
A Recursive Early-Stopping Phase King Protocol
Christoph Lenzen

CISPA Helmholtz Center for Information Security

Germany

lenzen@cispa.de

Sahar Sheikholeslami

Ferdowsi University of Mashhad

Iran

seslami2@gmail.com

ABSTRACT
Early-stopping consensus protocols guarantee termination within

a number of rounds that depends only on the actual number 𝑓 of

faulty nodes in a run, not the maximum number of faults that can

be tolerated. We consider early-stopping deterministic synchro-

nous consensus with Byzantine faults in a fully connected message

passing system of 𝑛 nodes. Many such protocols are known, but so

far none combine early-stopping in 𝑂 (𝑓 + 1) rounds with optimal

resilience and a bit complexity of 𝑜 (𝑛2 (𝑓 + 1)).
We provide two solutions to the above problem. The first is fairly

simple and almost matches the above goals, but has worst-case mes-

sage and bit complexities of Θ(𝑛2 log(𝑓 + 2)). The second reduces

the bit complexity further to 𝑂 (𝑛2) by calling itself recursively at

most twice on Θ(𝑛)-sized subsets. The result is the first protocol

that is simultenously optimally resilient, asymptotically optimally

early-stopping, and asymptotically bit- and message-optimal.

CCS CONCEPTS
• Theory of computation → Distributed algorithms.

KEYWORDS
consensus, Byzantine faults, bit complexity

ACM Reference Format:
Christoph Lenzen and Sahar Sheikholeslami. 2022. A Recursive Early-Stop-

ping Phase King Protocol. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing (PODC ’22), July 25–29, 2022, Salerno,
Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3519270.

3538425

1 INTRODUCTION & RELATEDWORK
Consensus, the task of reaching agreement among the participants

of a distributed system despite faults, is arguably the most funda-

mental fault-tolerance primitive. As a result, over the course of

half a century researchers generated over half a million pages
1
of

research articles related to this topic; see [20] for general treatments

of the topic from a theory perspective. In this work, we study the bit

complexity of asymptotically optimally early-stopping consensus,

in which the time until termination is required to be a function

1
This conservative lower bound was generated by multiplying the more than 50 000

hits Google Scholar generated for “consensus algorithm” (with quotes) by 10.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’22, July 25–29, 2022, Salerno, Italy
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9262-4/22/07.

https://doi.org/10.1145/3519270.3538425

of the actual number of faults in the execution, as opposed to the

maximum number of faults than can be tolerated.

In more detail, we consider the following setting:

• binary consensus, i.e., inputs and outputs from {0, 1} (multi-

valued protocols can be derived without asymptotic over-

head [19]);

• Byzantine (i.e., worst-case) faults;

• message passing with authenticated channels, i.e., the re-

ceiver of a message is aware of the sender’s identity;

• synchronous communication, i.e., coordinated send-receive-

compute rounds;

• optimal resilience, i.e., tolerance of 𝑡 = ⌈𝑛/3⌉ − 1 faults in

an 𝑛-node system [22] (smaller 𝑡 can be handled by running

the protocol on 3𝑡 + 1 nodes and broadcasting the output to

all nodes);

• full connectivity (general networks can simulate this if and

only if they are (2𝑡 + 1)-connected [20]);

• known node identifiers, w.l.o.g. from 1 to 𝑛;

• deterministic algorithms (i.e., no restrictions on the adver-

sary apart from the limit on faults); and

• asymptotically optimal early-stopping, i.e., if 0 ≤ 𝑓 ≤ 𝑡 , then
correct nodes terminate within 𝑂 (𝑓 + 1) rounds.

Our goal is to determine the message and bit complexity of this

task,
2
i.e., the total number of messages and bits that need to be

sent by an algorithm solving consensus in this setting.

Not only are these quality metrics of general interest, but prior

work motivates this specific setup:

(1) The Phase King protocol [1] has an early-stopping variant [3].

It matches the above constraints, but has message and bit

complexity Θ(𝑛𝑡 + 𝑡2 𝑓).
(2) The Phase King protocol has also a recursive variant [2],

which has asymptotically optimal message and bit complex-

ity of Θ(𝑛𝑡) [14], but is not early-stopping.
(3) It has been shown that optimal early-stopping necessitates

Ω(𝑛𝑡 + 𝑡2 𝑓) messages [13], i.e., in general optimal early-

stopping is incompatible with asymptotically optimal mes-

sage and bit complexity.

In other words, we set out to answer the question

“Does a relaxed early-stopping requirement enable us

to achieve bit complexity 𝑂 (𝑛𝑡)?”

Our Contribution
We present two novel algorithms for the task. The first falls out of a

straightforward combination of known techniques. The reason why

2
In the following, we adopt the convention to state all bounds assuming that protocols

are executed on 3𝑡 + 1 nodes. Once the protocol is complete, these nodes broadcast

their output to any non-participating nodes, which decide on the value supported by

(at least) 𝑡 + 1 participating nodes. Since Ω (𝑛𝑡) messages must be sent [14], this does

not affect asymptotic bounds.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

60

https://doi.org/10.1145/3519270.3538425
https://doi.org/10.1145/3519270.3538425
https://doi.org/10.1145/3519270.3538425
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519270.3538425&domain=pdf&date_stamp=2022-07-21

the classic Phase King protocol [1] has bit and message complexity

of Θ(𝑛𝑡 + 𝑡3) is that it establishes agreement over 𝑡 + 1 phases

by executing a subroutine with a dedicated king that guarantees

validity and establishes agreement if the king is correct. Each time

this requires a constant number of broadcasts per node, causing

Θ(𝑡3) messages. To avoid this, the recursive Phase King protocol [2]

calls itself twice on roughly half of the nodes, replacing the king by

running consensus on each subset. Since the cost of each iteration

is quadratic, the two recursive calls in sum cause fewer bits to be

sent then the calling routine, resulting in bit complexity 𝑂 (𝑛𝑡).
Applying the same idea, our first solution calls the recursive

Phase King protocol as subroutine replacing the king. However, to

ensure that the algorithm is early-stopping, we start from a constant-

sized set and increase the number of nodes in each iteration by a

factor of 2. Analogously to the early-stopping Phase King algorithm,

after each call the algorithm tries to terminate, which succeeds as

soon as a subset had fewer than one third of its nodes being faulty.

Consequently, the bit complexity of this approach is also dominated

by the broadcasts of the top-level routine. Because with 𝑓 faults

Ω(log 𝑓) subroutine calls might fail due to having too many faulty

nodes, this results in a worst-case bit complexity ofΘ(𝑛𝑡 log(𝑓 +2)).

Theorem 1.1. Algorithm 4 solves binary consensus with up to
𝑡 := ⌈𝑛/3⌉ − 1 Byzantine faults in O(𝑓 + 1) rounds, where 0 ≤ 𝑓 ≤ 𝑡
is the number of actual faults. Its bit complexity is O(𝑛𝑡 log(𝑓 + 2)).

To remove this Θ(log(𝑓 + 2)) overhead, our second approach

performs at most two recursive calls on sets of size Θ(𝑡), just like
the recursive Phase King algorithm. Unfortunately, this disallows

to allocate a predetermined number of rounds to spend on such

a recursive call: in a run with 𝑂 (1) faults only 𝑂 (1) rounds can
be spent, while the recursive call must tolerate Ω(𝑡) faults and
hence potentially run longer. We deal with this by having nodes in

the calling routine, which is guaranteed to have sufficiently many

correct nodes, vote on when to proceed. This approach is borrowed

from a classic pulse synchronization algorithm [25], in which 𝑛 − 𝑓
votes are required to generate a pulse, while 𝑓 +1 votes are sufficient

to make nodes vote for the next pulse themselves. Thus, as soon

as any correct node generates a pulse, 𝑛 − 2𝑓 > 𝑓 nodes must

already have voted in favor, causing all remaining correct nodes to

add their votes and reach the threshold to generate a pulse. In our

synchronous setting, this ensures that all correct nodes proceed to

continue from the subroutine call within one round of each other.

A simple simulation strategy allows us to nonetheless pretend that

our protocol runs in perfect synchrony, provided we maintain the

invariant that nodes are within one round of each other: we append

a bit distingishuing between even and odd round messages and

have each node idle for one round between communication steps

to collect messages that arrive “late” by one round. Finally, we start

our protocol by a single “standard” Phase King iteration with a

single king, to avoid running for Θ(log𝑛) rounds even when there

are no faults. This results in a protocol which is optimally resilient

and asymptotically optimal in its early-stopping guarantee and

communication complexity.

Theorem 1.2. Algorithm 8 solves binary consensus with up to
𝑡 := ⌈𝑛/3⌉ − 1 Byzantine faults in O(𝑓 + 1) rounds, where 0 ≤ 𝑓 ≤ 𝑡
is the number of actual faults. Its bit complexity is O(𝑛𝑡).

