2204.10592v1 [cs.DB] 22 Apr 2022

arxXiv

Uniform Operational Consistent Query Answering

Marco Calautti
University of Trento
marco.calautti@unitn.it

Andreas Pieris
University of Edinburgh &
University of Cyprus
apieris@inf.ed.ac.uk

ABSTRACT

Operational consistent query answering (CQA) is a recent frame-
work for CQA, based on revised definitions of repairs and consistent
answers, which opens up the possibility of efficient approximations
with explicit error guarantees. The main idea is to iteratively apply
operations (e.g., fact deletions), starting from an inconsistent data-
base, until we reach a database that is consistent w.r.t. the given set
of constraints. This gives us the flexibility of choosing the probabil-
ity with which we apply an operation, which in turn allows us to
calculate the probability of an operational repair, and thus, the prob-
ability with which a consistent answer is entailed. A natural way
of assigning probabilities to operations is by targeting the uniform
probability distribution over a reasonable space such as the set of
operational repairs, the set of sequences of operations that lead to
an operational repair, and the set of available operations at a certain
step of the repairing process. This leads to what we generally call
uniform operational CQA. The goal of this work is to perform a
data complexity analysis of both exact and approximate uniform
operational CQA, focusing on functional dependencies (and sub-
classes thereof), and conjunctive queries. The main outcome of
our analysis (among other positive and negative results), is that
uniform operational CQA pushes the efficiency boundaries further
by ensuring the existence of efficient approximation schemes in
scenarios that go beyond the simple case of primary keys, which
seems to be the limit of the classical approach to CQA.

ACM Reference Format:

Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2022.
Uniform Operational Consistent Query Answering. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 33 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Consistent query answering (CQA) is an elegant framework, intro-
duced in the late 1990s by Arenas, Bertossi, and Chomicki [1], that
allows us to compute conceptually meaningful answers to queries
posed over inconsistent databases, that is, databases that do not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Ester Livshits
University of Edinburgh
ester.livshits@ed.ac.uk

Markus Schneider
University of Edinburgh
m.schneider@ed.ac.uk

conform to their specifications. The key elements underlying CQA
are (i) the notion of (database) repair of an inconsistent database D,
that is, a consistent database whose difference with D is somehow
minimal, and (ii) the notion of query answering based on consistent
answers, that is, answers that are entailed by every repair. Since
deciding whether a candidate answer is a consistent answer is most
commonly intractable in data complexity (in fact, even for primary
keys and conjunctive queries, the problem is coNP-hard [7]), there
was a great effort on drawing the tractability boundary for CQA; see,
e.g., [11-13, 16—-18]. Much of this effort led to interesting dichotomy
results that precisely characterize when CQA is tractable/intractable
in data complexity. However, the tractable fragments do not cover
many relevant scenarios that go beyond primary keys.

As extensively argued in [5], the goal of a practically applicable
CQA approach should be efficient approximate query answering
with explicit error guarantees rather than exact query answering.
In the realm of the CQA approach described above, one could try to
devise efficient probabilistic algorithms with bounded one- or two-
sided error. However, it is unlikely that such algorithms exist since,
even for very simple scenarios (e.g., primary keys and conjunctive
queries), placing the problem in tractable randomized complexity
classes such as RP or BPP would imply that the polynomial hierar-
chy collapses [15]. Another promising idea is to replace the rather
strict notion of consistent answers with the more refined notion of
relative frequency, that is, the percentage of repairs that entail an
answer, and then try to approximate it via a fully polynomial-time
randomized approximation scheme (FPRAS); computing it exactly
is, unsurprisingly, #iP-hard [19]. Indeed, for primary keys and con-
junctive queries, one can approximate the relative frequency via an
FPRAS; this is implicit in [9], and it has been made explicit in [3].
Moreover, a recent experimental evaluation revealed that approxi-
mate CQA in the presence of primary keys and conjunctive queries
is not unrealistic in practice [4]. However, it seems that the simple
case of primary keys is the limit of this approach. We have strong
indications that in the case of FDs the problem of computing the
relative frequency does not admit an FPRAS, while in the case of
keys it is a highly non-trivial problem [6].

The above limitations of the classical CQA approach led the au-
thors of [5] to propose a new framework for CQA, based on revised
definitions of repairs and consistent answers, which opens up the
possibility of efficient approximations with error guarantees. The
main idea underlying this new framework is to replace the declara-
tive approach to repairs with an operational one that explains the
process of constructing a repair. In other words, we can iteratively

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

apply operations (e.g., fact deletions), starting from an inconsis-
tent database, until we reach a database that is consistent w.r.t. the
given set of constraints. This gives us the flexibility of choosing
the probability with which we apply an operation, which in turn
allows us to calculate the probability of an operational repair, and
thus, the probability with which an answer is entailed.

Probabilities can be naturally assigned to operations in many sce-
narios leading to inconsistencies. This is illustrated by the following
example from [5]. Consider a data integration scenario that results
in a database containing the facts Emp(1, Alice) and Emp(1, Tom)
that violate the constraint that the first attribute of the relation name
Emp (the id) is a key. Suppose we have a level of trust in each of the
sources; say we believe that each is 50% reliable. With probability
0.5-0.5 = 0.25 we do not trust either tuple and apply the operation
that removes both facts. With probability (1 —0.25)/2 = 0.375 we
remove either Emp(1, Alice) or Emp(1, Tom).

The preliminary data complexity analysis of operational CQA
performed in [5] revealed that computing the probability of a candi-
date answer is {P-hard and inapproximable, even for primary keys
and conjunctive queries. However, these negative results should
not be seen as the end of the story, but rather as the beginning since
operational CQA gives us the flexibility to choose the probabilities
assigned to operations. Indeed, the main question left open by [5]
is the following: how can we choose the probabilities assigned to
operations so that the existence of an FPRAS is guaranteed?

A natural way of choosing those probabilities is to follow the
uniform probability distribution over a reasonable space. The obvi-
ous candidates for such a space are (i) the set of operational repairs,
(ii) the set of sequences of operations that lead to a repair (note
that multiple such sequences can lead to the same repair), and (iii)
the set of available operations at a certain step of the repairing
process. This leads to the so-called uniform operational CQA. The
obvious question is how the complexity of exact and approximate
operational CQA is affected if we assign probabilities to operations
according to the above refined ways. In particular, we would like
to understand whether uniform operational CQA allows us to go
beyond the relatively simple case of primary keys.

Our goal is to perform a complexity analysis of uniform oper-
ational CQA, and provide answers to the above central questions.
Our main findings can be summarized as follows:

(1) Exact uniform operational CQA remains §P-hard, even in
the case of primary keys and conjunctive queries.

(2) Uniform operational CQA admits an FPRAS if we focus on
primary keys and conjunctive queries.

(3) In the case of arbitrary keys and FDs, although assigning
probabilities to operations based on uniform repairs and se-
quences (approaches (i) and (ii) discussed above) does not
lead (or it remains open whether it leads) to the approximabil-
ity of operational CQA, the approach of uniform operations
renders the problem approximable. The latter is a significant
result since it goes beyond the simple case of primary keys.

2 PRELIMINARIES

We recall the basics on relational databases, functional dependen-
cies, and conjunctive queries. In the rest of the paper, we assume the

disjoint countably infinite sets C and V of constants and variables,
respectively. For n > 0, let [n] be the set {1,...,n}.

Relational Databases. A (relational) schema S is a finite set of
relation names with associated arity; we write R/n to denote that R
has arity n > 0. Each relation name R/n is associated with a tuple
of distinct attribute names (Ay, ..., Ap); we write att(R) for the set
{A1,...,Ap} of attributes . A fact over S is an expression of the
form R(cy,...,cn), where R/n € S, and ¢; € C for each i € [n]. A
database D over § is a finite set of facts over S. The active domain
of D, denoted dom(D), is the set of constants occurring in D. For a
fact f = R(cq,...,cn), with (Ay,. .., Ap) being the tuple of attribute
names of R, we write f[A;] for the constant c;.

Functional Dependencies. A functional dependency (FD) ¢ over
a schema S is an expression of the form R : X — Y, where R/n € S
and X,Y C att(R). When X or Y are singletons, we avoid the
curly brackets, and simply write the attribute name. We call ¢
a keyif X UY = att(R). Given a set X of keys over S, we say
that ¥ is a set of primary keys if, for each R € S, there exists at
most one key in ¥ of the form R : X — Y. A database D satisfies
anFD ¢ = R : X — Y, denoted D [¢, if, for every two facts
R(¢1),R(¢2) € D the following holds: R(¢1)[A] = R(¢2)[A] for
every A € X implies R(¢1)[B] = R(¢2)[B] for every B € Y. We say
that D is consistent w.r.t. a set X of FDs, written D |= 3, if D |= ¢ for
every ¢ € X; otherwise, we say that D is inconsistent w.r.t. 2.

Conjunctive Queries. A (relational) atom a over a schema S is
an expression of the form R(t1,...,t,), where R/n € S, and ¢; €
C UV for each i € [n]. A conjunctive query (CQ) Q over S is an
expression of the form Ans(x) :- Ry (§1), - . -, Rn(§n), where R;(7;),
for i € [n], is an atom over S, X are the answer variables of Q, and
each variable in X is mentioned in ¢; for some i € [n]. We may
write Q(%) to indicate that X are the answer variables of Q. When
X is empty, Q is called Boolean. The semantics of CQs is given via
homomorphisms. Let var(Q) and const(Q) be the set of variables
and constants in Q, respectively. A homomorphism from a CQ Q of
the form Ans(x) :- R1 (1), ..., Rn(gn) to a database D is a function
h : var(Q) U const(Q) — dom(D), which is the identity over C,
such that R; (h(g;)) € D for each i € [n]. A tuple ¢ € dom(D) %1 is
an answer to Q over D if there is a homomorphism h from Q to D
with h(x) = ¢. Let Q(D) be the answers to Q over D. For Boolean
CQs, we write D = Q, and say that D entails Q, if () € Q(D).

3 OPERATIONAL CQA

We proceed to recall the recent operational approach to consistent
query answering, introduced in [5]. Although this new framework
can deal with arbitrary integrity constraints (i.e., tuple-generating
dependencies, equality-generating dependencies, and denial con-
straints), for our purposes we need its simplified version that only
deals with functional dependencies.

Operations and Violations. The notion of operation is the build-
ing block of the operational approach. In the original framework,
the operations are standard updates +F that add a set F of facts
to the database, or —F that remove F from the database. However,
since in this work we deal with FDs, we only need to remove facts
because the addition of a fact would never resolve a conflict. The

formal definition of the notion of operation follows. As usual, we
write P (S) for the powerset of a set S.

Definition 3.1. (Operation) For a database D over a schema S, a
D-operation is a function op : P (D) — P (D) such that, for some
non-empty set F C D of facts, for every D’ € P (D), op(D’) = D’\F.
We write —F to refer to this operation. u

The operations —F depend on the database D as they are defined
over D. Since D will be clear from the context, we may refer to
them simply as operations, omitting D. Also, when F contains a
single fact f, we write —f instead of the more formal —{f}. The
main idea of the operational approach to CQA is to iteratively apply
operations, starting from an inconsistent database D, until we reach
a database D’ C D that is consistent w.r.t. the given set ¥ of FDs.
However, as discussed in [5], we need to ensure that at each step of
this repairing process, at least one violation is resolved. To this end,
we need to keep track of all the reasons that cause the inconsistency
of D w.r.t. 2. This brings us to the notion of FD violation.

Definition 3.2. (FD Violation) For a database D over a schema
S, a D-violationofan FD ¢ =R : X — Y over Sisaset {f,g} C D
of facts such that {f, g} [¢. We denote the set of D-violations of ¢
by V(D, ¢). Furthermore, for a set ¥ of FDs, we denote by V(D, X)
the set {(¢,v) | § € T andov € V(D, P)}. L]

Thus, a pair (¢, {f, g}) € V(D,X) means that one of the reasons
why the database D is inconsistent w.r.t. ¥ is because it violates ¢
due to the facts f and g. As discussed in [5], apart from forcing an
operation to be fixing, i.e., to fix at least one violation, we also need
to force an operation to remove a set of facts only if it contributes
as a whole to a violation. Such operations are called justified.

Definition 3.3. (Justified Operation) Let D be a database over
a schema S, and ¥ a set of FDs over S. For a database D’ C D, a
D-operation —F is called (D’,)-justified if there exists (¢, {f,g}) €
V(D’, %) such that F C {f, g}. [

Note that justified operations do not try to minimize the number
of atoms that need to be removed. As argued in [5], a set of facts
that collectively contributes to a violation should be considered as
a justified operation during the iterative repairing process since we
do not know a priori which atoms should be deleted, and therefore,
we need to explore all the possible scenarios.

Repairing Sequences. As said above, the main idea of the opera-
tional approach is to iteratively apply justified operations. This is
formalized via the notion of repairing sequence. Consider a data-
base D and a set X of FDs. Given a sequence s = (0p;)1<i<n Of
D-operations, we define D§ = D and D] = op;(D{_,) fori € [n].In
other words, D; is obtained by applying to D the first i operations
of s. The notion of repairing sequence follows:

Definition 3.4. (Repairing Sequence) Consider a database D
and a set ¥ of FDs. A sequence of D-operations s = (0p;)1<i<n is
called (D, X)-repairing if, for every i € [n], op; is (Dj_,,)-justified.
Let RS(D,) be the set of all (D, X)-repairing sequences. [

It is easy to verify that the length of a (D, X)-repairing sequence
is linear in the size of D. It is also clear that the set RS(D,) is
finite. For a (D, X)-repairing sequence s = (0p;)1<i<n, we define its
result as the database s(D) = Dy, and call it complete if s(D) | 2,

{fi f2} -2 - fi} f
23 8 / / 11
P Pro
~fi~f2 ~h.~fs ~f,~{f fi} ~fi-h ~fs =2 ~fi -1 f2}

Figure 1: Repairing Markov Chain

i.e., it leads to a consistent database. Let CRS(D, %) be the set of all
complete (D, ¥)-repairing sequences.

Operational Repairs. A candidate (operational) repair of a data-
base D w.r.t. a set 3 of FDs is a database D’ such that D’ = s(D)
for some s € CRS(D, X). Let CORep(D,) be the set of all candi-
date repairs of D w.r.t. 3. Although every database of CORep(D,)
corresponds to a conceptually meaningful way of repairing the
database D, we would like to have a mechanism that allows us to
choose which candidate repairs should be considered for query
answering purposes, and assign likelihoods to those repairs.

The fact that we can operationally repair an inconsistent data-
base via repairing sequences gives us the flexibility of choosing
which operations (that is, fact deletions) are more likely than
others, which in turn allows us to talk about the probability of
a repair, and thus, the probability with which an answer is en-
tailed. The idea of assigning likelihoods to operations extending
sequences can be described as follows: for all possible extensions
$-0pq,...,S - opy of arepairing sequence s, we assign probabilities
P1,- .-, Pk to them so they add up to 1. This is done by exploiting
a tree-shaped Markov chain that arranges its states (i.e., repairing
sequences) in a rooted tree, where (i) the empty sequence of op-
erations, which is by definition repairing, is the root, (ii) the chil-
dren of each state are its possible extensions, and (iii) the set of
states corresponding to complete sequences coincide with the set
of leaves. We write ¢ for the empty sequence of operations. We
further write Ops (D, X) for the set of (D, X)-repairing sequences
{s’ € RS(D, %) | s’ = s - op for some D-operation op}.

Definition 3.5. (Repairing Markov Chain) For a database D
and a set X of FDs, a (D, X)-repairing Markov chain is an edge-
labeled rooted tree T = (V, E,P), where V. = RS(D,X),EC V XV,
and P : E — [0, 1], such that:

(1) the root is the empty sequence &,

(2) for anon-leafnode s € V, {s" | (s,s") € E} = Ops (D, %),

(3) for anon-leafnode s € V, ¥ 1c(s|(s,s")eE} P(s,1) = 1, and

(4) {s e V|sisaleaf} = CRS(D,X).

A repairing Markov chain generator w.r.t. ¥ is a function My assign-
ing to every database D a (D, X)-repairing Markov chain. u

We give a simple example, which will serve as a running example,
that illustrates the notion of repairing Markov chain:

Example 3.6. Consider the database D = {fi, f2, 3} over the
schema S = {R/3}, where fi = R(a1, b1,¢1), fo = R(aj, bz, c2) and
f3 = R(ag, b1, c2). Consider also the set X = {¢1, #2} of FDs over
S, where ¢ = R: A — Band ¢ = R : C — B, assuming that
(A, B, C) is the tuple of attributes of R. It is easy to see that D |~ 3. In

particular, we have that V(D, X) = {(¢1, {fi. £}), (¢2. {f2. LD }. It
is easy to verify that for the edge-labeled rooted tree T = (V, E,P) in

Figure 1, V = RS(D, %), for a non-leaf node s the set of its children is
Ops, (D, Z), and the set of leaves coincides with CRS(D, X). Hence,
providing that p; + p2 + p3 + pa + ps = 1, ps + p7 + ps = 1 and
po+pio+p11 =1, Tisa(D,X)-repairing Markov chain. =

The purpose of a repairing Markov chain generator is to provide
a mechanism for defining a family of repairing Markov chains
independently of the database. One can design a repairing Markov
chain generator My once, and whenever the database D changes,
the desired (D, 2)-repairing Markov chain is simply Ms, (D).

We now recall the notion of operational repair: they are candidate
operational repairs obtained via repairing sequences that are reach-
able leaves of a repairing Markov chain, i.e., leaves with non-zero
probability. The probability of a leaf is coming from the so-called
leaf distribution of a repairing Markov chain. Formally, given a data-
base D and a set X of FDs, the leaf distribution of a (D, ¥)-repairing
Markov chain T = (V, E, P) is a function x that assigns to each leaf s
of T a number from [0, 1] as follows: assuming that (so, s1), (s1,52),
..+ (Sn—1,n), where n > 0, ¢ = sp and s = sy, is the unique path in
T from e to s, (s) = P(sg,s1) - P(s1,82) - -+ - P(sp—1, sn)- The set of
reachable leaves of T, denoted RL(T), is the set of leaves of T that
have non-zero probability according to the leaf distribution of T.

Definition 3.7. (Operational Repair) Given a database D, a set
¥ of FDs, and a repairing Markov chain generator Ms w.r.t. X, an
(operational) repair of D w.r.t. My, is a database D’ € CORep(D, %)
such that D’ = s(D) for some s € RL(Mx(D)). Let ORep(D, Msx)
be the set of all operational repairs of D w.r.t. Ms. u

An operational repair may be obtainable via multiple repairing
sequences that are reachable leaves of the underlying repairing
Markov chain. The probability of a repair D’ is calculated by sum-
ming up the probabilities of all reachable leaves s so that D’ = s(D).

Definition 3.8. (Operational Semantics) Given a database D, a
set X of FDs, and a repairing Markov chain generator My w.r.t. %,
the probability of an operational repair D’ of D w.r.t. My is

Ppv, (D) = > 7(s),
s€RL(Mx (D)) and D’=s(D)
where 7 is the leaf distribution of Mx (D). The operational seman-
tics of D w.r.t. My, is defined as the set of repair-probability pairs
[[DNlp; = {(D’,Ppay (D)) | D’ € ORep(D, M) }. "

Operational CQA. We now have in place all the necessary notions
to recall the operational approach to consistent query answering,
and define the main problem of interest. For a database D, a set X
of FDs, a Markov chain generator My w.r.t. 2, a query Q(%), and
a tuple ¢ € dom(D) %1 the probability of ¢ being an answer to Q
over some operational repair of D is defined as

PMZ,Q (D, 5) = Z p.
(D",p) €[[D]] psy, and c€Q (D)

We can now talk about operational consistent answers. In particular,
the set of operational consistent answers to Q over D according to
Ms is defined as the set {(E, Pas,0 (D, ¢)) | ¢ € dom(D) 1%l }

The problem of interest in this context, dubbed OCQA, accepts
as input a database D, a set ¥ of FDs, a repairing Markov chain
generator My w.rt. X, a query Q(x), and a tuple ¢ € dom(D) Ixl,

and asks for the probability P Ms.,Q (D, ¢). We are, in fact, interested
in the data complexity of OCQA, i.e., for a set £ of FDs, a repairing
Markov chain generator My w.r.t. 3, and a query Q(x), we focus on

PROBLEM : OCQA(Z, Ms, Q(%))
INPUT : A database D, and a tuple ¢ € dom(D) %I,
OUTPUT : PME,Q(D’ C).

Until now, a repairing Markov chain generator is a general func-
tion. We proceed to discuss the novel idea of uniform operational
CQA, which provides concrete ways of defining such a function.

4 UNIFORM OPERATIONAL CQA

A natural way of defining a repairing Markov chain is to assign
probabilities to operations according to the uniform probability
distribution over a reasonable space. The obvious options for such
a space are (i) the set of candidate operational repairs, (ii) the set
of complete repairing sequences, and (iii) the set of available op-
erations at a certain step of the repairing process. More precisely,
given a set X of FDs, it is natural to consider the repairing Markov
chain generators My" (uniform repairs), My® (uniform sequences),
and M3° (uniform operations) w.r.t. = such that, for a database D:

(i) ORep(D, My") = CORep(D, %), and for D" € ORep(D, My"),
_ 1
Ppuyr (D) = [ORep (D,MI)]*
(ii) For every s € CRS(D, %), assuming that x is the leaf distri-
bution of M¥* (D), 7(s) = m.
(iii) For every s,s’ € RS(D,%), assuming that M{°(D) =

(V,E,P), s’ € Ops,(D,X) implies P(s,s") = m.

We now explain, by means of an example, how these Markov chain
generators are defined; the formal definitions are in Appendix A.

In the rest of the section, let D and ¥ be the database and the
set of FDs, respectively, from Example 3.6. Recall that any (D, X)-
repairing Markov chain looks as the one depicted in Figure 1 with
p1+p2+p3+pa+ps =1, ps+p7+pg = 1and po+pio+p11 = 1. Thus,
the task of understanding how the Markov chain generators MJ",
M and My° should be defined boils down to understanding how
the probabilities p1, ..., p11 should be calculated by My", M3® and
Mg® in order to guarantee the properties discussed above. We start
by explaining how the probabilities are calculated by My®, which
will then help us to explain how the probabilities are calculated by
M;r. We finally discuss Ma°, which is the simplest one.

Uniform Sequences. For a sequence s € RS(D, X), let CRS¢(D, %)
be the set of all sequences of CRS(D, %) that have s as a prefix.
Thus, CRSg(D,X) collects the leaves of the subtree rooted at s,
with CRS¢(D, X) = CRS(D, X) being the set of leaves. Hence, for
M*(D) = (V,E,P) to induce the uniform distribution over the
leaves, it suffices, for s, s” € RS(D,) with s” € Ops (D, X), to let
P(s, s') — M

|CRSs(D,3)|
Observe that

|CRS¢(D,3)| = 9

ICRS_f;(D.3)| = |CRS_£,(D.3)| = 3
ICRS_{, ,}(D.2)| = |CRS_;,(D,%)| = |CRS_(f, 4} (D.3)| = 1.

