0] · Pr[X = 0] + E[X|X > 0] · Pr[X > 0] = ∆k · Pr[X > 0],

which implies that Pr[X > 0] = E[X]/∆k ≥ 1/(256ε2m∆k). This establishes (6).
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Observe that at most two elements are removed from Sk during each iteration of the for-loop. Since
E happens, it always holds that |Sk| > d/6. Thus, Cj collides with some Cj′ ∈ Gj , where j′ ∈ Sk \ {j},
with probability at least∑

c∈Gk

Pr[Cj = c]
(

1− (1− φk,c)
d
6

)
≥
∑
c∈Gk

1

|Gk|
·
(

1− 1

e

)
· φk,c ·

d

6
≥ d

K
· 1

256ε2m∆k
.

for some absolute constantsK > 0. Here, the first inequality follows from the fact that φk,c·d/6 ≤ η/6 ≤ 1
and the second inequality from (6).

Next we analyze the distribution of the colliding pair (Cj′ , Cj). Given that there is such an output,

the distribution of (Cj′ , Cj) can be obtained by first sampling Cj = c ∈ Gk with probability pk,c ,
φ′k,c/

∑
c∈Gk

φ′k,c, where

φ′k,c , Pr[∃c′ ∈ {Ci}i∈Sk\{j}, c
′ ↔ c] = 1− (1− φk,c)|Sk|−1,

and then independently sampling j′ ∼ Unif(S′k). Since we are conditioning on that the algorithm outputs
a column pair, the second step is equivalent to choosing Cj′ ∼ Unif(MCj ), whereMc , {c′ ∈ Gk : c′ ↔ c}.

Now we examine (C ′, C) ∼ Unif(Tk). Then Unif(Tk) can be obtained from first sampling C = c ∈ Gk
with probability qk,c , φk,c/

∑
c∈Gk

φk,c and then independently sampling C ′ ∼ Unif(Mc).
The result follows from the fact that

pk,c =
φ′k,c∑

c∈Gk
φ′k,c

= Θ

(
φk,c∑

c∈Gk
φk,c

)
= Θ(qk,c), ∀c ∈ Gk.

4.2 Looking for large inner product

In this subsection, we shall show that (informally)

1. (Lemma 16) every column pair (i, j), found by Algorithm 1 in Line 39, satisfies that |〈Π∗,i,Π∗,j〉| =
Ω(ε) with probability Ω(d/m);

2. (Corollary 17) Algorithm 1 finds a column pair whose inner product is Ω(ε) with probability
Ω(d2/m).

Recall that the column sparsity is at most s = 1/(9ε). We further define for each x ∈ [s]{
Qx,k , {(i, i′) ∈ Tk : i and i′ share exactly x

√
8ε-heavy rows},

Px,k , {(i, i′) ∈ Qx,k : 〈Π∗,i,Π∗,i′〉 ≥ (8− κ)ε}.

Let qx,k = |Qx,k|/|Tk| and px,k = |Px,k|/|Tk|. Note that {qx,k}x forms a probability distribution on [s]
and

∑
x x · qx,k = ∆k.

To analyze D′k, which is close to Unif(Tk), we consider an analogous distribution D′′k . Instead of
sampling a good column pair uniformly at random over Tk, D′′k is obtained by sampling a good column
pair (i, i′) with probability proportional to the number of

√
8ε-heavy rows shared by columns i and i′.

We need the following observation.

Lemma 14. Let ε ∈ (0, 1/9). Suppose that a matrix A has a row l such that S , {i : |Al,i| ≥ θ} is

nonempty. Further suppose that ‖A∗,i‖22 ≤ 1 + θ2 for all i ∈ S. Let u, v ∼ Unif(S) be independently
sampled. Then 〈A∗,u, A∗,v〉 ≥ θ2 − κε with probability at least ε/2, where κ is as in Lemma 3.

Proof. We partition S into two groups S− = {i : Al,i < 0} and S+ = {i : Al,i > 0}. Without loss of
generality, we assume that |S−| ≥ |S+|. With probability at least 1/4, we have u, v ∈ S−. Condition on
this event. It is clear that we have Al,uAl,v ≥ θ2 and u, v are independent uniform samples over S−.