Further Related Work
To limit the scope of this literature review, we do not discuss ran-

domized protocols. These require varying restrictions on the ad-

versarial model and, due to achieving much smaller running times

in the presence of many faults, usually are not studied with re-

spect to their early-stopping properties. However, one should take

of note the possibility to interleave randomized and determinis-

tic early-stopping algorithms for the sake of achieving both small

running times with a high probability against many faults, while

guaranteeing early termination in case of few faults.

In [22], it was shown that consensus can be solved in 𝑡 +1 rounds,
if at most 𝑡 < 𝑛/3 nodes can be Byzantine faulty. Under crypto-

graphic hardness assumptions, the resilience can be increased to

(trivially optimal) 𝑡 < 𝑛/2 [15]. In general networks, in addition to

the above constraint 𝑡 must be smaller than the node connectivity.

Under crash faults or cryptographic hardness assumptions, this is

also sufficient, since trivially or using signatures full connectivity

can be simulated. With Byzantine faults and without cryptogra-

phy, it is necessary and sufficient for 𝑡 to be smaller than half the

node connectivity (for Byzantine faults) [12]. These results are not

concerned with the running time. For crash faults, [9] provides an

algorithm that solves consensus under 𝑓 crash faults in O(𝑓 + 𝐷 𝑓)
rounds, where 𝐷 𝑓 is the worst-case diameter of the network ob-

tained by removing up to 𝑓 nodes.

In [23], consensus studied in weaker fault models. Toueg and

Chandra [6] introduced the concept of early-stopping algorithms, in

the context of such weaker fault models. They solve reliable broad-

cast using O(𝑓 𝑛) messages in 𝑓 + 2 rounds under crash failures and

in 2𝑓 + 3 rounds under omission failures, the latter meaning that

faulty nodes might drop messages instead of sending or receiving

them. In [18], an lower bound of 𝑓 + 2 on the round complexity of

uniform agreement for every uniform consensus algorithm tolerat-

ing 𝑓 ≤ 𝑡 − 1 faults is given; uniform consensus requires that faulty

nodes do not decide on a different value than correct ones, while

“plain” consensus requires agreement only from correct nodes. Con-

tinuating this work, in [21], time-optimal protocols with running

time min{𝑓 + 2, 𝑡 + 1} and message complexity O(𝑛2 𝑓) are pre-

sented for uniform consensus under crash and omission faults. An

early-stopping protocol for 𝑘-set agreement, where the agreement

condition is relaxed to permitting 𝑘 different outputs at correct

nodes (and validity requires them to be inputs of some nodes), is

presented in [24]. This protocol tolerates 𝑡 < 𝑛/2 omission faults,

i.e., nodes that might drop messages. In this protocol, not only cor-

rect nodes, but all nodes that do neither crash nor drop messages

they should receive terminate by round min(⌊𝑓 /𝑘⌋ + 2, ⌊𝑡/𝑘⌋ + 1).
Finally, [5] refined notion of time complexity further by presenting

an unbeatable predicate for early decision, in that any predicate

that decides earlier at some node in some execution, it must decide

later in some other execution.

Concerning communication-efficient protocols, Coan and Welch

[10] show that (under all fault models) consensus can be solved in

(1 + Y)𝑡 rounds communicating O(𝑡2/Y + 𝑛𝑡) bits, for Y > 0. In [11],

they reduce the bit complexity asymptotically optimal O(𝑛𝑡) bits
complexity using message size 𝑡Y and 𝑡 + 𝑜 (𝑡) rounds. Note that
this improves over the running time of the Phase King protocol [1]

at the expense of non-constant message size. In [17], an algorithm

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

61

solving consensus with crash failures using asymptotically optimal

O(𝑛) messages and O(𝑡1+Y) rounds is given, for any constant 0 <

Y < 1. An early-stopping algorithm for crash faults with message

complexity O(𝑛 + 𝑓 𝑛Y) and running time O((𝑓 + 1)81/Y) is also
presented in this paper. The message size in these protocols is O(𝑛).
In [7], the running time overhead is reduced to a constant with

O(𝑛 log2 𝑛) messages and message size O(𝑛 log𝑛), for 𝑛−𝑡 ∈ Ω(𝑛).
In [8], they extend their techniques to obtain an early-stopping

algorithm solving consensus in O(𝑓 + 1) rounds using O(𝑛 log5 𝑛).

Organization of this Article
We start by revisiting the early-stopping Phase King algorithm

in Section 2, where we break it down into smaller subtasks and

their solutions. In Section 3, we rearrange these, replacing the

eponymous King’s Broadcast by a call to the recursive Phase King

algorithm. Finally, in Section 4, we develop our recursive early-

stopping algorithm. Here, we also show how to efficiently simulate

perfect synchrony when nodes might have off-by-one round coun-

ters, such that using a voting barrier (rather than consensus) is

sufficient to deal with unknown termination time of recursive calls.

2 EARLY-STOPPING PHASE KING, BROKEN
DOWN & REASSEMBLED

In this section we revisit the Early-Stopping Phase King algo-

rithm [3] and break it down into subroutines for later reuse. While

we slightly deviate from the original protocol, all of these build-

ing blocks and their analysis are well known; we merely restate

these results in our own terms. We define subtasks the subroutines

solve, from which we can readily infer the correctness of the overall

algorithm. In later sections, we will provide novel algorithms by

rearranging the subroutines and providing new implementations

of the electors’ broadcast subtask.
First, let us recall the input-output specification of binary con-

sensus, where 𝑉𝑔 ⊆ 𝑉 denotes the set of correct nodes.

Definition 2.1 (Binary consensus). Each node 𝑖 ∈ 𝑉 receives an

input 𝑏𝑖 ∈ {0, 1} and computes an output 𝑜𝑖 ∈ {0, 1}. The outputs
of correct nodes satisfy the following constraints.

validity: If 𝑏𝑖 = 𝑏 ∈ {0, 1} for all 𝑖 ∈ 𝑉𝑔 , then 𝑜𝑖 = 𝑏 for all

𝑖 ∈ 𝑉𝑔 .
agreement: For all 𝑖, 𝑗 ∈ 𝑉𝑔 it holds that 𝑜𝑖 = 𝑜 𝑗 .

We remark that traditionally termination is listed as a third

requirement. Throughout this work, we adopt the convention that

all routines terminate at a node when it computes it output.

In pseudocode, we use a number of further conventions that

simplify the code and can easily be realized by simple checks and/or

calculations.

(1) In each round, each node accepts from each sender only a

single message of the form the algorithm specifies for this

round and discards any other message(s).

(2) When nodes broadcast a message, they also receive the mes-

sage themselves and process them like other senders’ mes-

sages.

(3) If 𝑖 ∈ 𝑉𝑔 terminates with output𝑏 ∈ {0, 1} and communicates

this to other nodes, they will assume that 𝑖 sends 𝑏 in all

future rounds.

(4) Statements of the form “if received at least 𝑥 times 𝑏 ∈
{0, 1} do 𝑦 (𝑏)” are executed for an arbitrary 𝑏 ∈ {0, 1} if the
condition is satisfied for both 0 and 1 (except for Algorithm 8,

where the behavior is explicitly specified).

(5) If an algorithm or subroutine is called on node set 𝑉 ′
, then

𝑉 ′ = {1, . . . , |𝑉 ′ |}. Since node identifiers are known and

which nodes participate in a recursive call is pre-determined,

each node can easily perform the necessary mapping of

identifiers in our algorithms.

(6) If a (sub)routine terminates at a node executing it, the node

also terminates all subroutines that have been called by the

terminating routine.

(7) Any guarantees hold only if strictly fewer than one third

of the nodes executing a routine are faulty. Otherwise, no

guarantee on the behavior is given, except that correct nodes

stick to sending only correctly formatted messages and only

to the node set on which this instance of the algorithm runs

when specified.

We describe the early-stopping Phase King protocol, given in

Algorithm 1, in terms of three subroutines.

Algorithm 1: Early-stopping Phase King algorithm at node

𝑖 ∈ 𝑉𝑔 , where 𝑏𝑖 ∈ {0, 1} is the node’s input.
1 op𝑖 := 𝑏𝑖

// loop terminates by reaching correct king 𝑗

2 for 𝑗 = 1 to 𝑡 + 1 do
// check whether changing opinion is valid

3 (op𝑖 , strong𝑖) := validator(op𝑖)
// adopt king’s value if valid

4 op𝑖 := electorsBC(op𝑖 , strong𝑖 , { 𝑗})
// check for termination

5 (op𝑖 , term𝑖) := termcheck(op𝑖)
6 if term𝑖 = 1 then

// termination broadcast

7 broadcast op𝑖

// terminate

8 return op𝑖

Weak Validator
The first subroutine,

3 weak validator, aims to test for pre-existing

agreement. It is allowed to err on the side of caution, in that some

nodes might end up believing that the inputs agree even if that is

not the case. However, it guarantees that correct nodes can do so

only for one 𝑏 ∈ {0, 1}, which then all nodes adopt as output value.