Hence, p1 = p5 = %, p2=p3=ps= %. Similarly, we obtain that
pe = p7 =ps = 3, and pg = p1o = p11 = 3. Thus, RL(MI (D)) =
CRS(D, %), and 7(s) = %, for each s € RL(M3*(D)), with 7 being
the leaf distribution of My*(D), as needed.

Uniform Repairs. Since multiple complete sequences can lead to
the same database (e.g., — fi, —{f2, 3} and —f3, —{f1, f2}) we would
like to have a mechanism that gives non-zero probability to exactly
one such sequence. To this end, for each set of complete sequences
that lead to the same consistent database, we identify a represen-
tative one. We say that a (D, X)-repairing sequence s € CRS(D, %)
is canonical if there is no s’ € CRS(D, 2) such that s(D) = s’(D)
and s’ < s for some arbitrary ordering < over the set RS(D, 3).
Let CanCRS(D, X) be the set of all sequences of CRS(D,X) that
are canonical. Furthermore, for a sequence s € RS(D, X), we write
CanCRSs(D,) for the set of all sequences s’ of CanCRS(D, X)
that have s as a prefix. Hence, for s € RS(D, %), CanCRSs(D, %)
is the set of canonical leaves of the subtree rooted at s, with
CanCRS¢ (D, 3) = CanCRS(D, X) being the set of canonical leaves
of the tree. We can now follow the same approach discussed above
for uniform sequences with the key difference that only canonical
sequences are considered. In other words, for My"(D) = (V, E,P) to
induce the uniform distribution over the set of operational repairs,
it suffices, for nodes s, s” € RS(D, X) with s’ € Ops (D,), to let

_ |CanCRSy (D, %)|

"~ |CanCRS4(D,2)|

Notice that P(s,s”) is not defined if the subtree T; rooted at s has
no canonical leaves, i.e., CanCRSg(D, X) = 0. In this case, none of
the leaves of T is reachable with non-zero probability, and thus,
P(s,s’) can get an arbitrary probability, e.g., m

P(s,s”)

Let us illustrate the above discussion. Assuming, e.g., that for
s,s” € RS(D, %), s < s’ iff s comes before s” in a depth-first traversal
of the tree, we have that CanCRS(D, ¥) consists of the sequences

-fi.-fo -f-f -h-AfBY -2 —Aff)
Therefore, we get that

|CanCRS¢(D,%)| = 5 [CanCRS_;(D,3)| = 3

|CanCRS_,(D,Z)| = |CanCRS_(j, 41(D.)| =

1
|CanCRS,{f1’f2}(D, Z)| = |CanCRS_g (D, %)| = 0.
Hence, py = 2, po = p5 =0, p3 = ps = %, ps = p7 = ps = 3, and po
= p10 = p11 = 3. Thus, RL(M"(D)) = CanCRS(D, %), and 7(s) =
%, for each s € RL(My"(D)), with 7 being the leaf distribution of

Mg"(D). Hence, ORep(D, My") = {0, {fi}, {2}, {3}, {f1, f3}} with
Pp.ms (D) = % for each D’ € ORep(D, Mg"), as needed.

Uniform Operations. For M;!° we simply follow our intention.
In particular, MEO(D) = (V,E,P) is such that, for nodes s,s’ €
RS(D, %) with s’ € Ops (D,%), P(s,s") = m Thus, p; =

p2=p3s=ps=ps=1.p6=p7=ps=73 andpo=pio=pi =
%. Notice that, unlike the Markov chain generators My" and My®
discussed above, My is intrinsically “local” in the sense that the
probabilities assigned to operations at a certain step are completely
determined by that step. As we shall see, the local nature of My°
has a significant impact on operational CQA when it comes to
approximations.

Our Main Objective. The data complexity of OCQA for arbitrary
Markov chain generators has been already studied in [5], showing
that it is, in general, intractable. In particular:

THEOREM 4.1 ([5]). There exist a set 3 of primary keys, a re-
pairing Markov chain generator Ms, w.r.t. 3, and a CQ Q such that
OCQA(Z, M5, Q) is #{P-hard.

With the above intractability result in place, the authors of [5]
asked whether OCQA(Z, Mz, Q(x)) is approximable, i.e., whether
the target probability can be approximated via a fully polynomial-
time randomized approximation scheme (FPRAS, for short). Formally,
an FPRAS for OCQA(Z, Ms, Q(x)) is a randomized algorithm A
that takes as input a database D, a tuple ¢ € dom(D)I*! e > 0, and
0 < § < 1, runs in polynomial time in ||D||, ||¢]|,! 1/€ and log(1/5),
and produces a random variable A(D, ¢, €, §) such that

Pr (|A(D, G, €0) — PM);,Q(D> o) < e- PME,Q(D’ 5)) > 1-6.

It was shown that the problem in question does not admit an FPRAS,
under the widely accepted complexity assumption that RP # NP.
Recall that RP is the complexity class of problems that are efficiently
solvable via a randomized algorithm with a bounded one-sided error
(i.e., the answer may mistakenly be “no”) [2].

THEOREM 4.2 ([5]). Unless RP = NP, there exist a set X of primary
keys, a Markov chain generator Ms w.r.t. 3, and a CQ Q such that
there is no FPRAS for OCQA(Z, Ms, Q).

Having the natural Markov chain generators discussed above in
place, the question is how the complexity of exact and approximate
operational CQA is affected, i.e., how Theorems 4.1 and 4.2 are
affected if we consider these more refined Markov chain generators
instead of an arbitrary one. The goal of this work is to perform such
a complexity analysis. Our main findings are as follows:

(1) The complexity of exact operational CQA remains §P-hard,
even in the case of primary keys.

(2) Operational CQA is approximable, i.e., it admits an FPRAS,
if we focus on primary keys.

(3) In the case of arbitrary keys and FDs, although the Markov
chain generators based on uniform repairs and sequences do
not lead (or it remains open whether they lead) to the approx-
imability of operational CQA, the Markov chain generator
based on uniform operations renders the problem approx-
imable.? The latter should be attributed to the “local” nature
of the Markov chain generator based on uniform operations.

The rest of the paper is devoted to discussing the high-level ideas
underlying the above results; the formal proofs are in the appendix.

5 UNIFORM REPAIRS

We start our complexity analysis by considering the Markov chain
generator based on uniform repairs, and show the following result:

THEOREM 5.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My, Q) is §P-hard.
(2) For a set X of primary keys, and a CQ Q, OCQA(Z, M;r, 0))
admits an FPRAS.
!As usual, ||o]| denotes the size of the encoding of a syntactic object o.

%In the case of FDs, the approximability result holds assuming that only operations that
remove a single fact (not a pair of facts) are considered; this is discussed in Section 7.

(3) Unless RP = NP, there exist a set % of FDs, and a CQ Q such
that there is no FPRAS for OCQA(Z, Mgr, Q).

Notice that the above result does not cover the case of arbitrary
keys, which remains an open problem. We can extract, however,
from the proof of item (3) that for keys, unless RP = NP, the problem
of counting the number of operational repairs does not admit an
FPRAS. We see this as an indication that item (3) holds even in the
case of keys. We now discuss how Theorem 5.1 is shown.

We start with the simple observation that, for a database D, a
set 2 of FDs, a CQ Q(x), and a tuple ¢ € dom(D) %1,

[{D’ € CORep(D, %) | ¢ € Q(D’)}|
|CORep(D, 3)|
This ratio is the percentage of candidate operational repairs of D
w.r.t. 3 that entail Q(¢), which we call the repair relative frequency of
Q(¢) w.r.t. D and ¥, and denote rrfreqz,Q (D, ¢). Therefore, we can
conveniently restate the problem OCQA(Z, My, Q) as the problem
of computing the repair relative frequency of Q(¢) w.r.t. D and %,
which does not depend on the Markov chain generator My":

PM;’,Q (D,¢e) =

PROBLEM : RRFreq(Z, O(%))
INPUT : A database D, and a tuple ¢ € dom(D) Ix,
OUTPUT: rrfreqs, o (D,¢).

We proceed to discuss how we establish Theorem 5.1 by directly con-
sidering the problem RRFreq(Z, Q) instead of OCQA(Z, M;', Q);
further details can be found in Appendix B.

Item (1). We show that RRFreq(2, Q) is #iP-hard for a set 3 con-
sisting of a single key of the form R : A — B, where R is a binary
relation name with (A, B) being its tuple of attributes, and a Boolean
CQ Q. This is done via a polynomial-time Turing reduction from a
graph-theoretic problem called §H-Coloring, where H is an undi-
rected graph, to RRFreq(Z, Q). The problem #H-Coloring takes as
input an undirected graph G, and asks for the number of homomor-
phisms from G to H. The key of the proof is to carefully choose H
so that (i) #H-Coloring is #{P-hard, and (ii) it allows us to devise the
desired polynomial-time Turing reduction, i.e., for an undirected
graph G, we can construct in polynomial time in ||G|| a database
D¢ such that the number of homomorphisms from G to H can
be computed in polynomial time in ||G||, assuming that we have
access to an oracle for the problem RRFreq(Z, Q), which we can call
to compute the number rrfreqz’Q(Dg, ()); we use () to denote the
empty tuple. For choosing H, we exploit an interesting dichotomy
from [10], which characterizes when #H-Coloring is solvable in
polynomial time or is §P-hard, depending on the structure of H.

Item (2). For showing that, for a set ¥ of primary keys and a CQ Q,
RRFreq(Z, Q) admits an FPRAS, we rely on Monte Carlo sampling.
We first show the existence of an efficient sampler:

LEMMA 5.2. Given a database D, and a set T of primary keys,
we can sample elements of CORep(D, X) uniformly at random in
polynomial time in ||D]|.

The above lemma tells us that there exists a randomized algo-
rithm SampleRep that takes as input D and %, runs in polynomial
time in ||D||, and produces a random variable SampleRep(D, %)
such that Pr(SampleRep(D,X) = D’) = m for every

database D’ € CORep(D, X). Notice, however, that the efficient
sampler provided by Lemma 5.2 does not immediately imply the
existence of an FPRAS for RRFreq(Z, Q) since the number of sam-

ples should be proportional to W [8]. Hence, to obtain an

FPRAS using Monte Carlo sampling, we need show that the repair
relative frequency is never “too small”.

LEmMMA 5.3. Consider a set 3. of primary keys, and a CQ Q(x). For
every database D, and tuple ¢ € dom(D) |’_‘|,

1

rrfreqz,Q(D, ¢) > W

whenever rrfrqu’Q (D,¢) > 0.

Given a set ¥ of primary keys and a CQ Q, by exploiting Lem-
mas 5.2 and 5.3, we can easily devise an FPRAS for RRFreq(Z, Q).

Item (3). For showing that there exist a set X of FDs and a CQ Q
such that, unless RP = NP, there is no FPRAS for RRFreq(Z, Q), we
provide a rather involved proof that proceeds in two main steps.
We first give an auxiliary lemma that is needed by both steps.

An undirected graph G is called non-trivially connected if it con-
tains at least two nodes, and is connected. We write IS(G) for the
set that collects all the independent sets of G. Recall that the conflict
graph of a database D w.r.t. a set X of FDs, denoted CG(D, %), is an
undirected graph whose node set is D, and it has an edge between
fand g if {f, g} ¢ X. A database D is non-trivially 3-connected if
CG(D, %) is non-trivially connected. We then show the following:

LEMMA 5.4. Consider a non-trivially X-connected database
D, where ¥ is a set of FDs. It holds that |CORep(D,X)| =
[IS(CG(D,%))|.

Having the above auxiliary lemma in place, we can now describe
the two steps of the proof underlying Theorem 5.1(3). The first step
establishes the following inapproximability result about keys.

PrROPOSITION 5.5. Unless RP = NP, there exists a set T of keys
over {R} such that, given a non-trivially 3-connected database D, the
problem of computing |CORep(D, X)| does not admit an FPRAS.

The above result exploits the fact that, unless RP = NP, the
problem of counting the number of independent sets of a non-
trivially connected undirected graph of bounded degree does not
admit an FPRAS.3 In particular, we show that there exists a set Xg
of keys over the schema S = {R/A+1} such that the following holds:
given a non-trivially connected undirected graph G of bounded
degree A, we can construct in polynomial time in ||G|| a database
Dg over S such that CG(Dg, 2k) is isomorphic to G. Thus, by
Lemma 5.4, |CORep(Dg, 2k)| = [IS(G)|. The construction of Dg
exploits Vizing’s Theorem, which states that a graph of degree A
always has a (A + 1)-edge-coloring, as well as the fact that such
an edge-coloring can be constructed in polynomial time as long
as A is bounded [20]. Hence, given a database D, assuming that
the problem of computing the number |CORep(D, 3k)| admits an
FPRAS, we can conclude that the problem of counting the number
of independent sets of a non-trivially connected undirected graph
of bounded degree admits an FPRAS, which, unless RP = NP, leads

3This result is known for arbitrary, not necessarily non-trivially connected graphs [22].
Thus, for our purposes, we had to strengthen it to non-trivially connected graphs.

to a contradiction. Therefore, Proposition 5.5 follows with ¥ = Xg.
Notice that Proposition 5.5 tells us that for keys, unless RP = NP,
the problem of counting the number of operational repairs does
not admit an FPRAS. As said above, we see this as an indication
that item (3) of Theorem 5.1 holds even for keys.

We then proceed to show that, unless RP = NP, the existence of
an FPRAS for RRFreq(Z, Q), where X is a set of FDs and Q a CQ,
would contradict Proposition 5.5 . Let g be the set of keys provided
by Proposition 5.5. We show the following auxiliary result:

LEMMA 5.6. Assume that RRFreq(Z, Q) admits an FPRAS, for ev-
ery set X of FDs and CQ Q. Given a non-trivially S -connected data-
base D, the problem of computing |CORep(D, Ex)| admits an FPRAS.

To establish the above result, we show that there exists a set g
of FDs such that, for every non-trivially ¥g-connected database
D, we can construct in polynomial time in ||D|| a database Dp
such that CG(Dp, 2F) consists of a graph G that is isomorphic to
CG(D, 2k), and an additional node that is connected via an edge
with every node of G. Therefore, by Lemma 5.4, we get that

|[CORep(DF,2F)| = |CORep(D,Zk)| + 1.

Let us clarify that this is the place where we need the power of
FDs; it is unclear how we can devise a set of keys that has the same
properties as X . We then construct an atomic Boolean CQ Qf with
1 B 1 .
|CORep(Df, =F)| ~ |CORep(D,Zg)|+1’
we use () to denote the empty tuple. Now, by exploiting the above
equality, the fact that D can be constructed in polynomial time, and
the FPRAS for RRFreq(ZF, Q) (which exists by hypothesis), we can
devise an FPRAS for the problem of computing |[CORep(D, 2k)|
given a non-trivially ¥ g-connected database D, as claimed.
It is now straightforward to see that from Proposition 5.5 and
Lemma 5.6, we get that, unless RP = NP, there exist a set 2 of FDs
and a CQ Q such that there is no FPRAS for RRFreq(Z, Q).

rrfrequ’QF (Dr, () =

6 UNIFORM SEQUENCES

We now concentrate on the Markov chain generator based on uni-
form sequences, and establish the following complexity result.

THEOREM 6.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My, Q) is #P-hard.

(2) For a set 3. of primary keys, and a CQ Q, OCQA(Z, My®, Q)
admits an FPRAS.

Notice that the above result does not cover the cases of arbi-
trary keys and FDs. Unfortunately, despite our efforts, we have not
managed to prove or disprove the existence of an FPRAS for the
problem in question. We conjecture that there is no FPRAS even
for keys, i.e., unless RP = NP, there exist a set ¥ of keys, and a CQ
Q such that there is no FPRAS for OCQA(Z, Mgs, Q). We proceed
to discuss how Theorem 6.1 is shown.

As for Theorem 5.1, we can conveniently restate the problem in
question as a problem of computing a “relative frequency” ratio that
does not depend on the Markov chain generator. In particular, for a
database D, a set X of FDs, a CQ Q(x), and a tuple ¢ € dom(D) =l

[{s € CRS(D,%) | ¢ € Q(s(D))}|
ICRS(D,3)| ‘

Pymuso(D.¢) =

This ratio is the percentage of complete (D, X)-repairing sequences
that lead to an operational repair that entails Q(¢), which we call
the sequence relative frequency of Q(¢) w.r.t. D and ¥, and denote
srfrqu!Q (D, ¢). Thus, we can restate OCQA(Z, My®, Q) as the prob-
lem of computing the sequence relative frequency of Q(¢) w.r.t. D
and %, which is independent from the Markov chain generator My*:

PROBLEM : SRFreq(%, Q(%))
INPUT : A database D, and a tuple ¢ € dom(D) %I,
OUTPUT : srfreqz’Q (D, ¢).

We now discuss how we establish Theorem 6.1 by directly consider-
ing the problem SRFreq(Z, Q) instead of OCQA(Z, Mgs, Q); further
details can be found in Appendix C.

Item (1). Let ¥ and Q be the singleton set of primary keys and the
Boolean CQ, respectively, for which RRFreq(Z, Q) is #P-hard; 3 and
Q are obtained from the proof of Theorem 5.1(1). We show that also
SRFreq(Z, Q) is #{P-hard via a polynomial-time Turing reduction
from §H-Coloring. Actually, we can exploit the same construction
as in the proof of item (1) of Theorem 5.1.

Item (2). For showing that, for a set 2 of primary keys and a CQ
Q(x), SRFreq(Z, Q) admits an FPRAS, we rely again on Monte Carlo
sampling. We first show that an efficient sampler exists. This relies
on a non-trivial technical lemma, which states that, for a database
D, |CRS(D, X)| can be computed in polynomial time in ||D|]|.

LEMMA 6.2. For a database D, and a set ¥ of primary keys, we can
sample elements of CRS(D, X) uniformly at random in polynomial
time in ||D||.

To establish that the problem in question admits an FPRAS based
on Monte Carlo sampling, it remains to show the following:

LEmMMA 6.3. Consider a set X of primary keys, and a CQ Q(x). For
every database D, and tuple ¢ € dom(D) Il

1

srfrqu’Q(D,E) > W

whenever srfreqz’Q(D, ¢) > 0.

Given a set ¥ of primary keys and a CQ Q, by exploiting Lem-
mas 6.2 and 6.3, we can easily devise an FPRAS for SRFreq(Z, Q).

7 UNIFORM OPERATIONS

We finally consider the Markov chain generator based on uniform
operations, and establish the following complexity result.

THEOREM 7.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My°, Q) is §P-hard.

(2) For a set > of keys, and a CQ Q, OCQA(Z, My°, Q) admits an
FPRAS.

Notice that the above result does not cover the case of FDs, which
remains an open problem. However, as we explain below, for FDs
we can establish an approximability result under the assumption
that only operations that remove a single fact (not a pair of facts)
are considered. But let us first discuss the proof of Theorem 7.1.

Unlike Theorems 5.1 and 6.1 presented above, there is no obvious
way to conveniently restate the problem of interest as a problem

of computing a “relative frequency” ratio. Thus, the proof of Theo-
rem 7.1, which we discuss next, has to deal with OCQA(Z, Mg", Q)
for a set ¥ of FDs and a CQ Q; details are in Appendix D.

Item (1). As we did for item (1) of Theorem 6.1, we reuse the
construction underlying the proof of item (1) of Theorem 5.1.

Item (2). We show that OCQA(Z, M;O, Q), where X is a set of keys
and Q a CQ, admits an FPRAS by relying once again on Monte Carlo
sampling. The existence of an efficient sampler follows easily from
the definition of the Markov chain generator M°. In particular:

LEMMA 7.2. Given a database D, and a set X of keys, we can sample
elements of RL(M3°(D)) according to the leaf distribution of Mg° (D)
in polynomial time in ||D||.

The interesting task towards an FPRAS for the problem in ques-
tion is to show that the target probability is never “too small”.

PRrOPOSITION 7.3. Consider a set 3 of keys, and a CQ Q(x). There is
a polynomial pol such that, for every database D, and ¢ € dom(D) Ixl,

1

Ppuoo(D,8) > ————
M0 pol([DI])

whenever PM;",Q (D,¢) > 0.

We proceed to discuss the main ideas underlying the proof of
the above result. For the sake of clarity, we focus on atomic queries,
i.e., CQs with only one atom. The generalization to arbitrary CQs
can be found in the appendix. In the sequel, let £ be a set of keys,
Q(x) an atomic query, D a database, and ¢ a tuple of dom(D) %1,

Clearly, if there is no homomorphism A from Q to D with h(x) =
¢, then P ME,Q (D, ¢) = 0. Assume now that such a homomorphism
h exists, and let f be the fact of D obtained after applying h to the
single atom of Q. It is not difficult to see that

Pmgo(D,¢) > Pp,mge (D).
D’€ORep(D,M;°) and feD’

A

Thus, it suffices to show that there exists a polynomial pol such
that A > ——1=~. Let Sy and S_ ¢ be the sets of sequences of
pol(11D1])

RL(Mg°(D)) that keep f and remove f, respectively, i.e.,
S¢ {s e RL(Mz°(D)) | f € s(D)}
S.f = {s€RLMz°(D)) | f ¢s(D)}.

A
With 7 being the leaf distribution of M3°(D), A = W where

Af = Z (s) and Ay = Z (s).
SESf SGSﬁf
Therefore, to establish the desired lower bound ——1~— for A,
pol(||D]])

it suffices to show that there exists a polynomial pol” such that
Ap < pol’(||D]]) - Af. Indeed, in this case we can conclude that

Af . Ay B 1
Ap+Ap — Ap+pol’(|IDI) - Ap 1+ pol’(||D|])’
and the claim follows with pol(||D||) = 1+ pol’(||D||). The rest of

the proof is devoted to showing that a polynomial pol” such that
A-p < pol’(||DI]) - Ay exists.

