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ABSTRACT

We give the first polynomial-time algorithm to estimate the mean of

a 𝑑-variate probability distribution with bounded covariance from

�̃� (𝑑) independent samples subject to pure differential privacy. Prior

algorithms for this problem either incur exponential running time,

require Ω(𝑑1.5) samples, or satisfy only the weaker concentrated or

approximate differential privacy conditions. In particular, all prior

polynomial-time algorithms require 𝑑1+Ω (1) samples to guarantee

small privacy loss with łcryptographicallyž high probability, 1 −
2−𝑑

Ω (1)
, while our algorithm retains �̃� (𝑑) sample complexity even

in this stringent setting.

Our main technique is a new approach to use the powerful Sum

of Squares method (SoS) to design differentially private algorithms.

SoS proofs to algorithms is a key theme in numerous recent works in

high-dimensional algorithmic statistics ś estimators which appar-

ently require exponential running time but whose analysis can be

captured by low-degree Sum of Squares proofs can be automatically

turned into polynomial-time algorithms with the same provable

guarantees. We demonstrate a similar proofs to private algorithms

phenomenon: instances of the workhorse exponential mechanism

which apparently require exponential time but which can be an-

alyzed with low-degree SoS proofs can be automatically turned

into polynomial-time differentially private algorithms. We prove a

meta-theorem capturing this phenomenon, which we expect to be

of broad use in private algorithm design.

Our techniques also draw new connections between differen-

tially private and robust statistics in high dimensions. In particular,

viewed through our proofs-to-private-algorithms lens, several well-

studied SoS proofs from recent works in algorithmic robust statistics

directly yield key components of our differentially private mean

estimation algorithm.
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1 INTRODUCTION

Mean estimation is perhaps the most elementary statistical task:

given samples from a probability distribution 𝐷 , estimate its ex-

pected value. In this paper, we study mean estimation in 𝑑 dimen-

sions subject to differential privacy (DP) [27], a rigorous notion of

data privacy. Privacy is of natural concern in high-dimensional sta-

tistics, where data may be sensitive and standard estimators like the

empirical mean may leak information about individuals in a dataset

(see, e.g., privacy attacks in [15, 24, 29, 32] and the survey [28]).

On the other hand, privacy and statistical estimation seem largely

compatible: in the large-sample limit, good statistical estimators

will have vanishing dependence on each individual sample anyway.

Indeed, even though the empirical mean (the natural benchmark

for accuracy in mean estimation) is not differentially private, es-

timators are known which match its accuracy guarantees while

also providing differential privacy [13, 43]. Namely, an accurate and

private estimate of the mean can be obtained using 𝑛 = 𝑂 (𝑑) sam-

ples. However, known estimators achieving this sample complexity

require exponential running time.

If one instead focuses on polynomial-time algorithms, exist-

ing estimators all face significant drawbacks: either they require

𝑛 ≥ 𝑑1+Ω (1) samples, or they may leak private information with

probability 2−𝑑
𝑐
for small 𝑐 > 0 [31, 39, 43]. (In privacy language,

they satisfy only concentrated or approximate differential privacy.)

Since a major goal of privacy is to make strong assurances on leak-

age of sensitive information, best practices disallow private data

leakage even with łcryptographicallyž small probability 2− poly(𝑑) .
One way to satisfy this stringent requirement is to provide pure

differential privacy, which disallows substantial leakage of private

information with any nonzero probability. Thus, the main question

in our paper is:

Is there a polynomial-time pure DP algorithm for mean estimation

using 𝑛 = 𝑂 (𝑑) samples?

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Our main result answers this question affirmatively, up to log-

arithmic factors. To state our main result, we define differential

privacy:

Definition 1 ((Pure) differential privacy). For 𝜀 > 0, a (ran-

domized) algorithm𝐴which takes𝑛 inputs𝑋1, . . . , 𝑋𝑛 is 𝜀-differentially

private (𝜀-DP) if for every pair of inputs 𝑋1, . . . , 𝑋𝑛 and 𝑋 ′
1, . . . , 𝑋

′
𝑛

such that 𝑋𝑖 = 𝑋 ′
𝑖 for all except a single index 𝑖 ∈ [𝑛] and for all

possible events 𝑆 ⊆ Range(𝐴),
P(𝐴(𝑋1, . . . , 𝑋𝑛) ∈ 𝑆) ≤ 𝑒𝜀 · P(𝐴(𝑋 ′

1, . . . , 𝑋
′
𝑛) ∈ 𝑆) .

Theorem 2 (Main Theorem ). For every 𝑛,𝑑 ∈ N and 𝑅, 𝛼, 𝜀, 𝛽 >

0 there is a polynomial-time 𝜀-DP algorithm such that for every

distribution𝐷 onR𝑑 such that ∥ E𝑋∼𝐷 𝑋 ∥ ≤ 𝑅 andCov𝑋∼𝐷 (𝑋 ) ⪯ 𝐼 ,

given 𝑋1, . . . , 𝑋𝑛 ∼ 𝐷 , with probability 1 − 𝛽 the algorithm outputs

𝜇 such that ∥𝜇 − E𝑋∼𝐷 𝑋 ∥ ≤ 𝛼 , so long as

𝑛 ≥ �̃�

(
𝑑 + log(1/𝛽)

𝛼2𝜀
+ 𝑑 log𝑅 +min(𝑑, log𝑅) · log(1/𝛽)

𝜀

)
.

Furthermore, if an 𝜂-fraction of the samples 𝑋1, . . . , 𝑋𝑛 are adversar-

ially corrupted, the algorithm maintains the same guarantee, at the

cost that now ∥𝜇 − E𝑋 ∥ ≤ 𝛼 +𝑂 (√𝜂).

The sample complexity of our algorithm is nearly linear in 𝑑 ,

thereby answering our main question up to logarithmic factors.

Beyond this core goal, we highlight that our algorithm is also ro-

bust to adversarial contaminations and enjoys sub-Gaussian confi-

dence intervals when 𝑛 ≫ 𝑑 log𝑅+min(𝑑,log𝑅) log(1/𝛽)
𝜀 , both sought-

after features in recent non-private algorithms [17, 21, 33, 49]. The

sample complexity of our algorithm is nearly optimal, with the

exception of the term (log(1/𝛽) · min(𝑑, log𝑅))/𝜀 ś see the full

version of the paper for the corresponding lower bounds. (Put

differently, information-theoretically it is possible to achieve sub-

Gaussian confidence intervals under the slightly milder assumption

𝑛 ≫ 𝑑 log𝑅+log(1/𝛽)
𝜀 .)

Beyond clip-and-noise. Obtaining the guarantees of our algo-

rithm requires going beyond existing techniques for private mean

estimation, which we briefly review. A common technique in dif-

ferential privacy is to łjust add noise.ž More precisely, suppose that

𝑓 (𝑋1, . . . , 𝑋𝑛) is a bounded sensitivity function of 𝑛 inputs, meaning

that replacing a single input 𝑋𝑖 with an arbitrary 𝑋 ′
𝑖 changes the

value of 𝑓 by at most Δ (in an appropriate choice of norm). Then,

𝑓 (𝑋1, . . . , 𝑋𝑛) +𝑍 will be private, where𝑍 is an appropriate random

variable whose magnitude depends on Δ.

Existing polynomial-time algorithms for privatemean estimation

all take this approach. First, to limit the sensitivity of the empirical

mean, the algorithms clip the samples 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 to lie in

an ℓ2 ball. Considering the case Cov(𝑋 ) ≈ 𝐼 , we will have ∥𝑋 −
E𝑋 ∥ ≈

√
𝑑 , so using a ball of radius at least

√
𝑑 is unavoidable

without introducing too much error in the clipping phase. Then,

the algorithms output 𝜇 + 𝑍 , where 𝜇 is the empirical mean of the

clipped samples.

If one takes the coordinates of 𝑍 to be draws from a Laplace

distribution, the resulting algorithm will satisfy 𝜀-DP, but the rel-

atively heavy tails of the Laplace distribution impose a cost that

𝑛 must be at least 𝑑1.5/𝜀 to obtain nontrivial guarantees. On the

other hand, if 𝑍 is Gaussian, the resulting algorithm appears to

tolerate 𝑛 ≈ 𝑑/𝜀 samples, but it no longer satisfies pure DP. Instead,

to guarantee privacy loss at most 𝜀 with probability at least 𝛿 over

the internal randomness in the algorithm, 𝑛 ≥ 𝑑
√︁
log(1/𝛿)/𝜀 is

required (i.e. the algorithm satisfies concentrated DP), meaning that

for łcryptographically smallž 𝛿 , this algorithm, too, has super-linear

sample complexity.

One might naturally suspect, therefore, that strong privacy guar-

antees like this simply require Ω(𝑑1.5) samples. Indeed, if nastier

distributions than we consider here (violating bounded covariance)

are allowed, these two bounds of Ω(𝑑1.5) and Ω(𝑑) are known to

be tight for pure and concentrated DP, respectively [15, 31, 39], and

similar separations were previously conjectured even for bounded-

covariance distributions [13].

However, [43] (building on related techniques of [13]) show

that in exponential time one can go beyond the clip-and-noise

approach to mean estimation. In particular, a tournament-based

approach gives a pure-𝐷𝑃 algorithm using 𝑂 (𝑑/𝜀) samples. We

obtain nearly-matching guarantees in polynomial time ś ours is

the first polynomial-time private algorithm to go beyond the clip-

and-noise approach.