Definition 2.2 (Weak validator). In validator(𝑏𝑖), each node 𝑖 ∈ 𝑉
receives an input 𝑏𝑖 ∈ {0, 1} and computes output (𝑜𝑖 , strong𝑖) ∈
{0, 1}2. Correct nodes’ outputs satisfy the following constraints.

validity: If 𝑏𝑖 = 𝑏 ∈ {0, 1} for all 𝑖 ∈ 𝑉𝑔 , then 𝑜𝑖 = 𝑏 and

strong𝑖 = 1 for all 𝑖 ∈ 𝑉𝑔 .
3
We stress that the subroutines in this section are not novel building blocks. For

example, both the weak validator and the termination check are instances of Graded
Broadcast [16]. However, our goal is to give intuition on the conceptional building

blocks of our algorithms, prompting us to use context-specific terms.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

62

weak agreement: If strong𝑖 = 1 for some 𝑖 ∈ 𝑉𝑔 , then

𝑜 𝑗 = 𝑜𝑖 for all 𝑗 ∈ 𝑉𝑔 .

A weak validator is implemented by a 2-round algorithm involv-

ing two rounds of broadcast, see Algorithm 2.

Algorithm 2: Weak validator algorithm at 𝑖 ∈ 𝑉𝑔 , where
𝑏𝑖 is the input value of 𝑖 .

1 𝑜𝑖 := 𝑏𝑖

2 broadcast 𝑏𝑖 // first broadcast

3 if received at least 𝑛 − 𝑡 times 𝑏 ∈ {0, 1} then
4 broadcast 𝑏 // second broadcast

5 strong𝑖 := 0

6 if received at least 𝑡 + 1 times 𝑏 ∈ {0, 1} then
7 𝑜𝑖 := 𝑏

8 if received at least 𝑛 − 𝑡 times 𝑏 ∈ {0, 1} then
9 strong𝑖 := 1

10 return (𝑜𝑖 , strong𝑖)

Lemma 2.3. Algorithm 2 satisfies the validity condition of Defini-
tion 2.2.

Proof. Suppose that 𝑏𝑖 = 𝑏 ∈ {0, 1} for all 𝑖 ∈ 𝑉𝑔 . Hence, each
𝑖 ∈ |𝑉𝑔 | broadcasts 𝑏 in the first round and all nodes receive at least

𝑛−𝑡 times𝑏 and at most 𝑡 times 1−𝑏. Because𝑛 > 3𝑡 , |𝑉𝑔 | ≥ 𝑛−𝑡 > 𝑡 .
Therefore, each 𝑖 ∈ |𝑉𝑔 | again broadcasts 𝑏 in the second round and

receives at least 𝑛− 𝑡 times 𝑏 and at most 𝑡 times 1−𝑏. We conclude

that all 𝑖 ∈ 𝑉𝑔 output (1, 𝑏), as required. □

Lemma 2.4. Algorithm 2 satisfies the weak agreement condition of
Definition 2.2.

Proof. Suppose that 𝑖 ∈ 𝑉𝑔 outputs (1, 𝑏) for 𝑏 ∈ {0, 1}. Thus, 𝑖
received 𝑛 − 𝑡 times 𝑏 in the second round. Because 𝑛 > 3𝑡 , at least

𝑛 − 2𝑡 > 𝑡 nodes from 𝑉𝑔 must have sent 𝑏. Therefore, each 𝑗 ∈ 𝑉𝑔
sets 𝑜 𝑗 := 𝑏, provided that 𝑗 does not receive 1 − 𝑏 from more than

𝑡 nodes in the second broadcast.

We show this by establishing that no correct node sends 1 − 𝑏 in

the second broadcast. To see this, observe that each of the correct

nodes sending𝑏 in the second broadcast received𝑏 from at least𝑛−𝑡
nodes in the first round. If 𝑓 nodes are faulty, then at least 𝑛 − 𝑡 − 𝑓
of these are from 𝑉𝑔 . Since correct nodes broadcast only one value,

no node receives more than 𝑓 + |𝑉𝑔 | − (𝑛−𝑡 − 𝑓) = 𝑓 +𝑡 ≤ 2𝑡 < 𝑛−𝑡
times 1 − 𝑏 in the first round. Accordingly, no correct node sends

1 − 𝑏 in the second round, as claimed. □

Electors’ Broadcast
The second subroutine we refer to as electors’ broadcast. In the

early-stopping Phase King protocol, it is implemented by having a

“phase king,” but we later replace the single king by larger groups

of nodes, the electors.

Definition 2.5 (Electors’ broadcast). In electorsBC(𝑏𝑖 , strong𝑖 , 𝐾),
each node 𝑖 ∈ 𝑉 receives input (𝑏𝑖 , strong𝑖) ∈ {0, 1}2 and computes

output 𝑜𝑖 ∈ {0, 1}. Moreover, there is a set 𝐾 ⊆ 𝑉 of nodes that

are designated electors. The outputs of correct nodes satisfy the

following constraints.

validity: If 𝑏𝑖 = 𝑏 ∈ {0, 1} and strong𝑖 = 1 for all 𝑖 ∈ 𝑉𝑔 ,
then 𝑜𝑖 = 𝑏 and strong𝑖 = 1 for all 𝑖 ∈ 𝑉𝑔 .
electors’ agreement: If |𝑉𝑔 ∩ 𝐾 | > ⌊2|𝐾 |/3⌋ and the inputs

satisfy weak agreement, then 𝑜𝑖 = 𝑜 𝑗 for all 𝑖, 𝑗 ∈ 𝑉𝑔 .

A simple implementation of electors’ broadcast with 𝐾 = { 𝑗} for
𝑗 ∈ 𝑉𝑔 is given by the eponymous “king’s broadcast.”

Algorithm 3: King’s broadcast with king 𝑗 at node 𝑖 ∈ 𝑉𝑔 ,
where (𝑏𝑖 , strong𝑖) is the input of 𝑖 .
1 𝑜𝑖 := 𝑏𝑖

2 if 𝑖 = 𝑗 then
3 broadcast 𝑏𝑖 // king’s broadcast

4 if strong = 0 and received 𝑏 ∈ {0, 1} from 𝑗 then
5 𝑜𝑖 := 𝑏

6 return 𝑜𝑖

Lemma 2.6. Algorithm 3 implements electors’ broadcast for𝐾 = { 𝑗}.

Proof. Validity is immediate from the fact that each node re-

turns 𝑏𝑖 when strong𝑖 = 1. Regarding electors’ agreement, observe

that |𝑉𝑔 ∩ 𝐾 | > ⌊2|𝐾 |/3⌋ simply means that 𝑗 ∈ 𝑉𝑔 . Thus, each
correct node with strong = 0 adopts value 𝑏 𝑗 . Recalling that weak

agreement of the inputs entails that if any 𝑖 ∈ 𝑉𝑔 has strong𝑖 = 1,

then 𝑏 𝑗 = 𝑏𝑖 , electors’ agreement follows. □

Termination Check
The third and final building block of the early-stopping Phase King

protocol is the one that makes it early-stopping. It implements a

termination check that, if passed at some correct node, ensures

that agreement is established at all nodes that did not terminate

yet. This results in termination of the remaining nodes in the next

iteration of the overall algorithm.

Definition 2.7 (Termination check). In a call to termcheck(𝑏𝑖),
each node 𝑖 ∈ 𝑉 receives input 𝑏𝑖 ∈ {0, 1} and computes output

(𝑜𝑖 , term𝑖) ∈ {0, 1}2. The outputs of correct nodes satisfy the fol-

lowing constraints.

validity: If 𝑏𝑖 = 𝑏 ∈ {0, 1} for all 𝑖 ∈ 𝑉𝑔 , then 𝑜𝑖 = 𝑏 and

term𝑖 = 1 for all 𝑖 ∈ 𝑉𝑔 .
termination agreement: If term𝑖 = 1 for some 𝑖 ∈ 𝑉𝑔 , then
𝑜 𝑗 = 𝑜𝑖 for all 𝑗 ∈ 𝑉𝑔 .

In the original formulation of the early-stopping Phase King

protocol, this step is merged with the King’s broadcast, but for mod-

ularity and convenience of presentation we seperate this task here.

Our implementation, which we will be able to reuse for our novel

algorithms, is essentially a synchronous version of the termination

test in the first randomized asynchronous consensus routine due

to Bracha [4] – but as mentioned earlier, it can also be seen as an

instance of Graded Broadcast [16].

More specifically, note that Definition 2.2 and Definition 2.7

are essentially identical. The only difference that strong𝑖 has been

relabeled as term𝑖 , as we seek to decide on termination rather than

whether we will ignore the input from the electors. We conclude

that Algorithm 2 also implements Definition 2.7.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

63

Corollary 2.8. Algorithm 2 satisfies the validity and termination
agreement conditions of Definition 2.7.

Analysis of the Early-Stopping Phase King
Protocol
Analyzing Algorithm 1 now is straightforward.

Theorem 2.9. Suppose that the subroutine calls in Algorithm 1
are implemented by Algorithms 2 and 3. Then the resulting algorithm
solves binary consensus in the presence of up to 𝑡 := ⌈𝑛/3⌉ − 1 Byzan-
tine faults. It runs for at most 6(𝑓 + 1) rounds and has correct nodes
in total send at most 6𝑛2 (𝑓 + 1) single-bit messages.