Let S′ be the set of column vectors consisting of all the column vectors in S− with the l-th entry
removed. Applying Lemma 3 to S′ yields that 〈A∗,u, A∗,v〉−Al,uAl,v ≥ −κε with probability larger than
2ε. Unconditioning on u, v ∈ S−, the claim follows.

The following is an immediate corollary of the preceding lemma.

Corollary 15. It holds that
(∑s

x=1 x · px,k
)/(∑s

x=1 x · qx,k
)
≥ ε/2.
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Proof. Note that D′′k can be rephrased as samples some row l, then sample two good columns (i, i′) such
that |Πl,i|, |Πl,i′ | ≥

√
8ε. Lemma 14 implies the advertized result.

Let p̂k ,
∑
x px,k, then p̂k has the combinatorial interpretation that

p̂k = Pr
(i,i′)∼Unif(Tk)

[〈Π∗,i,Π∗,i′〉 ≥ (8− κ)ε] .

For the true distribution D′k, define correspondingly

p̃k = Pr
(i,i′)∼D′k

[〈Π∗,i,Π∗,i′〉 ≥ (8− κ)ε] .

Recall that D′k is different from Unif(Tk) by a constant factor, we have p̃k = Θ(p̂k). We shall show that
if j ∈ Sk and φk,c ≤ η/d for all c ∈ Gk, with probability at least Ω(d/m), Algorithm 1 in Line 39 outputs
a pair (Cj′ , Cj) such that 〈Π∗,Cj′ ,Π∗,Cj

〉 ≥ (8− κ)ε.

Lemma 16. There exists an absolute constant δ′ > 0 such that the following holds. Assume that E
happens. Suppose that ε ∈ (0, 1/9), the while-loop is broken by event “φk,c ≤ η/d for all c ∈ Gk”,
and j ∈ Sk. With probability at least δ′d/m, Algorithm 1 in Line 39 outputs a pair (Cj′ , Cj) such that
〈Π∗,Cj′ ,Π∗,Cj

〉 ≥ (8− κ)ε, where κ is as in Lemma 3.

Proof. Since ∆k ≤ s = 1/(9ε), Algorithm 1 in Line 39 outputs a pair (Cj′ , Cj) with probability at least
9d/(Kεm) by Lemma 13. When p̂k ≥ ε/12, we have that p̃k = Θ(p̂k) = Ω(ε) and the desired result
follows.

Next we assume that p̂k ≤ ε/12. Let ε′, ε/2, wk, (
∑
x x · px,k)/p̂k and ∆′k ,

∑
x x(qx,k − px,k). It

is clear that wk ≤ (
∑
x s · px,k)/p̂k = s. Note that ∆k = ∆′k + wk · p̂k =

∑
x x · qx,k ≥

∑
x qx,k = 1, we

know that ∆′k ≥ 1− s · p̂k ≥ 107/108 ≥ s · p̂k ≥ wk · p̂k, so ∆′k ≥ ∆k/2. The inequality in Corollary 15
can be written as

wkp̂k
∆′k + wkp̂k

≥ ε′.

Thus,

p̂k ≥
ε′∆′k

(1− ε′)wk
≥ ε′∆′k

s
=

(ε/2)∆′k
1/(9ε)

=
9ε2∆′k

2
≥ 9ε2∆k

4
.

The conclusion then follows from Lemma 13 and the fact that p̃k = Θ(p̂k).

Corollary 17. There exist absolute constants δ′′,K > 0 such the following holds. Suppose that d ≥ 1/ε2

and ε ∈ (0, 1/9). Assume that E happens. Then, with probability at least δ′′ ·min{d2/m, 1}, Algorithm 1
outputs a pair (Ci, Ci′) such that 〈Π∗,Ci

,Π∗,Ci′ 〉 ≥ (8− κ)ε, where κ is as in Lemma 3.

Proof. Observe that the while-loop never shrinks Sk and the for-loop always removes one or two ele-
ments from Sk during each iteration. We claim that, assuming E happens, either (i) “the while-loop
is broken by event S′k 6= ∅” happens for at least d/96 times, or (ii) “the while-loop is broken by event
∀c ∈ Gk, φk,c ≤ η/d” and “j ∈ Sk” happens simultaneously for at least d/64 times. We analyze the two
cases separately.