Sum-of-Squares Proofs to Private Algorithms. Proofs to Algorithms

has become a powerful algorithm-design technique in computa-

tional high-dimensional statistics. Roughly speaking, the proofs to

algorithms technique shows that statistical estimation problems

which can be solved to a given accuracy by some (not necessarily

polynomial-time) estimator can actually be solved in polynomial

time with the same accuracy if the analysis of that estimator can

be captured by a certain restricted but powerful formal proof system,

known as the SoS proof system. This insight has had major conse-

quences in robust and heavy-tailed statistics, clustering, learning

latent variable models, and beyond. (For instance, [35, 47, 48, 59],

and the survey [61].)

We show that this approach also applies to private algorithm

design. Our techniques give a generic method to turn (potentially)

exponential-time instances of the workhorse exponential mecha-

nism, whose breadth of applicability is hard to overstate [58], into

polynomial time algorithms, when their analyses are captured by

the same SoS proof system. This gives us the following proofs-to-

algorithms principle for private algorithm design, which we antici-

pate will be widely applicable:

Proofs to Private Algorithms (see Theorem 11):

Instances of the exponential mechanism with low-

degree SoS proofs of bounded sensitivity and utility

automatically yield computationally-efficient private

algorithms.

(See Section 2 for a description of the exponential mechanism and

more on SoS proofs.) We are able to capture this principle as a

formal meta-theorem, Theorem 11 ś since its statement requires a

few more technical definitions than we are ready to state, we defer

it for now.

Convex Programming and Private Algorithms. Like nearly all ap-

plications of the Sum of Squares method, algorithms which result

from our proofs-to-private-algorithms approach ultimately use con-

vex programs ś semidefinite programs, in our case. Our techniques
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give a substantially novel approach to convex programming in pri-

vate algorithms. Prior works largely do this in one of two ways.

Some privatize the input before applying a convex program to it (e.g.,

privatizing a graph and then post-processing with convex program-

ming [11, 30]). This can be limiting, as the convex program cannot

itself be helpful in achieving privacy, only in some post-processing.

Other algorithms use a private solver for the convex program itself

[37, 52]. This can be quite technically challenging: few DP solvers

for convex programs are known, and in particular, we are not aware

of any generic DP algorithm for solving semidefinite programs.

Instead, our algorithms hide convex programs behind the exponen-

tial mechanism. Namely, we use convex programs as score functions.

(Again, see Section 2 for an explanation of this terminology.) Our

key insight is: when convex programs are married to the exponential

mechanism in the correct way, the resulting exponential mechanisms

can be implemented in polynomial time using private log-concave

sampling algorithms. This builds directly on [9], who use a similar

approach but for much simpler un-constrained convex optimization

problems resulting from empirical risk minimization problems. The

analysis of this interplay of exponential mechanism and convex

programming is completely generic ś meaning it has nothing to do

with the particular setting of mean estimation ś and is captured in

the proof of our (meta)-Theorem 11.

Robust Statistics and Privacy. Robust statistics, the study of statis-

tics in the presence of corrupted samples, has enjoyed a recent re-

naissance [22]. Robustness and privacy are at least spiritual cousins

ś both demand that a statistical estimator not change its behavior

łtoo muchž when one or several samples are replaced arbitrarily.

However, the formal requirements for robustness and privacy are

rather different. The output of a good robust mean estimator should

not move far in Euclidean distance when 1% of the samples it is

given are corrupted by a malicious adversary. Privacy, by contrast,

demands that the distribution of outputs of an algorithm not shift

too much when any single sample is replaced by another.

In spite of this formal difference, [26] was able to use robust

estimators in one dimension to construct private estimators. This

suggests that the flurry of recent algorithms for high-dimensional

robust statistics with strong provable guarantees should yield high-

dimensional private estimators.

Our work makes good on this promise. In particular, our algo-

rithm for privatemean estimation ultimately employs awell-studied

Sum-of-Squares SDP from robust mean estimation, and our analy-

sis applies several SoS proofs originally formulated to analyze that

SDP in robust statistics. Thus, our proofs-to-private-algorithms ap-

proach gives a lens through which algorithms from robust statistics

can yield private algorithms.

Lastly, there is an even more direct connection between our par-

ticular result and recent developments in robust statistics. The ro-

bustness renaissance was kicked off by [20, 49], which gave the first

polynomial-time algorithms for robustly learning a Gaussian where

corrupted samples can be tolerated with dimension-independent

error. Prior polynomial-time algorithms for the same problem have

guarantees no better than what can be obtained by naive sample-

clipping, and as a result incur error scaling as 𝜂 · poly(𝑑) when an

𝜂-fraction of samples are corrupted. Just as [20, 49] gave the first

algorithms with guarantees going beyond naive sample clipping in

the robust setting, our work is the first to go beyond clip-and-noise

in the private setting.

Related Work. A mature body of work focuses on private mean

estimation. The most relevant results restrict the underlying dis-

tribution to satisfy a moment bound (including sub-Gaussianity),

examples include [1, 4, 8, 10, 12ś14, 16, 25, 38ś41, 43, 46, 65]. All

prior study of the multivariate case either focuses on concentrated

or approximate DP, or provides computationally-inefficient algo-

rithms for pure DP. We are the first to give an efficient𝑂 (𝑑)-sample

algorithm for multivariate mean estimation under pure DP. This

matches the sample complexity of the best known algorithms under

concentrated DP, while simultaneously strengthening the privacy

guarantee.

Other prior work studies private mean estimation of arbitrary

(bounded) distributions [15, 29, 63]. Interestingly, in this case, the

optimal sample complexity under pure and concentrated DP are

separated by a factor of
√
𝑑 , leading to the naive Laplace mechanism

being effectively optimal. It appears that our bounded moments

assumption induces a qualitatively different structure, which elimi-

nates the benefits of relaxing to concentrated DP. Pinpointing the

precise conditions under which a separation occurs remains an

interesting direction for future work.

Other works study private statistical estimation in different and

more general settings, including mixtures of Gaussians [2, 42],

graphical models [67], discrete distributions [19], and median esti-

mation [5, 64]. Some recent directions involve guaranteeing user-

level privacy [51, 54], or a combination of local and central DP for

different users [6]. See [44] for further coverage of DP statistical

estimation.

Several other works employ sampling-based methods to effi-

ciently implement the exponential mechanism [3, 9, 45, 50]. [3, 45,

50] construct sophisticated sampling algorithms by hand to sample

from a non-log-concave distributions; by contrast, we use convex

programming to construct our score functions, ensuring that we

always stay within the realm of log-concave sampling algorithms.

[9] constructs the private log-concave sampler we use in our work,

but they employ it only to sample from comparatively simple log-

concave distributions arising from empirical risk minimization of

convex loss functions. A recent work of [57] provides a faster algo-

rithm for private log-concave sampling.

Another recent line of work studies sub-Gaussian confidence

intervals for mean estimation of heavy-tailed distributions (i.e.,

assuming only bounded covariance). Lugosi and Mendelson [56]

proposed an inefficient algorithm, with an SoS-based algorithm

coming in [33]; see also the survey [55]. Some works considered

efficient algorithms for simultaneously robust and heavy-tailed

mean estimation [18, 23, 60]. A recent result shows that the core

solution concepts for robust and heavy-tailed mean estimation can

be considered equivalent [36]. Our work demonstrates that the line

of efficient estimators inspired by [33] is simultaneously effective

for robust, heavy-tailed, and private mean estimation.

Relatively limited work simultaneously considers privacy and

the other constraints of robustness and heavy-tailed estimation.

The main result is [52] which considers robust and private mean

estimation. Our result can be seen as improving on the running
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Table 1: Comparing private mean estimation algorithms for distributions with bounded covariance. (Some papers contain

several algorithms.) Sample complexity column ignores logarithmic factors in 𝑑 . ł-ž indicates that we are not aware of any

analysis in the literature.

Algorithm Sample Complexity Privacy Sub-Gaussian Rates Robust Poly Time

Sample Mean 𝑑 None No No Yes

[43]-A 𝑑 Pure - Yes No

[43]-B 𝑑 Concentrated No No Yes

[43]-C 𝑑1.5 Pure No No Yes

[52]-A 𝑑 Approximate - Yes No

[52]-B 𝑑1.5 Concentrated No Yes Yes

Theorem 2 𝑑 Pure 𝑛 ≫ 𝑑 log𝑅+min(𝑑,log𝑅) log(1/𝛽)
𝜀 Yes Yes

time or sample complexity of their two algorithms, and the pri-

vacy guarantee of both. While other prior works focus on heavy-

tailed distributions [8, 40, 43, 65], these do not address the primary

goal in the non-private setting, which is to achieve sub-Gaussian

rates with respect to the error probability. Instead, they generally

prove guarantees with constant probability of success, which can

be boosted at the cost of a multiplicative (rather than additive)

logarithmic factor which is inverse in the failure probability. Note

that some of the previous (inefficient) cover- and median-based

approaches to private estimation [1, 12, 13, 43, 52] have varying lev-

els of robustness and sub-Gaussian rates for heavy-tailed settings.

However, none of their results give computationally efficient esti-

mators for pure DP. A simultaneous and independent work of [53]

demonstrates an interesting connection between resilience [62] and

private estimation. They exploit this connection to design robust

and private algorithms for a variety of settings, including mean

estimation, covariance estimation, PCA, and more. However, their

focus is on providing inefficient algorithms under the constraint of

approximate DP, while our goal is to give a framework for efficient

algorithms under pure DP. For a summarized comparison of our

work with recent private algorithms, see Table 1.

2 TECHNIQUES

2.1 The SoS Exponential Mechanism

Before we turn to our algorithm for mean estimation, we offer a

little more detail on the proofs-to-private-algorithms approach and

its core component, which we call the SoS exponential mechanism.

We begin with a review of the exponential mechanism itself.

The Exponential Mechanism. Consider the general problem of

privately selecting one among a set of candidates C given a dataset

𝑋 , where the quality of a candidate 𝑥 ∈ C depends on the dataset𝑋 .

