
Experiences from the Future - Using Object-Oriented

Concepts for 3D Visualization and Validation of

Industrial Scenarios

Volker Luckas

Fraunhofer Institute for Computer Graphics (IGD)

and

Ralf D�orner

Fraunhofer Applications Center for Computer Graphics in the Chemical and Pharma-

ceutical Industry (AGC)

An integrated application framework is described suitable for the automatic generation of 3D visu-
alizations and animation based upon sensor, simulator or layout planning data. The principal con-
tribution is the introduction of the term animation element and the description of the underlying
concept. The technical innovation is the object-oriented design of animation elements integrating
geometry and individual, object-speci�c behavior. Animation elements build an object-oriented
framework as the elements may be customized for a speci�c application. Moreover, a framework
for implementing appropriate animation and visualization tools has been developed.

Additional Key Words and Phrases: Object-orientation, 3D visualization, Simulation, Animation
Element, Automation

1. INTRODUCTION

This paper describes an application framework [Fayad and Schmidt 1997] for the
automatic generation of 3D visualizations and animation based upon abstract in-
dustrial simulation or layout planning data output.
Therefore a framework is needed capable of generating attractive visualizations

that makes use of the provided data. In particular, our approach has to obey certain
requirements of the industrial context, i.e. the generation has to be done

Name: Volker Luckas
Address: Rundeturmstra�e 6, D-64283 Darmstadt, Germany
AÆliation: Fraunhofer Institute for Computer Graphics (IGD)
Name: Ralf D�orner
Address: Varrentrappstra�e 40-42, D-60486 Frankfurt, Germany
AÆliation: Fraunhofer Applications Center for Computer Graphics in the Chemical and
Pharmaceutical Industry (AGC)

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for pro�t or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior speci�c permission and/or a fee. Copyright 2000
ACM 00360-0300/00/0300es

http://crossmark.crossref.org/dialog/?doi=10.1145%2F351936.351975&domain=pdf&date_stamp=2000-03-01

2 � V. Luckas and R. D�orner

Fig. 1. Main parts of the application framework CASUS System.

(1) with little e�ort in terms of time and costs

(2) by non-experts

(3) in a exible, reusable and reliable way.

Since current visualization and animation tools [Mahieddine and Lafon 1990;
Gervautz and Beltcheva 1994] do not ful�ll these speci�c requirements, we propose
a new approach based upon a consistent usage of object-oriented paradigms [Meyer
1988; Booch 1994] at two levels:

(1) a framework of basic Clipart-like animation elements that rely on an object-
oriented data structure

(2) a framework of applications that can be used to select, compose and visualize
these animation elements in an appropriate way

The following section deals with the conception of level 2 while the next section
shows how object orientation itself can be used as an approach for the de�nition of
3D visualization and animation (level 1).

2. CONCEPTION OF THE APPLICATION FRAMEWORK

In this section, the process of creating 3D animation using the individual modules
that form the proposed application framework is described. Prototypes of the
modules have already been implemented in the context of CASUS System [Luckas
and Broll 1997]
An overview of the whole system is depicted in �gure 1 and described in more

detail below.
Starting with an application scenario, the �rst step to be done is a widespread

information gathering process. In the production and logistics context, for example,
information, such as machine characteristics, throughput, orientation, location of

Using OO Concepts for 3D Visualization and Validation of Industrial Scenarios � 3

identification, initialization,
integration / connection to

the scene

Maintenance part

Interfaces

Object-specific part

State and condition
variables

Interaction part

Geometry Interface load()
scale()

Attachment Interface attach()
detach()

. . .

object-specific methods
animation-specific intelligence
application-specific intelligence

variables saving object
status and condition at

any time

methods for interaction with
the user or other animation

elements

Attributes

Attachment

att_attach()
att_detach()

. . .

Geometry

geo_load()
geo_scale()

. . .