Proof. By Lemmas 2.3, 2.4 and 2.6 and Corollary 2.8, the subrou-

tines satisfy the specifications given in Definitions 2.2, 2.5 and 2.7.

Hence, if op𝑖 = 𝑏 ∈ {0, 1} for all 𝑖 ∈ 𝑉𝑔 at the beginning of a loop

iteration, the validity conditions of the subtasks ensure that no

correct node ever changes op𝑖 = 𝑏 and that they terminate with

output 𝑏 in this loop iteration. In particular, this proves the validity

condition of binary consensus. Note also that, due to the conven-

tion that terminated nodes are assumed to resend their output on

each broadcast, this applies even when a subset of the nodes in 𝑉𝑔
already terminated with output 𝑏 in an earlier loop iteration.

Next, we establish that termination occurs within 6(𝑓 +1) rounds.
To see this, observe that there is some 𝑗 ∈ {1, . . . , 𝑓 +1} such that 𝑗 ∈
𝑉𝑔 and consider the 𝑗-th loop iteration. Since the outputs of the call

to validator(op𝑖) satisfy weak agreement, by electors’ agreement

the call to electorsBC(op𝑖 , strong𝑖 , 𝑗) will result in all correct nodes

agreeing on some output 𝑏 ∈ {0, 1}. Hence, by validity of the call

to termcheck(op𝑖), all correct nodes terminate by the end of this

loop iteration. Because each loop iteration has 6 rounds—two times

two for Algorithm 2, one for Algorithm 3, and one for broadcasting

the termination value—the running time bound follows. The bound

on the number of messages sent by correct nodes trivially follows,

and the fact that they are single-bit messages is immediate from

the pseudocode listings.

It remains to show the agreement condition of binary consensus.

To this end, suppose that 𝑖 ∈ 𝑉𝑔 is one of the first terminating

nodes, with output 𝑜𝑖 . Thus, the output of its preceding call to

termcheck(op𝑖) returned (𝑜𝑖 , 1). By termination agreement, this

entails that each node 𝑗 ∈ 𝑉𝑔 had output (𝑜𝑖 , term𝑗) for some

term𝑗 ∈ {0, 1}. Thus, 𝑗 either terminates immediately with output

op𝑗 = 𝑜𝑖 after broadcasting its output or it participates in another

loop iteration which all correct nodes 𝑘 ∈ 𝑉𝑔 start with op𝑘 = 𝑜𝑖 .

As discussed earlier, this results in all of these nodes returning 𝑜𝑖
in this loop iteration, proving agreement. □

3 EARLY-STOPPING PHASE KINGWITH
DOUBLING ELECTOR SET SIZE

In this section, we present a simple approach to reducing the bit

complexity of the early-stopping Phase King protocol by calling an

efficient consensus routine on an initially small elector set.

The pseudocode is given in Algorithm 4 and deviates from Al-

gorithm 1 in that it calls Electors’ Broadcast on disjoint sets of

exponentially growing size. Thus, consensus is guaranteed after

O(log 𝑓) iterations, while constant-factor growth of an initially

constant-sized set ensures the early-stopping property.

Algorithm 4: Early-Stopping Phase King with Doubling

Elector Set Size at node 𝑖 ∈ 𝑉𝑔 , where 𝑏𝑖 ∈ {0, 1} is the
node’s input. Differences to Algorithm 1 are marked in

blue. In our implementation subroutine calls are realized

by Algorithms 2 and 5, respectively.

1 op𝑖 := 𝑏𝑖

// minimum index of participants in Electors’

Broadcast for current loop iteration

2 ind := 1

// loop will not be completed, terminating once

fewer than 1/3 of electors are faulty

3 for 𝑗 = 0 to ⌈log(𝑛/6)⌉ do
// check whether changing opinion is valid

4 (op𝑖 , strong𝑖) := validator(op𝑖)
// adopt Electors’ value if valid

5 op𝑖 :=

electorsBC(op𝑖 , strong𝑖 , {ind, . . . ,max{ind + 3 · 2𝑗 , 𝑛}})
6 ind := ind + 3 · 2𝑗 + 1

// check for termination

7 (op𝑖 , term𝑖) := termcheck(op𝑖)
8 if term𝑖 = 1 then
9 broadcast op𝑖 // termination broadcast

10 return op𝑖 // terminate

Lemma 3.1. There is some 𝑗 ∈ {0, . . . , ⌈log(max{𝑓 /2, 1})⌉ such
that fewer than one third of the nodes on which Electors’ broadcast is
called in iteration 𝑗 of Algorithm 4 are faulty.

Proof. Note that the claim is trivially satisfied if 𝑓 ≤ 1, since

for 𝑗 = 0 Electors’ Broadcast is called on 4 nodes. Hence, assume

that 𝑓 ≥ 2, implying that ⌈log(max{𝑓 /2, 1})⌉ = ⌈log(𝑓 /2})⌉.
If

∑⌈log(𝑓 /2) ⌉
𝑗=0

3 ·2𝑗 +1 ≥ 𝑛, the sets on which Electors’ Broadcast

is called in iterations 0 to ⌈log(𝑓 /2)⌉ form a partition of the entire

node set. Because 𝑓 < 𝑛/3, then there must be one of the considered

iterations satisfying the claim.

On the other hand, if

∑⌈log(𝑓 /2) ⌉
𝑗=0

3 ·2𝑗 +1 < 𝑛, assume for contra-

diction that the claim is false. Thus, in each iteration at least 2
𝑗 + 1

nodes on which Electors’ Broadcast is called are faulty. However,

this is a contradiction, because the total number of faults is then at

least

⌈log(𝑓 /2) ⌉∑︁
𝑗=0

2
𝑗 + 1 = 2

⌈log(𝑓 /2) ⌉+1 − 1 + (⌈log(𝑓 /2)⌉ + 1) > 𝑓 . □

Corollary 3.2. If the implementations of the subroutine calls in
Algorithm 4meet the specifications given in Definitions 2.2, 2.5 and 2.7,
Algorithm 4 solves binary consensus and terminates at the latest in
iteration ⌈log(max{𝑓 /2, 1})⌉ of its main loop.

Proof. Analogous to Theorem 2.9, using Lemma 3.1 to show that

the algorithm terminates within ⌈log(max{𝑓 /2, 1})⌉ iterations. □

What remains is to come up with an efficient implementation of

Electors’ Broadcast for |𝐾 | ≠ 1 and to bound the resulting time and

bit complexity of the algorithm.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

64

Efficient Electors’ Broadcast when |𝐾 | > 1

This task has already been solved in prior work for the purpose of

obtaining an efficient consensus protocol that is not early-stopping.

Since Algorithm 4 starts with |𝐾 | = 4 and increases 𝐾 by a constant

factor in each step, the Electors’ Broadcast implementation itself

needs not be early-stopping. In [2], Electors’ Broadcast is solved by

letting the electors run consensus to achieve a common view, and

then act as if they were a single king. For completeness, we state

Algorithm 5: Electors’ broadcast with elector set𝐾 at node

𝑖 ∈ 𝑉𝑔 , where (𝑏𝑖 , strong𝑖) is the input of 𝑖 . The algorithm
assumes that a consensus protocol for the nodes of 𝐾 is

given and has a known running time 𝑅, so that all correct

nodes expect the electors’ broadcast in round 𝑅 + 1 and

terminate at the end of round 𝑅 + 1.

1 𝑜𝑖 := 𝑏𝑖

2 if 𝑖 ∈ 𝐾 then
3 participate in consensus on node set 𝐾 with input 𝑏𝑖

4 broadcast the local output 𝑐𝑖 of the consensus run

// electors’ broadcast

5 if strong = 0 then
// break ties arbitrarily

6 set 𝑜𝑖 to majority value received from nodes in 𝐾

7 return 𝑜𝑖

the resulting Electors’ Broadcast routine in Algorithm 5.

In [2], this approach is used to solve consensus recursively, i.e.,

the consensus routine called is identical to the top-level protocol

executed on roughly half of the nodes. This ensures that the top-

level routine requires only a constant number of broadcasts from

each node, while the two recursive calls each have both half as

many senders and receivers. This reduces the bit complexity from

cubic to quadratic, resulting in the following theorem.

Theorem 3.3 ([2]). The recursive Phase King protocol solves binary
consensus in the presence of up to 𝑡 ≤ ⌈𝑛/3⌉ − 1 Byzantine faults.
Regardless of the number of faults, it terminates in O(𝑡) rounds and
the total number of bits communicated by nodes in 𝑉𝑔 is O(𝑡𝑛).

We can now plug this algorithm for 𝑡 = ⌈|𝐾 |/3⌉ − 1 into Algo-

rithm 5 to obtain an efficient implementation of Electors’ Broadcast.