The candidates C could represent many different things depending

on the context. In a statistical setting one may often think of C as a

class of probability distributions, 𝑋 as a list of samples from one of

those distributions, and the goal is to select the distribution from

which 𝑋 came (up to small error).

To apply the exponential mechanism for this problem, one first

finds a score function 𝑠 (𝑋, 𝑥) which assigns a (real-valued) score to

each dataset-candidate pair, ideally such that 𝑥 ’s which are łgoodž

for a given 𝑋 receive high scores. Given 𝑋 and a privacy parameter

𝜀 > 0, the exponential mechanism will sample a random 𝑥 with

probabilities P(𝑥) ∝ exp(𝜀 · 𝑠 (𝑋, 𝑥)). The output is 𝜀-differentially
private so long as the score function satisfies a bounded sensitivity

property: for any pair of neighboring datasets 𝑋,𝑋 ′1 and for all

𝑥 ∈ C, one has |𝑠 (𝑋, 𝑥) − 𝑠 (𝑋 ′, 𝑥) | ≤ 1.

Beyond privacy, one also wants the resulting 𝑥 to be useful.

While this can also mean different things depending on the context,

we will take łutilityž to mean that 𝑥 is close to some good 𝑥∗ (𝑋 ).
To prove that this happens for the exponential mechanism defined

above, one shows:

(1) High-scoring 𝑥 ’s are good: if 𝑠 (𝑋, 𝑥) ≥ 0, then ∥𝑥 − 𝑥∗∥ ≤
𝛼 , for a small 𝛼 > 0. (The choice of 0 is without loss of

generality; the mechanism is invariant under additive shifts

of 𝑠 .)

(2) Not too few high-scoring 𝑥 ’s:
| {𝑥 ∈C : 𝑠 (𝑋,𝑥) ≥𝑡 } |

|C | ≥ 1
𝑟 . (If C

is an infinite set one can replace | · | with some measure of

volume.)

Then a simple argument shows that 𝑥 such that ∥𝑥 − 𝑥∗∥ ≤ 𝛼 is

selected with probability at least 1− 𝑟 exp(−𝜀𝑡). In other words, the

mechanism selects a good 𝑥 so long as 𝑡 ≫ log 𝑟
𝜀 .

The exponential mechanism can lead to computationally ineffi-

cient algorithms for two basic reasons. First, in high-dimensional

statistics it is often natural to use score functions which seem

hard to compute ś the Tukey depth, for just one example [12, 52].

Second, as we will face when we turn to mean estimation, even

with score functions that are easy to compute, sampling 𝑥 with

P(𝑥) ∝ exp(𝜀 · 𝑠 (𝑋, 𝑥)) may not be computationally tractable.

Convex programs as score functions The SoS exponential mecha-

nism can address both of these sources of intractability for instances

of the exponential mechanism where the proofs of bounded sen-

sitivity are captured in a powerful formal proof system, the Sum

of Squares proof system (SoS). To de-mystify this a little without

yet delving into the details of SoS proofs, we can see a high-level

picture of the algorithms which use the SoS exponential mechanism.

Ultimately, these algorithms fit into the exponential mechanism

framework, but with special score functions.

Towit, suppose that we can arrange for the score function 𝑠 (𝑋, 𝑥)
to take the form of a linear optimization problem over a convex set

1We say 𝑋,𝑋 ′ are neighboring if they differ on the presence/absence of just one
individual.
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K(𝑋 ) with an additional linear constraint involving 𝑥 :

𝑠 (𝑋, 𝑥) = max
𝑦∈K (𝑋 )

⟨𝑐,𝑦⟩ such that 𝐴𝑦 = 𝑥

for some matrix𝐴 and vector 𝑐 . As long asK(𝑋 ) admits a computa-

tionally efficient separation oracle, 𝑠 (𝑋, 𝑥) will be polynomial-time

computable ś this already addresses the first source of potential

intractability in the exponential mechanism. A simple argument

shows even more: for each 𝑋 , 𝑠 (𝑋, 𝑥) is actually concave in 𝑥 . Thus,
the distribution P(𝑥) ∝ exp(𝜀 · 𝑠 (𝑋, 𝑥)) is log-concave, so we can

(usually) sample from it in polynomial time! This sampling step

itself has to be done privately: luckily for us, log-concave sampling

is so well understood that private methods for polynomial-time

log-concave sampling are known [9].

The restriction that the score function take the form of an opti-

mization problem is not a major one: many useful score functions in

high-dimensional statistics, such as the Tukey depth, are naturally

expressible in this way. But how to find a score function which is

simultaneously a convex optimization problem and maintains both

bounded sensitivity and utility? The SoS method gives us a way to

construct such a score function automatically, starting from any

score function which is expressible as a (potentially non-convex) op-

timization problem, and for which the proofs of bounded sensitivity

and utility are expressible in the SoS proof system.

2.2 Private Mean Estimation

We proceed with a high-level description of our algorithm for pri-

vate mean estimation and its analysis. One could obtain our algo-

rithm as an instance of proofs-to-private-algorithms, by:

• Constructing a certain simple-to-analyze exponential mechanism-

based mean estimator.

• Writing the simple analysis as a series of SoS proofs and

applying (meta)-Theorem 11.

However, so that our algorithm can be understood without tack-

ling the SoS exponential mechanism in full generality, we will now

give a more concrete description of the algorithm and its analysis.

We give a high level version of this description here, and in the

main body of our paper we actually provide a full analysis of the

algorithm without appealing to Theorem 11.

Let us recall the setup for our problem. There is a random vari-

able 𝑋 on R𝑑 with Cov(𝑋 ) ⪯ 𝐼 and ∥ E𝑋 ∥ ≤ 𝑅. The goal is to esti-

mate E𝑋 from i.i.d. copies 𝑋1, . . . , 𝑋𝑛 , subject to 𝜀-DP. The promise

∥ E𝑋 ∥ ≤ 𝑅 is information-theoretically necessary for pure differ-

ential privacy [13, 46].

Our algorithmhas strong guarantees in the presence of adversarially-

corrupted samples, and obtains sub-Gaussian confidence intervals

given heavy-tailed samples. In fact, this is a side-effect of the fact

that our algorithm uses well-studied SDPs from the robust statistics

setting, viewing them through the SoS exponential mechanism lens

to obtain privacy. In particular, folklore adaptations of the analyses

in [17, 48] directly show that our algorithm is robust, so to avoid a

proliferation of notation we give the proof in the non-robust setting,

and remark on the relevant robustness properties.

Like prior algorithms for private mean estimation, our algorithm

has two phases.

(1) Reduce 𝑅 to poly(𝑑), roughly by finding a large ball contain-

ing a large number of samples.

(2) Estimate E𝑋 under the assumption ∥ E𝑋 ∥ ≤ poly(𝑑).
We start with the second step, which captures much of our

conceptual contribution ś even under the assumption 𝑅 ≤
√
𝑑 ,

prior algorithms could not achieve pure differential privacy. Then

we discuss the first step, where prior algorithms require Ω(𝑑 (log𝑅+
log(1/𝛽))) samples. We give an algorithm with sample complexity

log𝑅(𝑑 + log(1/𝛽)). When log𝑅 ≪ 𝑑 , our algorithm improves

over prior work. (Information-theoretically, 𝑑 log𝑅 + log(1/𝛽) is
possible.)

2.2.1 Private mean estimation when ∥ E𝑋 ∥ ≤ poly(𝑑). Let us write
𝜇 = E𝑋 . For simplicity, for now we focus on the case that our goal

is to find 𝜇 such that ∥𝜇 − 𝜇∥ ≤ 𝑂 (1) using 𝑂 (𝑑) samples. (We can

reduce from the 𝛼-error case to this one by placing the samples in

buckets containing around 1/𝛼2 samples and taking sample means

within each bucket.) We will also think of 𝜀 as a small constant. A

merit of our approach is that it allows powerful techniques from

robust statistics to be used for private algorithm design: in this case,

our algorithm draws heavily on a robust mean estimation algorithm

due to [17], using SoS exponential mechanism to privatize its use

of convex programming.

Iterative refinement/gradient descent. Our algorithm will itera-

tively refine an initial estimate of the mean (without loss of gener-

ality, the origin), producing a series of estimates 𝜇0 = 0, 𝜇1, . . . , 𝜇𝑇 .

In each step 𝑡 , we will privately find a unit vector 𝑣 such that

⟨𝑣, 𝜇 − 𝜇𝑡 ⟩ ≥ Ω(1) · ∥𝜇 − 𝜇𝑡 ∥. Then we can replace 𝜇𝑡 with 𝜇𝑡+1 =
𝜇𝑡 +𝑟 ·𝑣 for some appropriate step size 𝑟 > 0. By standard reasoning

this means that 𝑂 (log𝑑) steps suffice to obtain ∥𝜇𝑇 − 𝜇∥ ≤ 𝑂 (1).
This gradient-descent approach introduces only logarithmic

overheads into our sample complexity and running time, so now

we turn to the heart of our algorithm: privately finding 𝑣 .