Animation Element

{

{
{
{

{

Fig. 2. Structure of an animation element.

each individual object, as well as the �gures to be optimized, have to be detected
and made available to the whole system. Based upon this information, a simulation
model and a 3D visualization model have to be created.
For this task, a layout editor is provided where prede�ned 3D objects called

'animation elements', taken from a library, can be interactively placed, scaled and
oriented. In order to place them on 2D layout plans, the animation elements are
represented in this module analogous to 2D Clipart. The elements are stored in
an animation elements library called CASUS Base, o�ering database functionality,
especially for searching the appropriate elements. This allows the customer to set
up a scaled model of the real scenario within just a short period of time.
Since a realistic representation of the dynamics inside a scenario is based upon

simulation results calculated with speci�c event-oriented simulators, all the ele-
ments and components of the simulation model have to be directly mapped to
animation elements in the 3D model. This can be done automatically with the
module CASUS Trias. Furthermore, it takes the events produced by an simulator,
normalizes and translates them to method invocations of the corresponding ani-
mation element. Thus, animation elements must not only consist of geometry, but
also provide functionality available through object-speci�c methods. By normaliz-
ing simulator traces the CASUS Trias module allows to be adapted for arbitrary

4 � V. Luckas and R. D�orner

Basic parts

Basic animation
elements

1st level animation
elements

2nd level animation
elements

M

M

M

R/I

R/I’ R/I’R/I’R/I’ R/I’

R/I R/I

M

M MMM M

M

M

M

M

M
I

I

I

I IIIII II

I

I

I

I

I

I

I

I III I

I

I

I

I

I

I

.

.

.

.
.
.

.

M: Maintenance part
Interfaces

R/I: Object specific part
Interaction specific part

I

Fig. 3. Hierarchy tree of the animation element concept.

event-oriented simulators.
In the next step, an animation system is needed that can be addressed through

the method invocations of the animation elements and that can generate the ani-
mation itself. In the corresponding module, CASUS Anim, this can be done in a
exible way. Animation parameters, such as time (frames per second, length of the
animation, visible time span) or illumination parameters, can be con�gured by the
customer. Additionally, quality aspects like pixel count or di�erent levels of geo-
metrical abstraction, as well as di�erent output formats, are supported. In order
to present the generated 3D animation, visualization modules are provided, such
as a renderer (CASUS Render) or a VRML [ISO/IEC DIS 14772-1 1997] browser
(CASUS Presenter [Sch�afer et al. 1997]). Thus, CASUS System is able to ful�ll indi-
vidual requirements, such as high-end production rendering for marketing purposes
or distribution of complete 3D visualizations over the Internet for validating.
Altogether, the system framework for an automatic generation of 3D visual-

izations consists of six central applications: the (event-oriented) simulator, the
animation element library, the layout editor, the simulator trace translator and
normalizer, the animation system and the visualization systems.

3. CONCEPTION OF ANIMATION ELEMENTS

As we saw in the previous section, the term 'animation element' plays a central role
within the whole concept of the application framework. The animation element
concept is the result of transferring the object-oriented paradigm to 3D animation.
An animation element can be considered a class. It has attributes like geometry, po-
sition, material, sound, state variables, paths, reference points (abstract identi�ers
for 3D coordinates on the object) and attachments for de�ning logical hierarchies.

Using OO Concepts for 3D Visualization and Validation of Industrial Scenarios � 5

Fig. 4. Object-speci�c scaling method for a conveyor belt.