In case (i), by Lemma 12, Line 23 of Algorithm 1 outputs a distinct column pair with probability
Ω(ε). Let F denote the event that Line 23 outputs Ω(εd) distinct pairs over the entire execution, then
Pr[F ] ≤ exp(−Ω(εd)) by a Chernoff bound. By Lemma 14, each pair has a desired large inner product
with probability ε/2. Hence, when F happens, since d ≥ 1/ε2, one of the pairs has a desired large inner

product with probability at least 1 − (1 − ε/2)Ω(εd) ≥ 1 − e−cε2d ≥ 1 − e−c for some constant c > 0.
One can choose ε0 to be small enough such that Pr[F ] ≤ exp(−Ω(1/ε)) ≤ (1− e−c)/2 so that the overall
success probability in case (i) is at least (1− e−c)/2.

For case (ii), immediately by Lemma 16 we obtain that the desired probability is lower bounded by

1−
(

1− δ′d

m

)d/64

≥ δ′′d2

m

for some absolute constant δ′′ > 0.

12



4.3 Putting everything together

Now we are ready to complete the proof of Theorem 9.

Proof of Theorem 9. Since n ≥ K0d
2/δ, V does not have the full column rank with probability at most

δ/(2K0) ≤ δ′′ for large enough constant K0 > 0, where δ′′ is as in Corollary 17. Suppose that d is at
least a sufficiently large constant d0 such that Pr

[
E
]
≤ exp(−Ω(d)) < δ′′.

Let δ0 = δ′′/5 and ε0 = min{1/
√
d0, 1/9}. When conditioned on E , it follows from Corollary 17 that

with probability at least δ′′ there is a pair (i, j) such that 〈(ΠV )∗,i, (ΠV )∗,j〉 ≥ (8 − κ)ε. Noting that
8−κ > 2, we invoke Lemma 4 and conclude that Π cannot be an (ε, δ)-subspace-embedding for U ∼ D1,
whenever δ < δ0 ≤ (δ′′/4) · (1− 2δ′′). Therefore, Π must have more than d2 rows.

5 Removing the Abundance Assumption

In this section, we remove the “abundance assumption”, i.e. Assumption (ii) in Theorem 9, and prove
the Theorem 18.

Consider a distribution D̃ over Rn×d: with probability 1/2, it is D1; with probability 1/2, it is D2−`

for an uniformly chosen ` ∈ [L], where L , log(1/ε)− 3.

Theorem 18. There exist absolute constants ε0, δ0, c0,K0,K1 > 0 such that the following holds. For all
ε ∈ (0, ε0), δ ∈ (0, δ0), d ≥ 1/ε2 and n ≥ K0d

2/(ε2δ), if (i) the column sparsity of Π is at most 1/(9ε),

and (ii) Π is an (ε, δ)-subspace-embedding for U ∼ D̃, then Π must have more than c0 log−4(1/ε)εK1δd2

rows.

The rest of the section is devoted to the proof of Theorem 18. Let

δ′ ,
log log(1/ε72)

log(1/ε)
,

then 4εδ
′
log(1/ε) ≤ 1/18.

We start by assuming there is a matrix Π ∈ Rm×n which is an (ε, δ)-subspace-embedding of U ∼ D̃
for m = ε4δ

′+K1δd2.
By the law of total probability and the averaging principle, Π is an (ε, 2δ)-subspace-embedding for

U ∼ D1, and by Markov’s inequality, for (1−γ)-fraction of `′ ∈ [L], Π is an (ε, 2δ/γ)-subspace-embedding
for U ∼ D2−`′ , where γ , K1δ/2 < 1. Hence, for all ` ∈ [L], there exists an

`′ ∈ [max{0, (1− γ)L− `}, L− `] such that 2−`−`
′
∈ [2−L, (2−L)1−γ ]

and Π is an (ε, 2δ/γ)-subspace-embedding for U ∼ D2−`′ .
Let G0 ⊆ [n] denote the set of the column indices i ∈ [n] such that ‖Π∗,i‖2 = 1 ± ε. By Lemma 6,

|G0| ≥ (1− 2δ/d)n. Let Π′ be the submatrix of Π which consists of all the columns in G0.
Note that the following lemma implies that the average squared `2-norm of the columns of Π′ is at

most 4εδ
′
log(1/ε) + s(8ε) ≤ 17/18 < (1 − ε)2. Therefore, it suffices to prove the following lemma to

refute Π.