Finding private gradients. Given samples𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 and 𝜇𝑡 ,

we would like to privately select a unit vector 𝑣 such that ⟨𝑣, 𝜇𝑡 −
𝜇⟩ ≥ Ω(1) · ∥𝜇𝑡 − 𝜇∥. We will use the exponential mechanism, for

which we need to define a score function. For this, we are inspired

by recent work in robust and heavy-tailed statistics, where the

following has become a standard fact [56]:

Fact 3 (Directions with many outliers are good, infor-

mal). Suppose that ∥𝜇𝑡 − 𝜇∥ ≫ 1. Then, with high probability over

𝑋1, . . . , 𝑋𝑛 , so long as 𝑛 ≫ 𝑑 , there are at least 0.9𝑛 samples 𝑋𝑖 such

that ⟨𝑋𝑖 − 𝜇𝑡 ,
𝜇−𝜇𝑡
∥𝜇−𝜇𝑡 ∥ ⟩ ≥ Ω(1) · ∥𝜇𝑡 − 𝜇∥. Furthermore, for every unit

vector 𝑣 such that

|{𝑖 : ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ Ω(1) · ∥𝜇𝑡 − 𝜇∥}| ≥ 0.8𝑛 ,

we have ⟨𝑣, 𝜇 − 𝜇𝑡 ⟩ ≥ Ω(1) · ∥𝜇 − 𝜇𝑡 ∥.

Fact 3 makes a good choice of score function clear: we should

use

𝑠 (𝑋, 𝑣) = |{𝑖 : ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ Ω(1) · ∥𝜇𝑡 − 𝜇∥}| .
Utility of this score function is captured by Fact 3, and bounded

sensitivity is clear by construction. (In fact, it is exactly this bounded

sensitivity property which has already made Fact 3 so important in

robust and heavy-tailed statistics.) We do not necessarily know the

value of ∥𝜇𝑡 − 𝜇∥, but getting a private estimate of this quantity is

not too difficult ś we privatize a procedure due to [17].
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A straightforward analysis shows that, since the volume of the

𝑑-dimensional unit ball is roughly exp(𝑑), exponential mechanism

with this score function will 𝜀-privately select a good 𝑣 so long as

𝑛 ≫ 𝑑/𝜀, which is exactly the sample complexity we expect for

estimating 𝜇 to error 𝑂 (1).

Finding private gradients in polynomial time. Of course, the key

problem is that sampling with P(𝑣) ∝ exp(𝜀 · 𝑠 (𝑋, 𝑣)) may not be

possible in polynomial time. Indeed, a seemingly-easier problem,

finding the highest-scoring 𝑣 , seems closely related to computing

Tukey depth, which is NP-hard.

However, some hope comes again from robust/heavy-tailed sta-

tistics, where approximation algorithms (often based on semidefi-

nite programming) for the problem of finding the highest scoring

𝑣 have become an invaluable tool. Our starting point is the by-

now standard construction of such a semidefinite relaxation, which

we briefly review. First, we write this optimization problem as a

degree-2 polynomial optimization problem in variables 𝑣1, . . . , 𝑣𝑑
and 𝑏1, . . . , 𝑏𝑛 , where the latter are constrained so as to be 0/1
indicators of ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ 𝑟 for some threshold value 𝑟 :

max

𝑛∑︁
𝑏=1

𝑏𝑖 such that ∥𝑣 ∥2 ≤ 1,

𝑏2𝑖 = 𝑏𝑖 ,

and 𝑏𝑖 ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ 𝑏𝑖 · 𝑟 for all 𝑖 .

The degree-2 SoS relaxation of this optimization problem opti-

mizes over (degree 2) pseudoexpectations, which are linear function-

als Ẽ : R[𝑏, 𝑣]≤2 → R defined on degree at most 2 polynomials in

𝑏, 𝑣 which are normalized and positive: Ẽ 1 = 1 and Ẽ𝑝 (𝑏, 𝑣)2 ≥ 0

for all linear 𝑝 . Concretely:

max
Ẽ

Ẽ

∑︁
𝑖≤𝑛

𝑏𝑖 s.t. Ẽ ∥𝑣 ∥2 ≤ 1,

Ẽ𝑏2𝑖 = Ẽ𝑏𝑖 ,

and Ẽ𝑏𝑖 ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ 𝑟 · Ẽ𝑏𝑖 for all 𝑖 . (1)

This optimization problem can be solved via semidefinite program-

ming ś the resulting (equivalent) SDP optimizes over (1 + 𝑛 + 𝑑) ×
(1 + 𝑛 + 𝑑) block matrices

maxTr𝐵 such that
©«
1 𝑏⊤ 𝑣⊤

𝑏 𝐵 𝑊 ⊤

𝑣 𝑊 𝑉

ª®¬
⪰ 0,

Tr𝑉 ≤ 1, 𝐵𝑖𝑖 = 𝑏𝑖 ,

and ⟨𝑋𝑖 − 𝜇𝑡 ,𝑊𝑖 ⟩ ≥ 𝑟 · 𝐵𝑖𝑖

Here, 𝑉 is a proxy for the rank-one matrix 𝑣𝑣⊤ and similarly for

𝐵 and 𝑏𝑏⊤. This SDP is known to be a good approximation to the

problem of finding the maximum-score 𝑣 .

We prove the following fact. (As an aside, this is where SoS

proofs enter the picture: establishing facts such as the below for

SoS SDP relaxations in general requires constructing SoS proofs.)

Fact 4 (Bounded Sensitivity and Utility for (1), informal).

Bounded Sensitivity: Changing a single sample in optimization

problem (1) can change the objective value by at most 1.Utility:With

high probability over 𝑋1, . . . , 𝑋𝑛 , if ∥𝜇𝑡 − 𝜇∥ ≫ 1, then any feasible

Ẽ in (1) with objective value at least 0.8𝑛 satisfies ⟨Ẽ 𝑣, 𝜇 − 𝜇𝑡 ⟩ ≥
Ω(1) · ∥𝜇 − 𝜇𝑡 ∥.

While this proof largely adapts similar arguments in the ro-

bust statistics literature, there is a key technical innovation. Prior

algorithms employing the SDP described above use a nontrivial

rounding step to extract a good vector 𝑣 from the 𝑑 × 𝑑 PSD matrix

𝑉 . However, for reasons we discuss below, to use the SoS exponen-

tial mechanism, it is important that 𝑣 can be read directly off of the

SDP (more precisely, that the rounding algorithm used is linear).

This means we need a stronger rounding procedure than that used

in prior works ś we are able to show that 𝑣 = Ẽ 𝑣 , a simple linear

function of Ẽ, is a good choice.

Sampling with convex programs The łutilityž part Fact 4 solves

the problem of finding a high-scoring 𝑣 in polynomial time, via

semidefinite programming. But we want to find such a high-scoring

𝑣 privately.

The key idea is to use the SDP to construct a score function:

convexity of the set of feasible solutions and linearity of the objective

function now imply log-concavity of the resulting sampling problem!

This observation, while simple, is remarkably powerful: it allows

us to employ a well-studied SDP from robust statistics nearly out-

of-the-box to obtain strong privacy guarantees.

Ultimately, we employ the score function:

𝑠 (𝑋, 𝑣0) = max
Ẽ

Ẽ

∑︁
𝑖≤𝑛

𝑏𝑖 s.t. Ẽ ∥𝑣 ∥2 ≤ 1,

Ẽ𝑏2𝑖 = Ẽ𝑏𝑖 ,

and Ẽ𝑏𝑖 ⟨𝑋𝑖 − 𝜇𝑡 , 𝑣⟩ ≥ 𝑟 · Ẽ𝑏𝑖 for all 𝑖
and Ẽ 𝑣 = 𝑣0 ,

together with the private sampling algorithm of [9], to sample from

P(𝑣0) ∝ exp(𝜀 · 𝑠 (𝑋, 𝑣0)).
We make a few remarks on the precise way that 𝑠 (𝑋, 𝑣0) depends

on 𝑣0; that is, via the constraint Ẽ 𝑣 = 𝑣0, since this choice is not

accidental. First of all, it is important that the constraints of the

optimization problem defining 𝑠 (𝑋, 𝑣0) depend linearly on 𝑣0; oth-

erwise we might not retain log-concavity of the resulting sampling

problem. We can do this only because the rounding algorithm de-

scribed in Fact 4, which proves that Ẽ 𝑣 itself is useful, is a simple

linear function of Ẽ.

We also note an important interplay between the łliftedž nature

of the SDP and the utility analysis of the exponential mechanism. On

the one hand, the power of the SDP comes from lifting from the𝑑+𝑛
variables 𝑣, 𝑏 to (𝑑+𝑛+1)2 variables, and solving a convex problem in

the lifted space. On the other hand, for the exponential mechanism

to satisfy utility with just𝑂 (𝑑) samples, it is important that we use

it to sample in 𝑑 dimensions (where, in particular, there is a 2𝑂 (𝑑) -
sized cover) rather than, say,𝑑2 dimensions. This tension is resolved

by hiding the additional variables inside the optimization problem

which defines 𝑠 , so that exponential mechanism still samples from

a 𝑑-dimensional distribution, but we can still use the power of SoS

and semidefinite programming.

Lipschitzness The sampling algorithm of [9] (like other algorithms

for sampling from log-concave probability distributions) runs in

polynomial time in the ambient dimension, so long as the distri-

bution has Lipschitz log-probabilities. Natural approaches to force
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𝑠 (𝑋, 𝑣0) to be Lipschitz, which generally take the form of random-

ized smoothing, risk violating pure DP, because an algorithm com-

puting a randomized smoothing of 𝑠 will have some small probabil-

ity of quietly failing, at which point privacy is at risk.

To ensure that the resulting algorithm runs in polynomial time,

therefore, we have to show that 𝑠 (𝑋, 𝑣0) is Lipschitz with respect

to 𝑣0. To establish Lipschitzness, we make a two-step argument:

(1) We show that dual solutions to the SDP defining 𝑠 (𝑋, 𝑣0)
have optimal dual certificates which are not too large in

norm. (At most, say, poly(𝑑, 𝑛).)
(2) We show that any such dual solution to the SDP for 𝑠 (𝑋, 𝑣0)

which certifies an upper bound of 𝑐 can be adapted to a dual

solution for 𝑠 (𝑋, 𝑣0 + Δ) which certifies an upper bound of

𝑐 + ∥Δ∥ poly(𝑑, 𝑛), for any small perturbation vector Δ.