To get this inequality, we establish a rather involved technical
lemma that relates the sequences of S_ ¢ with the sequences of Sg;
as usual, we write s for the leaf distribution of Mgo (D):

Lemma 7.4. There exists a function F : S_p — Sy such that:

(1) There exists a polynomial pol”’

n(s) < pol”(I[DI]) - 7(F(s)).
(2) Foreverys’ € Sg, [{s € S_¢ | F(s) =s"} < 2-||D|| - 1.

such that, for everys € S_¢,

For showing item (1) of Lemma 7.4, we transform each sequence
s € S.y into a sequence s” € Sy, and let F(s) = s’. This is done
by first deleting or replacing the operation op in s that removes
f. In particular, if op = —f, then we simply delete it; otherwise,
if op = —{f, g}, then we replace it with the operation —g. Notice,
however, that there is no guarantee that the sequence §, obtained
after removing op from s, is a complete sequence of CRS(D, 2). This
is because s(D) might contain facts that are in a conflict with f,
and thus, by keeping f, there is no guarantee that §(D) = 3. We
then convert § into a complete sequence s’ by simply adding at the
end of § additional operations (in some arbitrary order) that resolve
all the conflicts. Now, to show that 7(s) < pol”’(||D]|) - z(s”), for
some polynomial pol”’, we rely on the following two crucial facts:
(1) Although the probabilities of the operations in s’ coming after
the operation in s that removes f might decrease, we can show that
they do not decrease “too much”. (2) The number of operations that
we need to add at the end of § in order to get s’ depends only on
(not on ||D|]). More precisely, by exploiting the fact that ¥ consists
of keys, we can show that f can be in a conflict with at mostk > 0
facts of s(D), where k is the number of keys in 3 over the relation
name of f. This implies that we do not need to add more than k
operations at the end of $. Note that the above facts do not hold for
FDs. To establish that z(s) < pol”’(||D||) - #(s”) using the above
facts, we rely on the Cauchy-Schwarz inequality for n-dimensional
Euclidean spaces. Finally, once we have F in place, it is then not
difficult to show item (2) via a combinatorial argument.

It is now easy to establish the existence of the polynomial pol’
such that Az < pol’(||D]]) - As. Indeed, with F and pol”’ being the
function and the polynomial, respectively, provided by Lemma 7.4,

Aop = 2576 = 3 pol"(IDI - #(F(s)

SES_.f SES_.f

pol” (IDID - (2 DIl ~1) - Y (s
seSy

pol”(IIDI) - (2 [IDI| = 1) - A,

IA

and the claim follows with pol’(||D]|) = pol”’(||DI]) - (2 - [|D]] - 1).

An FPRAS for FDs. Recall that Theorem 7.1 does not cover the
case of FDs, which remains an open problem. At this point, one may
wonder whether Monte Carlo sampling can be used for devising an
FPRAS in the case of FDs. Indeed, the efficient sampler provided by
Lemma 7.2 holds even for FDs since the proof of that lemma does not
exploit keys in any way, but only the “local” nature of the Markov
chain generator. However, we do not have a result analogous to
Proposition 7.3, which states that the target probability is never “too
small”. In fact, there exist a set X of FDs, a Boolean atomic query
Q, and a family of databases {D;,}n>0 with |D,| = n, such that
0 < Py (Dn, () < 2,,%1; the proof is in the appendix. Hence,

for devising an FPRAS in the case of FDs (if it exists), we need a
more sophisticated machinery than the one based on Monte Carlo
sampling. On the other hand, we can establish a result analogous to
Proposition 7.3 for FDs, assuming that only operations that remove
a single fact (not a pair of facts) are considered. Given a set = of
FDs, let M;O’l be the Markov chain generator defined as My, with
the difference that only sequences consisting of operations that
remove a single fact are considered. We then get the following:

THEOREM 7.5. Fora set 3 of FDs, and a CQ Q, OCQA(Z, My®*, Q)
admits an FPRAS.

Note that singleton operations do not alter the data complexity
of exact operational CQA; we can show that item (1) of Theorem 7.1
continues to hold. Let us also clarify that focusing on singleton
operations does not affect Theorem 5.1 and Theorem 6.1; all the
details about these results can be found in Appendix E.

8 FUTURE WORK

Although we understand pretty well uniform operational CQA,
there are still interesting open problems on approximability: (i) the
case of keys and uniform repairs (we only have a negative result
for the problem of counting repairs), (ii) the case of keys/FDs and
uniform sequences, and (iii) the case of FDs and uniform operations
(we only have a positive result assuming singleton operations).

REFERENCES

[1] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS. 68-79.

[2] Sanjeev Aror and Boaz Barak. 2009. Computational Complexity: A Modern Ap-
proach. Cambridge University Press.

[3] Marco Calautti, Marco Console, and Andreas Pieris. 2019. Counting Database
Repairs under Primary Keys Revisited. In PODS. 104-118.

[4] Marco Calautti, Marco Console, and Andreas Pieris. 2021. Benchmarking Ap-
proximate Consistent Query Answering. In PODS. 233-246.

[5] Marco Calautti, Leonid Libkin, and Andreas Pieris. 2018. An Operational Ap-
proach to Consistent Query Answering. In PODS. 239-251.

[6] Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2021. Count-
ing Database Repairs Entailing a Query: The Case of Functional Dependencies.
CoRR abs/2112.09617 (2021).

[7] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity mainte-
nance using tuple deletions. Inf. Comput. 197, 1-2 (2005), 90-121.

[8] Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon M. Ross. 2000. An
Optimal Algorithm for Monte Carlo Estimation. SIAM J. Comput. 29, 5 (2000),
1484-1496.

[9] Nilesh N. Dalvi and Dan Suciu. 2007. Management of probabilistic data: founda-

tions and challenges. In PODS. 1-12.

Martin E. Dyer and Catherine S. Greenhill. 2000. The complexity of counting

graph homomorphisms. Random Struct. Algorithms 17, 3-4 (2000), 260-289.

[11] Ariel Fuxman, Elham Fazli, and Renée J. Miller. 2005. ConQuer: Efficient Man-

agement of Inconsistent Databases. In SIGMOD. 155-166.

=
=

[12] Ariel Fuxman and Renée J. Miller. 2007. First-order query rewriting for inconsis-
tent databases. J. Comput. Syst. Sci. 73, 4 (2007), 610-635.
[13] Floris Geerts, Fabian Pijcke, and Jef Wijsen. 2015. First-Order Under-

Approximations of Consistent Query Answers. In SUM. 354-367.
[14] MarkR. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random generation
of combinatorial structures from a uniform distribution. Theoretical Computer
Science 43 (1986), 169-188.
Richard M. Karp and Richard J. Lipton. 1980. Some Connections between Nonuni-
form and Uniform Complexity Classes. In STOC. 302-309.
[16] Paraschos Koutris and Dan Suciu. 2014. A Dichotomy on the Complexity of
Consistent Query Answering for Atoms with Simple Keys. In ICDT. 165-176.
Paraschos Koutris and Jef Wijsen. 2015. The Data Complexity of Consistent
Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key
Constraints. In PODS. 17-29.
Paraschos Koutris and Jef Wijsen. 2021. Consistent Query Answering for Primary
Keys in Datalog. Theory Comput. Syst. 65, 1 (2021), 122-178.
[19] Dany Maslowski and Jef Wijsen. 2013. A dichotomy in the complexity of counting
database repairs. J. Comput. Syst. Sci. 79, 6 (2013), 958-983.

=
)

(17

[18

[20] Jayadev Misra and David Gries. 1992. A constructive proof of Vizing’s theorem.
Inform. Process. Lett. 41, 3 (1992), 131-133.

[21] J Scott Provan and Michael O. Ball. 1983. The Complexity of Counting Cuts and
of Computing the Probability that a Graph is Connected. SIAM j. Comput. 12
(1983), 777-788.

[22] Allan Sly. 2010. Computational Transition at the Uniqueness Threshold. In FOCS.
287-296.

A UNIFORM OPERATIONAL CQA

We provide the formal definitions of the “uniform” Markov chain
generators discussed in Section 4, and show that they indeed capture
our intention. In what follows, for a database D, a set 3 of FDs, and
a sequence s = 0py, ..., op, € RS(D,), we write sy for the empty
sequence ¢, and s; for the sequence opy, ..., op;, fori € [n].

A.1 Uniform Repairs

We start with the Markov chain generator based on the uniform
probability distribution over the set of candidate operational re-
pairs. As discussed in the main body, since multiple complete re-
pairing sequences can lead to the same consistent database, we
focus on canonical complete sequences. Recall that, for a database
D, and a set ¥ of FDs, we say that a (D, X)-repairing sequence
s € CRS(D,Y) is canonical if there is no s’ € CRS(D,X) such
that s(D) = s”(D) and s” < s for some arbitrary ordering < over
the set RS(D,Y), and we write CanCRS(D, X) for the set of all
sequences of CRS(D, ¥) that are canonical. Furthermore, for a se-
quence s € RS(D,ZX), we write CanCRSs(D, X) for the set of all
sequences s’ of CanCRS(D,) that have s as a prefix, i.e, s’ = s-s”
for some (possibly empty) sequence s”’. We are now ready to define
the desired Markov chain generator.

Definition A.1. (Uniform Repairs) Consider a set ¥ of FDs. Let
M be the function assigning to a database D the (D, %)-repairing
Markov chain (V, E, P), where, for each (s,s”) € E,

|CanCRSy (D,X) |

e Dy if CanCRS,(D,3) # 0

P(s,s") =

1 i
1Ops. (D3] otherwise.]

Note that the above Markov chain generator is well-defined since,
for each s € RS(D, X) that is not complete,

|CanCRS(D,)| = Z
s’€0ps, (D,X)

|CanCRSy (D,)|,

and thus, for a non-leaf node s € V, ;¢ (s|(s,s) e} P(s,t) = 1. We
now show that the above definition captures our intention.

ProrosITION A.2. Consider a set X of FDs. For every database D:
(1) ORep(D, My") = CORep(D, %).
(2) For every D' € ORep(D, My"), PD!Mgr(D’) = WD,MEW'

Proor. Item (1). It suffices to prove that RL(M;"(D)) =
CanCRS(D, %). Let My"(D) = (V,E,P), and assume that 7 is its
leaf distribution. Recall that for a sequence s = op;,...,0p, €
CRS(D,), m(s) = P(sg,s1) - - - P(sn—1, 5n).

(2) Assume first that s = opy,...,0p, € CanCRS(D,X). This
implies that CanCRSs, (D, X) # 0, for each i € {0, 1,...,n}. There-
fore, P(sj,si+1) > 0, for i € {0,1,...,n}, and thus 7(s) > 0. The
latter implies that s € RL(M;"(D)), which in turn shows that
RL(Mg"(D)) 2 CanCRS(D, %), as needed.

(S) Assume now that s = op;, ..., op, € RL(MZ"(D)). By contra-
diction, assume that s ¢ CanCRS(D, X). Since s € RL(My"(D)), s
must be complete. The fact that s is complete but not canonical im-
plies that there exists i € {0,...,n} such that CanCRS;(D,X) = 0.
In particular, let £ be the smallest integer in {0, 1,...,n} such that

CanCRSg, (D, %) = 0. Clearly, ¢ > 0, since CanCRS¢(D, Y) is al-
ways non-empty. Thus, by the first rule of the expression defining
P in Definition A.1, we have that P(sy—1,s7) = 0. Hence, 7(s) = 0,
and thus, s ¢ RL(Mgr(D)), which contradicts our hypothesis.

Item (2). By the proof of item (1), RL(M;" (D)) = CanCRS(D, %).
Hence, we conclude that

|ORep(D, Mi")| = |CanCRS(D,%)| = [RL(MY'(D))].

Therefore, it suffices to show that, for s € CanCRS(D, %), 7(s) =
m. Lets = op;,...,0p, € CanCRS(D,Z). Since s €
RL(Mg"(D)), (s) is equal to

|CanCRSs, (D, 2)| |CanCRSs,, (D, %)| |CanCRSs, (D,)|
|CanCRS,, (D.%)| |CanCRS,, ,(D,3)| |CanCRSy, (D,%)|

Since CanCRSg, (D, X) = CanCRS¢(D,X) = CanCRS(D,X), and
CanCRS;, (D, %) = {sn}, then n(s) = m, as needed. [

A.2 Uniform Sequences

We now proceed to define the Markov chain generator based on the
uniform probability distribution over the set of complete repairing
sequences. It is defined similarly to the Markov chain generator
above with the difference that we consider arbitrary, not necessarily
canonical, complete sequences.

Definition A.3. (Uniform Sequences) Consider a set X of FDs.
Let MY° be the function assigning to a database D the (D,X)-

>
repairing Markov chain (V, E, P), where, for each (s,s’) € E,
CRS¢ (D, 2
p(s.s) - ISRS(D.3)] .
|CRSs(D, %)|

Observe that the above Markov chain generator is well-defined
since, for each s € RS(D, X) that is not complete,

ICRSs(DZ) =

s'€0ps,(D,%)

|CRSs’ (D’ Z) |>

and thus, for a non-leaf node s € V, ;¢ (s (5,5 ep) P(s. 1) = 1. We
can easily show that My® captures our intention:

PRroPOSITION A.4. Consider a set 3 of FDs. For every database D:

(1) RL(M3(D)) = CRS(D, %).

(2) For everys € CRS(D, %), assuming that r is the leaf distribu-
tion of My®(D), 7 (s) = m .

Proor. Item (1). This item follows from the fact that each s €
RL(Mg*(D)) is complete by definition, and each s = op;.. .., op, €
CRS(D, %) is such that CRS, (D, X) # 0, fori € {0,...,n}, and thus
7(s) > 0, where 7 is the leaf distribution of My*(D).

Item (2). It is shown via a proof similar to the one used above
for item (2) of Proposition A.2. |

A.3 Uniform Operations

We finally define the Markov chain generator based on the uniform
probability distribution over the set of available operations at a
single step of the repairing process.

Definition A.5. (Uniform Operations) Consider a set X of FDs.
Let My° be the function assigning to a database D the (D, 3)-
repairing Markov chain (V, E, P), where, for each (s,s) € E,

1
P(s,s') = ————— m
|Opsg (D, %)
It is straightforward to see that the function My captures our
intention; in fact, the following holds by definition:

PRrRoPOSITION A.6. Consider a set X of FDs. For every database D:
(1) RL(M°(D)) = CRS(D, %).
(2) Assuming that M{°(D) = (V,EP), (s,s") € E implies
N _ 1
P(s.s") = ops. DT

B PROOFS OF SECTION 5

In this section, we prove the main result of Section 5, which we
recall here for the sake of readability:

THEOREM 5.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My", Q) is #P-hard.

(2) For a set X of primary keys, and a CQ Q, OCQA(Z, M;r, Q)
admits an FPRAS.

(3) Unless RP = NP, there exist a set % of FDs, and a CQ Q such
that there is no FPRAS for OCQA(Z, M;r, Q).

As discussed in Section 5, we actually need to prove the above
result for the problem RRFreq(Z, Q).

B.1 Proof of Item (1) of Theorem 5.1

Consider the undirected graph H = (Vy, Egy), where Vi = {0,1,?}
and Eg = {{u,0} | (u,0) € (Vg X Vg) \ {(1,1)}}, i.e, the graph:

Given an undirected graph G, a homomorphim from G to H is a
mapping h : Vg — Vi such that {u, 0} € Eg implies {h(u), h(v)} €
Egy. We write hom(G, H) for the set of homomorphisms from G to
H. The problem #H-Coloring is defined as follows:

PROBLEM : }H-Coloring
INPUT : An undirected graph G.
OUTPUT: The number |hom(G, H)|.

It is implicit in [10] that #H-Coloring is §P-hard. In fact, [10] es-
tablishes the following dichotomy result: §H-Coloring is §P-hard if
H has a connected component which is neither an isolated node
without a loop, nor a complete graph with all loops present, nor
a complete bipartite graph without loops; otherwise, it is solvable
in polynomial time. Since our fixed graph H above consists of a
single connected component which is neither a single node, nor a
complete graph with all loops present (the loop (1, 1) is missing),
nor a bipartite graph, we get that #H-Coloring is indeed }P-hard.
We proceed to show via a polynomial-time Turing reduction
from $H-Coloring that RRFreq(Z, Q) is #{P-hard, where ¥ and Q are

as follows. Let S be the schema {V/2,E/2,T/1}, and let (A, B) be
the tuple of attributes of V. The set X consists of the single key

V:A— B
and the (constant-free) Boolean CQ Q is
Ans() - E(x,y), V(x,2),V(y,2z), T(2).

Given an undirected graph G = (Vg, Eg), we define the following
database over S encoding G:

DG = {V(0), V(1) | ue Vs U{Ewo) | {u,0} € Eg}U{T(1)}.

We then define the algorithm HOM, which accepts as input an
undirected graph G = (Vg, Eg), as follows:

(1) Construct the database Dg.

(2) Compute the number r = rrfrqu’Q(DG, 0).

(3) Output the number 3lVal . (1- 7).
1t is clear that HOM(G) runs in polynomial time in ||G|| assuming

access to an oracle for the problem RRFreq(Z, Q). It remains to
show that |hom(G, H)| = HOM(G). Recall that

|CORep(Dg, %, Q)|

ICORep(DG, 3)]
where CORep(Dg, %, Q) is the set of candidate repairs D of Dg
w.r.t. 3 such that D £ Q. Observe that there are 3!Y¢! candidate
repairs of Dg w.r.t. 2, i.e., in each such a repair D, for each node
u € V of G, either V(u,0) € D and V(u,1) ¢ D, or V(u,0) ¢ D and
V(u,1) € D, or V(4,0),V(u,1) ¢ D. Therefore,
|CORep(Dg, Z, Q)

3161 ’

rrfrqu’Q (Dg,) =

rrfreqs (D, () =

Thus, HOM(G) coincides with

_ |CORep(Dg. %. Q)|

3lVal . (1
31Vl

= 3IY6l _ |CORep(Dg, =, Q)|.

Since D¢ has 3 V6| candidate repairs w.r.t. ¥, we can conclude that
HOM(G) is precisely the cardinality of the set CORep(Dg, 2, =Q),
which collects the candidate repairs D of Dg w.r.t. £ such that
D [Q. We proceed to show that:

LemmA B.1. |hom(G, H)| = |CORep(Dg, X, =Q)]|.

Proor. It suffices to show that there exists a bijection from
hom(G, H) to CORep(Dg, X, =Q). To this end, we define the map-
ping i : hom(G, H) — P(Dg) as follows: for each h € hom(G, H),

u(h) = {V(u,x) |u € Vg and h(u) =% € {0,1}} U
{E(w0) [{w,0} € Eg} U {T(1)}.
We proceed to show the following three statements:

(1) pis correct, that is, it is indeed a function from hom(G, H)
to CORep(Dg, Z, —Q).

(2) p is injective.

(3) p is surjective.

The mapping y is correct. Consider an arbitrary homomorphism
h € hom(G, H). We need to show that there exists a (Dg,X)-
repairing sequence s, such that u(h) = s;(Dg), sp(Dg) E Z (ie., sp

is complete), and Q(sp(Dg)) = 0. Let Vg = {u1, ..., un}. Consider
the sequence sy = 0py, . .., op,, such that, for every i € [n]:

-V(u;, 1) if h(u;) =0
op; = {—V(u;,0) if h(u;) =1
—{V(ui,0), V(ui, 1)} if h(u;) =?

In simple words, the homomorphism h guides the repairing pro-
cess, ie, h(u;) = 0 (resp., h(u;) = 1) implies V(u;,0) (resp.,
V (uj, 1)) should be kept, while h(u;) = ? implies none of the atoms
V(ui,0), V(uj, 1) should be kept. It is easy to verify that s is in-
deed a (Dg, X)-repairing sequence s, such that u(h) = s;(Dg) and
sp(Dg) [2. The fact that Q(sp(Dg)) = 0 follows from the fact
that, for every edge {u,0} € Eg, {h(u), h(v)} € Eg cannot be the
self-loop on node 1, since it is not in H. This implies that for every
{u,v} € Eg, it is not possible that the atoms V' (u, 1), V (v, 1) coexist
in sy (Dg), which in turn implies that Q(s,(Dg)) = 0, as needed.

The mapping y is injective. Assume that there are two distinct
homomorphisms h, h’ € hom(G, H) such that p(h) = p(h’). By the
definition of y, we get that h(u) = h’(u), for every node u € V. But
this contradicts the fact that h and h’ are different homomorphisms
of hom(G, H). Therefore, for every two distinct homomorphisms
h,h’ € hom(G, H), u(h) # p(h’), as needed.

The mapping u is surjective. Consider an arbitrary candidate
repair D € CORep(Dg, 2, —Q). We need to show that there exists
h € hom(G, H) such that y(h) = D. We define the mapping hp :
VG — Vg as follows: for every u € Vg:

1 ifV(u,1) € Dand V(u,0) ¢ D
hp(u) = 30 ifV(u,1) ¢ Dand V(u,0) € D
? ifV(u,1) ¢ Dand V(u,0) ¢ D

It is clear that hp is well-defined: for every u € Vg, hp(u) = x
and hp(u) = y implies x = y. It is also clear that y(hp) = D. It
remains to show that hp € hom(G, H). Consider an arbitrary edge
{u,v} € Eg. By contradiction, assume that {hp(u), hp(v)} ¢ Eg.
This implies that hp(u) = 1 and hp(v) = 1. Therefore, D contains
both atoms V (u, 1) and V (v, 1), which in turn implies that Q(D) # 0,
which contradicts the fact that D € CORep(Dg, %, =Q). O

Since HOM(G) = |CORep(Dg, Z, =Q)|, Lemma B.1 implies
HOM(G) = |hom(G, H)|,

which shows that indeed HOM is a polynomial-time Turing reduc-
tion from #H-Coloring to RRFreq(Z, Q).

B.2 Proof of Item (2) of Theorem 5.1

We prove that, for a set X of primary keys, and a CQ Q, the problem
RRFreq(Z, Q) admits an FPRAS. Our proof consists of two main
steps, which we briefly explain before going into the detailed proofs.

The first step is to show that, given a database D, we can sam-
ple elements of CORep(D, X) uniformly at random in polynomial
time in ||D||. The existence of such an efficient sampler implies
that we can employ Monte Carlo Sampling to obtain a polynomial-
time randomized approximation with additive (or absolute) error for
RRFreq(Z, Q(x)), that is, a randomized algorithm A that takes a in-
put a database D, a tuple ¢ € dom(D) |’_“, €>0,and 0 < 6 < 1runs

in polynomial time in ||D||, ||¢||, 1/€ and log(1/8), and produces a
random variable A(D, ¢, ¢, §) such that

Pr(|A(D,6,e,5)—rrfreqz’Q(D,E)| < e) > 1-6.

More precisely, A(D, ¢, €, §) samples N = O (loi;ﬁ)) elements of
the set CORep(D, ¥), and returns the number % -|CORep(D,)|,
where S is the number of sampled repairs D’ such that ¢ € Q(D’).

However, in general, the existence of an efficient sampler does
not guarantee the existence of an FPRAS, which bounds the multi-
plicative (or relative) error. In order to obtain an FPRAS via Monte
Carlo Sampling, the number of samples should be proportional to

m [8]. This brings us to the second step of our proof,

where we show that the ratio rrfreqy o (D, ¢) is never “too small”.
Formally, we show that, for every database D, it either holds that
rrfreqs o(D, €) = 0 or rrfreqy, (D, ¢) > m for some poly-
nomial pol. In this case, we can use Monte Carlo Sampling (with a
different, yet polynomial, number of samples) to obtain an FPRAS.