Lemma 3.4. Algorithm 5 with the consensus routine given by The-
orem 3.3 implements Electors’ Broadcast with running time O(|𝐾 |).
Only correct nodes in 𝐾 send messages, with in total O(|𝐾 |𝑛) bits.

Proof. To see that the validity condition of Electors’ Broadcast

holds, observe that all 𝑖 ∈ 𝑉𝑔 with strong𝑖 = 1 maintain their

opinion and return 𝑏𝑖 .

Regarding electors’ agreement, assume that |𝑉𝑔 ∩𝐾 | > ⌊2|𝐾 |/3⌋.
Thus, by Theorem 3.3 the consensus call succeeds, i.e., agreement

and validity hold. Denote by 𝑏 ∈ {0, 1} the (agreed-on) return value

of nodes in 𝑉𝑔 ∩ 𝐾 , i.e., 𝑐𝑖 = 𝑏 for all 𝑖 ∈ 𝑉𝑔 ∩ 𝐾 .
We distinguish two cases, the first being that there is no 𝑖 ∈ 𝑉𝑔

with strong𝑖 = 1. In this case, each 𝑖 ∈ 𝑉𝑔 sets 𝑜𝑖 := 𝑏, since strictly

more than one half of the nodes in 𝐾 are correct and broadcast 𝑏

after termination of the consensus run.

The other case is that for some 𝑖 ∈ 𝑉𝑔 , strong𝑖 = 1. Then, by

weak agreement of the inputs, for all 𝑗 ∈ 𝑉𝑔 , 𝑏 𝑗 = 𝑏𝑖 . Since 𝑏 𝑗 is the
input nodes in 𝐾 use in the call to consensus, validity of this call

implies that 𝑏 = 𝑏𝑖 . Hence, a majority of the nodes in 𝐾 broadcast 𝑏

after completing execution of the consensus protocol. We conclude

that any 𝑗 ∈ 𝑉𝑔 satisfying strong𝑗 = 0 sets 𝑜 𝑗 = 𝑏 = 𝑏𝑖 , while those

with strong𝑗 = 1 stick with 𝑜 𝑗 = 𝑏 𝑗 = 𝑏𝑖 .

To show the bit complexity, observe that only correct nodes that

are in 𝐾 communicate. They send |𝑉𝑔 ∩ 𝐾 | (𝑛 − 1) < |𝐾 |𝑛 bits in

the final broadcast and, by Theorem 3.3, O(|𝐾 |2) = O(|𝐾 |𝑛) bits
in the consensus call. Finally, the time complexity equals the time

complexity of the call to consensus plus one round for the broadcast,

which by Theorem 3.3 is O(|𝐾 |). □

From the above results, Theorem 1.1 readily follows.

Theorem 1.1. Algorithm 4 solves binary consensus with up to
𝑡 := ⌈𝑛/3⌉ − 1 Byzantine faults in O(𝑓 + 1) rounds, where 0 ≤ 𝑓 ≤ 𝑡
is the number of actual faults. Its bit complexity is O(𝑛𝑡 log(𝑓 + 2)).

Proof. Corollary 3.2 shows correctness. To show the running

time and bit complexity bounds, denote by 𝑗max the last iteration of

the main loop. By Lemma 3.1, 𝑗max ≤ ⌈log(max{𝑓 /2, 1}⌉). Observe
that each iteration of the main loop takes a constant number of

rounds and broadcasts, plus the time and communication cost for

executing Electors’ Broadcast with |𝐾 | = Θ(2𝑗). By Lemma 3.4, the

running time is hence bounded by

Θ
©«
𝑗max∑︁
𝑗=0

2
𝑗 + 1

ª®¬ = Θ(𝑓 + 1)

and the bit complexity by

Θ
©«
𝑗max∑︁
𝑗=0

(2𝑗 + 𝑡)𝑛ª®¬ = Θ(𝑛𝑡 log(𝑓 + 2)) . □

4 RECURSIVE EARLY-STOPPING PHASE KING
In this section, we present our early-stopping recursive Phase King

protocol, which has optimal resilience and asymptotically optimal

round and bit complexities. In the previous section, we used recur-

sion under the hood to achieve a better bit complexity, by using

the (non-early-stopping) recursive Phase King protocol from [2].

Now, we eliminate the resulting Θ(log 𝑓) overhead in bit complex-

ity by recursively calling the early-stopping algorithm itself. In

this algorithm, nodes first try to achieve consensus using a single

king. If they do not succeed, they use about half of the nodes as

electors. If this fails again, the remaining nodes become electors

and agreement is guaranteed.

Handling Off-by-One Round Counters
In our algorithm, we face the difficulty that subroutines might stop

early in an a priori unknown round. In order to continue execution,

nodes need to coordinate when to do so. Unfortunately, we cannot

rely on consensus to solve this task: the subset of nodes executing

the subroutine call might contain too many faulty nodes to be able

to do so, and running consensus on all nodes of the instance of the

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

65

Algorithm 6: Simulating synchronous algorithm A, code

at node 𝑣 . Correct nodes might not start execution in the

same round, but in two consecutive rounds. ⊥ is used as

a special symbol representing that no message has been

received from a node during the preceding round (or the

algorithm has just been started). For convenience, we as-

sume that the state of 𝑠𝑣 maintains all information needed

to determine which messages to send. The simulated se-

quence here is send-receive-compute, where computations

“before” the first round are performed before the while loop.

However, the computations for simulated round 𝑟 ∈ N>0
are deferred to the end of round 2𝑟 + 1, since all round-𝑟

messages must be collected first.

1 𝑟𝑣 := 1 // count rounds

2 for𝑤 ∈ 𝑉 do
3 𝑚𝑤,0 :=𝑚𝑤,1 := ⊥
4 set 𝑠𝑣 to the initial state of 𝑣 in A based on 𝑣 ’s input

5 while A has not terminated do
6 if 𝑟𝑣 mod 2 = 0 then
7 for𝑤 ∈ 𝑉 do
8 denote by𝑚 the message 𝑣 sends to𝑤 in round

𝑟𝑣/2 of A when in state 𝑠𝑣
9 send ((𝑟𝑣 mod 4)/2,𝑚) to𝑤

10 if received (𝑏,𝑚) from𝑤 ∈ 𝑉 then
11 𝑚𝑤,𝑏 :=𝑚

12 if 𝑟𝑣 mod 2 = 1 and 𝑟𝑣 ≠ 1 then
13 update 𝑠𝑣 , i.e., perform computations of A at the

end of round (𝑟𝑣 − 1)/2, assuming that messages

𝑚𝑤,((𝑟𝑣−1) mod 4)/2) ,𝑤 ∈ 𝑉 , have been received

14 for𝑤 ∈ 𝑉 do
15 𝑚𝑤,((𝑟𝑣−1) mod 4)/2) := ⊥ // clear memory

16 if 𝑠𝑣 indicates termination with output 𝑜𝑣 then
17 return 𝑜𝑣
18 𝑟𝑣 := 𝑟𝑣 + 1

algorithm initiating the subroutine call would defeat the purpose

of the recursion.

We compromise by ensuring that all nodes recommence execu-

tion within one round of each other. However, this requires us to

handle this “desynchronization,” in that despite it we need a way

of ensuring consistent execution of the code. Rather than manually

adapting the algorithm, we describe a generic compiler that takes a

synchronous algorithm A and transforms it into a modified algo-

rithm that simulates A at the expense of a factor-2 slowdown and

one additional bit per message.

The simulation spends two rounds per simulated round to en-

sure that all messages from round 𝑟 ∈ N>0 are received before

proceeding to the next round. Each messages is prefixed by the

simulated round it belongs to modulo 2, which enables receivers to

correctly attribute messages to simulated rounds. The pseudocode

is given in Algorithm 6. The following theorem formalizes these

statements.

Theorem 4.1. Assume that Algorithm 6 is started at each 𝑣 ∈ 𝑉𝑔
in two consecutive rounds. Then Algorithm 6 simulates A, i.e., each

𝑣 ∈ 𝑉𝑔 produces the same output as it would in some execution of A
with the same set of correct nodes 𝑉𝑔 with the same inputs. At each
node, it terminates after 2𝑟 + 1 rounds if it terminates after 𝑟 ∈ N
rounds in this execution of A. Correct nodes send the same messages
as in this execution, but with an additional bit as prefix.

Proof. Denote by local round 𝑟 at node 𝑣 the loop iteration

during which 𝑟𝑣 = 𝑟 . Moreover, denote by superspript 𝑠𝑟𝑣 ∈ N>0 the
value of 𝑠𝑣 at the end of local round 𝑟 at node 𝑣 and by𝑚𝑟

𝑤,𝑏
the

value of𝑚𝑤,𝑏 at node 𝑣 in local round 𝑟 before executing Line 15,

i.e., clearing memory after state update. We claim that for each

𝑟 ∈ N such that 𝑣 ∈ 𝑉𝑔 has not terminated, in its local instance of

the algorithm

(i) 𝑠2𝑟+1𝑣 equals the state ofA after round 𝑟 (where 𝑟 = 0means

at initialization);

(ii) if 𝑟 is odd, 𝑚2𝑟+1
𝑤,1

equals the message received from 𝑤 in

round 𝑟 ;

(iii) if 𝑟 ≠ 0 is even,𝑚2𝑟+1
𝑤,0

equals the message received from𝑤

in round 𝑟 ; and

(iv) 𝑣 terminates within 2𝑟 + 1 local rounds with output 𝑜𝑣 if and

only if does so in A in round 𝑟

in some
4
synchronous execution of A with the same set of correct

nodes and inputs. Note that these statements imply the claims of

the theorem, so proving the claim will complete the proof of the

theorem.