Together, these imply that 𝑠 (𝑋, 𝑣0) is poly(𝑑, 𝑛)-Lipschitz with re-

spect to 𝑣0. Since the Lipschitz constant only arises in our algo-

rithm’s running time, this suffices for our purposes. This concludes

our overview of the second phase of our private mean estimation

algorithm.

2.2.2 Coarse estimation: from 𝑅 to poly(𝑑). We now describe our

algorithm to privately localize 𝜇 = E𝑋 to a ball of radius poly(𝑑),
beginning only with the promise that ∥ E𝑋 ∥ ≤ 𝑅 for some large

number 𝑅. The goal is to do so using as few samples as possible.

Existing efficient algorithms [39] can perform this task with proba-

bility 1−𝛽 using𝑂 (𝑑 (log𝑅+ log(1/𝛽))/𝜀) samples (we present this

analysis in our paper to capture the dependence on log(1/𝛽)). If
we used this algorithm, we would obtain sub-Gaussian confidence

intervals only when 𝑛 ≫ 𝑑 log𝑅+𝑑 log(1/𝛽)
𝜀 . However, if we do not

worry about running time, the same task can be accomplished using

the exponential mechanism using only 𝑂 (𝑑 log𝑅/𝜀 + log(1/𝛽)/𝜀)
samples ś much fewer for 𝛽 ≪ 1, which is important for construct-

ing confidence intervals.

While we do not quite obtain optimal complexity, we are able

to improve on existing algorithms in the regime log𝑅 ≪ 𝑑 ; our

algorithm requires �̃� (𝑑 log𝑅/𝜀 + log𝑅 log(1/𝛽)/𝜀) samples.

Our algorithm again follows the proofs-to-private-algorithms

approach. We start with the following basic instantiation of the

exponential mechanism. We are given samples 𝑋1, . . . , 𝑋𝑛 . With

probability at least 1 − 𝛽 over the choice of 𝑋1, . . . , 𝑋𝑛 , as 𝑛 ≫
log(1/𝛽), any ball of radius poly(𝑑) containing 0.9𝑛 of the samples

will have center which has distance at most poly(𝑑) to 𝜇. So, we

would like to use the exponential mechanism with score function

𝑠 (𝑋, 𝑥) = |{𝑖 : ∥𝑋𝑖 − 𝑥 ∥ ≤ poly(𝑑)}| to select a point from the ball

of radius 𝑅 centered at the origin.

As before, it is not clear how to perform the sampling task that

this would require in polynomial time. So, we replace the score func-

tion with a convex relaxation, in this case built from the łdegree-4ž

SoS relaxation of of the following polynomial optimization problem:

max
𝑏,𝑥

𝑛∑︁
𝑖=1

𝑏𝑖 s.t. ∥𝑥 ∥2 ≤ 𝑅2, 𝑏2𝑖 = 𝑏𝑖 ,

and 𝑏𝑖 ∥𝑋𝑖 − 𝑥 ∥2 ≤ poly(𝑑) · 𝑏𝑖 for all 𝑖 .

(The degree-4 SoS relaxation shows up here because the optimiza-

tion problem involves polynomials of degree 3, and SoS relaxations

are defined only for even degrees.) That is, we use the score function

𝑠 (𝑋, 𝑥0) = max
Ẽ

Ẽ

𝑛∑︁
𝑖=1

𝑏𝑖 s.t. Ẽ satisfies ∥𝑥 ∥2 ≤ 𝑅2,

𝑏2𝑖 = 𝑏𝑖 ,

𝑏𝑖 ∥𝑋𝑖 − 𝑥 ∥2 ≤ 𝑏𝑖 (𝑅/10)2,
and Ẽ𝑥 = 𝑥0

(for the definition of łsatisfiesž, see Section 3).

Once we have decided to use this particular SoS relaxation, the

outlines of the algorithm and its analysis are largely similar to

the second phase of the algorithm, but with different SoS proofs

plugged in. In particular, we prove an analogue of Fact 4 for this

setting, and establish Lipschitzness of the SDP, so that we can use

the same strategy as in second phase.

The key step is to show that a high-scoring 𝑥0 has distance at

most 𝑅/2 to any 𝑥 ′ which has distance poly(𝑑) to 0.8𝑛 samples.

This statement turns out to have a relatively simple SoS proof. This

shows that SoS exponential mechanism manages to reduce 𝑅 to

𝑅/2. Iterating this log𝑅 times completes the algorithm.

3 PRELIMINARIES

3.1 SoS Proofs and Pseudoexpectations

We give a brief overview of SoS; for details see [7].

SoS Proofs. We first informally review the SoS proof system. Let

𝑝 (𝑥), 𝑝1 (𝑥), . . . , 𝑝𝑚 (𝑥) be multivariate polynomials in indetermi-

nates 𝑥1, . . . , 𝑥𝑛 . The SoS proof system can prove statements of the

form:

For all 𝑥 ∈ R𝑛 , if 𝑝1 (𝑥) ≥ 0, . . . , 𝑝𝑚 (𝑥) ≥ 0, then 𝑝 (𝑥) ≥ 0.

Polynomials are highly expressive, so a wide range of mathematical

statements can be encoded in the above form. An SoS proof of

such a statement is a family of polynomials {𝑞𝑆 (𝑥) : 𝑆 ⊆ [𝑚]}
such that each 𝑞𝑆 (𝑥) =

∑𝑟
𝑖=1 (𝑞

(𝑖)
𝑆

(𝑥))2 is a sum of squares, and

𝑝 (𝑥) = ∑
𝑆⊆[𝑚] 𝑞𝑆 (𝑥) ·

∏
𝑖∈𝑆 𝑝𝑖 (𝑥). The proof has degree 𝐷 ∈ N

if each term in this sum is a polynomial of degree at most 𝐷 . We

write:

𝑝1 ≥ 0, . . . , 𝑝𝑚 ≥ 0 ⊢𝐷 𝑝 ≥ 0 .

Additionally, we will need one non-standard definition: for any

given 𝑗 ∈ [𝑚], we say that an SoS proof is degree 𝐷 𝑗 with re-

spect to 𝑝 𝑗 if every term 𝑞𝑆 (𝑥) ·
∏

𝑖∈𝑆 𝑝𝑖 (𝑥) in the proof such

that 𝑗 ∈ 𝑆 has degree at most 𝐷 ′. We will sometimes write 𝑝1 ≥
0, . . . 𝑝𝑚 ≥0⊢𝐷,deg𝑝𝑗

=𝐷 𝑗
𝑝 ≥ 0.

SoS proofs are dual solutions to semidefinite programs arising

from the Sum of Squares method, where pseudoexpectations are

primal solutions. As in many applications of convex programming,

to prove facts about primal solutions, the main technique is to

construct duals. In particular, to show that the SoS SDPs we use for

exponential mechanism score functions satisfy bounded sensitivity

and privacy, it suffices to construct SoS proofs witnessing these

facts.

Pseudoexpectations. For even 𝑑 ∈ N, a degree-𝑑 pseudoexpec-

tation in indeterminates 𝑥 = 𝑥1, . . . , 𝑥𝑛 is a linear operator Ẽ :
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R[𝑥1, . . . , 𝑥𝑛]≤𝑑 → R which satisfies Ẽ 1 = 1 an Ẽ𝑝2 ≥ 0 for ev-

ery degree-𝑑/2 polynomial 𝑝 . We say that Ẽ satisfies an inequality

𝑝 (𝑥) ≥ 0 if for every 𝑞 such that deg(𝑝 ·𝑞2) ≤ 𝑑 we have Ẽ𝑝𝑞2 ≥ 0.

Archimedean systems and duality. We say that a system of poly-

nomial inequalities 𝑝1 (𝑥) ≥ 0, . . . , 𝑝𝑚 ≥ 0 is Archimedean if for

some real 𝑀 > 0 it contains the inequality ∥𝑥 ∥2 ≤ 𝑀 . SoS proofs

and pseudoexpectations satisfy a natural duality for Archimedean

systems, which we use often. Namely: for every Archimedian sys-

tem 𝑝1, . . . , 𝑝𝑚 and every polynomial 𝑓 and every degree 𝑑 , exactly

one of the following holds.

(1) For every 𝜀 > 0 there is an SoS proof 𝑝1 ≥ 0, . . . , 𝑝𝑚 ≥ 0 ⊢𝑑
𝑓 ≥ −𝜀

(2) There is a degree-𝑑 pseudoexpectation satisfying 𝑝1 ≥ 0, . . . , 𝑝𝑚 ≥
0 but Ẽ 𝑓 < 0.

3.2 Privacy

We have already seen the definition of (pure) differential privacy.

Our approach relies heavily upon the exponential mechanism of [58],

we employ a volume-based version which appears in [45]. The proof

is standard but we include it for completeness.

Theorem 5 (volume-based exponential mechanism [45, 58]).

The exponential mechanism 𝑀𝐸 on inputs 𝑋,H ⊂ R𝑑 , 𝑠 , selects
and outputs some object ℎ ∈ H , where the probability a particular

ℎ is selected is proportional to exp( 𝜀𝑠 (𝑋,ℎ)
2Δ ). Let H∗ ⊆ H be a set

such that, OPT(𝑋 ) ≤ infℎ∈H∗ 𝑠 (𝑋,ℎ) be a lower bound for the score
attained by the objects inH∗ with respect to the dataset 𝑋 . Moreover,

let vol(𝑆) denote the Lebesgue measure of 𝑆 in R𝑑 . Then

P

[
𝑠 (𝑀𝐸 (𝑋 )) ≤ OPT(𝑋 ) − 2Δ

𝜀

(
ln

(
vol(H)
vol(H∗) + 𝑡

))]
≤ exp(−𝑡) .