We now proceed to formally show the existence of an efficient
sample, and the fact that target ratio is never “too small”

Step 1: Efficient Sampler. The formal statement, already given in
the main body of the paper, and its proof follow:

LEMMA 5.2. Given a database D, and a set X of primary keys,
we can sample elements of CORep(D, X) uniformly at random in
polynomial time in ||D||.

Proor. For every relation name R of the underlying schema
with a primary key R : X — Y in X, we partition the set of facts
of D over R into blocks of facts that agree on the values of all the
attributes of X. Clearly, two facts that belong to the same block,
always jointly violate the key of the corresponding relation; hence,
an operational repair will contain, for every block B with |B| > 1,
either a single fact of B or none of the facts of B (hence, there are
|B| + 1 possible options). An operational repair of the first type can
be obtained, for example, via a sequence that removes the facts of B
one by one until there is one fact left. An operational repair of the
second type can be obtained, for example, by removing the facts
of B one by one until there are two facts left, and then removing
the last two facts together. For a block B such that |B| = 1, there is
no justified operation that removes the single fact of B; hence, this
fact will appear in every operational repair.

We denote all the blocks of D (over all the relations of the schema)
that have at least two facts by By, ..., B,. To sample a repair of
CORep(D,), we select, for each block B;, one of its | B;|+1 possible
outcomes, with probability ﬁ Then, an operational repair is
obtained by taking the union of all the selections, as well as all
the facts of D over every relation R of the schema that has no
primary key in ¥, and all the facts that belong to blocks consisting
of a single fact. It is rather straightforward that the probability of
obtaining each operational repair is m, as the number

of operational repairs is
|CORep(D,%)| = (|B1] +1) X -+ X (|Bn| + 1),

and the claim follows. UJ

A | Az

fir || a1 | bt
fiz || a1 | b2
fiz || a1 | b3
o1l a | b
fi1] a3 | b
fi2 || a3 | b2

Figure 2: A database over {R/2} that is inconsistent w.r.t. the
primary key R : A; — A,.

We give a simple example that illustrates the proof of Lemma 5.2.

Example B.2. Consider the database depicted in Figure 2 over
the schema {R/2}, with (Aj, A2) being the tuples of attributes of R,
and the set ¥ = {R: A; — Ay} consisting of a single key. We write
fi,j for R(a;, bj). Clearly, for j # k, {fij, fix} ¥ 2. The database
consists of three blocks w.r.t. R: Ay — Aj:

{in iz izt i} {fnfoz)

Since the fact f; 1 is not involved in any violations of the constraints,
it will appear in every operational repair; however, every opera-
tional repair will contain at most one fact of the first block and
at most one fact of the third block. The number of operational re-
pairs according to the formula in the proof of Lemma 5.2 is then
(3+41) X (2+ 1) = 12. (Note that the blocks of size one are not
considered in the computation.) Indeed, there are twelve repairs:

{1y {fAinfoary {fizforr {As far}
it e iy Az for it {fis for, 1)
{1, 52} A1 1 2 {fuzfoar o2t {fs far f2}

The repair {fi,1, 2,1, f3,1}, for example, is obtained by keeping the
fact fi,1 of the first block with probability % (as there are three facts
in the block, there are four possible options: (1) keep fi,1, (2) keep
fi,2, (3) keep fi,3, or (4) remove all the facts of the block), and the
fact f31 of the third block with probability % Hence, the probability
of selecting this operational repair is % X % = 11—2, and the same

holds for any other operational repair. u

Step 2: Polynomial Lower Bound. Now that we have an efficient
sampler for the operational repairs, we proceed to show that there is
apolynomial lower bound on rrfreqs, (D, €). The formal statement,
already given in the main body of the paper, and its proof follow:

LEmMA 5.3. Consider a set 3 of primary keys, and a CQ Q(x). For
every database D, and tuple ¢ € dom(D)"—d,
1

rrfreqz,Q(D,E) > W

whenever rrfreqz’Q(D, ¢) > 0.

ProoF. By abuse of notation, we treat the CQ Q as the set of
atoms on the right-hand side of :- (hence, |Q| is the number of atoms
occurring in Q). Consider a database D, and a tuple ¢ € dom(D) I,
If there is no homomorphism h from Q to D such that A(Q) E =
and h(x) = ¢, then it clearly holds that rrfrqu’Q(D, ¢)=0.

Consider now the case that such a homomorphism h exists. As-
suming that Q = {R;i(7:) | i € [n]}, let h(Q) = {Ri(h(7:)) | i €

[n]}. Assume that [h(Q)| = m for some m < |Q|. For every relation
name R of the schema with akey R : X — Y in ¥, we partition the
set of facts of D over R into blocks of facts that agree on the values
of all the attributes of X. For a relation name R with no key in X,
we assume that every fact is a separate block. Let By, .. ., B, be the
blocks of D w.r.t. X (over all the relation names of the schema). We
assume, without loss of generality, that the facts of h(Q) belong to
the blocks By, . .., Bp. Clearly, no two facts of A(Q) belong to the
same block; otherwise, h(Q) £ %, which is a contradiction.

Let Rln)fz,h(Q) be the set of repairs E € CORep(D, X) such that

ENB; # 0 for every j € [m]. Let R;),Z,h(Q) be the set of repairs

E € CORep(D, %) such that EN B; = 0 for some j € [m]. Clearly,

|[CORep(D,2)| =

R?fz,h(Q)| + ‘RBE,h(Q)| :

e

D,3,h(Q)’
with precisely ¢ blocks of {By, ..., By }. Assume, without loss of
generality, that these are the blocks By, . . ., B. We can transform the

repair E into a repair E’ € RBCZ h(0) by bringing back an arbitrary

fact of each block B; for j € [£]. Therefore, the repair E is mapped

to |By| X - - - X |By| distinct repairs olen)e’z’h(Q)~

m _ . e
Observe that at most 2 1 repairs E € RD,Z, h(0)

This holds since the repair

Now;, consider a repair E of R and assume that E is disjoint

are mapped

to the same repair E’ € RB?Z,h(Q)'
E’ determines, for every block Bj that is not one of By,...,Bp,
whether we keep a fact of B; in the repair and which fact of B;
we keep. For the blocks By, ..., By, a repair E that is mapped to E’
can either contain the same fact as E’ contains from this block, or
none of the facts of the block. Hence, there are two possibilities for
each block of {Bj, ..., By} and the total number of possibilities is
2™ However, we have to disregard one of these possibilities, as it
represents E’ itself (where for every block of {By, ..., By} we keep
the same fact as E’). We conclude that

Rf),z,h(Q)‘ < (2™ -1)x |R}3‘fz,h(Q))

and

|CORep(D, %)| = |RE),Z,h(Q)| + ‘Rge,z,h(Q)‘

< @ =0 x [R50 |+ [R50

=2Mx

nge,z,h<Q>| :

eD,Z,h(Q)
is mapped to

Note that (2 ~1)x|Rpe, Q))

because, as said above, each repair E of R

is just an upper bound on ‘R
€

D,%,h(Q)

several distinct repairs of R™

D,3h(Q)"
Finally, each repair of Rge’z’ h(Q) keeps a fact of every block in
{Bi1,...,Bm}. Here, we are interested in the repairs that keep all

the facts of h(Q), as these repairs E satisfy ¢ € Q(E). Clearly,

{E € CORep(D, %) | h(Q) CE}| = — -

Rhe
Bi| X -+ X [Bp| 1P

,Z,h(Q)‘

as all the facts of a block are symmetric. Hence, we conclude that:

1 X ‘Rne
I{E € CORep(D, %) | h(Q) C E}| | TBilx-X[Buwl " " D3h(Q)
CORep(D, = =
| p()] om % Rge,z,h(Q)|

1
Byl X -+ X |Bp| x 2™
1 1
> >
[D|™ x 2m = |D|1Ql x 21QI
1 1
= >
2pplel — (2[|Ip|pliell

and this is clearly a lower bound on rrfreqz,Q(D, ¢), as needed. [

Here is a simple example that illustrates the argument given in
the proof of Lemma 5.3.

Example B.3. Consider again the database D depicted in Figure 2,
and the set ¥ = {R : A; — Ay} consisting of a single key. Let
Q be the CQ Ans(x) :- R(aj, x). A homomorphism h from Q to D
with h(Q) [X and h(x) = by is such that h(Q) = {R(a1, b1)}. The
fact R(ay1, b1) belongs to the block {fi 1, fi,2, fi,3}. Hence, the set
R7¢ consists of the repairs:

D.5.h(Q)
{fi, oat {fi2 for}
{fi1 o1, 31}
{fir, fo1, fo.2}

and the set R¢

{fl,&fé,l}
{fiz, for, 1} {fi3 far, i}
{fz fors 32 {fi3 o1 o2}

D.5h(0) consists of the repairs:

{1} {farfa} {for fa2}
According to the mapping defined in the proof of Lemma 5.3,
the repair {f2,1} is mapped to the repairs in
{fn fead A2 foad {fis foa})
that have one additional fact from the block of R(ay, b1). Similarly,
the repair {f2,1, f3,1} is mapped to the repairs in
A o ad e for i b A fiss fors i d)

and the repair {f21, f3.2} is mapped to the repairs in

A o1 eh A o1, B2 {fis f1 f21)
Hence, each repair of RE),Z,h)
pairs of Rgez h(0)’ since three is the size of the block of R(aj, by).

. : m_ . . o
Moreover, in this case, 2 1 =1, and a single repair of RDle h(0)

is mapped to precisely three re-

ne
D,3.h(Q)"
Since all the facts of a block are symmetric with each other,

precisely % of the repairs in RS, h(0) contain the fact R(ay, b)—

three repairs. Thus, it holds that

is mapped to every repair of R

1
|[{E € CORep(D, %) | h(Q) C E}| = 3 X9=3
and
|CORep(D,2)| = 12.
We conclude that
[{E € CORep(D,3) | h(Q) CE}| _ 3 _

|CORep(D, 2)| 12 4
Note that
1 1
(2|pplel 12

is indeed a lower bound on that value, and it is also a lower bound
on the ratio rrfreqz’Q (D, (b1)) that, in this case, equals %.]

B.3 Proof of Item (3) of Theorem 5.1

As discussed in the main body of the paper, the proof of item (3)
of Theorem 5.1 proceeds in two main steps, which correspond to
Proposition 5.5 and Lemma 5.6. Before giving the formal proofs, we
first need to introduce some auxiliary notions and results. In the
sequel, we concentrate on undirected graphs without self-loops.

Auxiliary Notions and Results. Consider an undirected graph G =
(V,E) and an integer A > 0. We say that G has degree A if each
node of V participates in at most A edges. Moreover, G is connected
if there is a path between every two nodes of G. We call G trivially
connected if |V| < 1; otherwise, it is non-trivially connected. Finally,
IS(G) denotes the set of all independent sets of G.

For a database D and a set X of FDs, the conflict graph of D w.r.t.
¥ is the undirected graph CG(D,X) = (V,E), where V = D, and
{f.g} € Eif {f,g} £ =. We call D non-trivially (resp., trivially)
>-connected if CG(D, X) is non-trivially (resp., trivially) connected.

In order to prove the desired claims, we establish an auxiliary
result that relates the number of candidate repairs of an inconsis-
tent database that is non-trivially connected with the number of
independent sets of the underlying conflict graph; this is Lemma 5.4
in the main body, which we recall and prove here:

LEMMA 5.4. Consider a non-trivially X-connected database
D, where 3 is a set of FDs. It holds that |CORep(D,X)| =
[IS(CG(D, %))|.

Proor. (C) Consider a candidate repair D’ € CORep(D, 3). By
definition, D’ is consistent, i.e., there are no two facts f,g € D’
such that {f, g} [~ 2. By definition of the conflict graph of D w.r.t. 3,
we conclude that no two facts f,g € D’ are connected via an edge
in CG(D, X). Hence, D’ is an independent set of CG(D, 3).

(2) Consider now an independent set D’ € IS(CG(D, %)). Since
there are no two facts f, g € D’ that are connected via an edge of
CG(D,), D’ is consistent w.r.t. 2. It remains to show that there ex-
ists a sequence s € CRS(D, X) such that s(D) = D’; we distinguish
the two cases where either D’ # 0 or D’ = ().

Case 1. Let us first concentrate on the case where D’ # 0. In
order to define the repairing sequence s € CRS(D, X) such that
s(D) = D’, we first define a convenient stratification of the facts of
D. We inductively define the strata Lo, Ly, . . . as follows:

(] Lo = D’.

e Foreachi > 1,

Li={feD|f¢LyU...ULj_1 and
there is f' € L;—1 with {f, f'} £ =}.

Observe that, since CG(D, X) is connected, each fact f € D occurs
in some L;, i.e., if n is the smallest integer such that L, = 0, for
£ > n, we have that D = UL L;.

Let L; = {fl’ . fllLl} for each i € [n]. We now construct

the desired sequence s as follows. We let the first |L,| operations
be —f",..., —fl’L’ E To see that —fj” is a (Dj_l, 3)-justified oper-
ation for every 1 < j < |Ly|, observe that, by definition of Ly,
each f7 is in a violation with some fact in L,_;, which has not
been removed yet. The operations op|r, |11, - - -» 0P|1,|+|L,,_,| Will

be — n—1

1 - ‘flz_ll L which are all justified because there exists a
e

violation for each fact with some fact from L5 that has not been
removed yet. The next operations of s are defined in the same way
for the remaining strata, until the last |L;| operations, which will
be —fll, el _fl}q E Again, these operations are justified since, by
definition, each of the facts fll, ..

from Ly = D’. Summing up, the sequence s is
n n n—1 n—1 1 1
o P £ \Ln-l\""’_fl""’_f\Lll'

We have that s € RS(D,X) and that s(D) = D’ E . Hence, s €
CRS(D, %), which implies D’ € CORep(D,), as needed.

- f‘lL | is in conflict with some fact
1

Case 2. The case where D’ = () is treated similarly. We only need
to slightly adjust the last operation of the sequence s. Fix some
fact f* € D. We stratify the facts of D as in the first case, but we
let Ly = {f*}. We then define s in the same way as above. Let
L, be again the last non-empty stratum. Since CG(D, %) is non-
trivially connected, D [~ %, and thus, we have that n > 0, i.e., at
least stratum L; is non-empty. Then, we have that the first |L|
operations are —f", ..., - f"L‘n‘. We continue with the remaining
strata L,—1 to Ly as before. The last |L;| operations are defined as
—fll, . —fllL1 I~ { IlLl |,f*}. Note that, by definition of Ly, every
fact fll, ..

is a justified operation. Now, there are only two facts left, f|1Ll| and

- fllL -1 is in a violation with f*, and thus, their removal
-

f*, which together violate X (recall that L; is non-empty). Therefore,
- {fl}q |f*} is a justified operation, and we have that s € RS(D, X)

and s(D) = D’ = 0 = 3. Hence, s € CRS(D,), which in turn
implies that D’ € CORep(D,), as needed. U

We are now ready to proceed with the two main steps of the proof
of item (3) of Theorem 5.1, which correspond to Proposition 5.5
and Lemma 5.6, respectively. Note that both results are essentially
dealing with the following counting problem for a set X of FDs:

PROBLEM : #CORep“"(3)
INPUT : A non-trivially X-connected database D.
OUTPUT: The number |[CORep(D, 3)|.

Step 1: An Inapproximability Result About Keys. The formal state-
ment, already given in the main body, and its proof follow. Note
that the statement of Proposition 5.5 given below is more compact
than the one given in the main body of the paper since we explicitly
use the name of the problem CORep®" (X).

PROPOSITION 5.5. Unless RP = NP, there exists a set = of keys over
{R} such that §CORep°"(X) does not admit an FPRAS.

Before giving the proof of Proposition 5.5, we need an auxiliary
result about the problem of counting the number of independent
sets of undirected graphs. For an integer A > 0, we define

PROBLEM : #1Sp
INPUT : An undirected graph G of degree A.
OUTPUT : The number [IS(G)|.

We know from [22] that the following holds:

PROPOSITION B.4. For every A > 6, unless RP = NP, #ISp does
not admit an FPRAS.

Note that the above result states the inapproximability of §1Sa
for arbitrary, not necessarily non-trivially connected graphs. How-
ever, for showing Proposition 5.5, we need the stronger version
of Proposition B.4 that establishes the inapproximability of S
even for non-trivially connected graphs. Let #1S3°" be the problem
defined as #1Sp with the difference that the input is a non-trivially
connected undirected graph. We proceed to show the following:

LEMMA B.5. For every A > 6, unless RP = NP, #IS‘:Aon does not
admit an FPRAS.

Proor. By contradiction, assume that #ISCAOn admits an FPRAS,
for some A > 6, i.e., there is a randomized algorithm A that takes
as input a non-trivially connected graph G = (V, E) of degree A,
€ > 0,and 0 < § < 1, runs in polynomial time in ||G||, 1/¢, and
log(1/6), and produces a random variable A(G, €, §) such that

Pr((1-¢€)-]IS(G)] < A(G,¢,6) < (1+¢€)-|IS(G)]) = 1-46.
From this, we can construct an FPRAS A’ for #IS as follows. Given
a graph G = (V,E) of degree A, let the connected components,
i.e., the maximal connected subgraphs, of G be (CC;)1<i<n with
CC; = (V;, E;). Furthermore, assume, w.l.o.g., that CCy,...,CCy,

are all the trivially connected components of G, for some ¢ < n.
Given G, e > 0,and 0 < § < 1, A’ is defined as

’ 4 = € 4
A'(Ged) = 2°- il:LA (ccl, = %) .
Note that a run of A does not depend on any other run, and thus,
the random variables A(CC;, ﬁ %) are independent from each
other. It is also easy to see that

(@) = 2~ [] is(ccol.

i={+1
Therefore, since A is an FPRAS for #ISCAO”, we have that

Pr((l - i)" IS(G)| < A'(G,e,6) <

(1+ %)" : ||5(G)|) > (1 - %)n

Finally, we know (see, e.g., [14]) that the following inequalities hold:
for0<x<landm>1,

x \m x \m
l—xs(l——) and (l+—) <1+x.
2m 2m
Consequently,

Pr((1—¢)-lIS(G)| <A’(G,,8) < (1+¢€) - [IS(G)]) =1-3.
Hence, A’ fulfils the probabilistic guarantees required for an FPRAS.
To confirm the desired running time of A’, note that there are at
most n = |V| connected components of G, which can be computed

in polynomial time via any textbook algorithm. Thus, since A is
an FPRAS for #IS{°", for each each i € [n], the random variable

A(CC;, % %) can be computed in polynomial time w.r.t. CC;;, @
and % Since A’ multiplies at most |V| such random variables, A’
is an FPRAS for #1Sa, which contradicts Proposition B.4. O

With Lemma B.5 in place, we can now prove Proposition 5.5.

ProoF or ProprosITION 5.5. Consider a non-trivially connected
undirected graph G = (V, E) with degree A = 6. Let S be the schema
consisting of the single relation name {R/A+1} with (Ay, ..., Aa+1)
being the tuple of attributes of R, and g = {¢1,...,Pa+1} a set
of keys over S, where ¢; = R : A; — att(R) for each i € [A +1].
We show that, unless RP = NP, we can construct a non-trivially
>k -connected database D¢ in polynomial time in ||G|| such that
[IS(G)| = |CORep(Dg, Ek)|. Hence, the existence of an FPRAS for
HCORep®" (Zk) would imply the existence of an FPRAS for #1SS°",
which in turn contradicts Lemma B.5.

The key property that Dg should enjoy is the following: there
exists a bijection y : V. — D¢ from the set of nodes of G to the facts
of Dg such that (u,0) € E iff {u(u), p(v)} I k. The latter imme-
diately implies that [IS(G)| = |[IS(CG(Dg, Zk))|, which, together
with the fact that G is non-trivially connected, and hence, D is non-
trivially Yg-connected, implies that [IS(G)| = |CORep(Dg, 2k)|
by Lemma 5.4. The formal construction of Dg follows.

The Database Dg. It is known that the edges of G are (A + 1)-
colourable, and such a coloring can be constructed in polynomial
time in ||G|| [20]. Therefore, we are able to efficiently assign the
colours C = {cq,...,ca+1} to the edges of G in such a way that
none of the nodes belongs to two distinct edges of the same colour.
Let M : E — C be such a coloring. The database Dg is such that
dom(Dg) = E U F, where F is a finite a set of constants with
ENF =0, and has the following facts:
(1) for each node v € V, we add to Dg a fact of the form
R(a’l’, el aZH), and
(2) the constants of such facts are defined as follows:
(a) for every edge e = {u,v} € E, assuming that M(e) = c;,
we let ali‘ = ai.’ =e, and
(b) for every af not defined in the above step, we let a? = f
for some constant f € F only to be used once.

We use R(a°) to denote R(a], ..., a},,), for short. Note that every
a} is well-defined since v has at most one edge of colour c;, and
thus, a? is uniquely defined by either the edge with colour ¢;, or in
case there is no such edge, by a fresh constant f € F. Let us also
stress that we can build Dg in polynomial time in ||G||. We can
now prove the following crucial property of Dg:

LEmMMA B.6. Consider two nodes u,v of G. Then, {u,v} is an edge
in G iff {R(@), R(@)} I 3k

Proor. Consider an edge e = {u,v} in G with M(e) = c;, for
some i € [A+1]. By construction of Dg, it is clear that there will be
exactly two facts in Dg such that the constant e appears at position
i of those facts. These two facts will be precisely R(a'l‘, el azﬂ)
and R(ai’, e azﬂ), having all.‘ = af = e. As there are no multiple
edges between two vertices, the constants at the other positions
will be pairwise different, i.e., a¥ # a9, for all j # i. Hence, the two
facts together violate ¢;, and thus, {R(a%), R(a°)} ¥ 2k.

Consider now two facts R(a'f, el aZH) and R(azl’, el a2+1) that
together violate ¢; = R : A; — att(R) for some i € [A + 1]. Thus,
the same constant appears at position i in both facts, i.e., a¥ = af.
By construction of Dg, the only reason why a}’ = af is because
{u, v} is an edge of G, and the claim follows. O

By Lemma B.6, we get that [IS(G)| = |[IS(CG(Dg, 2k))|, and that
Dg is non-trivially 3-connected. Hence, by Lemma 5.4, [IS(G)| =
[IS(CG(Dg,2k))| = |[CORep(Dg, 2k)|, and the claim follows. [J

Step 2: Transferring FPRAS. We proceed with the second and last
step of the proof of item (3) of Theorem 5.1, which corresponds to
Lemma 5.6. The formal statement, already given in the main body,
and its proof follow. Note that the statement of Lemma 5.6 given
below is more compact than the one given in the main body since
we explicitly use the name of the problem §CORep“" (2), where
Yk is the set of keys provided by Proposition 5.5.