All attributes may be combined individually following the aggregation principle
de�ning the animation element's basic complexity. The attributes themselves are
represented as classes, o�ering selected sets of methods representing their typical
functionality; for example, the attribute position o�ers methods for placing and
rotating the animation element's geometry. Besides, the animation element itself
o�ers object-speci�c methods.
All animation element classes are derived directly or implicitly from a set of base

classes having one abstract class as root. Thus, they provide a de�ned interface
allowing a uniform access for automated processing. Using the mechanisms of in-
heritance and overloading, animation element classes are able to provide additional
object-speci�c functionality. The scale method for a conveyor, for instance, has to
be rede�ned in order to avoid geometric distortion. Instead of a simple geometric
scale, additional rollers and feet have to be added and scaled (see �gure 4). The
underlying concept guarantees that existing animation elements may also be tai-
lored to suit special requirements without having to write new animation element
classes from scratch.
From each animation element class, an arbitrary number of instances can be

created, being independent and distinguished by di�erent states. This may be
used, for example, to implement crowd animation in an elegant way.
Being classes, the animation elements also o�er the other advantages of object ori-

6 � V. Luckas and R. D�orner

Fig. 5. Animation element 'forklift' with object-speci�c methods in VRML.

entation, such as encapsulation, modularization or easy maintenance [Meyer 1988].
As shown in �gure 1, there is a module provided in the CASUS System called

CASUS AEdit, that supports the user when creating or modifying an animation
element. Additionally, the module CASUS Geo can be used to convert between
di�erent geometric formats that are used for the geometry attribute.
The animation element concept allows the customer to prede�ne the functionality

and behavior as well as the visual appearance of each object being part of a future
visualization. With this concept it is possible to generate a visualization just by
telling each animation element how to behave within a period of time. The customer
is not confronted with animation parameters or visualization problems since they
are already provided by the animation element. The integration of geometry and
behavior even guarantees the reusability of all animation elements since there no
application speci�c dependency has to be considered.

4. REALIZATION

The modules of the application framework are implemented in C++ [Stroustrup
1991] and Java following an object-oriented conception.
The animation elements are implemented as C++ classes with references to exter-

nal �les where the geometric description is stored. The geometric modeling is done
by professional and experienced designers in order to ensure high visual quality. Fol-
lowing this conception, the designers are not required to deal with object-oriented
programming. Geometry and class de�nition are stored together inside a library to
guarantee uniform access.
The translator CASUS Trias produces an animation description generating a

Using OO Concepts for 3D Visualization and Validation of Industrial Scenarios � 7

Fig. 6. Visualization example of a production and logistics scenario.

C++ source code. It uses the description of the layout editor for instantiation of
objects in the scenario and invocation of methods for placing, orientating and scal-
ing. CASUS Trias is also responsible for the dynamic part of the animation script
since it maps simulation events to method calls with corresponding parameters.

This C++ code is compiled and linked to the animation system kernel imple-
mented as a class library. The resulting executable animation contains all infor-
mation necessary for visualization and is completely controlled by CASUS Anim.
The parameters the user can con�gure in CASUS Anim are send to the executable
animation that generates a corresponding visualization , e.g. in a rendering format
or in VRML.

Another solution we propose is to implement animation elements in Java and
VRML where a Java class is related to a VRML description via the VRML script
node. Then, the animation element object can be used 'as is' in a VRML-based
animation description. The animation system's task in this case is to build up the
VRML scene graph, integrating the animation elements as leaves via the VRML
transform node. The advantage to this is that the object-speci�c functionality of
an animation element is still present and may be addressed not only by the creator
of the animation description, but by the end users, as well.

In order to validate our realization concepts of an integrated, object-oriented
application framework, we used our implemented prototypes in certain industrial
scenarios. These were mainly located in production and logistics. We have been
able to successfully connect CASUS System to several event-oriented simulators and
have generated 3D visualizations for various industrial companies. CASUS System
is also used in the context of the Demonstration Center Simulation in Production
and Logistics at the Fraunhofer Gesellschaft, Germany [DZ-SIMPROLOG].

CASUS System was tested on di�erent platforms, including IRIX, Solaris and
Windows NT.