Proof. We follow the same argument as the standard exponen-

tial mechanism analysis.

P[𝑠 (𝑀𝐸 (𝑋 )) ≤ 𝑐] =

∫
ℎ:𝑠 (𝑋,ℎ) ≤𝑐,ℎ∈H exp

(
𝜀𝑠 (𝑋,ℎ)

2Δ

)
dℎ∫

ℎ′:ℎ′∈H exp
(
𝜀𝑠 (𝑋,ℎ′)

2Δ

)
dℎ′

≤
vol(H) exp

( 𝜀𝑐
2Δ

)
vol(H∗) exp

(
𝜀 OPT(𝑋 )

2Δ

)

=

vol(H)
vol(H∗) exp

(
𝜀 (𝑐 − OPT(𝑋 ))

2Δ

)
.

From this inequality, the theorem statement can be obtained by

substituting in the prescribed value for 𝑐 . It remains to explain the

first inequality. The numerator can be upper bounded since we are

taking the integral at most over H , and the value of the integral

at each point is less than exp(𝜀𝑐/2Δ). Similarly, the denominator

can be lower bounded by considering only the points in H∗, all of
which have a lower bound of exp(𝜀 OPT(𝑋 )/2Δ). □

We will also extensively use the following result of [9].

Theorem 6 (Lemma 6.5 of [9]). For every 𝜀 and 𝑑 ∈ N, there is
an 𝜀-DP algorithm 𝐴 with the following guarantees. Given access to

an evaluation oracle for a concave, 𝐿-Lipschitz function 𝑓 : R𝑑 → R
and to membership and projection oracles for a convex set C ⊆ R𝑑 ,

the algorithm produces a sample from a distribution 𝐷 such that for

every (measurable) 𝑆 ⊆ C,

𝑒−𝜀 P(𝐴 ∈ 𝑆) ≤
∫
𝑆
exp(𝑓 )∫

C exp(𝑓 )
≤ 𝑒𝜀 P(𝐴 ∈ 𝑆) .

The algorithm runs in time poly(𝑑, 𝐿 diam(C), 1/𝜀, log diam(𝐶)), mak-

ing at most that many queries to the oracles.

[9] actually provides the running time bound

poly(𝑑, 𝐿, diam(C), 1/𝜀), but we can deduce the more precise bound

in the theorem statement by a simple scaling argument. We note

that recent work of [57] provides an algorithm which improves

the running time’s dependence on 1/𝜀 from polynomial to poly-

logarithmic, as well as reducing the polynomial dependence on 𝑑

for convex sets C that contain a ball of radius 𝑟 , at an additional

cost of poly log(1/𝑟 ) (Remark 2.5 of [57]). As our main focus is

on providing polynomial time algorithms and not on designing

the fastest algorithms, we do not further employ their improved

methods.

4 META-THEOREM ON SOS EXPONENTIAL
MECHANISM

To describe the SoS exponential mechanism more completely, we

prove a meta-theorem on its performance. This meta-theorem could

be extended in various ways, but the version we give here captures

the mechanism as it is used in our paper. The reader interested

solely in our result on mean estimation may comfortably skip this

section as we do not rely on it elsewhere, but the exposition and

abstraction here may make it easier to follow.

Meta-theorem Setup. Consider the following template to capture

the exponential mechanism in the language of polynomials. Let X
be a universe of possible datasets and C ⊆ R𝑛 be a set of candidates.

Consider a score function of the following form. For each dataset 𝑋 ,

suppose there is a family of polynomials 𝑝𝑋 , 𝑝𝑋1 , . . . , 𝑝
𝑋
𝑚 in variables

𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑁 , and the score function 𝑠 (𝑋, 𝑥) is given by

𝑠 (𝑋, 𝑥) = max
𝑦

𝑝𝑋 (𝑥,𝑦) such that 𝑝𝑋1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑋𝑚 (𝑥,𝑦) ≥ 0 .

Example 7 (Tukey depth with margin). To make things a bit

less abstract, let us see that a score function closely related to the Tukey

depth is expressible in this form. Suppose 𝑋 = 𝑋1, . . . , 𝑋𝑁 ∈ R𝑛 is

a dataset. Recall that the Tukey depth of a point 𝑧 ∈ R𝑛 is given by

the maximum number of 𝑋𝑖 ’s which lie on one side of a hyperplane

through 𝑧.

Later on, for a fixed 𝑧 ∈ R𝑛 with ∥𝑧∥ = 1, we will want to run the

exponential mechanism to select a direction 𝑣 such that many 𝑋𝑖 ’s

lie above a hyperplane through 𝑧 in direction 𝑣 , at distance at least

distance 𝑟 > 0 from that hyperplane, so our score function for 𝑣 is the

number of such 𝑋𝑖 ’s. We can express this as follows:

𝑠 (𝑋, 𝑣) = max
𝑏1,...,𝑏𝑁

𝑁∑︁
𝑖=1

𝑏𝑖 s.t. for all 𝑖 , 𝑏
2
𝑖 = 𝑏𝑖 and 𝑏𝑖 ⟨𝑋𝑖 − 𝑧, 𝑣⟩ ≥ 𝑏𝑖 · 𝑟 .

(2)

Note that for fixed 𝑧 and 𝑣 it is easy to compute the number of 𝑋𝑖 ’s

lying above the resulting hyperplane, but finding the maximizing 𝑣 al-

ready appears to be a hard problem. (Of course, we want to accomplish

only a related task: sampling from a distribution on high-scoring 𝑣 ’s.)
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Indeed, approximation algorithms for finding such 𝑣 play a key role

in recent algorithmic advances in robust and heavy-tailed statistics

statistics.

Utility and Bounded Sensitivity in the Language of Polynomials

Utility in this framework takes exactly the same form as in the usual

exponential mechanism ś to demonstrate utility, one would show

that high-scoring 𝑥 ’s are good, and there are not too many low-

scoring 𝑥 ’s. The first of these statements is naturally expressible in

the SoS proof system, and it turns out that the latter will not need

to be expressed as an SoS proof. There is just one technical subtlety:

the requirement that 𝑥 ∈ C, if it is used in the proof of utility, must

be captured by the polynomials 𝑝1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑚 (𝑥,𝑦) ≥ 0,

as the SoS proof system has no other way of natively using the

hypothesis that 𝑥 ∈ C. (We illustrate this in the example below.)

To formulate bounded sensitivity within SoS will take a little

additional work ś SoS will require for there to be a certain kind of

witness to bounded sensitivity. This is not a major restriction, as

natural proofs of bounded sensitivity for optimization-based score

functions typically yield such witnesses anyway.

Making this concrete, a natural way to show that a score func-

tion like the above satisfies bounded sensitivity is to relate fea-

sible solutions to the optimization problem for 𝑋 to those for a

neighboring dataset 𝑋 ′, without losing too much in the objective

value. Let us suppose that for each neighboring pair 𝑋,𝑋 ′ there
is a transformation 𝑦′(𝑦) such that for all 𝑥 , if 𝑦 is feasible for

𝑋 (i.e. 𝑝𝑋1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑋𝑚 (𝑥,𝑦) ≥ 0) then 𝑦′(𝑦) is feasible for

𝑋 ′ (i.e. 𝑝𝑋
′

1 (𝑥,𝑦′(𝑦)) ≥ 0, . . . , 𝑝𝑋
′

𝑚 (𝑥,𝑦′(𝑦)) ≥ 0). If additionally

𝑝𝑋 (𝑥,𝑦) − 𝑝𝑋
′ (𝑥,𝑦′(𝑦)) ≤ 1, this transformation (together with

the corresponding one mapping 𝑦′s to 𝑦s) witnesses bounded sen-

sitivity for 𝑠 . For technical reasons, our meta-theorem imposes the

restriction that 𝑦′ is a linear function of 𝑦, but this still suffices for

our algorithms.

Example 8 (Continuation of Example 7). First addressing util-

ity: it turns out that the proof of utility for 𝑣 having high score ac-

cording to (2) will rely on ∥𝑣 ∥ ≤ 1. So we will have to strengthen our

system of polynomials to include this constraint. As a technicality, we

will also shift our objective function so that having positive score is

good enough for utility.

max
𝑏,𝑣

𝑁∑︁
𝑖=1

𝑏𝑖 − 0.9𝑁 such that 𝑏2𝑖 = 𝑏𝑖 , 𝑏𝑖 ⟨𝑋𝑖 − 𝑧, 𝑣⟩ ≥ 𝑏𝑖 · 𝑟, ∥𝑣 ∥2 ≤ 1 .

(3)

Now, to establish bounded sensitivity, consider two neighboring

datasets 𝑋 = 𝑋1, . . . , 𝑋𝑁 and 𝑋 ′
= 𝑋 ′

1, 𝑋2, . . . , 𝑋𝑁 , where 𝑋 and 𝑋 ′

differ on the first vector. If (𝑏, 𝑣) is a feasible solution to (3) for 𝑋 with

objective value 𝑡 , then we can replace it with (0, 𝑏2, . . . , 𝑏𝑁 , 𝑣) to get
a feasible to solution for 𝑋 ′ with objective value at least 𝑡 − 1. The

meta-theorem requires there to be an SoS proof of this fact; this (easy)

SoS proof was first established in [33].

Robustly Satisfiable Polynomials Before stating our meta-theorem,

we need one more technical definition, capturing a certain well-

conditioned-ness property of a polynomial optimization problem.

Ultimately, this condition will imply a Lipschitz property of semi-

definite relaxations of that optimization problem. This Lipschitz

property will be used, in turn, to bound the running time of MCMC-

based samplers for probability densities using those semidefinite

relaxations as log-probabilities.