LEMMA 5.6. Assume that RRFreq(Z, Q) admits an FPRAS, for ev-
ery set 2 of FDs and CQ Q. Then, fCORep“°" (2) admits an FPRAS.

Proor. By Proposition 5.5, unless RP = NP, 2k is a set of keys
over a schema {R/n} such that §CORep"(Zg) does not admit
an FPRAS. Let S = {R’/m}, where m = n + 2, and, assuming that
(A1,...,Ay) is the tuple of attributes of R, let (A, B, Ay, ..., Ap) be
the tuple of attributes of R’. We first show that there exist a set Zp
of FDs over S, and a Boolean CQ Qr over S such that, for every
non-trivially Xg-connected database D over {R}, we can construct
in polynomial time in ||D|| a database D over S such that

1 e
|CORep(D,2k)| +1
By exploiting the above equation, the fact that Dr can be con-
structed in polynomial time, and the FPRAS for RRFreq(ZF, OF)
(which exists by hypothesis), we will then explain how to devise
an FPRAS for the problem §CORep" (Zk).

We start by explaining how X and D are defined in a way that

|CORep(DF,2f)| = |CORep(D,2k)| + 1.
We define the set Xg of FDs over S as follows:
{RF:X—>Y|R:X—>YeIgx}U{R :A— B}.

Note that each key ¢ of g over R becomes an FD ¢’ over R’; indeed,
¢’ is not a key since R’ has two additional attributes. Now, given
a non-trivially Zg-connected database D over {R}, we define the
database Dr as follows with g, b being constants not in dom(D):

{R'(a,b,a1,...,an) | R(ay,...,an) € D} U{R (a,q,...,a)}.

For brevity, we will write f* for the fact R’(a,q,...,a). It is not
difficult to verify that the number |[CORep(Dp, 2F)| is the sum

rrfrequ’QF (Dr, () =

[{D" € CORep(DF,2F) | f* € D'}| +
|{D’ € CORep(DF,%F) | f* ¢ D'},

that is, the sum of the number of candidate repairs containing f*
and the number of candidate repairs not containing f*. It is not
difficult to see that {f™*} is the only candidate repair containing f™.
This is because f* is in a conflict with every other fact of Df due
to the FD R’ : A — B. Moreover, one can easily devise a sequence
s € CRS(Dp, 2F) removing all facts in D \ {f*} in an arbitrary
order, and therefore obtaining {f™*}.

Regarding the number of candidate repairs not containing f*, ob-
serve that since D is non-trivially g -connected, and since f* is in
a conflict with every other fact of Dp, then Dp is non-trivially
Yp-connected. Therefore, by Lemma 5.4, CORep(Dp,2f) =
IS(CG(DF, ZF)). Since {f*} is the only candidate repair of Dp

containing f*, and thus, the only independent set of CG(Dp, ZF)
containing f*, the set of candidate repairs without f*, i.e., {D’ €
CORep(Dp,2F) | f* ¢ D’} coincides with IS(CG(Dr \ {f*}, 2F)).
Note that, by construction of Dr and XF, since D is non-trivially
Sk-connected, Dp \ {f*} is non-trivially ¥-connected, and thus,
by Lemma 5.4, IS(CG(Dg \ {f*},2F)) = CORep(Dr \ {f*}, 2F).

Finally, by construction of D and 2, we have that [CORep(DFr\
{f*},ZF)| = |CORep(D, Zk)|. In fact, it suffices to observe that two
facts R(a1,...,an),R(b1,...,by) € D violate X iff the correspond-
ing facts R’(a, b, ay, . ..,a,),R'(a,b,b1,...,by) € Dp \ {f*} violate
Y r. Hence, we conclude that

|[CORep(DF,2F)| = |CORep(D,Zk)| + 1.
Let us now define the Boolean CQ Qp in such a way that the
equation (x) holds. We define Qr as the Boolean CQ
Ans() - R (x,x,...,x).

In simple words, QF asks whether there exists a fact such that all the
attributes have the same value. Clearly, the only candidate repair
of CORep(Dr, ZF) that satisfies the query Qr is {f*}, i.e.,

1
|CORep(DF, Zp)|’
Since, as shown above, |CORep(Dp, 2r)| = |CORep(D, 2k)| + 1,
we get that the equation (x) holds, as needed.

rrfreqs, o, (DF, () =

Building the FPRAS. We proceed to devise an FPRAS for the
problem §CORep" () by exploiting the equation (+), the fact
that Df can be constructed in polynomial time, and the FPRAS A’
for RRFreq(ZF, Qr) (which exists by hypothesis).

Given a non-trivially Yg-connected database D, ¢ > 0, and
0 < § < 1, we define A as the following randomized procedure:

(1) Compute Df from D;

(2) Lete’ = 55

(3) Let r = max | 1= A (DR, (0, ¢/, 0)

(4) Output % -1

We proceed to show that A is an FPRAS for §CORep®" (Zk).
Since D can be constructed in polynomial time in ||D||, A(D, €, 6)
runs in polynomial time in ||D||, 1/€ and log(1/5) by definition.
We now discuss the probabilistic guarantees. By assumption,

Pr((1 =€) - rrfreas, o, (DF, 0) < A'(Dp, 0,€',)

< (1+€') - rrfreqs, o, (DF, ())) >1-96.

Thus, it suffices to show that the left-hand side of the above in-
equality is bounded from above by

Pr((1—e¢)-|CORep(D,2k)| < A(D,¢,6) <
(1+¢€) - |CORep(D,2k)|) -

To this end, by equation (*), we get that
Pr((1-€) - rrfreqs, o, (Dr, 0) < A'(DF, (. €',5)

<(+€)- rrfreqs. o (Dp, ())) = Pr(E),

where E is the event

1-¢€ 1+¢€

< A'(Dp, (),€’,6) < .
T+]CORep(D, 5] = N PP 0:€49) < e aR e D 5 0)]

Note that [CORep(D, 2k)| < 2P e, |CORep(D, 2k)| is at most
the the number of all possible subsets of D. Hence,
1-¢ S 1-¢
1+ |CORep(D,Zk)| ~ 1+2/PI"
Thus, for E to hold is necessary that the output of A’(Dp, (), €', 5)
1-€

1+2D1
coincides with the event

is no smaller than Hence, for any number p < I F

1+2D1”

1-¢ -
1+ |CORep(D,2k)| ~

max {p, A’ (Dr, ()., 8)} <

1+¢€
1+|CORep(D, k)|’

1-€’

,
PRCFEIL)) < %, we conclude that

Hence, with p =

1-¢
1+ |CORep(D, Zk)|

Pr(E) = Pr(< max {p,A’(DF, 0,¢€, 5)} <

1+¢€
1+ |CORep(D,2k)| /"

Since the random variable max{p, A’(DF, (), ¢/,)} always outputs
a rational strictly larger than 0, the latter probability coincides with

1+ |CORep(D, Zk)| 1
Pr < <
1+¢€ max {p, A’(DF, (),€’,6)}
1+ |CORep(D, Zk)|
1—¢ '

For short, let X be the random variable Since

1
max{p,A’/(DF,(),e',(S)}’
> 1 — =, the probability

— € 1 _4_ _€
=1+ 1-€ and =1 1+’ = 1-€>

1
1-€’ 1+e
above is less or equal than

7
Pr((l - - €) - (1+|CORep(D, 2x)|) < X <
— €

(1 + :6,) - (1+|CORep(D, zK)|)).

If we subtract 1 from all sides of the inequality, then the above
probability coincides with

7
Pr((l— - € ,)~(1+|CORep(D,ZK)|)—l <X-1<
— €

(1 + 155') - (1+|CORep(D, 3)|) - 1).

By expanding the products in the above expression, we obtain

Pr(|CORep(D, k)| - —— — —— . |CORep(D, k)| <
1-€¢ 1-¢€¢

’ ’
|CORep(D, Zx)| + —— + —— - |CORep(D, 5x)]| .
1-¢/ 1-¢
Finally, since [CORep(D, 2k)| > 1, we have that

€ €’

1—-¢/ = 1-¢

- |CORep(D, Zk)|.

Thus, the above probability is less or equal than

’

- |CORep(D, 2g)| <

Pr (|CORep(D, ol -2 -
— €

’

€
-+ ICORep(D. 31

X —1<|CORep(D,2g)|+2- N

which coincides with

— €’

Pr ((1 -2 €) - |CORep(D, 2| <

7

€
X-1<|1+2-
1-—¢

) - |CORep(D, ZK)|) .
Recalling that €’ = 5%, one can verify that 2 - lf—;, = €. Moreover,
X —11is A(D, €, 6). Hence, the above probability coincides with

Pr((1—¢)-|CORep(D,2k)| < A(D,¢,6) <
(1+¢€)-|CORep(D,Zk)]) .
Consequently, A is an FPRAS for #CORep®"(Zk), as needed. [

It is now straightforward to see that from Proposition 5.5 and
Lemma 5.6, we can conclude item (3) of Theorem 5.1.

C PROOFS OF SECTION 6

In this section, we prove the main result of Section 6, which we
recall here for the sake of readability:

THEOREM 6.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, Mgs, Q) is §P-hard.

(2) For a set % of primary keys, and a CQ Q, OCQA(Z, Mgs, Q)
admits an FPRAS.

As discussed in Section 6, we actually need to prove the above
result for the problem SRFreq(Z, Q).

C.1 Proof of Item (1) of Theorem 6.1

Let ¥ and Q be the singleton set of primary keys and the Boolean
CQ, respectively, for which RRFreq(Z, Q) is #P-hard; ¥ and Q are
obtained from the proof of item (1) of Theorem 5.1. We show that
also SRFreq(3, Q) is #{P-hard via a polynomial-time Turing reduc-
tion from $H-Coloring, where H is the graph employed in the proof
of item (1) of Theorem 5.1. Actually, we can exploit the same con-
struction as in the proof of item (1) of Theorem 5.1. Assuming that,
for an undirected graph G, Dg is the database that the construction
in the proof of item (1) of Theorem 5.1 builds, we show that

rrfreqs, o (Dg, () = srfreqs o(Dg, (),

which implies that the polynomial-time Turing reduction from
#H-Coloring to RRFreq(Z, Q) is also a polynomial-time Turing re-
duction from #H-Coloring to SRFreq(Z, Q). Recall that
[{s € CRS(Dg, %) | s(D) O}

ICRS(Dg, 2)| '
By construction of Dg, each candidate repair D € CORep(Dg, %)
can be obtained via |Vg|! different complete sequences of
CRS(Dg,). Therefore, srfreqz’Q(D(;, () is

|CORep(DGs 2, Q)|) |VG|' — |CORep(DG5 2, Q)|

|CORep(Dg, 2)| - V5! |ORep(Dg,)|

srfreqsz (Dg, () =

The latter expression is precisely rrfreqs, 5(Dg, (), as needed.

C.2 Proof of Item (2) of Theorem 6.1

We prove that, for a set 3 of primary keys, and a CQ Q, the problem
SRFreq(Z, Q) admits an FPRAS. As for item (2) of Theorem 5.1, the
proof consists of two steps: (1) existence of an efficient sampler,
and (2) provide a polynomial lower bound for srfreqs, o (D, €).

Step 1: Efficient Sampler. To establish that we can efficiently sample
elements of CRS(D, X)) uniformly at random, we first need to show
that the number of complete repairing sequences can be computed
in polynomial time in the case of primary keys.

LEmMA C.1. Consider a set X of primary keys. For every database
D, |CRS(D, 2)| can be computed in polynomial time in ||D||.

Proor. Consider a database D. As in the proof of Lemma 5.2,
let By, ..., B, be the blocks of D w.r.t. ¥ that contain at least two

facts. For a block B of size m > 2 and for 0 < i < L%J, we denote

by S,rlf’i the number of sequences s € CRS(B,) such that s(B) # 0
(hence, s(B) contains a single fact) and precisely i of the operations
of s are pair removals. In the case where m is an even number, we
cannot obtain a non-empty repair with 7! pair removals; hence, we

will have that S?: "2 = 0.In any other case, we have that:

neji _ m-—1 (2i)! . '
Sm = x[(0)Xzi-ilx(m_l_l)'
1 !
= mx— (m 1) (?l)'x(m—i—l)!
@2i-(m=2i—-1)! 2.4
B m!-(m—i-1)!
2001 (m—2i—1)!
where:

e m is the number of ways to select the single fact of s(B),
. (mz—ll) is the number of ways to select 2i facts out of the

remaining m — 1 facts (these are the facts removed in pairs),
(2i)!
® onn
e (m—i—1)!is the number of permutations of the m —i — 1
operations in the sequence (m — 2i — 1 singleton removals,

and i pair removals).

is the number of ways to split 2i facts into i pairs, and

Similarly, we denote by Sf,’,i the number of sequences s €
CRS(B, %) such that s(B) = 0 and s has precisely i pair removals. As
we cannot obtain an empty repair without pair removals, it holds
that S,e;;o = 0. For i > 1, the following holds:

sel = (m)x((m,_z)x—.(m_.z)! x (m—1i-1)!

2 20—2) 2i71.(i—-1)!

_ m! (m=2)!

T2t (m=2) T (2i—2)! - (m - 2i)!
(2i — 2)!)
—Zi‘l-(i—l)!x(m_l_l)!

_ m!-(m—i—1)!

20 (i=1)! - (m - 2i)!

where:

. (';) is the number of ways to select the last pair that will be
removed in the sequence,

. (’2’1’:5) is the number of ways to select 2(i — 1) facts out of the

remaining m — 2 facts (these are the facts removed in pairs),
. _(2i-2)
2071 (i-1)!
i — 1 pairs, and
e (m—i—1)!is the number of permutations of the m — i — 1
operations in the sequence excluding the last pair removal

(m — 2i singleton removals, and i — 1 pair removals).

is the number of ways to split 2(i — 1) facts into

Since there are no conflicts among facts from different blocks,
the repairing sequences for different blocks are independent (in
the sense that an operation over the facts of one block has no im-
pact on the justified operations over the facts of another block).
Hence, every complete repairing sequence s € CRS(D,) is ob-
tained by interleaving sequences for the individual blocks. We can
compute this number of sequences in polynomial time using dy-
namic programming. We denote by P;.C’i the number of sequences
s € CRS(By U --- U Bj, >) with precisely i pair removals such that
s(D) N B, # 0 for k of the blocks of By, ..., Bj (hence, 0 < k < j).

For k < 0 or k > j, we have P;.c’i = 0. Then, it holds that:

o 122

CRS(D,3) = Z Z phi.

k=0 i=0
Clearly, for every i € {O, el {@J } we have that:
0,1 _ e,i
Pl - SlBll
1,i _ ne,i
P = S|31 I
For j > 1, it holds that:
ki _ k,iq e,iy
L 2 [Pj—IXSIlex
OsilsllB—;‘J+w+{lBL2’”J
osive| 2]

i1+ip=i
(|B1 U~--UBj|—i1 — iy —k)!
+

(IByU---UBj_1| — i1 —k)! x (|Bj| — i2)!

k—1,i1 ne,ip
Pj_l XSIBjI X

(|B1 U'“Ule—il — iy —k)!
(|B1 U-~-UBj_1|—i1 —k+1)YX(|Bj|—i2—l)! ’

where the last expression is the number of ways to interleave a
sequence of CRS(By U - - - U Bj_1, %) that has i1 pair removals with
a sequence of CRS(Bj, %) that has iy pair removals. Note that if
for a block By, the sequence s has i pair removals over the facts
of By and it holds that s(D) N By # 0, then s contains |By| —i — 1
operations over the facts of By (as we keep one of its facts in the
repair). If s(D) N By = 0, then s contains |By| — i operations over the
facts of By. Hence, |[By U - - - U Bj| — iy — iz — k is the total number
of operations in the combined sequence, |[B; U --- U Bj_1| —i; — k
(or [By U---UBj_1| — i1 — k + 1) is the number of operations over
the facts of the first j — 1 blocks, and |B;| — iz (or |Bj| — iz — 1) is
the number of operations over the facts of the jth block. U

We give an example that illustrates the algorithm described in
the proof of Lemma C.1.

Example C.2. Consider again the database D depicted in Figure 2,
and the set ¥ = {R : A] — Ay} consisting of a single key. The
complete repairing sequences over the facts of the first block (that
consists of the facts fi 1, fi,2, f1,3) are:

-fir—f2 -fin—hA3 -~ fin,—{fi2 iz}
-f2-fA1 —Azn-fs - Ao —{fifis)
-fs-f1 —As-fe - As {0 fed
-{fivA2t —-{Avfizt —{fizfis}

There are no repairing sequences over the facts of the second block,
as it only contains a single fact f; 1. The complete repairing se-
quences over the facts of the third block (with facts f3 1, f32) are:

-B1 B2 —{Bufe)

Every complete repairing sequence over D is obtained by interleav-
ing the complete repairing sequences over the different blocks. For
example, the following is one possible complete repairing sequence:

—fi2—{A1 B2k —fil

and it has one pair removal.
In this case, we have that:

heo _ 31 (3-0-1)! _12_,

3 20.01-(3-2x0-1)! 2

5 = i s
- (3-2x1-1)! 2

s$0=0

el _ 31.(3-1-1)! _6_

3T 2l.(1=1!-(3-2x1)! 2

Indeed, there are 12 repairing sequences over the facts of the first

block that contains three facts—six of them have no pair removals,

three have a single pair removal and result in a non-empty repair,

and three have a single pair removal and result in an empty repair.
For the third block, that has two facts, it holds that:

neo _ 20-(2-0-1! 2
2 T 20,01 (2-2%x0-1)! 1
syl =0
5% =0

21-(2-1-1)! 1
Se,1: () -~ =1

2 o 2l.(a-1)-(2-2x1)! 2

Indeed, there are two sequences with no pair removals (that result
in non-empty repairs) and a single sequence with one pair removal
(that results in an empty repair).

Finally, we denote the block with three facts by By, and the block
with two facts by B2. We have that:

0,0 _ ce0 _ 1,0 _ cne0 _
PP=ss"=0 PP=51"=¢
0,1 _ cel _ 1,1 _ cne,1 _
PM=st=3 pprl=si®=3

Next,
(5= 0)!

PO,O — PO,O x Se,O —
(3-0)!Ix(2-0)!

p 1 2 =0x0x10=0

Indeed, if s has zero pair removals, then s(D) N By # 0 and s(D) N
Bj # 0; hence, Pg’k > 0 only for k = 2. Thus,

5-1)!
(G-0)x(2-1)

5-1)!
+P11’0 XS;’O X G-y
G-1)Ix(2-0)!

=0X0X4+6X0X6=0

1,0 _ 50,0 ne,0
Pym =P XS, X

And:
5-2)!
PZZ’O:P;’OXSSe’OX#:6><2><3:36
G-1)!x(2-1)
Similarly, we compute:

01 _ p00 o cel (5-1)!
P =P XS X —m ¥ — M
2 1 2T B3-0!x(2-1)

(5-1)!

2 B3-1)!x(2-0)!
=0X1X4+3X0X6=0

5-—2)!
Pyl = PPl x 590 x S Gl L
(3-2)!Ix(2-0)!
+P0,1 x SneO (5 - 2)!
1 2 B-1!'x((2-1)
5-2)!
+P}0 x 891 x _ G2t
3B-1DIx(2-1)!
(5-2)!

+PO,O x Sne,l X
1 2 (3-0)!x(2-2)!

=3X0X3+3X2X3+6X1X3+0X0X1=36

5—3)!
P2,1 — Pl,O % Sne,l % ()

2 1 2 B-1!'x(2-2)!
(5=13)!

TV A VL i A
1 2 (3-2)!x(2-1)!

=6X0X1+3X2x2=12

And, finally:
5-2)!
Pg,zng,lxsg,IX#:3x1x3:9
B-D!'x(2-1)
5-3)!
(3-2)!x(2-1)!
(5-13)!

0,1 ne,1
+P" XS —-—————
1 2 B-1!x(2-2)

=3X1X2+3X0X1=6

(5 - 4)!

P2,2 — Pl,l % Sne,l %
2 1 2 (3-2)!'x(2-2)!

=3X0Xx1=0
We conclude that:
CRS(D,%)=0+0+36+0+36+12+9+6+0=99

That is, there are 99 complete repairing sequences of D w.r.t. . m

Having Lemma C.1 in place, we can establish the existence of an
efficient sampler. The formal statement, already given in the main
body of the paper, and its proof follow:

Input: A database D and a set X of primary keys over a
schema S.
Output: s € CRS(D, 2) with probability m.

1 return Sample(D, 3, ¢)

2 Function Sample(D, 3, s):

3 if s(D) [X then

4 ‘ return s;

5 else

6 Select a (s(D), X)-justified operation op with
probability —lc‘l?égfs(zg’;’)z)ﬁ)\

7 return Sample(D, X, s - op)

Algorithm 1: An algorithm SampleSeq for sampling ele-
ments of CRS(D, %) uniformly at random.

LEMMA 6.2. For a database D, and a set ¥ of primary keys, we can
sample elements of CRS(D,) uniformly at random in polynomial
time in ||D||.

Proor. The algorithm SampleSeq, depicted in Algorithm 1, is
a recursive algorithm that returns a sequence s € CRS(D,) with
probability m. The algorithm starts with the empty se-
quence ¢, and, at each step, extends the sequence by selecting one
of the justified operations at that point. That is, if the current se-
quence is s, then we select one of the (s(D), X)-justified operations.
The probability of selecting an operation op is:

ICRS(op(s(D)), 2)|
ICRS(s(D),2)|

Hence, the probability of returning a sequence s = op;, ..., op,, of
CRS(D,) is:

|CRS(op; (D), Z)| _ ICRS(op,(0p;(D)), Z)]

ICRS(e(D), 2)| ICRS(0p; (D), %)
ICRS(0p,(...D...),3)]
ICRS(0p,_1(...D...),3)|

_|CRS(0p,(...D...),3)| _ 1

- |CRS(e(D), 3)| " |CRS(D,3)|

Most of the terms in the product cancel each other, and
[CRS(0p,,(...D...),Z)| =|CRS(s(D),2)| =1

since s(D) [X; hence, there is a single complete repairing sequence
for s(D) w.r.t. —the empty sequence.

Since the length of a sequence is bounded by |D| — 1, the number
of justified operations at each step is polynomial in ||D|| (as this is
the number of facts involved in violations of the constraints plus
the number of conflicting pairs of facts), and, by Lemma C.1, for a
set X of primary keys, we can compute |CRS(D,)| in polynomial
time in ||D|| for any database D, we get that the total running time
of the algorithm is also polynomial in ||D||, as needed. O

Step 2: Polynomial Lower Bound. Now that we have an efficient
sampler for the complete repairing sequences, we show that there is
apolynomial lower bound on srfreqs, (D, ¢). The formal statement,
already given in the main body of the paper, and its proof follow:

LEmMMA 6.3. Consider a set 3. of primary keys, and a CQ Q(x). For
every database D, and tuple ¢ € dom(D)lil,
1

srfreqz,Q(D,E) > W

whenever srfreqs, (D,¢) > 0.