8 � V. Luckas and R. D�orner

5. CONCLUSION

In this paper, we presented a exible, object-oriented application framework for an
integrated generation of 3D visualization and animation using prede�ned animation
elements. The paradigm of object orientation has been applied to the modules of
the framework, as well as to the animation elements themselves. Thus, with this
approach, the goal of a low-cost and fast production by non-experts can be reached.
Besides the possibility of distributing 3D visualization and animation over the

Internet, there are several additional advantages, such as 3D navigation support and
platform independence, that are especially attractive to the customer. The classical
output formats, such as video streams or online presentations, are also supported,
since the output format generation is done using generic driver modules.
Flexibility and direct and realistic visualization capabilities establish the basis

for a fast, cheap and reliable decision-making process.

REFERENCES

Beeson, G. 1997. An object-oriented approach to VRML development. In Proceedings of

VRML 97 (Monterey, CA, 1997).

Booch, G. 1994. Object-oriented Analysis and Design with Applications (2nd ed.).
The Benjamin/Cummings Series in Object-oriented Software Engineering. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, CA.

D�orner, R., Luckas, V., and Spierling, U. 1997. Ubiquitous animation { an element-
based concept to make 3D animations commonplace. In L. Pocock, R. Hopkins, D. Ebert,
and J. Crow Eds., Visual Proceedings { The Art and Interdisciplinary Programs of SIG-

GRAPH 97, COMPUTER GRAPHICS Annual Conference Series (Los Angeles, CA, Aug.
1997), pp. 210. ACM SIGGRAPH: The Association for Computing Machinery, Inc., New
York.

DZ-SIMPROLOG. Demonstration Center Simulation in Production and Logistics (DZ-
SIMPROLOG). http://www.igd.fhg.de/dzsim/.

Encarnao, J. L. et al. 1993. Advanced Research and Development Topics in Anima-
tion and Scienti�c Visualization. In R. A. Earnshaw and D. Watson Eds., Animation
and Scienti�c Visualization, Tools and Applications, Academic Press, Harcourt Brace &
Company.

Fayad, M. and Schmidt, D. 1997. Object-oriented application frameworks. Communica-
tion of the ACM 40, 10 (October).

Gervautz, M. and Beltcheva, O. 1994. An approach for object-oriented animation de-
sign. Technical Report TR-186-2-94-2 (Aug.), Institute for Computer Graphics, Technical
University Vienna, Vienna.

ISO/IEC DIS 14772-1. 1997. The virtual reality modeling language, VRML97 speci�cation.
ISO/IEC DIS 14772-1 (April).

Luckas, V. and Broll, T. 1997. CASUS { an object-oriented, three-dimensional animation
system for event-oriented simulators. In N. Magnenat-Thalmann and D. Thalmann Eds.,
Proceedings Computer Animation '97 (Geneva, June 1997), pp. 144{150. University of
Geneva (MIRALab, CUI), Swiss Federal Institute of Technology (LIG), Swiss National
Research Foundation: IEEE Computer Society Press, Los Alamitos, CA.

Mahieddine, M. and Lafon, J. C. 1990. An object-oriented approach for modelling ani-
mated entities. In N. Magnenat-Thalmann and D. Thalmann Eds., Proceedings of Com-
puter Animation 1990 (1990), pp. 177{187. Springer Verlag, Tokio.

Meyer, B. 1988. Object-oriented Software Construction. Prentice Hall, New York, NY.

Sch�afer, A., M�uller, W., and Luckas, V. 1997. A java based VRML 2.0 browser. In
Poster Proceedings, 6th International World Wide Web Conference (Santa Clara, CA, July
1997).

Using OO Concepts for 3D Visualization and Validation of Industrial Scenarios � 9

Schmidt, D. and Fayad, M. 1997. Lessons learned. Communication of the ACM 40, 10

(October).

Schmidt, D., Fayad, M., and Johnson, R. 1996. Software patterns. Communication of

the ACM 39, 10 (October).

Stroustrup, B. 1991. The C++ Programming Language (2nd ed.). Addison-Wesley Pub-
lishing Company, Inc., Reading, MA.