The details of the following definition (Definition 9) may ap-

pear opaque, but they are not too important ś a good intuitive

interpretation is that the polynomial optimization problem

max
𝑥,𝑦

𝑝 (𝑥,𝑦) s.t. 𝑝1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑚 (𝑥,𝑦) ≥ 0

has a robust space of feasible solutions. Roughly, this means that

for any 𝑥 there is a small ball 𝐵 around 𝑥 such that for any 𝑥 ′ ∈ 𝐵

there is a feasible solution (𝑥 ′, 𝑦) whose objective value isn’t too
large. (The actual condition we use is slightly weaker than this.)

This type of condition is common in meta-theorems involving the

SoS proof system, to rule out the use of pathological 𝑝, 𝑝1, . . . , 𝑝𝑚 ,

and it is typically not too difficult to establish ś see, e.g. [34, 66].

Definition 9 (Robustly satisfiable polynomial systems).

Let C ⊆ R𝑛 and let 𝑝, 𝑝1, . . . , 𝑝𝑚 be polynomials in 𝑥 = 𝑥1, . . . , 𝑥𝑛
and 𝑦 = 𝑦1, . . . , 𝑦𝑁 . Let 𝜂 > 0. Consider a family of optimization

problems, one for each 𝑥 ∈ C, given by

max
𝑦

𝑝 (𝑥,𝑦) s.t. 𝑝1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑚 (𝑥,𝑦) ≥ 0 .

We say this family is 𝜂-robustly satisfiable if, for each 𝑥 ∈ C, each 𝑥 ′
in the ball of radius 𝜂 around 𝑥 can satisfy the constraints. That is, for

each 𝑥 ′ such that ∥𝑥 ′ − 𝑥 ∥ ≤ 𝜂, there exists 𝑦 such that 𝑝1 (𝑥 ′, 𝑦) ≥
0, . . . , 𝑝𝑚 (𝑥 ′, 𝑦) ≥ 0.

Note that in our algorithms, 𝜂 will factor only into running times

and not sample complexity or accuracy guarantees, so rather coarse

bounds on 𝜂, perhaps loose by polynomial factors, suffice for our

purposes.

Example 10 (Continuation of Examples 7, 8). Let us imagine

now that C is a ball of radius 0.9 centered at the origin, to see a

proof sketch of 𝜂-robust satisfiability for (3). For each 𝑣 ∈ C and

every vector Δ with ∥Δ∥ ≤ 0.1, the constraints of (3) are satisfied by

(𝑣 + Δ, 0). So, (3) is 𝜂-well-conditioned for 𝜂 = 0.1, with respect to C.
With this setup in hand, we can state our meta-theorem.

Theorem 11 (Meta-Theorem on SoS Exponential Mecha-

nism). Let C ⊆ R𝑛 be a compact, convex set and X a universe of

possible datasets, equipped with a łneighborsž relation. Suppose that

for every dataset 𝑋 there exists an Archimedean and 𝜂-robustly sat-

isfiable system of polynomial inequalities P𝑋 (𝑥,𝑦) = {𝑝𝑋1 (𝑥,𝑦) ≥
0, . . . , 𝑝𝑋

𝑁
(𝑥,𝑦) ≥ 0} and a polynomial 𝑝𝑋 (𝑥,𝑦), all of degree at most

𝐷 , in indeterminates 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑁 such that for every neigh-

boring dataset 𝑋 ′ there is a linear function 𝑦′(𝑦) such that bounded

sensitivity has an SoS proof:

∀𝑗, P𝑋 (𝑥,𝑦) ⊢
deg(𝑝𝑋 ′

𝑗
) 𝑝

𝑋 ′
𝑗 (𝑥,𝑦′(𝑦)) ≥ 0

and P𝑋 (𝑥,𝑦) ⊢𝐷 𝑝𝑋 (𝑥,𝑦) − 𝑝𝑋
′ (𝑥,𝑦′) ≤ 1 .

Suppose also that for every 𝑋 , there are SoS proofs P𝑋 (𝑥,𝑦) ⊢𝐷
𝑝 (𝑥,𝑦) ≤ 1/𝜂 and P𝑋 (𝑥,𝑦) ⊢𝐷 −𝑝 (𝑥,𝑦) ≤ 1/𝜂. Furthermore, sup-

pose that the polynomials P𝑋 and 𝑝𝑋 , and the polynomials used in

the above SoS proofs, all have coefficients expressible in at most 𝐵 bits.

Then for every 𝜀 > 0 and 𝐷 ∈ N there exists an 𝜀-differentially pri-

vate algorithm which takes as input the polynomials 𝑝𝑋 , 𝑝𝑋1 , . . . , 𝑝
𝑋
𝑚

and 𝐵, 𝜂 > 0, with the following guarantees:
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Utility: For every 𝑋 , if there is an SoS proof of utility for 𝑋 which

is degree-deg(𝑝) with respect to 𝑝 , i.e.,

P𝑋 (𝑥,𝑦) ∪ {𝑝 (𝑥,𝑦) ≥ 0} ⊢𝐷,deg𝑝=deg(𝑝) ∥𝑥 − 𝑥∗ (𝑋 )∥2 ≤ 𝛼2

for some vector 𝑥∗ (𝑋 ) ∈ R𝑛 and 𝛼 > 0, where the coefficients of all

polynomials involved in the proof are expressible with 𝐵 bits, and if

vol(C)
vol({𝑥 ∈ C : ∃𝑦 s.t. P𝑋 (𝑥,𝑦) and 𝑝𝑋 (𝑥,𝑦) ≥ 𝑡})

≤ 𝑟 ,

then the algorithm outputs 𝑥 such that ∥𝑥 − 𝑥∗ (𝑋 )∥ ≤ 𝛼 + 2−𝐵 with

probability at least 1 − 𝑟 exp(−Ω(𝜀𝑡)).
Running time: The algorithm runs in time

poly

(
𝑛𝐷 , 𝑁𝐷 ,𝑚𝐷 ,

1

𝜀
,
1

𝜂
, diam(C), 𝐵

)
,

making at most this many calls to membership and projection oracles

for C.

4.1 Proof of Theorem 11

We describe the algorithm we use to prove Theorem 11; then we

assemble the lemmas we need for the analysis.

SoSExponentialMechanism. Input: polynomials 𝑝𝑋 , 𝑝𝑋1 , . . . , 𝑝
𝑋
𝑚 ,

𝐷 ∈ N, 𝜂 > 0, 𝐵 ∈ N.
(1) For 𝑥0 ∈ C, let

𝑠 (𝑋, 𝑥0) = max
Ẽ

Ẽ𝑝𝑋 (𝑥,𝑦) such that deg Ẽ = 𝐷,

Ẽ satisfies P𝑋 ,

and Ẽ𝑥 = 𝑥0

where the optimization is over Ẽ in indeterminates 𝑥,𝑦.

(2) Let 𝐵′
= 𝐵 +𝑇 (diamC, 1/𝜂, 1/𝜀, 𝑑), where 𝑇 is a sufficiently-

large polynomial in the running time of the log-concave

private sampler of [9], when run with finite-precision arith-

metic.

(3) Run the log-concave private sampling algorithm of [9] (Lemma

6.5) with score function 𝑠 , Lipschitz parameter poly(1/𝜂),
and privacy parameter 𝜀/4. Whenever the sampling algo-

rithm makes a call to 𝑠 (𝑋, 𝑥0), solve the underlying SDP to

poly(𝐵′) bits of precision.
Theorem 11 is immediate from the following lemmas, all of which

we establish in the next section.

Lemma 12 (High-scoring 𝑥0 is found in polynomial time).

Given the setup of Theorem 11, for all 𝑋 , if

vol(C)
vol({𝑥 ∈ C : ∃𝑦 s.t. P𝑋 (𝑥,𝑦) and 𝑝𝑋 (𝑥,𝑦) ≥ 𝑡})

≤ 𝑟 ,

then with probability at least 1 − 𝑟 exp(−𝜀 (𝑡/2 − 1)), the 𝑥0 output
in step (2) of SoSExponentialMechanism has 𝑠 (𝑋, 𝑥0) ≥ 0.

Lemma 13 (High-scoring 𝑥0 is useful). Under the assumptions

of Theorem 11, for all 𝑋 , if there is an SoS proof of utility for 𝑋

as described in Theorem 11, then for all 𝑥0 such that 𝑠 (𝑋, 𝑥0) ≥ 0,

∥𝑥∗ (𝑋 ) − 𝑥0∥ ≤ 𝛼 + 2−𝐵 .

Lemma 14 (Privacy). Under the assumptions of Theorem 11, SoS-

ExponentialMechanism satisfies 𝜀-DP.

4.2 Proofs of Lemmas

We will prove Lemmas 12, 13, and 14.

Remark on numerical issues: Because of the choice of 𝐵′,
the guarantees of the log-concave sampling algorithm will apply

equally well if it receives 𝑠 (𝑋, 𝑥0) ± 2−𝐵
′
as if it receives 𝑠 (𝑋, 𝑥0)

when making oracle calls to 𝑠 . (Given its running time, it cannot

even read enough bits to tell the difference.) So, we will henceforth

ignore the difference and presume that the log-concave sampler

observes the values 𝑠 (𝑋, 𝑥0) exactly.
The first step is to establish that the target probability distribu-

tion is actually log-concave and Lipschitz, so that we can use the

guarantees of [9].

Lemma 15. For all 𝑋 , the function 𝑠 (𝑋, 𝑥0) is concave in 𝑥0.