ProorF. The proof is very similar to the proof of Lemma 5.3, ex-
cept that here we reason about sequences rather than repairs. Recall
that we treat a query Q as the set {R;(7;) | i € [n]} of atoms on the
right-hand side of :-, and, for a database D and a homomorphism
h from Q to D, we denote by h(Q) the set {R;(h(7;)) | i € [n]}.
Here, we denote by SI%,Z,h(Q) the set of sequences s € CRS(D, X)
such that s(D) N Bj = 0 for at least one block of {Bj,...,Bmn}
(recall that these are the blocks that contains the facts of h(Q)),
and by SB?E,h(Q) the set of sequences s € CRS(D,) such that
s(D) N Bj # 0 for every block of {By,...,Bn}.

Now, for every sequence s € SE,Z, h(0)’ and for every block B;
such that s(D) N B; = 0, the last operation of s over the facts
of Bj must remove a pair {f, g} of facts. We map each sequence

s € SeD,Z,h (o) to a sequence s’ € S?)?E,h) by replacing the last
operation of s over each such Bj € {By,..., By} with an operation

that removes only one of the facts of the pair—either f or g. Hence,
if s(D) N B; = 0 for precisely ¢ of the blocks of {By, ..., Bn}, the
sequence s is mapped to 2¢ distinct sequences of S"°

D.2h(Q)"
Similarly to the proof of Lemma 5.3, for every sequence s’ €
SB‘?Z’ h(0)’ there are 2 — 1 sequences s € SBZ’h) that are mapped

to it. This is because the sequence s’ determines all the opera-
tions over the blocks outside {Bj,...,Bn}, and for each block
Bj € {Bi,...,Bn}, it determines all the operations over B; ex-
cept for the last one. If s"(D) N B;j = {f} and the last operation of
s” over Bj removes the fact g, then the last operation of s over B;
either also removes g or removes the pair {f, g}. If the last operation
of s’ over B ; removes a pair {g, h} of facts, then the last operation of
s over B; must also remove the same pair of facts. Hence, there are
at most two possible cases for each block of {Bj,..., By} and 2™
possibilities in total. And, again, we have to disregard the possibility
that is equivalent to s’ itself.
Therefore, we have that:

m_1)x

62000 < (2 S5

and

|[CRS(D,2)| =

SD.xh(0) ‘ + |SE{2,h(Q)‘

ne
SD

<@"-1x ,E,h(Q)‘ * |55€,2»h<9>‘

=2Mx

S¥zao)|-

e
D,3.h(Q)
where ¢ is the number of blocks in

As said above, each sequence s of S can be mapped to 2¢

soti ne
distinct sequences of S D3h(0)°

{B1,...,Bm} for which E N Bj = (. Moreover, there are sequences

s’ e SBP:Z,h(Q) such that no sequence s € SE),Z,h(Q) is mapped to s’.

These are the sequences s’ where the last operation of s’ over every
block of {By, ..., Bm} is a pair removal (but s’ keeps some fact of
each Bj). Hence, (2™ — 1) x |S?)e2 h(Q)| is only an upper bound on

1SH 55) |. Since all the facts of a single block are symmetric,
— l ne
|{S € CRS(D, 3) | h(Q) - S(D)}| = m X SD,Z,h(Q)|

and, we conclude that

1 ne
B XIBn] X ‘SD,z,h(@)

|[CRS(D, 3)|
2" X|SES h(Q)
1

" Bi[X - X |Bm| x 27
1
Z R
|D|™ x 2m
1 1
> >
(2/p)I1 = (2/|p|pliell

l{s € CRS(D, %) | h(Q) € s(D)}|

Since all the sequences of {s € CRS(D, %) | h(Q) C s(D)} are such
that h(Q) C s(D) and so ¢ € s(D), this concludes our proof. [J

We give an example that illustrates the argument given in the
proof of Lemma 6.3.

Example C.3. Consider the database D, the set ¥ of keys, the
query Q, and the homomorphism A from Example B.3. Recall that
h(Q) = {R(ay, b1)}. The set SB S h(0) contains, for example,

—fi2. =1 —{f1. fi3}

as the resulting database s(D) contains no fact from the block
of R(ay, b1). According to the mapping defined in the proof of
Lemma 6.3, this sequence is mapped to the following two sequences:

-fi2. =B -fi1
—fi2,—f1.—fi3

that replace the last pair removal over the block of R(ay, b1) with a
singleton removal. In this case, we have that

l{s € CRS(D,3) | h(Q) C s(D)}| = 24.

These are all the sequences obtained by interleaving the following
operations over the facts of the first block (that do not remove fi 1),
with any of the three operations over the facts of the third block:

-fiz—fi3 —fis—fiz —{fi2fi3}
Moreover, as we have seen in Example C.2, we have that
|[CRS(D,X)| =99

Indeed, it holds that
1 1

> S
12 (2|p))1@l

\olm
O | =

as claimed. [

D PROOFS OF SECTION 7

In this section, we prove the main result of Section 7, which we
recall here for the sake of readability:

THEOREM 7.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My°, Q) is §P-hard.

(2) For aset X of keys, and a CQ Q, OCQA(Z, My°, Q) admits an
FPRAS.

D.1 Proof of Item (1) of Theorem 7.1

As we did for item (1) of Theorem 6.1, we reuse the construction
underlying the proof of item (1) of Theorem 5.1. In particular, as-
suming that ¥ and Q are the singleton set of primary keys and
the Boolean CQ, respectively, for which RRFreq(Z, Q) is §{P-hard
(2 and Q are extracted from the proof of item (1) of Theorem 5.1),
we show that OCQA(3, My°, Q) is #P-hard via a polynomial-time
Turing reduction from $H-Coloring by reusing the construction
in the proof of item (1) of Theorem 5.1; H is the same undirected
graph employed in that proof. Assuming that, for an undirected
graph G, Dg is the database that the construction in the proof of
item (1) of Theorem 5.1 builds, we show that

rrfreqs o(Dg. () = Pme 0(Dg. (),

which implies that the polynomial-time Turing reduction from
#H-Coloring to RRFreq(Z, Q) is also a polynomial-time Turing re-
duction from #{H-Coloring to OCQA(Z, M3°, Q).

In the proof of item (1) of Theorem 6.1, we have shown that
rrfrqu,Q(DG, 0) = srfreqy, (Dg, (). Thus, it suffices to show

srfrqu’Q (Dg, () = PM§°,Q (Dg. ().

Let My°(Dg) = (V,E,P). Note that each node u of G induces a
violation {V(u,0),V(u, 1)} in D¢ that can be resolved using one of
the following three operations: remove the first, the second, or both
facts. Hence, every complete sequence in CRS(Dg, %) is of length
precisely | V|, and for every non-leaf node s € V, |Ops,(Dg, 2)| =
3 (V| — |s]). Hence, by Definition A.5, for each (s,s”) € E,

1 ~ 1
|0pss(Dg,2)| 3+ (IVal = Is)’
We conclude that, with 7 being the leaf distribution of Mgo, for
each s = opy,...,0p, € CRS(Dg, 2),

P(s,s’) =

1
3lVel . vg
Since each sequence s € CRS(Dg, X) is assigned the same non-zero

probability, 7 is the uniform distribution over CRS(Dg, X). The
latter implies that srfrqu’Q(DG, 0) = PM§°,Q (Dg, (), as needed.

n(s) = P(s0,51) -+ P(sp-1,8n) =

D.2 Proof of Item (2) of Theorem 7.1

We prove that, for a set T of keys, and a CQ Q, OCQA(Z, M;O, Q)
admits an FPRAS. As for item (2) of Theorems 5.1 and 6.1, the proof
consists of the usual two steps: (1) existence of an efficient sampler,
and (2) provide a polynomial lower bound for Py o (D, ¢).

Step 1: Efficient Sampler. Given a database D, the definition of My°
immediately implies the existence of an efficient sampler that re-
turns a sequence s € RL(Z, M;!°(D)) with probability 7(s), where
7 is the leaf distribution of My° (D). The algorithm is very similar to

Algorithm 1, except that if the current sequence is s, the probability
to select a (s(D), X)-justified operation is
1
|Ops (D, 2)|
Hence, we immediately obtain the following result, already given
in the main body of the paper:

LEMMA 7.2. Given a database D, and a set X of keys, we can sample
elements of RL(M3°(D)) according to the leaf distribution of My® (D)
in polynomial time in ||D||.

Step 2: Polynomial Lower Bound. The rest of the section is devoted
to showing that there is a polynomial lower bound on P Mg",Q(D’ C).

ProPOSITION 7.3. Consider a set X of keys, and a CQ Q(x). There is
a polynomial pol such that, for every database D, and ¢ € dom(D) Ixl,

P (D,¢) = 1
uo , C z
M"Q pol(|IDI))

whenever PMgo,Q(D, ¢) > 0.

As usual, we treat the CQ Q as the set {R;(¢;) | i € [n]} of atoms
occurring on the right-hand side of :-. Moreover, for a database D
and a homomorphism h from Q to D, we write h(Q) for the set
{Ri(h(g;)) | i € [n]}. Clearly, if there is no homomorphism h from
Qto D with h(Q) | ¥ and h(x) = ¢, then PMg",Q(D, ¢) = 0. Assume
now that such a homomorphism h exists. We first prove the claim
for the case where |h(Q)| = 1, and then generalize it to the case
where |h(Q)| = m for some m € [|Q]].

The Case |h(Q)| =1
Let f be the single fact of h(Q), and

Pp mge (D).
D’ €ORep(D,M%) and h(Q) D’

Pomw,o(h) =

Note that since h(x) = ¢, it holds that
Pumw o(D,€) 2 Pp o o(h).

Hence, it suffices to show that there is a polynomial pol such that
1

PD,MSO’Q(h) S IUTIDE Let Sy and S_ ¢ be the sets of sequences

of RL(My°(D)) that keep f and remove f, respectively, i.e.,

Spo= {se RL(My°(D)) | f € s(D)}

S.p = {seRL(MZ°(D)) | f &s(D)}.
With 7 being the leaf distribution of M3°(D),
Af
P uo h =
Dm0 (h) ArrAly

where

Af = Z (s) and Asp = Z 7(s).
SESf SEij
. 1
Therefore, to get the desired lower bound SoI(IDT) for Pp, M0 (h),

it suffices to show that there exists a polynomial pol” such that
Aop < pol’(||D]]) - Ay.Indeed, in this case we can conclude that

Ag

P uo h _—
Dme,0(h) ArrAy

Ar
Ag +pol’(IIDI]) - Ap
1
1+ pol’(|IDI])’
and the claim follows with pol(||D||) = 1 + pol’(||D]|).
We proceed to show that a polynomial pol” such that A_ ¢ <
pol’(||D|])-A r exists. To this end, we establish an involved technical

lemma that relates the sequences of S_ ¢ with the sequences of Sg;
as usual, we write 7 for the leaf distribution of M°(D):

LemMA D.1. There exists a function F : S_p — Sy such that:

(1) There exists a polynomial pol”’ such that, for everys € S_,

7(s) < pol”([ID]]) - =(F(s)).
(2) Foreverys’ € Sg, [{s € So¢ | F(s) =s"}| < 2-||D|| - 1.

Proor. The bulk of the proof is devoted to showing item (1),
whereas item (2) is shown via a simple combinatorial argument.

Item (1). Let s € RL(M3°(D)) be a repairing sequence that removes
f.ie,s € S.r. We transform s into a repairing sequence s’ €
RL(M°(D)) that does not remove f, ie. s’ € S¢, by deleting
or replacing the operation that removes f, and adding additional
operations at the end of the sequence as follows. Assume that

S =0py, 0Py, »0Pi—1, OPjs 0Pty -+ 0Py

where op; = —f. Then, we define the sequence
’ ’ ’

S =0p;, 0py, »0Pi—1> OPiy1> »0Pps 0Py, --- 5 OP
where opi, o opz, are new operations that we will describe later.
If op; is of the form —{f, g}, then

7

S =0p1, 0Py, L OPi_1s OPj, OPiy1s -+ »OPp,

opy, ... 0p;

where op] is the operation —g, i.e., it removes only the fact g.

An important observation here is that since the sequence s re-
moves f, the repair s(D) might contain facts that conflict with f,
but at most k such facts, where k is the number of keys in ¥ over the
relation name of f. This is a property of keys. Indeed, if s(D) con-
tains k + 1 facts that conflict with f, then it contains two facts g1, g2
that violate the same key with f, in which case g1, g2 also jointly
violate this key and cannot appear in the same repair. Therefore, at
the end of the sequence s” we add ¢ new operations (for some ¢ < k)
that remove the facts of s(D) that conflict with f, in some arbitrary
order. Note that the sequence s’ is a valid repairing sequence, as an
additional fact (the fact f) cannot invalidate a justified repairing
operation, and we can remove the ¢ conflicting facts at the end in
any order, as they are all in conflict with f. Here is a simple example
illustrating the construction of s’

Example D.2. Consider again the database D depicted in Figure 2,
and the set ¥ = {R: A; — Az, R : Ay — A} of keys. Consider
also the query Q and homomorphism h from Example B.3. Recall
that h(Q) = {R(ai, b1)}. The following sequence is a sequence that
removes the fact R(aq, b1):

s1=—fiz—fi1,—fi1
Note that s(D) contains the facts f1 3 and f; 1 that conflict with fj 1.
This sequence is mapped to the following sequence s’:

s1=—fiz—f1—fiz—f1

where we delete the operation —fj 1 that removes the fact of h(Q),
and add, at the end of the sequence, the operations —fj 3 and —f2 1
that remove the facts of s(D) that conflict with fj ;.

As another example, the sequence:

s2 = —f31,—{fi,1. fi2}

is mapped to the sequence:

sy =—f31,—fi2 —f21. —fi3-

Here, the pair removal —{fi 1, fi,2} is replaced by the singleton
removal —fi 2, and, at the end of the sequence, we again add two
additional operations that remove (in some arbitrary order) the
facts fi,3 and f; 1 that conflict with fj ;. u

Now, according to the definition of M3°, we have that

1
e X P X JE—
N N Ni-1 Ni Niu Np

where Nj is the total number of (D;_l, ¥)-justified repairing opera-
tions before applying the operation op; of the sequence (recall that
D;l is the database obtained from D by applying the first j — 1
operations of s). Hence,

1
P((opy,- .., opj_l), (0pys-- s opj)) = —

Nj.
Then,
.1 1 1 1 1 1
() =— X — X X —— X |—| X —— X X —X
N N Ni-1 |[Ni| N/, Ny

1 1 1
X X =.
20+1 2(¢-1)+1 3

The probability P((opy, . . ., opj_l), (opy, - .-, opj)), for2 <j<i-1,
is not affected by the decision to remove or keep f at the ith step.
The probability P((op;, .. ., opj_l), (opq, - .-, opj)) fori+2<j<n,
on the other hand, might decrease in the sequence s’ compared
to the sequence s, because the additional fact f (that is removed
by s but not by s’) might be involved in violations with the
remaining facts of the database and introduce additional justi-
fied operations, in which case N; < N J’ . Similarly, the probabil-
ity P((opy,...,0p;_1), (0py, ..., 0p;_q,0p;1)) (in the case where
op; = —f) or P((opl,..,,op;‘), (opl,,..,op;‘, 0p;,1)) (in the case
where op; = —{f, g}) can only decrease compared to the probabil-
ity P((opy, ..., 0p;), (0py, ..., 0p; 0p;.q)) in s; hence, Nitq < Ni,+1'

The term Nl, denotes the probability of op]', and it only appears
in the expression if the sequence s removes the fact f jointly with
some other fact g (and the operation op’ removes g by itself). Since
all the (Df,_l, 3)-justified operations have the same probability to
be selected, the probabilities P((opy, ..., 0p;_1), (opy, ..., 0p;)) and
P((opq,--.,0p;_1), (0pq,.. -, op;‘) are the same. Finally, at the end
of the sequence, the only remaining conflicts are those involving
f. As said above, there are ¢ facts that conflict with f for some
¢ < k at that point, and each one of them violates a different key
with f. Hence, there are 2¢ + 1 justified operations before applying
op/ (removing one of the ¢ conflicting facts, removing one of these
facts jointly with f, or removing f), there are 2(¢ — 1) + 1 possible
operations before applying op; and so on.

Example D.3. We continue with Example D.2. For the sequence
s1, we have that

n(s1) = P(e, (f1.2)) X P((=f12), (= fr.2, = f1.1))
1 1

XP((~fia i), (~fin=fit =) = 15 % 16 % 5

This holds since, at first, all six facts are involved in violations of the
keys, and there are eight conflicting pairs; hence, the total number
of justified operations is 14. After removing the fact fj 2, the number
of justified operations reduces to 10, and after removing the fact

fi.1, this number is 5. Now, for the sequence s7,

n(sy) = P(e, (=fi2)) X P((-fi2), (=fiz. = f3,1))
X P((=fi2,=f5.1), (- fiz: =1, = f1.3))
XP((=fr2, =f5.1, = f13): (=fi2. =31, = fi3. = fa1))
1 1 1 1
= — X — _ —.
14 10 5 3
Indeed, the probability of applying —fi 2 (i-e., P(e, (—fi,2))) is the
same for both sequences (1—14), while the probability of applying the
operation —f3 1 in 57 (i.e., P((=f1,2), (=f1,2, —3.1))) is smaller than
the prObablhty (P((_ﬁ,Za _ﬁ,1)3 (_ﬁ,23 _ﬁ,la _fé,l))) Of applylng
this operation in s;: 1—10 compared to % Finally, there are ¢ = 2 facts

in s(D) that conflict with fj ; and we have that
1
2x2+1 5

P((—frz,=f31): (“frz, =1, =fi3)) =

P((-fiz. =31, =fi3), (= fr2. =1, = fi3. — 1)
1 1
To2x(-n+1 3

As for the sequence sy, it holds that

1 1
n(s2) =P(e. (=f5.0) x P((=f0). (= fa1. ~{fir. fiah)) = 7, X 45
while for the sequence s, it holds that

m(sy) =P(e, (=f5,)) X P((=f3.1), (= f,1. = fi.2))
X P((=f3,1. = fr2), (=31, — fr2. — fa1)
XP((=f1, = fr2 = f21): (=1, = fr.2 = fo1. = f1.3))
1 1 1 1
= — X — X - X —.
14 10 5 3
Again, the probability of applying the operation —f3 1 is the same
in sp and s;. The probability of applying —{fi,1, fi,2} in sz is the
same as the probability of applying the operation —f; 2 in sJ, and
the probability of the two additional operations is again % X % =

For every j € {i+ 1,...,n}, we denote by r; the difference
between N; and Njf (that is, Njf = Nj +rj). Hence, it holds that

1 1
— X oo X — X (Njy1 +7i31) X -+ - X
N; Nit1 N, (i+1 1+1)

X(Np+rp) X (20+1)x---%X3

m(s) = n(s’) x X

< (s’ x

1
X+ X —— X (Nig1 +1ig1) X - X
i+1 Nn

X(Np+rp) X (20+1)x---X3

Note that here, the term N% only appears if the original sequence s
removes f alone, in which case the term NL does not appear in the
expression for 7(s”). We will show that

1 1
Noot X"'XN—nX(Ni+1+ri+1)><"'><(Nn+rn)

x (26 +1) x---x3 < pol”(||D||)
for some polynomial pol”’, or, equivalently,
(Nig1 +rig1) X« X (Np+rp) X (26+1) X -+ X3
< pol”(|ID|]) X Nis1 X -+ - X Np.
Note that since £ < k, and k is a constant (since we are interested in

data complexity), (2¢ + 1) X - - - X 3 is bounded by a constant. From
this point, we denote this value by c¢. Thus, we prove that

(Nist +7ie1) X+ X (Np +14) X ¢ < pol”([ID]]) X Ni1 X+ -+ X Np.

To show the above, we need to reason about the values r;. For
jed{i+1,...,n} let N]f be the number of facts in the database
that conflict with f after applying all the operations of s” that occur
before op s and before applying the operation op ;. Moreover, for
every p € {1,...,k}, let n‘;’ be the number of facts in the database
that violate the pth key jointly with f at that point. Note that

n} +o 4 n‘? > N]f , as the same fact might violate several distinct

keys jointly with f. If n‘;.) > 2, then every fact that violates the pth
key jointly with f participates in a violation of the constraints even
if f is not present in the database (as all the facts that violate the
same key with f also violate this key among themselves). Hence,
for each one of these né’ facts, the operation that removes this fact is
a justified repairing operation regardless of the presence or absence
of f in the database, and it is counted as one of the N; operations
that can be applied at that point in the sequence s. The addition of
f then adds n‘;’ new justified operations (the removal of a pair of

facts that includes f and one of the n‘;’ conflicting facts).

On the other hand, if n? = 1, then the single fact that violates
the pth key jointly with f at that point might not participate in
any violation once we remove f. In this case, the presence of f
implies two additional justified operations in s’ compared to s—the
removal of this fact by itself and a pair removal that includes f and
this fact. If n‘f = 0, then clearly the pth key has no impact on the
number of justified repairing operations w.r.t. f at that point. Now,
assume, without loss of generality, that for some 1 < p; < ps <k,
it holds that nf > 2forall p < pq, nf =1forall p; < p < pz, and

nf = 0 for all p > py. It then holds that
rj SNJI.[+(p2—p1)+l

(N{ operations remove f jointly with one of its conflicting facts,
at most pp — p1 operations remove a fact that violates the pth key
with f if i’ = 1, and one operation removes f itself.) Moreover,

b=
n}(n} - 1) nfl(nfl-n
szn}-+"'+n$71+T --~+T

N2 o (P2l P
_(”j)+ +(”j)+”j+ +n;

a 2

Because, as already said, for every p with n‘;) > 2, the n? operations

that remove the facts that violate the pth key with f are also justified

PP
n.(nj 1)

operations at the jth step in s, and there are ~~—— additional

justified operations that remove a pair from these n‘? facts, as each
such pair of facts jointly violates the pth key.

Example D.4. We continue with Example D.3. Let

s3=—f31,—fi,1,—fi,2

Before applying the operation —fj 2 of s3, there are five justified
operations:

~-fiz —f3 —fH2 —{fzfs} —{fi2f2}

At this point, the database contains three facts that conflict with f; ;.

The facts fi 2 and fi 3 jointly violate with it the key R : A; — Ay,
while the fact f5 1 jointly violates with it the key R : Ay — Aj.