We show the claim by induction on 𝑟 . For the base case of 𝑟 = 0,

observe that 𝑠1𝑣 equals the state of 𝑣 at initialization of A and 𝑣

terminates in local round 1 with output 𝑜𝑣 if and only if A does so

based on its state at initialization. Since (ii) and (iii) are vacuously

true for 𝑟 = 0, this covers the base case.

For the step from 𝑟 − 1 ∈ N to 𝑟 , observe that node𝑤 ∈ 𝑉𝑔 sends

the message indicated by 𝑠2𝑟−1𝑤 in its local round 2𝑟 , which could

possibly be nomessage ifA specifies so or𝑤 has already terminated.

If amessage is sent, it is received by 𝑣 in local round 2𝑟−1, 2𝑟 , or 2𝑟+1
due to the prerequisite of the theorem that all nodes start execution

within one round of each other. By the induction hypothesis, 𝑠2𝑟−1𝑤

corresponds to the state of𝑤 after round 𝑟 − 1 in some execution of

A, so𝑤 sends the message consistent with the execution of A we

constructed so far. This applies also if𝑤 sends no message, since

this is then either indicated by 𝑠2𝑟−1𝑤 or 𝑤 has terminated, which

by point (iv) of the induction hypothesis happens if and only if𝑤

terminated within 𝑟 rounds in the constructed execution of A.

If 𝑟 is odd and 𝑤 sends a message, it is prefixed by 𝑏 = 1 and

𝑣 stores it in 𝑚𝑤,1. Because 𝑣 resets this variable only when its

round counter equals 3modulo 4, such a reset cannot occur in local

rounds 2𝑟 − 1 or 2𝑟 . Since𝑚2𝑟+1
𝑤,1

denotes the value of the variable

before the reset, statement (ii) for index 𝑟 follows if 𝑤 sends a

message. Analogously, if 𝑟 is even, this message is prefixed by 𝑏 = 0

and stored in𝑚𝑤,0, which is not reset in local rounds 2𝑟 − 1 or 2𝑟

because 𝑣 resets𝑚𝑤,0 only when its round counter equals 1modulo

4. This shows statement (iii) for index 𝑟 in case𝑤 sends a message.

On the other hand, if 𝑟 is odd and 𝑤 sends no message to 𝑣

when 𝑟𝑤 = 2𝑟 , then it sends no message to 𝑣 that is prefixed with

4
An execution is fully specified by the inputs of correct nodes and faulty nodes’

messages. All statements are meant to refer to the same execution, which is constructed

inductively depending on the (arbitrary) messages sent by faulty nodes.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

66

1 in rounds when 𝑟𝑤 ∈ {2𝑟 − 3, . . . , 2𝑟 + 3} either, because it only
sends such messages in local rounds that are equal to 2 modulo 4.

Accordingly, 𝑣 receives no message from𝑤 prefixed by 1 from 𝑤

during rounds with 𝑟𝑣 ∈ {2𝑟 − 2, . . . , 2𝑟 + 2}. Given that 𝑣 resets

𝑚𝑣,1 in the round satisfying 𝑟𝑣 = 2𝑟 − 3 (after processing messages

with prefix 1 received from𝑤), (ii) follows also in this case for index

𝑟 . Statement (iii) for index 𝑟 for the case that𝑤 sends no message

to 𝑣 in the round when 𝑟𝑤 = 2𝑟 is shown analogously.

By the induction hypothesis, 𝑠2𝑟−1𝑣 equals the state of 𝑣 after

𝑟 − 1 rounds of the execution of A constructed so far. As we al-

ready established (ii) and (iii) for 𝑟 , the messages 𝑣 assumes to have

received from correct nodes 𝑤 ∈ 𝑉𝑔 when updating 𝑠𝑣 in round

2𝑟 + 1 are consistent with this execution of A as well. Since faulty

nodes may send arbitrary messages (which determine round 𝑟 of

the constructed execution), (i) follows for index 𝑟 . Finally, (iv) is

now immediate from (i) for index 𝑟 . This completes the induction

and hence the proof of the theorem. □

Electors’ Broadcast for Early-Stopping Recursive
Phase King
Our second ingredient is an efficient implementation of Electors’

Broadcast for arbitrary 𝐾 that stops early if the utilized consensus

algorithm stops early. It needs to function correctly under the re-

laxed condition that all correct nodes start execution within one

round of each other, imposing the same constraint on the consensus

algorithm it calls. In turn, it is only required to have correct nodes

terminate within one round of each other. As we will show later,

these conditions are sufficient to enable us to use our consensus

protocol recursively to implement the consensus routine we use in

the solution to Electors’ Broadcast given in Algorithm 7.

To achieve the required property that all nodes terminate within

one round of each other, we introduce what we call a voting barrier,
in which the correct nodes vote to proceed when they are ready. In

order to overcome the obstacle that the called consensus routine

might fail arbitrarily when a third or more of the participating

nodes are faulty, this voting process involves all nodes and allows

for “convincing” other nodes if there is proof that a correct node

voted for proceeding with output 𝑏 ∈ {0, 1}. Concretely, nodes
collect 𝑛 − 𝑡 votes for value 𝑏 ∈ {0, 1} before proceeding with this

value, while voting for output 𝑏 not only if𝐾 indicates this to be the

output of the consensus call, but also if there are already 𝑡 + 1 votes

for this value. Thus, if any correct node passes the barrier in round 𝑟

due to seeing 𝑛− 𝑡 votes, the remaining correct nodes see 𝑛− 2𝑡 > 𝑡

votes and vote to proceed in round 𝑟 +1. Conceptually, this approach
is borrowed from the classic fault-tolerant clock synchronization

protocol by Srikanth and Toueg [25].

Lemma 4.2. Suppose that correct nodes start executing Algorithm 7
within one round of each other and denote for 𝑓 < 𝑘/3 by 𝑇 (𝑘, 𝑓)
a worst-case running time bound for the consensus algorithm on 𝑘
nodes with 𝑓 faults and by 𝐵(𝑘) its bit complexity. Then

• Algorithm 7 satisfies the validity and electors’ agreement con-
ditions of Definition 2.5;

• correct nodes terminate within one round of each other;
• correct nodes terminate within 𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) + 𝑂 (1)
rounds;

Algorithm 7: Electors’ broadcast with elector set𝐾 at node

𝑖 ∈ 𝑉𝑔 , where (𝑏𝑖 , strong𝑖) is the input of 𝑖 . The algorithm
assumes that a consensus protocol of resilience ⌈|𝐾 |/3⌉ − 1

on node set 𝐾 is given, whose worst-case running time is

bounded by a known value 𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1).
1 op𝑖 := 𝑏𝑖

2 if 𝑖 ∈ 𝐾 then
3 in separate thread:

4 execute the given consensus protocol on node set 𝐾

with input 𝑏𝑖
5 if the consensus run terminated after 0 rounds then

/* wait for other nodes to begin execution

of Algorithm 7 */

6 wait for one round

// electors’ broadcast

7 broadcast elect(𝑐𝑖), where 𝑐𝑖 is the local output of the
consensus run

8 for max{𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) + 3, 4} rounds do
// execute only once for each 𝑏

9 if for 𝑏 ∈ {0, 1} received elect(𝑏) from at least ⌈|𝐾 |/3⌉
nodes in 𝐾 or elect(𝑏) from at least 𝑡 + 1 nodes in 𝑉
during loop then

10 broadcast vote(𝑏)
11 if for 𝑏 ∈ {0, 1} received vote(𝑏) from at least 𝑛 − 𝑡 nodes

in 𝑉 during loop then
12 if strong = 0 then

// if true for both 𝑏, anything is fine

13 op𝑖 := 𝑏

14 return (op𝑖)

15 return (op𝑖) // consensus call timed out

• if |𝐾 ∩ 𝑉𝑔 | > ⌊2|𝐾 |/3⌋, then correct nodes terminate within
𝑇 (|𝐾 |, |𝐾 \𝑉𝑔 |) +𝑂 (1) rounds; and

• correct nodes send in total 𝐵(𝑘) +𝑂 (𝑛2) bits.5

Proof. Nodes with strong𝑖 = 0 maintain their opinion and re-

turn𝑏𝑖 , showing the validity condition of Definition 2.5. For electors’

agreement, observe that the precondition that |𝐾 ∩𝑉𝑔 | > ⌊2|𝐾 |/3⌋
ensures that the consensus call satisfies agreement and validity, and

also terminates within𝑇 (|𝐾 |, |𝐾 \𝑉𝑔 |) ≤ 𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ −1) rounds
at all nodes in 𝐾 ∩𝑉𝑔 . Denote by 𝑏 ∈ {0, 1} the output of this call.
Observe that correct nodes sends no elect(1 − 𝑏) messages. Hence,

correct nodes send no vote(1 − 𝑏) messages. Thus, no correct node

adopts opinion 1 − 𝑏, and each correct node 𝑖 outputs 𝑏𝑖 or 𝑏.