Proof. Consider 𝑥0 and 𝑥 ′0 and let Ẽ be the optimal solution

to the optimization problem defining 𝑠 (𝑋, 𝑥0) and similarly for

Ẽ
′
and 𝑠 (𝑋, 𝑥 ′0). Then

1
2 Ẽ+

1
2 Ẽ

′
is feasible for 𝑠 (𝑋, 12𝑥0 +

1
2𝑥

′
0). So

𝑠 (𝑋, 12𝑥0 +
1
2𝑥

′
0) ≥

1
2𝑠 (𝑋, 𝑥0) +

1
2𝑠 (𝑋, 𝑥 ′0). □

Lemma 16 (Robustly satisfiable systems yield Lipschitz

SDPs). Given the setup in Theorem 11, for all 𝑥0, 𝑥
′
0 ∈ C and all

𝑋 , we have |𝑠 (𝑋, 𝑥0) − 𝑠 (𝑋, 𝑥 ′0) | ≤ poly(1/𝜂) · ∥𝑥0 − 𝑥 ′0∥.

Proof. As shorthand, let us write 𝑠 = 𝑠 (𝑋, 𝑥0). Since P𝑋 is

Archimedean, we can apply standard pseudoexpectation/SoS proof

duality to conclude that for every 𝜀 > 0 there is a polynomial

identity in variables 𝑥,𝑦:

𝑠 + 𝜀 − 𝑝𝑋 (𝑥,𝑦) =
∑︁

𝑆⊆[𝑚]
𝑞𝑆 (𝑥,𝑦)

∏
𝑖∈𝑆

𝑝𝑋𝑖 (𝑥,𝑦) + ⟨𝜆, 𝑥 − 𝑥0⟩ ,

where 𝑞𝑆 are SoS polynomials, all the terms above have degree at

most 𝐷 , and 𝜆 ∈ R𝑛 is a vector.

Our first goal is to bound ∥𝜆∥. By robust satisfiability, if we let

𝑥 ′ = 𝑥0 + 𝜂 · 𝜆
∥𝜆 ∥ , there exists 𝑦

′ such that 𝑝𝑋𝑖 (𝑥 ′, 𝑦′) ≥ 0 for all 𝑖 .

Hence,

𝑠 + 𝜀 − 𝑝𝑋 (𝑥 ′, 𝑦′) ≥ 𝜂∥𝜆∥ .
Since there are SoS proofs that 𝑝𝑋 (𝑥,𝑦) ≤ 1/𝜂 and −𝑝𝑋 (𝑥,𝑦) ≤
1/𝜂, and we can take |𝜀 | ≤ 1/𝜂, the left-hand side is 𝑂 (1/𝜂), so we

find ∥𝜆∥ ≤ 𝑂 (1/𝜂2).
We claim that 𝑠 (𝑋, 𝑥 ′0) ≤ 𝑠 + 𝑂 (1/𝜂2) · ∥𝑥0 − 𝑥 ′0∥. To see this,

note that for each 𝜀 > 0, we can write

𝑠+𝜀+⟨𝜆, 𝑥0−𝑥 ′0⟩−𝑝
𝑋 (𝑥,𝑦) =

∑︁
𝑆⊆[𝑚]

𝑞𝑆 (𝑥,𝑦)
∏
𝑖∈𝑆

𝑝𝑋𝑖 (𝑥,𝑦)+⟨𝜆, 𝑥−𝑥 ′0⟩ ,

which, after Cauchy-Schwarz, certifies the upper bound 𝑠 + 𝜀 +
∥𝜆∥∥𝑥0 − 𝑥0∥ on 𝑠 (𝑋, 𝑥 ′0). Since this works for all 𝜀 > 0, we find

𝑠 (𝑋, 𝑥 ′0) ≤ 𝑠 +𝑂 (1/𝜂2)∥𝑥0 − 𝑥 ′0∥. □

As a corollary of Lemmas 15 and 16, combined with Lemma 6.5

of [9], we obtain:

Corollary 17. Given the setup of Theorem 11, for every 𝑋 , the

output of step (3) of SoSExponentialMechanism is a sample from a

distribution 𝐷𝑋 supported on C such that for every event 𝐴

𝑒−𝜀/2 P

𝐷
target
𝑋

(𝐴) ≤ P
𝐷𝑋

(𝐴) ≤ 𝑒𝜀/2 P

𝐷
target
𝑋

(𝐴)
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where 𝐷
target
𝑋

is the distribution with density proportional to

exp((𝜀/2)𝑠 (𝑋, 𝑥0)) Furthermore, the sampler runs in time at most

poly(𝑑, 1𝜀 ,
1
𝜂 , diam(C)), making at most that many calls to a mem-

bership oracle for C and to an evaluation oracle for 𝑠 (𝑋, ·).

4.2.1 Privacy: proof of Lemma 14.

Lemma 18. Given the conditions of Theorem 11, the score function

𝑠 has sensitivity at most 1.

Proof. Let𝑋,𝑋 ′ be neighboring datasets, and let Ẽ be an optimal

solution to the optimization problem defining 𝑠 (𝑋, 𝑥0). We will

construct a feasible solution Ẽ
′
for 𝑠 (𝑋 ′, 𝑥0) whose objective value

is at most 𝑠 (𝑋, 𝑥0) + 1. Since we could swap 𝑋 and 𝑋 ′, this will
prove that |𝑠 (𝑋, 𝑥0) − 𝑠 (𝑋 ′, 𝑥0) | ≤ 1.

For any degree𝐷 polynomial 𝑓 , we define Ẽ
′
𝑓 (𝑥,𝑦) = Ẽ 𝑓 (𝑥,𝑦′(𝑦)).

Note that the degree of Ẽ
′
as a pseudoexpectation is the same as

that of Ẽ, because 𝑦′(𝑦) is linear.
We claim that Ẽ

′
is feasible for 𝑠 (𝑋 ′, 𝑥0). Clearly Ẽ

′
𝑥 = 𝑥0, so

we just need to check that Ẽ
′
satisfies P𝑋 ′

. For each 𝑗 , we check

that Ẽ
′
satisfies 𝑝𝑋

′
𝑗 (𝑥,𝑦) ≥ 0. Consider any square polynomial 𝑞

such that deg(𝑞 · 𝑝𝑋 ′
𝑗 ) ≤ 𝐷 . We need to show Ẽ

′
𝑞 · 𝑝𝑋 ′

𝑗 ≥ 0.

Using the SoS proof P𝑋 (𝑥,𝑦) ⊢
deg(𝑝𝑋 ′

𝑗
) 𝑝𝑋

′
𝑗 (𝑥,𝑦′(𝑦)), we can

write

𝑞(𝑥,𝑦′) · 𝑝𝑋 ′
𝑗 (𝑥,𝑦′) = 𝑞(𝑥,𝑦′) ·

∑︁
𝑆⊆[𝑚]

𝑞𝑆 (𝑥,𝑦)
∏
𝑖∈𝑆

𝑝𝑋𝑖 (𝑥,𝑦)

where every term in the sum on the right-hand side has degree at

most deg𝑝𝑋
′

𝑗 . Therefore, for every 𝑆 , we have

𝑞(𝑥,𝑦′(𝑦)) · 𝑞𝑆 (𝑥,𝑦)
∏
𝑖∈𝑆

𝑝𝑋𝑖 (𝑥,𝑦)

has degree at most 𝐷 . So, applying Ẽ
′
to both sides, we find that

Ẽ
′
𝑞𝑝𝑋

′
𝑗 ≥ 0, using that Ẽ satisfies P𝑋 .

Finally, we have to check that Ẽ𝑝𝑋 (𝑥,𝑦) − Ẽ
′
𝑝𝑋

′ (𝑥,𝑦) ≤ 1. We

expand the definitions and use our SoS proof of bounded sensitivity.

Ẽ𝑝𝑋 (𝑥,𝑦) − Ẽ
′
𝑝𝑋

′ (𝑥,𝑦) = Ẽ𝑝𝑋 (𝑥,𝑦) − Ẽ𝑝𝑋
′ (𝑥,𝑦′) ≤ 1 .

□

Proof of Lemma 14. By Lemma 18 and the usual analysis of

the exponential mechanism, an output from the target distribution

𝐷
target
𝑋

from Corollary 17 would satisfy 𝜀/2-DP. Since, according
to Corollary 17, the actual distribution output by step (3) of the

algorithm differs only by multiplicative 𝑒𝜀/2, the output of the log-
concave sampler satisfies 𝜀-DP. □

4.2.2 Utility: proofs of Lemmas 12 and 13.

Proof of Lemma 12. By the standard analysis of the exponen-

tial mechanism, a sample from 𝐷
target
𝑋

(as described in Corollary 17)

would output𝑥0 with 𝑠 (𝑋, 𝑥0)with probability at least 1−𝑟 exp(−𝜀𝑡/2).
Since the actual output distribution of step (3) is 𝑒𝜀/2 multiplica-

tively close to this, we are done. □

Proof of Lemma 13. Since 𝑥0 has 𝑠 (𝑋, 𝑥0) ≥ 0, there exists Ẽ

of degree 𝐷 satisfying 𝑝𝑋1 (𝑥,𝑦) ≥ 0, . . . , 𝑝𝑋𝑚 (𝑥,𝑦) ≥ 0 and having

Ẽ𝑥 = 𝑥0 and Ẽ𝑝
𝑋 (𝑥,𝑦) ≥ 2− poly(𝐵) . Then applying Ẽ to either side

of the SoS proof of utility, we obtain Ẽ ∥𝑥−𝑥∗ (𝑋 )∥2 ≤ 𝛼2+2− poly(𝐵) .
By convexity, ∥ Ẽ𝑥 − 𝑥∗ (𝑋 )∥ ≤ 𝛼 + 2− poly(𝐵) , so we are done. □
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