Observe that the operations —fi 2, —f1,3, —{fi,2, f,3} are justified
operations at this point, even though the fact f 1 no longer appears
in the database, because fj 2 conflict with fi 3. If we bring fj 1 back,
we will have two additional justified operations that involve these
fact (one for each fact): —{fi1, fi2} and —{fi,1, fi3}-

Contrarily, the fact f51 is not involved in any violation of the
constraints at this point (before applying the operation —fj 2 of s3);
hence, removing this fact is not a justified operation. However, if
we bring fi,1 back, we will have two additional justified operations
that involve this fact: —f5 1 and —{fi,1, f2,1}.

Finally, the fact fi 1 introduces another justified operation—the
removal of this fact by itself (—f,1). Hence, in the sequence s; that
s3 is mapped to

sy =—f1—fi2 —fo1,—fi3

The number of justified operations before applying the operation
—fi,2 is ten, while the number of justified operations before applying
this operation in s3 is five. That is,

P((-f3,1.—f1.1): (=31, = fi1, = fi2)) = %
and
11
5+5 10

P((=f31), (=f5.1,-f12)) =

According to the Cauchy-Schwarz inequality for n-dimensional
euclidean spaces, it holds that

S (5754

i=1 i=1

where v > 1 is an integer, and x;,y; for i € [v] are real numbers.
By defining y; = 1 for every i € [v], we then obtain that

(x1+»-~+xv)2va(xf+~~+xg).

Hence, we have that

N2 o (P2l P
(”j)"' +(”j)+”j+ +n;

j =
J 2
(n}.+m+n‘.’1)2
J 1 P1
2 —J 4ply.ond
P1 n] n]
2

\

1, ... ,P1N2 1, ... 4.0
(”j+ +nj)+p1><(nj+ +”j)

2p1
N = (2 =)+ pr X INS = (o2 = p)]
> 2
Note that NJ].C — (p2 — p1) is a lower bound on n} +ot n‘?l because
for every py < p, there are no facts that violate the pth key with f,

and for p; < p < py, there is a single fact that violates the pth key
with f7 hence, n?ﬁl ot n‘;.)z < p2 —p1 and n?”l oot n§ =0.

As aforementioned, n}. +ooeet n’; > Njf . Therefore,
n}+~-~+n‘;1 2N]J.F—(n?1+1+-~-+n§.’2)—(n§2+1+-~-+n§)
2 N]f = (p2=p1)-
We conclude that
rj sNJf+(p2—p1)+l
and
(N] = (p2 = p1))? + p1 X IN] = (p2 = p1)]

J 2p1

Hence, it holds that

(rj =2(pz = p1) = D* +p1 X [rj = 2(p2 = p1) — 1]
Nj = ’
2p1
Ifr; > 2(p2 — p1) + 1, then py X [rj — 2(p2 — p1) — 1] = 0 and
(rj—2(p2 — p1) - 1)?
2p1

Nj =

and

rj < A2p1Nj +2(p2 —p1) +1 < 1/21<Nj +2k+k
< (J4k2Nj + 3k+/N; = 5k4/N;.

If rj < 2(p2 — p1) + 1, then r; < 2k +k < 5k+/Nj. Thus, in both

cases, we have that r; < 5k+/Nj.
Recall that our goal is to show that

(Nis1 +ris1) X - X (Np + 1) X ¢ < pol” (ID]) X Niy1 X -+ - X Np.
We have that

(Nig1+7i41)X - X(Np+rn) < (Nig1+5ky/Nig1)X- - -X(Np+5k+/Np).
Thus, it suffices to show that

(VNj1+5k) X+ X (y/Np+5k) xc < pol” (||D||) X/ Nit1 X - -X+/Np.

For brevity, let x; = +/Nj. Moreover, we can clearly define
pol” (]|D]]) as ¢ X pol””’(||D]|) for some polynomial pol’”’, and get
rid of the constant c. Therefore, we now show that

(Xis1 +5k) X -+ X (xn + 5k) < pol”’(||D]) X xj41 X -+ X X

Ill/

for some polynomial pol””’, or, equivalently,

Xi+1 + 5k xn + 5k
P2 o x FE22 < pol (|

Xi+1
Note that in the sequence s, there are n — j + 1 operations after
the operation op; (including the operation op;). Since the number
of justified operations can only decrease after applying a certain
operation, this means that N; > n — j + 1. Hence, we have that

Niy1 = n—i, Nizg > n—i—1, and so on, which implies that x;41 >
\/m, Xit2 = \/m etc. Now, an expression of the form xJ;C—Sk
increases when the value of x decreases (because % =1+ %);
hence, we have that
Cx Xn + 5k
Xi+1 Xn
- Vn—1i+5k y Vn—i-1+5k ooy LK
© Vn-i Vn—i-1 1
. | Vn—i] +5k y |[Vn—i-1]+5k o 1+ 5k
S TVeo] e 1

Next, for every m > 1 it holds that

Vm-1>+Vm-1

Xit+1 + 5k
— X

and thus,
[Vm=1] 2 [vm] -1
We then obtain the following:
[\/;J + 5k o LMJ + 5k o x 1+ 5k
| Vn—1] |Vn—i-1] 1
[\/ﬁj+5k [\/ﬁj—l+5k 1+ 5k
< X XX
| Vn—i |[Vn=i| -1 1
_ (Wn—i]+skr ([«/ﬁj +5k)
(|[Vn=1i])! x (5k)! 5k

_ (el +5k) e +50\
< 5k < 5k

<

A

< (sik)Sk x (VID] + 5k)*

(Observe that the maximal length n of a sequence is |[D| — 1.) The
claim follows with
e\ 5k
pol”’(IDI) = () x (VIID + 5)°*.

Recall that ¢ = (2¢ + 1) X - - - X 3, where £ is the number of facts
that conflict with f and are not removed by the sequence s; hence,
¢ < k. Therefore, for every sequence s that removes f, there is some
sequence s’ that does not remove f such that

m(s) < (2k+1)!' x pol”’(||D]]) X 7(s"),
and item (1) of Lemma D.1 follows with

pol”(IDIl) = (2k +1)! x pol”’(|IDI]).

Item (2). We now show that the function F from sequences that
remove f to sequences that do not remove f, maps at most 2|D| — 1
sequences of the first type to the same sequence of the second type.
Given a sequence s’ € S £, We can obtain this sequence either from
a sequence s € RL(M3°(D)) that has one additional operation that
removes f, or from a sequence s that removes f jointly with some
other fact g, while s’ removes the fact g by itself. (Some of the
operations at the end of s’ might not appear in s, as they remove
facts that conflict only with f.) Since the length of the sequence
s’ is at most |D| — 1, there are at most |D| possible ways to insert
an additional operation that removes f, and |D| — 1 ways to add
f to an existing operation. Hence, there are at most |D| + |D| — 1

sequences that remove f that are mapped to the sequence s’. Here
is an example that illustrates the above combinatorial argument.

Example D.5. We continue with Example D.4. Consider again
the sequence s;. Recall that

sy =—f31,—fi2 1, —fi3

This sequence can be obtained from any of the following sequences
that have an additional operation that removes fi 1:

-fiL-B1-f2
A=Az
-1, —fi,2: —fi1

Note that the operations —f31, —f1,3 do not appear in these se-
quences, as after removing fi; they are no longer involved in
violations of the constraints.

The sequence s; can also be obtained from the following se-
quences that replace an operation of s that removes a single fact
with an operation that removes a pair of conflicting facts:

AL Bk —fiz
~f5.1,—{fi1, fi2} "

This completes the proof of Lemma D.1. UJ

Having Lemma D.1 in place, it is now easy to establish the ex-
istence of the polynomial pol” such that Az < pol’(|[DI]) - Af.
Indeed, with F and pol”” being the function and the polynomial,
respectively, provided by Lemma D.1,

Ap= D al) <) pol”(IIDID) - w(F(s))

SES_.f SES_.f

pol”(IIDII) - (2- |IDI = 1) - Y x(s)

seSy
pol”(IIDI) - (2 [IDI| = 1) - A,
and the claim follows with pol’(||D|]) = pol” (|IDI]) - (2 - [|D|| - 1).
The Case |h(Q)| > 1

We now generalize the proof given above for the case |[h(Q)| =1
to the case |h(Q)| = m for some 1 < m < |Q|. As in the case
where |h(Q)| = 1, we map sequences that remove at least one of the
facts of h(Q) to sequences that keep all these facts, by deleting or
replacing every operation that removes a fact of h(Q) and adding
a constant number of operations at the end of the sequence that
remove all the facts that conflict with some fact of h(Q).

More formally, let s € RL(M3°(D)) be a repairing sequence that
removes r of the facts of h(Q) (for some 1 < r < m):

IA

S=0P1 eee SOPi, e SOPj, e SOP; L .., 0Py
where the operations op; , ..., op; remove these r facts. Note that
there are no conflicts among the facts of h(Q); hence, it cannot
be the case that a single operation removes two of these facts. We
transform s into a sequence s’ € RL(M3°(D)) where each operation
op;,; that removes a single fact is deleted, and every operation op;;
that removes a pair {f, g} of facts where f € h(Q) and g ¢ h(Q), is
replaced by the operation o;; that removes only the fact g. At the end
of the sequence s’, we add operations op{, el op;, that remove the
facts that are in conflict with one of the facts of h(Q) that appears in

s(D). As we have explained before, for each such fact, the sequence
s keeps at most k conflicting facts, where k is the maximal number
of keys in ¥ over the same relation R; hence, the total number of
conflicting facts that s does not remove is bounded by mx k, and this
is a bound on the number ¢ of additional operations (that remove
these conflicting facts one by one in some arbitrary order). As in
the case where h(Q) = 1, the probability of applying the additional
¢ operations at the end of the sequence is some constant that we
denote by % We provide below more details about this constant.

The probability P((opy, ..., opjfl), (opys - - -, opj)), for2<j<
i1 — 1, is not affected by the decision to remove or keep a certain
fact at the i th step. However, for j > iy, the probability of applying
the operation op; might decrease in the sequence s’ compared
to the sequence s, because the additional facts of h(Q) (that are
removed by s but not by s”) might be involved in violations with the
remaining facts of the database and introduce additional justified
repairing operations at each step. As we have already shown, if
the number of (D;_l, 3)-justified operations before applying the
operation op; of s is Nj, then the addition of a fact can increase this
number by at most Sk\/ﬁj . Hence, the addition of at most m facts
(the facts of h(Q)) can increase this number by at most Skm\/ﬁj .
We again denote by r; the factor by which the number of operations
increases, and we have that r; < Skm\/l_fj.

Now, all the arguments for the case where |h(Q)| = 1 apply also
in this case, with the only difference being the value of r;. Therefore,
we conclude that

7(s) < pol”(||D]) x 7 (s")
with

’ e 5km
pol”(IIDI) = ex (=)™ x (VIIDII + skm**™,

Recall that % is the probability of applying the additional operations
at the end of the sequence, and r is the number of facts of A(Q)
that are removed by the sequence s. We would like to provide
a lower bound on this probability (hence, an upper bound on c).
Clearly, the lowest probability is obtained when the number of
additional operations is the highest (as for each additional operation
we need to multiply the probability by a number lower than one)
and when the probability of each individual operation is the lowest.
As mentioned above, for each one of the r facts of h(Q) that are
removed by s, there are at most k facts that conflict with it and are
not removed by s. Hence, r X k is an upper bound on the number
of additional operations. Moreover, the lowest probability of each
operation is obtained when the number of justified operations at
the point of applying it is the highest. When there are ¢ facts in a
database D’ that are involved in violations of the constraints, an
upper bound on the number of (D’, ¥)-justified operations (that is
obtained when every fact is in conflict with every other fact) is

(-1 _ e _ e+ | (£ +1)2

o+ < < (£+1)2
2 2 2 2
Therefore, we have that
1 1 1 1 1
- > X X X oo X —
¢ (rk+r+1)2 (rk+r)2 " (rk+r—1)2 3
1 1

> >
((rk+r+1)2)! ~ ((mk+m+1)2)!

and

¢ < ((mk+m+1)%)!
(Observe that rk + r is the number of facts involved in violations if
each of the r facts of h(Q) that s removes conflicts with k facts of
s(D).) Now, it holds that

((mk +m+1)%)! x (%)Skm x (\/ID] + 5km)5km <

((QII=1+101 + 1)) x 3191 s (/D[+ 51| 1=))° 191!

Hence, with

pol” (|IDI) = ((1Q112+1Q1+1))1xe* QI Ix ({/[[D[[+5]0||=])*1€1*!
we have thet

(s) < pol”(|ID|]) x x(s"),
as needed.

Finally, we show that our mapping from sequences that remove
at least one of the facts of h(Q) to sequences that do not remove any
of these facts maps at most polynomially many sequences of the
first type to the same sequence of the second type. Given a sequence
s’ that does not remove any of the facts of h(Q), we can obtain
this sequence from any sequence s that has additional operations
that remove some of the facts of h(Q) individually or operations
that remove these facts jointly with another fact (while s” removes
only one of these facts). The sequence s can remove any number
1 < r < mof facts of h(Q). And, in the case where it removes r
of the facts of h(Q), for every ¢ < r there are (}) possible ways to
choose a subset of size £ of h(Q) of facts that will be removed by
themselves (while the remaining r — ¢ facts will be removed jointly
with another fact). Since the length of the sequence s is at most

|D|-;€71)

|D| -1, there are at most (possible choices for the positions

of the additional singleton deletions, and (l?l;l) possible choices
for the individual fact removals that will become pair removals.
Hence, the number of sequences that remove a fact of h(Q) that

are mapped to the sequence s’ is at most

e () (ID]+€-1 ID| - 1

ZZ t % t x 4

=1 =0 "

O v ‘ Dl+¢-1)\ Dl-1)\"*

35 (7) X(e(| E)) X(e(| |))
t 4 r—¢

(elQN’ x (e(ID| +€ - 1) x (e(|D] - 1))1Q1=¢

IN

[
g

r=1 £=0
< 101 x (1] +1) x (e]Q])!9 x (e(ID] +10Q] - 1))!9! x
(e(ID] - 1))@

< (elQD? x (el x (e(ID] + 101 = 1))!9" x (e(ID] = 1)) ¢!

= (elQN'2M x (e(ID| +1Q1 - 1)!?! x (e(ID] - 1)) 1.
This number is clearly polynomial in ||D||. We denote this number
by pol’(||D||). Finally, similarly to the case where |h(Q)| = 1,

1
1+ pol”(||D][) x pol”(||DI])
With pol(||D]|) = 1+ pol”(||D]]) x pol’(||D]|), we obtain that
1

pol ([IDI)°

Ppmw,o(h) =

Pymu,o(D,¢) 2 Pp puw,o(h) =

which concludes our proof.

D.3 The case of Functional Dependencies

Unlike the case of keys, in the case of FDs, there is no polynomial
lower bound on the target probability, as we show next. This means
that we cannot rely on Monte Carlo Sampling for devising an FPRAS.
On the other hand, this does not preclude the existence of an FPRAS
in the case of FDs, which remains an open problem.

ProrosITION D.6. Consider the FD set {R : Ay — Az} over the
schema {R/3}, and the Boolean CQ Ans() :- R(0,0,0). There exists a
family {Dp}n>1 of databases such that

1
0< PMEO,Q(D"’ ()) < 2|DT

ProoF. Let D, be the database that contains the fact R(0, 0, 0)
and n — 1 additional facts R(0, 1,i) fori € {1,...,n — 1}. Observe
that each fact R(0, 1, i) is in conflict with R(0, 0, 0), but there are no
conflicts among two facts R(0, 1, i) and R(0, 1, j) for i # j. Clearly,
it holds that 0 < PM;O,Q(D, ()) as the operational repair that keeps
the fact R(0, 0, 0) entails Q. We prove by induction on n, the number
of facts in the database, that for a database D that contains the fact
R(0,0,0) and n — 1 facts of the form R(0, 1, i), it holds that:

Pumw o (D, () < Py

Base Case. For n =1, D = {R(0,0,0) } and there are no violations
of the FD. In this case, it is rather straightforward to see that

1
Pumw o (D, () = o1 - b

Inductive Step. We assume that the claim holds forn =1,...,p
and prove that it holds for n = p + 1. Let D be such a database with
p + 1 facts; that is, D contains the fact R(0, 0,0) and p facts of the
form R(0, 1, i). Whenever we have p facts of the form R(0, 1,) in
the database, there are 1 + 2p justified operations: (1) the removal
of R(0,0,0), (2) the removal of a fact of the form R(0, 1, i), or (3)
the removal of a pair {R(0,0,0), R(0, 1,i)}. Only the p operations
of type (2) keep the fact R(0, 0, 0) in the database. We denote these
operations by op, ..., opy- For every i € {1,...,p}, we have that

p)= ——.
(e op) = 5

After removing a fact of the form R(0, 1, i) from the database,
we have p — 1 such facts left, regardless of which specific fact we
remove. For every i € {1,...,p}, we denote by D; the database
op;(D). By the inductive hypothesis, we have that

Prp.o(Di () = 7
Every sequence s € RL(M°(D)) with R(0,0,0) € s(D) is of the
form op; -s; for some i € [p] ands; € RL(M3°(D;)) with R(0,0,0) €
si(D). The probability PM‘E“’,Q (D, ()) can then be written as

Proo(D,0) = > a9
seRL(ME° (D))
0€Q(s(D))

=P opx > |-

im1 si €ERL(ME (D;))
0€Q(si(Dy))

As said above, for every i € {1,...,p},

> oA < o

s1€RL(M® (Dy))
0€Q(s:(D3))

Py o(Di, () =

Therefore, we conclude that

by (D, 0) < 3 (] L p
w00 < Q50 X o | = gy

i=1
= p < p :i
2014 px2P = px2p 2P

and the claim follows. O

D.4 Proof of Theorem 7.5

We now show that if only singleton removals are allowed, then
we can devise an FPRAS even for arbitrary FDs. For a database D
and a set 3 of FDs, we denote by RS! (D, X) the set of sequences in
RS(D,) mentioning only operations of the form —f, i.e., removing
a single fact. Similarly, we denote Opsl(D, %) = {s’ € RS}(D,>) |
s’ = s - op for some D-operation op}. Then, we define the Markov
chain generator Mgo’l such that for every s, s’ € RS! (D,), assum-

ing that My*' (D) = (V,E,P), if s’ € Ops}(D, %) then

1

Ps,s’ = —.
(55 |Opsi(D,)|

Observe, however, that the Markov chain generator M;O’l is de-
fined over all the sequences of RS(D,%). If s € RS'(D, =) but
s’ € RS(D, %) \ RSY(D, %) (and s’ € Ops, (D,)), then we define
P(s,s’) = 0.If s € RS(D, %) \ RS'(D, X), none of the leaves of the
subtree Ty is reachable with non-zero probability, and thus, P(s, s”),
for any s” € Ops,(D, %), can get an arbitrary probability (as long
as the sum of probabilities equals one), e.g., m.

We can now show that, assuming singleton removals, for FDs
the problem of interest admits an FPRAS. The formal statement,
already given in the main body of the paper, and its proof follow:

THEOREM 7.5. Fora setY. of FDs, and a CQ Q, OCQA(Z, M;"’l, Q)
admits an FPRAS.

The proof consists of the usual two steps: (1) existence of an
efficient sampler, and (2) provide a polynomial lower bound on he
target probability.

Step 1: Efficient Sampler. We can sample elements of RL(M;(”1 (D))

according to the leaf distribution of M;O’l (D) in polynomial time
in ||D||. This is done by employing the same iterative algorithm
as the one used to sample elements of RL(M;!°(D)), but with the
difference that only justified operations that consist of singleton
removals are considered. In particular, at each step, the algorithm

extends the current sequence s by selecting one of the (s(D), X)-
justified operations of the form —f with probability

1
|Ops3 (D, %)

Hence, we immediately obtain the following result:

LEMMA D.7. Given a database D, and a set 3 of keys, we can
sample elements ofRL(Mgo’1 (D)) according to the leaf distribution

ofMgo’l(D) in polynomial time in ||D||.

Step 2: Polynomial Lower Bound. It remains to show that there exists
a polynomial lower bound on the target probability.

Lemma D.8. Consider a set X of keys, and a CQ Q(x). For every
database D, and ¢ € dom(D) IxI,

1

P ot (D, 6) 2 ———————
M;™.Q (e IDpNeIl

whenever P (D,¢) > 0.

M;o,l’Q
Proor. Consider a database D. If there is no homomorphism

h from Q to D such that h(Q) [¥ and h(x) = ¢, then clearly

P quon Q(D, ¢) = 0. We now focus on the case where such a homo-
5

morphism h exists. Assume that |h(Q)| = m for some m < |Q|. We
prove by induction on n, that is, the number of facts in D\ h(Q) that
are involved in violations of the FDs (i.e., the facts f € (D \ h(Q))
such that {f, g} [~ X for some g € D), the following:

1
PD’M;OJ’Q (h) = W .
m
Base Case. For n = 0, since h(Q) E 3, there are no violations of
the FDs in D, and D has a single operational repair, which is D itself.
In this case, the probability of obtaining an operational repair that
contains all the facts of h(Q) is 1 = W as needed.

Inductive Step. We now assume that the claim holds for databases
where n = 0,...,k — 1, and we prove that it holds for databases
D where n = k. Every repairing sequence s € RL(M;O’l(D)) for
which h(Q) C s(D) is such that the first operation of s removes
a fact of D \ h(Q) that is involved in violations of the FDs. Let
fi, ..., fi be these facts of D \ h(Q), and for each i € {1,...,k}, let
op; be the operation that removes the fact f;. We then have that

1
))Zm

This is because the probability of removing a certain fact is @

P(£> (Opi

where p is the number of facts involved in violations among the
facts of h(Q). Since p < m, we get that ——— k+m < kip

After removing a conflicting fact of D \ h(Q) from the database,
we have at most k—1 such facts left, regardless of which specific fact
we remove. For every i € {1,..., p}, we denote by D; the database
op;(D) and by n; the number of facts of D; \ h(Q) that are involved
in violations of the FDs; hence, we have that n; < k — 1. By the
inductive hypothesis, we have that

1 1
Pooaeio(h) 2 oy > iy

Clearly, every sequence s € RL(My°(D)) with h(Q) C s(D) is of
the form op; - s; for some i € {1,...,k} and s; € RL(M°(D;)) with
h(Q) C si(D). Now, the following holds

k
Poaet o)) = D (P& (0p)) X Ppy e o ().
i=1

Therefore, we can conclude that

PD,Mgo’l,Q(h)

k
Finally, it is well known that (Z) < % . We conclude that, for
a database D such that D \ h(Q) contains n facts that are involved
in violations of the FDs, we have that
1

PD,MEO'I,Q(h) > W
n
1
>
(e(n+m))m
m
_oom" « 1
T oem T (n+mm
m\m 1
= (?) “ D
> - X —.
- (e) |D|l€l
Since h(Q) € D’ implies ¢ € Q(D’), it holds that
1 1
Muol (D C) Muo,ls (h) > > s
v (elDD1 = (elipiy11!
which concludes our proof. U

E SINGLETON OPERATIONS

As mentioned in the main body of the paper (see the last paragraph
of Section 7), focusing on singleton operations does not affect The-
orem 5.1, Theorem 6.1, and item (1) of Theorem 7.1 that deals with
exact query answering. In this section, we formally prove the above
statements. But let us first briefly discuss the Markov chain gener-
ators based on uniform repairs and sequences that consider only
singleton operations. The version of the Markov chain generator
based on uniform operations that considers only singleton opera-
tions has been already discussed in the previous section.