We distinguish two cases. If there is a node 𝑖 ∈ 𝑉𝑔 with strong𝑖 =

1, then 𝑏 𝑗 = 𝑏𝑖 for all 𝑗 ∈ 𝑉𝑔 by weak agreement of the inputs.

Hence, by validity of the consensus routine, 𝑏 = 𝑏𝑖 and electors’

agreement follows.

On the other hand, if strong𝑖 = 0 for all 𝑖 ∈ 𝑉𝑔 , note that termina-

tion of the consensus call within𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) rounds implies

that each node in 𝐾 ∩𝑉𝑔 broadcasts elect(𝑏) no later than its local

roundmax{𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) + 1, 2}, where the 2 accounts for the
5
Note that the bit complexity will depend on the recursion level, since we need to

distinguish between messages from different threads. However, the effect on the overall

bit complexity is asymptotically negligible.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

67

special case that𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) = 0 and the node waits for one

round. Since we make sure that no such message is broadcast in

the first round, by assumption each correct node will receive this

message while executing Algorithm 7, no later than local round

max{𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) + 2, 3}. It follows that all correct nodes
broadcast elect(𝑏) by the next round, and consequently terminate

with output 𝑏 if they did not already do so.

To see that correct nodes terminate within one round of each

other, suppose that 𝑖 ∈ 𝑉𝑔 terminates in round 𝑟 ∈ N. If termination

at 𝑖 is due to the for loop having completed, by the assumption

that all correct nodes start within one round of each other, each

node 𝑗 ∈ 𝑉𝑔 terminates by the end of round 𝑟 + 1. If termination is

due to 𝑖 having received vote(𝑏) messages from 𝑛 − 𝑡 nodes during
execution of the for loop, observe that at least 𝑛 − 2𝑡 > 𝑡 of them

were sent by correct nodes. Since correct nodes cannot satisfy any

of the preconditions for broadcasting vote(𝑏) in the first round

of executing the loop, these messages were sent when all correct

nodes were already executing Algorithm 7 (and thus in particular

the loop). Hence, any correct node satisfies the precondition for

sending vote(𝑏) by the end of round 𝑟 and broadcasts vote(𝑏) in
round 𝑟 + 1. It follows that each correct node received vote(𝑏)
messages from all at least 𝑛 − 𝑡 correct nodes while executing the
loop and terminates by the end of round 𝑟 + 1.

Next, termination within 𝑇 (|𝐾 |, ⌈|𝐾 |/3⌉ − 1) + 𝑂 (1) trivially
follows from the maximum number of rounds spent in the for

loop. If |𝐾 ∩ 𝑉𝑔 | > ⌊2|𝐾 |/3⌋, correct nodes in 𝐾 terminate the

consensus instance and, by agreement, broadcast elect(𝑏) for the
same 𝑏 ∈ {0, 1} within 𝑇 (|𝐾 |, |𝐾 \ 𝑉𝑔 |) + 𝑂 (1) rounds. Hence, all
correct nodes will sent vote(𝑏) at most one round later (unless

some node already terminated; this case is covered by the preceding

analysis) and terminate one round after that; again, we use that

correct nodes send no vote messages in the first round of the loop,

so correct nodes do not “miss” any such messages due to not having

started Algorithm 7 yet.

Finally, the bound onmessage complexity follows from observing

that, apart from messages sent by the consensus run, each correct

node broadcasts at most twice. □

Main Algorithm
With the above pieces in place, we are ready to state and analyze

our recursive early-stopping protocol. The pseudo-code is given

in Algorithm 8. The algorithm follows the same pattern as the

previous ones, but implements Electors’ Broadcast by Algorithm 7

with recursive application of itself, which it calls at most twice

on roughly half of the nodes. In order to cope with correct nodes

potentially terminating in different rounds, the compiler given

in Algorithm 6 is applied to the entire code with the exception of

subroutine calls to Algorithm 7.

We now turn to analyzing the algorithm. First, we observe that

at last one of the calls to Electors’ Broadcast must succeed, i.e., there

are not too many faulty nodes in 𝐾 .

Lemma 4.3. If 1 ∉ 𝑉𝑔 , then |𝑉𝑗 | > 3|𝑉𝑗 \𝑉𝑔 | for some 𝑗 ∈ {0, 1}.

Proof. Observe that the sets {1}, 𝑉0, and 𝑉1 form a partition of

𝑉 . Since 𝑛 > 3𝑡 , thus at least one of the sets must contain fewer

than one third faulty nodes. □

Algorithm 8: Recursive early-stopping Phase King algo-

rithm at node 𝑖 ∈ 𝑉𝑔 , where 𝑏𝑖 ∈ {0, 1} is the node’s input.
The algorithm assumes that all correct nodes start exe-

cution within one round of each other. All code but the

two calls to electorsBC(op𝑖 , strong𝑖 ,𝑉𝑗) for 𝑗 ∈ {0, 1} is

passed through the compiler given by Algorithm 6. These

two calls are implemented by Algorithm 7 recursively us-

ing Algorithm 8 as consensus routine. Note that this can

cause nodes to sendmessages frommultiple parallel threads

in the same round, one for each level of recursion. By la-

beling the messages of recursion level ℓ with their level

index using a variable length code, recipients can cor-

rectly attribute messages to threads at an additive overhead

of 𝑂 (log(ℓ + 1)) bits for each level-ℓ message. As before,

the calls to validator(op𝑖) and termcheck(op𝑖) are imple-

mented by Algorithm 2, and Algorithm 3 implements the

call to electorsBC(op𝑖 , strong𝑖 , {1}).
1 op𝑖 := 𝑏𝑖

// check whether changing opinion is valid

2 (op𝑖 , strong𝑖) := validator(op𝑖)
// electors’ broadcast implemented in Algorithm 3

3 op𝑖 := electorsBC(op𝑖 , strong𝑖 , {1})
// check for termination

4 (op𝑖 , term𝑖) := termcheck(op𝑖)
5 if term𝑖 = 1 then

// termination broadcast

6 broadcast op𝑖

7 return op𝑖 // terminate

8 𝑉0 := {2, . . . , ⌈𝑛/2⌉}
9 𝑉1 := {⌈𝑛/2⌉ + 1, . . . , 𝑛}

10 for 𝑗 ∈ {0, 1} do
11 (op𝑖 , strong𝑖) := validator(op𝑖)

/* electors’ broadcast implemented in

Algorithm 7 */

12 op𝑖 := electorsBC(op𝑖 , strong𝑖 ,𝑉𝑗)
// check for termination

13 (op𝑖 , term𝑖) := termcheck(op𝑖)
14 if term𝑖 = 1 then

// termination broadcast

15 broadcast op𝑖

16 return op𝑖 // terminate

Correctness readily follows from the already established results.

Corollary 4.4. If all correct nodes start executing Algorithm 8 within
one round of each other, Algorithm 8 solves binary consensus.

Proof. The proof is by induction on 𝑛. For the base case of 𝑛 = 1,

𝑓 = 𝑡 = 0 and hence 1 ∈ 𝑉𝑔 = {1}. Correctness hence follows analo-
gously to the proof of Theorem 2.9 based on the correctness of the

synchronous subroutines and Theorem 4.1. For the step from 𝑛 to

𝑛 + 1, from the induction hypothesis and Lemma 4.2 we get the cor-

rectness of the calls to for electorsBC(op𝑖 , strong𝑖 ,𝑉𝑗) for 𝑗 ∈ {0, 1}.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

68

Correctness of the remaining subroutine calls follows from the pre-

requisites of the corollary and Theorem 4.1. We can hence reason

analogously to the proof of Theorem 2.9, where Lemma 4.3 shows

that at the latest the final call to Electors’ Broadcast guarantees that

|𝐾 ∩𝑉𝑔 | > ⌊2|𝐾 |/3⌋. □

It remains to analyze the time and message complexity of the

algorithm. To this end, denote by 𝑇 (𝑛, 𝑓) the worst-case running
time and by 𝐵(𝑛, ℓ) the worst-case bit complexity of the algorithm

when executed in recursion depth ℓ ∈ N (ℓ = 1 denotes the initial

call). Here, we take into account ℓ , since we need to add 𝑂 (log ℓ)
bits to each message in order for nodes to distinguish between

messages from different recursion levels that are sent concurrently.

Lemma 4.5. When implemented as stated in Algorithm 8 with
Algorithms 2 and 3 providing the synchronous routines for the calls
to op𝑖 := electorsBC(op𝑖 , strong𝑖 , {1}), validator, and termcheck,
respectively, Algorithm 8 terminates within 𝑂 (𝑓 + 1) rounds and lets
correct nodes send 𝑂 (𝑛2) bits in total.