Lemma 19. Suppose that ε ∈ (0, 1/9), d ≥ 1/ε2, n ≥ K0d
2/(ε2δ) and Π is an (ε, δ)-subspace-embedding

for U ∼ D̃. For every ` ∈ [L], the average number of
√

2−`-heavy entries of Π′ is at most εδ
′
2`.

Proof sketch. We prove the lemma by contradiction. Fix an arbitrary ` ∈ [L] and suppose that the

average number of
√

2−`-heavy entries of Π′ is at least εδ
′
2`. By the arguments preceding Lemma 19, Π

is an (ε, 2δ/γ)-subspace-embedding for U ∼ D2−`′ .
We say that two columns i, j collide with each other, denoted by i ↔ j, if they share at least one√

2−`-heavy row. We call a column good if it has at least εδ
′
2`/3

√
2−`-heavy entries and its `2-norm is

1± ε.
Recall that every column of Π′ has the `2-norm within [1 − ε, 1 + ε]. Hence, in each column of Π′,

the number of
√

2−`-heavy entries is at most 2`(1 + ε)2. We claim that at least (εδ
′
/2)-fraction of the

columns of Π are good. Indeed, let θ be the fraction of good columns of Π′, then we have

εδ
′
2` ≤ θ2`(1 + ε)2 + (1− θ)ε

δ′2`

3
≤ 100

81
θ2` + (1− θ)ε

δ′2`

3
,
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Algorithm 2: Finding disjoint good column pairs

Let g be the number of good columns chosen by V and let S1 ← [g];

Let (C1, C2, . . . , Cg) ∈ [n]g be the good columns among the εδ
′
d · 2`′ columns chosen from [n] by

V in the order they are sampled;
G1 ← G;
k ← 1;

foreach j ∈ [εδ
′
d · 2`′/16] do

...
(the same as Lines 6–10 of Algorithm 1)
...
if φk,c ≤ η/(εδ

′
d2`
′
) for all c ∈ Gk then

...
(the same as Lines 12–48 of Algorithm 1)
...

end

whence we can solve that θ ≥ εδ′ · (2/3)/(100/81− εδ′/3) ≥ εδ′/2.
Recall that V has d′ , d2`

′
columns. Since d ≥ 1/ε2 and 2`

′ ≥ 1, it holds that εδ
′
d′ ≥ 1/(ε2 polylog(1/ε)).

By a Chernoff bound, with probability at least 1− exp(−1/ε2−o(1)), there exist εδ
′
d′/4 good columns in

ΠV .
We follow the proof of Lemma 12 to show that if the while-loop is broken by event S′k 6= ∅, then

Algorithm 2 in Line 23 outputs a pair (Cj′ , Cj) with probability Ω(ε).
We follow the proof of Lemma 13 to show that if the while-loop is broken by event “φk,c ≤ η/d

for all c ∈ Gk” and if j ∈ Sk, then Algorithm 2 in Line 39 outputs a pair (Cj′ , Cj) with probability

Ω(ε3δ
′
d · 22`+`′/(m∆`,j)).

Then, following the proof of Corollary 17, we conclude that Algorithm 2 finds a pair (Cj′ , Cj) such

that 〈Π∗,Cj′ ,Π∗,Cj 〉 ≥ 2−`−κε with probability Ω(min{ε4δ′+2γd2/m, 1}) ≥ δ′′ for some absolute constant
δ′′ > 0, provided that K1δ ≥ 2γ.

Recall that 2−`−`
′ ≥ 8ε and 2−`

′ ≤ 1, we conclude that there is a pair of columns of ΠV whose
inner product is at least (8 − κ)ε/2−`

′
with probability at least δ′′. This contradicts Lemma 4 since Π

is an (ε, 2δ/γ)-subspace-embedding for U ∼ D2−`′ , whenever 2δ/γ < δ′′/6, so we let γ , 12.5δ/δ′′ and
K1 , 25/δ′′.

Setting L , s, we can obtain the following generalized lower bound.

Theorem 20. There exist absolute constants ε0, δ0,K0,K1 > 0 such that the following holds. For all
ε ∈ (0, ε0), δ ∈ (0, δ0), d ≥ 1/ε2, s ≤ 1/(9ε) and n ≥ K0d

2/(ε2δ), if (i) the column sparsity of Π is s,

and (ii) Π is an (ε, δ)-subspace-embedding for U ∼ D̃, then Π must have Ω((log−4 s)s−K1δd2) rows.
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