Given a database D and a set 3 of FDs, we write CRS!(D, %)
for the set of sequences in CRS(D, ¥) mentioning only operations
of the form —f, i.e., removing a single fact. Similarly, we define
CORep!(D,X) = {D’ € CORep(D,%) | s(D) = D’ for some s €

CRS!(D,%)}. Our intention is to focus on the repairing Markov
chain generators M;r’l and M;S’I enjoying the following:

(1) ORep(D, M;r’l) = CORep!(D,), and for every repair D’ €

ur,1 _ 1
ORep(D, MZ), PD,Mgr'l (D,) = m.

(2) For every s € CRSY(D, %), assuming that 7 is the leaf distri-

. 1
bution of M;S (D), (s) = |CRSllTZ)|'

It is not difficult to adapt Definitions A.1 and A.3 in order to ob-
tain the Markov chain generators M;r’l and M;S’l with the above
properties. We proceed with our results about singleton operations.

E.1 Uniform Repairs

In this section, we prove the version of Theorem 5.1 that considers
singleton operations:

THEOREM E.1. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(Z, My"", Q) is §P-hard.

(2) For a setX of primary keys, and a CQ Q, OCQA(Z, M;r’l, Q)
admits an FPRAS.

(3) Unless RP = NP, there exist a set % of FDs, and a CQ Q such
that there is no FPRAS for OCQA(Z, M;r’l, Q).

As for Theorem 5.1, we can conveniently restate the problem of
interest as the problem of computing a “relative frequency” ratio.
Indeed, for a database D, a set ¥ of FDs, a CQ Q(x), and a tuple
ce dom(D)l’?l, P gunt Q(D, c) = rrfreqlz Q(D, ¢), where

S]

[{D’ € CORep!(D,%) | ¢ € Q(D")}|
|CORep!(D, %)| ’
Hence, OCQA(Z, M;r’l, Q(x)) coincides with the following prob-

lem, which is independent from the Markov chain generator M;r’lz

rrfreqé Q(D, ¢) =

PROBLEM : RRFreq! (%, Q(%))
INPUT : A database D, and a tuple ¢ € dom(D) 1%,
OUTPUT: rrfreq;, o(D:0).

We proceed to establish Theorem E.1 by directly considering the
problem RRFreq! (2, Q) instead of OCQA(Z, M;r’l, Q).

Proof of Item (1) of Theorem E.1. We provide a polynomial-time Tur-
ing reduction from the #P-hard problem Pos2DNF [21]. A positive
2DNF formula is a Boolean formula of the form ¢ =C; V- -V Cp,
where each C; is a conjunction of two variables occurring posi-
tively in C;. Let var(¢) be the set of Boolean variables occurring in
¢. An assignment for ¢ is a function p : var(¢) — {0, 1}. Such an
assignment is satisfying for ¢ if u(¢) = 1, i.e., the formula obtained
after replacing each variable x of ¢ with p(x), evaluates to 1. We
write sat(¢) for the set of satisfying assignments for ¢, i.e., the
assignments for ¢ that evaluate ¢ to 1. The problem in question is

PROBLEM : #{Pos2DNF
INPUT : A positive 2DNF formula ¢.
OUTPUT: The number |sat(¢)|.

Consider the schema S = {V/2,C/2,T/1}, and let (A, B) be the
tuple of attributes of V. We define the set X over S consisting of

V:A—>B

and the (constant-free) Boolean CQ Q over S
Ans() - C(x,y), V(x,2),V(y,2), T(z).

Our goal is to show that RRFreq! (Z, Q) is #P-hard via a polynomial-
time Turing reduction from #Pos2DNF. Given a positive 2DNF
formula ¢ = C; V -+ - V Cy, we define the database

Dy = {V(cx,0),V(cx,1) | x € var(g)} U
{C(cx,cy) | Ci = (x Ay) for some i € [n]} U {T(1)},

D,

where, for each x € var(¢), cx is a constant, which essentially
encodes ¢. We now define the algorithm SAT, which accepts as
input a positive 2DNF formula ¢, and performs the following steps:

(1) Construct the database D,.

(2) Compute the number r = rrfreqi’Q(Dq,, 0).

(3) Output the number 2lvar(@)l . p,

It is clear that the above algorithm runs in polynomial time in

|loll. Hence, to prove that it is indeed a Turing reduction from
#Pos2DNF to RRFreq! (2, Q), it suffices to prove that

Isat(e)]
2lvar(p)|”

rrfrequ (Dy, () =

Since we consider only single fact removals, a database D is an
operational repair of CORep! (Dy, %) iff it is of the form

{V(cx,*) | x € var(p) and x € {0,1}} U D,

which keeps precisely one fact V(cy, %), for each variable
x in ¢. Hence, |CORep1(Dq,,) = 2@l Thus, with
CORepl(D,p, 3, Q) being the set of repairs D in CORepl(Dq,, %)
such that D | Q, it is easy to see that |CORep1(D¢,Z, Q)| =
|sat(¢)|. Consequently,
|COReP1(sz)Z, 0)] _ |sat(p)]
|CORep!(Dy,3)| 2har()l”

rrfreqé’Q (Dy,) =

and the claim follows.

Proof of Item (2) of Theorem E.1. We can employ a proof similar
to the one underlying item (2) of Theorem 5.1, which consists of
two steps: (1) existence of an efficient sampler, and (2) provide a
polynomial lower bound for the target ratio. The key difference is
that now we focus on the set of repairs CORep! (D, 3), rather than
CORep(D, £). Thus, each repair in CORep! (D, %) is obtained by
keeping from D precisely one fact from each block of D.
We first show the existence of an efficient sampler.

LeEmMA E.2. Given a database D, and a set ¥ of primary keys,
we can sample elements of CORep! (D, £) uniformly at random in
polynomial time in ||D]|.

Proor. Let By, ..., B, be the blocks of D w.r.t. 3. That is, for
every relation name R of the schema withR: X — Y € 3, we split
the set of facts of D over R into blocks of facts that agree on the
values of all the attributes in X. If there is no such key in X, then
every fact is a separate block. As aforementioned, every repair of
CORep! (D, T) contains one fact of each block. Hence,

|CORep!(D,=)| = |Bi| X ---X|Bnl.

In order to sample an element of CORep! (D,) with probability

1
B X - -+ X |Bp|

we simply need to select, for each block B;, one of its |B;| possible
outcomes (one of its facts that will appear in the repair), uniformly
at random, namely with probability ﬁ). U

It remains to show that there exists a polynomial lower bound
on the target ratio.

LemMA E.3. Consider a set X of primary keys, and a CQ Q(x). For
every database D, and tuple ¢ € dom(D)l’zl,

1

1 _
rrfreqz!Q(D, ¢) = —(||D| &

whenever rrfreq% Q(D, ¢) > 0.

Proor. Let D be a database. If there is no homomorphism h from
Q to D such that h(Q) [X and h(x) = ¢, then it clearly holds that

rrfreqéQ(D, ¢) = 0.

We now consider the case where such a homomorphism h exists.
Assume that |h(Q)| = m for some 1 < m < |Q|. As in the proof
of Lemma E.2, let By, ..., B, be the blocks of D w.r.t. 3. Assume,
without loss of generality, that the facts of h(Q) belong to the blocks
By, ..., Bm. Note that no two facts of h(Q) belong to the same block,
as two facts that belong to the same block always jointly violate
the corresponding key, and it holds that A(Q) E 2.

Since all the facts of a block are symmetric to each other, each
of these facts has an equal chance to appear in a repair. In particu-
lar, every operational repair contains one fact from each block in
{Bi,...,Bm}, and precisely

1
|Bi| X+ - X [Bpn|

repairs of CORep! (D, T) contain all the facts of h(Q). Hence,

[{E € CORep!(D, =) | h(Q) C E}|

refreql (D, ¢) >
q5,0(D,¢) e 0.3
BB X |CORep! (D, 2)]
>
- |[CORep!(D,)]
_ 1
[B1| X - -+ X |Bpm|
1
S
|D|™
1
>
|D|1€Q!
1
2 PITESTNIIE
(DI liet
and the claim follows. O

Proof of Item (3) of Theorem E.1. The proof of this item proceeds
similarly to the one used to prove item (3) of Theorem 5.1. Here we
highlight the key differences.

We first need to prove a result analogous to Lemma 5.4, but
for the setting of singleton operations. For an undirected graph G,
1S+ (G) denotes the set of all non-empty independent sets of G.

LEmMMA E.4. Consider a non-trivially ¥-connected database D,
where 3. is a set of FDs. Then, |[CORep!(D, 2)| = |I1S,¢(CG(D,%))|.

PROOF. (C) Consider a candidate repair D’ € CORep!(D,%).
By definition, D’ is consistent w.r.t. 3, i.e., there are no two facts
f,g of D’ such that {f, g} ¢ 3. Thus, by definition of the conflict
graph of D w.r.t. ¥, we get that no two facts of D’ are connected via
an edge in CG(D, X). Hence, D’ is an independent set of CG(D, 3).
It remains to show that D’ # 0. Since D’ € CORep!(D, T), there
is a sequence s = opy,...,0p, € CRS!(D,) such that s(D) = D’.
Since op,, must be (sp—1(D), 2)-justified, there must be a violation
(,{f.g9}) € V(sn-1(D), %), for some FD ¢ € 3. Moreover, since
s(D) E %, this is the only violation. Hence, op, = —f, and then
g € s(D), or op,, = —g, and then f € s(D). Thus, s(D) =D’ # 0.

(2) Consider now an independent set D’ € 1S.¢(CG(D, X)),
which is by definition non-empty. We have already shown in
the proof of Lemma 5.4 that one can construct a sequence s €
CRS(D, %) such that s(D) = D’. In particular, by inspecting that
proof, we can see that indeed s uses only operations of the form
—f, and thus, s € CRS!(D, X). Hence, D’ € CORepl(D, %). O

The rest of the proof proceeds in two steps. We first prove the
following result, which is analogous to Proposition 5.5. We write
#CORep™!(2) for the problem of computing |[CORep!(D,T)],
given a non-trivially X-connected database D.

ProrosITION E.5. Unless RP = NP, there exists a set £ of keys
over {R} such that fCORep®°™1(X) does not admit an FPRAS.

Proor. We provide a reduction from the problem of counting
non-empty independent sets of non-trivially connected graphs of
bounded degree. With ﬁlSCA‘:;m, for some integer A > 0, being the
problem of computing |1S4¢(G)|, given a non-trivially connected

graph G with degree A, we first need to prove that:

LEmMA E.6. Unless RP = NP, ﬁlszozo has no FPRAS, for all A > 6.

PRrOOF. By contradiction, assume that mSCA(,);o) admits an FPRAS,
for some A > 6. We then show that].*;ISCA""I admits an FPRAS, con-
tradicting Lemma B.5. Assume that A is an FPRAS for ﬂlScAcf; o- Let
A’ be the randomized algorithm that, given a non-trivially con-
nected undirected graph G, ¢ > 0 and 0 < § < 1, is such that
A’(G,€,8) = A(G, €,8) + 1. We proceed to show that A” is an FPRAS

for #1S°". Since A is an FPRAS for ﬁlScAog(o,
Pr((1—¢)-11S£9(G)| < A(G,€,8) < (1+¢€) - [ISx9(G)]) =1 -3.

By adding 1 in all sides of the inequality, we obtain that
Pr((1-e)-|1Sz9(G)|+1 < A'(G,¢6) <
(1+€)-|ISxp(G)|+1) = 1-6.
Since

(1-€)-[IS9(G)[+1 = (1-€)-[ISxp(G)|+1-¢€

(1+¢€)-|1S£p(G)|+1 < (1+¢€):|ISp(G)|+1+e,

by factorizing the terms in the two inequalities, we obtain that

(1-€) - [1520(G)[+1 = (1-¢)-([IS20(G)]+1)
(1+6) 154G +1 < (1+€) - ([1S0(G)| +1).

Since |IS4¢(G)| + 1 = |IS(G)|, we conclude that
Pr((1-¢)-[IS(G)| < A’(G,e8) < (1+¢€)-|IS(G)]) 21-6,

4

and the claim follows. O

With the above lemma in place, we establish our main claim
by showing that there exists a set g of keys such that, given a
non-trivially connected undirected graph G, we can construct a
non-trivially ¥ g-connected database D in polynomial time in ||G||
such that [1S.¢(G)| = |CORep! (Dg, 2k)|. Hence, unless RP = NP,
the existence of an FPRAS for #CORep®™!(Zx) would imply an
FPRAS for ﬂISCA‘?z ¢ contradicting Lemma E.6.

The set Xg and the database Dg are defined in exactly the same
way as in the proof of Proposition 5.5. We recall that Dg and Eg
are such that |IS(G)| = |IS(CG(Dg, 2k))|- Hence, |IS,¢(G)| =
[1S£9(CG(Dg, 2k))|. Since D¢ is non-trivially ¥k -connected, by
Lemma E.4, |1S4¢(CG(Dg,2k))| = |CORep!(Dg,2x)|. Hence,
[1S.9(G)| = |CORep! (Dg, 2x)|, as needed. [

It remains to prove a result analogous to Lemma 5.6. Let X be
the set of keys provided by Proposition E.5.

LeEmMMA E.7. Assume that RRFreq! (2, Q) admits an FPRAS, for
every set . of FDs and CQ Q. §CORep®®™!(Sk) admits an FPRAS.

Proor. The proof of this claim proceeds in the same way as the
one of Lemma 5.6. The key difference is that now, given a non-
trivially g -connected database D, we must show that for the set
>r of FDs and the Boolean CQ Qf as defined in that proof, the
database D obtained from D is such that

1
|CORep! (D, Z)| + 1

rrfreql, o (DF. () =

This is done using the same argument as in the proof of Lemma 5.6,
with the difference that we exploit Lemma E.4, instead of Lemma 5.4,
to prove that [CORep! (D, Zf)| = |[CORep! (D, Sk)| + 1. 1

It is now straightforward to see that from Proposition E.5 and
Lemma E.7, we can conclude item (3) of Theorem E.1.

E.2 Uniform Sequences

In this section, we prove the version of Theorem 6.1 that considers
singleton operations:

THEOREM E.8. (1) There exist a set X of primary keys, and a
CQ Q such that OCQA(S, My>', Q) is {P-hard.

(2) For a set X of primary keys, and a CQ Q, OCQA(Z, M;S’l, Q)
admits an FPRAS.

As for Theorem 6.1, we can conveniently restate the problem of
interest as the problem of computing a “relative frequency” ratio.

Indeed, for a database D, a set X of FDs, a CQ Q(x), and a tuple

¢ € dom(D) |5", PM;S,I)Q(D, ¢) = srfrquQ(D, ¢), where

[{s € CRS'(D, %) | ¢ € Q(s(D))}|
|CRSY(D, 3)|

Hence, OCQA(Z, M;S’l, Q(x)) coincides with the following prob-

lem, which is independent from the Markov chain generator Mgs’lz

srfreq%gg(D, ¢) =

PROBLEM : SRFreq! (%, Q(%))
INPUT : A database D, and a tuple ¢ € dom(D) %I,
OUTPUT : srfreq% Q(D,).

We proceed to establish Theorem E.8 by directly considering the
problem SRFreq! (3, Q(%)) instead of OCQA(Z, My>", Q).

Proof of Item (1) of Theorem E.8. We provide a polynomial-time
Turing reduction from #Pos2DNF. In fact, the reduction is identical
to the one used to prove item (1) of Theorem E.1. We only need to
argue that, given a positive 2DNF formula ¢,

|sat(¢)]
srfreqé,Q(D(p, 0) = W,
where Dy, % and Q are as in the proof of item (1) of Theorem E.1.

A database D is a repair in CORep! (Dy, %) iff it keeps from
Dy precisely one fact V(cy, %), for each variable x of ¢. Hence,
|CORep1(D¢, %)| = 2Ivar(@] Moreover, since no two violations
in V(Dy, %) share a fact, each such a repair is the result of pre-
cisely |var(¢)|! sequences of CRSl(D,p, 3) (i.e., operations can
be applied in any order). Hence, |CRSl(D¢,,)| = 2har(o)l .
[var(¢@)|!. Thus, with CRSI(DQ,, 3, Q) being the set of sequences
sof CRSl(Dq,, %) such that s(Dy) [Q, it is straightforward to see
that |CRSI(D(,,,2, Q)| = |sat(¢)| - |var(¢)|!. Therefore,

ICRS!(Dy, %, Q)|
ICRS (D4, 2)|

[sat(e)] - [var(o)!!

2Mvar(@)] . jvar(g)|!

Isat(e)|
2lvar(p)|’

srfreqig(Dq,, 0)

and the claim follows.

Proof of Item (2) of Theorem E.8. As for item (2) of Theorem 6.1,
the proof consists of two steps: (1) existence of an efficient sampler,
and (2) provide a polynomial lower bound on the target ratio.

We first show that an efficient sampler exists.

LeEmMA E.9. Given a database D, and a set % of primary keys, we
can sample elements of CRS' (D, £) uniformly at random in polyno-
mial time in ||D||.

Proor. The algorithm SampleSeq (Algorithm 1) that is used to
sample elements of CRS(D, X) can be used to sample elements of
CRS!(D, %) as well. The only difference lies on the set of (s(D), %)-
justified operations that, in the case of CRS(D,%) consists of
both single-fact removals and pair removals, while in the case of
CRS!(D, %) it consists only of single-fact removals. UJ

We now show the polynomial lower bound on the target ratio.

LemMmA E.10. Consider a set X of primary keys, and a CQ Q(x).
For every database D, and tuple ¢ € dom(D) ¥,
1

1 _
srfreqz’Q(D,c) > W

whenever srfreq% Q(D, ¢) > 0.

Proor. Let D be a database. If there is no homomorphism A from
Q to D such that h(Q) | X and h(x) = ¢, then clearly it holds that

srfreqé,Q (D,¢) = 0.

We now consider the case where such a homomorphism h exists.
Assume that |h(Q)| = m for some 1 < m < |Q|. As in the proof
of Lemma E.3, let By, ..., B, be the blocks of D w.r.t. 2. Assume,
w.l.o.g., that the facts of h(Q) belong to the blocks By, ..., By.

Since all the facts of a block are symmetric to each other, if for
some f € Bj, there are m sequences s in CRS!(B;, =) such that
f € s(B;), then the same holds for every fact g € B;. Moreover,
since every operational repair of RL(M;S’I) keeps precisely one
fact from each block, and the blocks are independent (in the sense
that an operation over some block has no impact on the justified
operations of another block), we can conclude that precisely

1
|B| X -+ X Bl

of the sequences s in CRS (D, %) are such that h(Q) C s(D) (i.e., the
sequence s keeps the fact B; N h(Q) for every B; € {By,...,Bm}).
We then have that

|[{s € CRS'(D,Z) | h(Q) C s(D)}]

srfreq%gQ(D, c) =

|CRSY(D, %)|
B 7B, X ICRS'(D.2)]
- ICRSI(D,)|
_ 1
|B1| X -+ X |Bp]
1
>
|D|™
1
P
ID|10]
1
2 PTENITRTE
(/Ipp et
and the claim follows. O

E.3 Uniform Operations
In this last section, we prove that item (1) of Theorem 7.1 holds also

in the case of singleton operations.

THEOREM E.11. There exist a set £ of primary keys, and a CQ Q
such that OCQA(Z, M;O’l, Q) is §P-hard.

Proor. We use the reduction form the proof of Theorem E.1(1).

We only need to argue that, given a positive 2DNF formula ¢,

sat(e)|
olvar()[’

Pypor (D,) =

where Dy, ¥ and Q are as in the proof of item (1) of Theorem E.1.

Let M;O’l (Dy) = (V, E,P). By the definition of the Markov chain
generator, RL(MEO’l (D)) = CRS! (Dg, Z). Moreover, we note that
each variable x of ¢ induces a violation {V(cx,0), V(cx, 1)} in Dy,
which can be resolved with one of two operations removing a single
fact. Hence, every complete sequence in CRS! (Dy, %) is of length
precisely |var(¢@)|, and for every non-leaf node s € V that is also in
OPSB¢ (Z,),|Opst (Dy, 2)| = 2-(|var(¢)|—|s|). Hence, by Definition
of M;O’l, with 7 being the leaf distribution of M{°(D,), for each
s=0py,...,0p, € CRSY (DG, 2) = RL(My*" (Dy)).

1
2Mvar(@)] - var(p)|!”
This means that each sequence s € CRS!(D,, %) = RL(M;O’1 (Dy))

is assigned the same non-zero probability, i.e., 7 is the uniform distri-
bution over CRS! (Dgp, 2). The latter implies that P uo. 0 (Dy, () =
5

m(s) = P(so,s1) - P(sp-1,8n) =

srfrquQ(D,p, ()). As we have already seen that

|sat(e)]
2lvar(e)|

rrfreqé,Q(D(p,()) = srfreq§’Q(D(p, 0) =

the claim follows. O

	Abstract
	1 Introduction
	2 Preliminaries
	3 Operational CQA
	4 Uniform Operational CQA
	5 Uniform Repairs
	6 Uniform Sequences
	7 Uniform Operations
	8 Future Work
	References
	A Uniform Operational CQA
	A.1 Uniform Repairs
	A.2 Uniform Sequences
	A.3 Uniform Operations

	B Proofs of Section 5
	B.1 Proof of Item (1) of Theorem 5.1
	B.2 Proof of Item (2) of Theorem 5.1
	B.3 Proof of Item (3) of Theorem 5.1

	C Proofs of Section 6
	C.1 Proof of Item (1) of Theorem 6.1
	C.2 Proof of Item (2) of Theorem 6.1

	D Proofs of Section 7
	D.1 Proof of Item (1) of Theorem 7.1
	D.2 Proof of Item (2) of Theorem 7.1
	D.3 The case of Functional Dependencies
	D.4 Proof of Theorem 7.5

	E Singleton Operations
	E.1 Uniform Repairs
	E.2 Uniform Sequences
	E.3 Uniform Operations