Proof. We prove the claim by induction on 𝑘 ∈ N, where the
claim is for 𝑛 < 2

𝑘+1
it holds that 𝑇 (𝑛, 𝑓) ≤ 𝐶 (𝑓 + 1) and 𝐵(𝑛, ℓ) ≤

𝐶𝑛𝑡 log(ℓ + 1) for a sufficiently large constant 𝐶 . For the base case

of 𝑘 = 0, 𝑛 = 1, all subroutines take 𝑂 (1) rounds, and no messages

are sent.

For the step from 𝑘 ∈ N to 𝑘 + 1, denote for 𝑗 ∈ {0, 1} by 𝑓𝑗 :=
|𝑉𝑗 \𝑉𝑔 |. Note that, analogously to the proof of Theorem 2.9, the

algorithm terminates at the latest when calling termcheck after a

call to electorsBCwith |𝑉𝑔∩𝐾 | > 2|𝐾 |/3. Moreover, by Theorem 4.1,

Lemma 4.2, the fact that all subroutines except for the calls to

electorsBC(op𝑖 , strong𝑖 ,𝑉𝑗) are implemented by constant-round

primitives, and the assumption that 𝐶 is sufficiently large, all steps

but the recursive calls to Algorithm 8 take at most 𝐶 rounds. We

distinguish three cases.

(1) Node 1 is correct. Then the algorithm terminates without a

recursive call, i.e., within 𝐶 ≤ 𝐶 (𝑓 + 1) rounds.
(2) Node 1 is faulty, but 𝑓0 < |𝑉0 |/3. Since |𝑉0 | ≤ 𝑛/2 ≤ 2

𝑘+1
, we

can apply the induction hypothesis to bound 𝑇 (|𝑉0 |, 𝑓0) ≤
𝐶 (𝑓0 + 1). The algorithm terminates after the first recursive

call, by round 𝐶 +𝐶 (𝑓0 + 1) ≤ 𝐶 (𝑓 + 1).
(3) Node 1 is faulty and 𝑓0 ≥ |𝑉0 |/3. Then Lemma 4.2 shows

termination of the first recursive call in𝑇 (|𝑉0 |, ⌈|𝑉0 |/3⌉−1) ≤
𝑇 (|𝑉0 |, 𝑓0 − 1) rounds. As for 𝑗 ∈ {0, 1} we have that |𝑉𝑗 | ≤
𝑛/2 ≤ 2

𝑘+1
, we can apply the induction hypothesis to bound

𝑇 (|𝑉0 |, 𝑓0−1) ≤ 𝐶𝑓0 and𝑇 (|𝑉1 |, 𝑓1) ≤ 𝐶 (𝑓1+1). We conclude

that the algorithm terminates within 𝐶 +𝐶𝑓0 +𝐶 (𝑓1 + 1) =
𝐶 (𝑓 + 1) rounds.

It remains to bound the message complexity. From Theorem 4.1,

Lemma 4.2, and the fact that all subroutines but the calls to

electorsBC(op𝑖 , strong𝑖 ,𝑉𝑗) take constant time, we get that the

number of broadcast operations per node outside of recursive calls

is constant. Since 𝐶 is sufficiently large and each such message has

size𝑂 (log(ℓ + 1)) (due to the need to identify the level of recursion

it belongs to), this sume up to in total at most (𝐶𝑛2 log(ℓ + 1))/5
bits. The recursive calls are executed on at most half of the nodes

each. By the induction hypothesis, they hence each contribute at

most

𝐶 log(ℓ +2)
(𝑛
2

)
2

= 𝐶𝑛2 log(ℓ +1) · log(ℓ + 2)
2 log(ℓ + 1) < 𝐶𝑛2 log(ℓ +1) · 4

5

,

since log(ℓ + 2)/log(ℓ + 1) < 1.6 for ℓ ≥ 1. Hence, the bound on the

number of communicated bits follows. This completes the induction.

The claim of the lemma now follows, because𝑇 (𝑛, 𝑓) ≤ 𝐶 (𝑓 + 1) ∈
𝑂 (𝑓 + 1) and 𝐵(𝑛, 1) ≤ 𝐶𝑛2 ∈ 𝑂 (𝑛2). □

Theorem 1.2 is now immediate fromCorollary 4.4 and Lemma 4.5.

REFERENCES
[1] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal Distributed

Consensus (Extended Abstract). In Symposium on Foundations of Computer
Science (FOCS), page 410–415, 1989.

[2] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal Distributed
Consensus, page 313–321. Plenum Press, USA, 1992.

[3] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal Early Stopping in

Distributed Consensus. In Distributed Algorithms, pages 221–237, 1992.
[4] Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Information and

Computation, 75(2):130–143, 1987.
[5] Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early

decision and stopping in synchronous consensus: a predicate-based guided tour.

In International Conference on Networked Systems (NETYS), pages 206–221, 2017.
[6] Tushar Deepak Chandra and Sam Toueg. Time and Message Efficient Reliable

Broadcasts. InWorkshop on Distributed Algorithms (WDAG), pages 289–303, 1990.
[7] Bogdan S Chlebus and Dariusz R Kowalski. Robust gossiping with an application

to consensus. Journal of Computer and System Sciences, 72(8):1262–1281, 2006.
[8] Bogdan S Chlebus and Dariusz R Kowalski. Time and communication efficient

consensus for crash failures. In International Symposium on Distributed Comput-
ing, pages 314–328, 2006.

[9] Bogdan S. Chlebus, Dariusz R. Kowalski, and Jan Olkowski. Fast Agreement in

Networks with Byzantine Nodes. In Symposium on Distributed Computing (DISC),
volume 179, pages 30:1–30:18, 2020.

[10] Brian A Coan. A Communication-Efficient Canonical Form for Fault-Tolerant

Distributed Protocols. In Symposium on Principles of Distributed Computing
(PODC), pages 63–72, 1986.

[11] Brian A. Coan and Jennifer L. Welch. Modular construction of a Byzantine agree-

ment protocol with optimal message bit complexity. Information and Computation,
97(1):61–85, 1992.

[12] Danny Dolev. The Byzantine Generals Strike Again. Journal of Algorithms,
3(1):14–30, 1982.

[13] Danny Dolev and Christoph Lenzen. Early-Deciding Consensus is Expensive. In

Symposium on Principles of Distributed Computing (PODC), pages 270––279, 2013.
[14] Danny Dolev and Rüdiger Reischuk. Bounds on Information Exchange for

Byzantine Agreement. Journal of the ACM (JACM), 32(1):191–204, 1985.
[15] Danny Dolev and H. Raymond Strong. Authenticated Algorithms for Byzantine

Agreement. SIAM Journal on Computing (SICOMP), 12(4):656–666, 1983.
[16] Paul Feldman and Silvio Micali. Optimal Algorithms for Byzantine Agreement.

In Symposium on Theory of Computing (STOC), pages 148–161, 1988.
[17] Z. Galil, A. Mayer, and Moti Yung. Resolving message complexity of Byzantine

Agreement and beyond. In Foundations of Computer Science (FOCS), pages 724–
733, 1995.

[18] Idit Keidar and Sergio Rajsbaum. A Simple Proof of the Uniform Consensus

Synchronous Lower Bound. Information Processing Letters (IPL), 85(1):47–52,
2003.

[19] Christoph Lenzen, Matthias Függer, Markus Hofstätter, and Ulrich Schmid. Effi-

cient Construction of Global Time in SoCs Despite Arbitrary Faults. In Euromicro
Conference on Digital System Design (DSE/SEAA), pages 142–151, 2013.

[20] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.
[21] Philippe Raipin Parvédy and Michel Raynal. Optimal Early Stopping Uniform

Consensus in Synchronous Systems with Process Omission Failures. In Proceed-
ings of the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 302–310, 2004.

[22] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement

in the Presence of Faults. Journal of the ACM (JACM), 27(2):228–234, 1980.
[23] Kenneth J Perry and Sam Toueg. Distributed Agreement in the Presence of

Processor and Communication Faults. IEEE Transactions on Software Engineering
(TSE), (3):477–482, 1986.

[24] Philippe Raïpin Parvédy, Michel Raynal, and Corentin Travers. Strongly Termi-

nating Early-stopping 𝑘-set Agreement in Synchronous Systems with General

Omission Failures. Theory of Computing Systems (TCS), 47(1):259–287, 2010.
[25] T.K. Srikanth and Sam Toueg. Optimal Clock Synchronization. In Symposium on

Principles of Distributed Computing (PODC), pages 71–86, 1985.

Session 2 PODC ’22, July 25–29, 2022, Salerno, Italy

69

	Abstract
	1 Introduction & Related Work
	2 Early-Stopping Phase King, Broken Down & Reassembled
	3 Early-Stopping Phase King with Doubling Elector Set Size
	4 Recursive Early-Stopping Phase King
	References

