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Abstract

The random geometric graph model Geod(n, p) is a distribution over graphs in which the edges

capture a latent geometry. To sample G ∼ Geod(n, p), we identify each of our n vertices with an

independently and uniformly sampled vector from the d-dimensional unit sphere S
d−1, and we

connect pairs of vertices whose vectors are “sufficiently close,” such that the marginal probability

of an edge is p. Because of the underlying geometry, this model is natural for applications in data

science and beyond.

We investigate the problem of testing for this latent geometry, or in other words, distinguishing

an Erdős-Rényi graph G(n, p) from a random geometric graph Geod(n, p). It is not too difficult to

show that if d →∞ while n is held fixed, the two distributions become indistinguishable; we wish

to understand how fast d must grow as a function of n for indistinguishability to occur.

When p = α
n

for constant α, we prove that if d Ê polylog(n), the total variation distance be-

tween the two distributions is close to 0; this improves upon the best previous bound of Brennan,

Bresler, and Nagaraj (2020), which required d ≫ n3/2, and further our result is nearly tight, re-

solving a conjecture of Bubeck, Ding, Eldan, & Rácz (2016) up to logarithmic factors. We also

obtain improved upper bounds on the statistical indistinguishability thresholds in d for the full

range of p satisfying 1
n
É pÉ 1

2
, improving upon the previous bounds by polynomial factors.

Our analysis uses the Belief Propagation algorithm to characterize the distributions of (sub-

sets of) the random vectors conditioned on producing a particular graph. In this sense, our anal-

ysis is connected to the “cavity method” from statistical physics. To analyze this process, we rely

on novel sharp estimates for the area of the intersection of a random sphere cap with an arbitrary

subset of Sd−1, which we prove using optimal transport maps and entropy-transport inequalities

on the unit sphere. We believe these techniques may be of independent interest.
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1 Introduction

The study of random graphs has been incredibly influential, not only in modeling applications, but

also in the development of algorithms and in the study of mathematics. For example, consider the

simple Erdős-Rényi random graph model G(n, p), in which n nodes are each connected independently

with probability p. This model was introduced by Erdős and Rényi in 1959 [ER59], and since then

its study has blossomed. To list only a few of the many fruits of this line of research: G(n, p) graphs

have been used to demonstrate the existence of many combinatorial objects via the probabilistic

method (e.g. [AS04]); they have been used in algorithm design both as a benchmark and as a starting

point for analysis in worst-case or semirandom settings (e.g. [FK01, BCC+10]); they have been

useful for proving conditional and unconditional lower bounds in complexity theory (e.g. [Jer92,

Fei02, Ros08, Gri01, Sch08]); and finally G(n, p) graphs are a common model in statistical physics

[Nis81, Pan13] and network science [HLL83, CK16]. Though deep questions remain, decades of

intensive study of the G(n, p) distribution have been rewarded with a rich understanding and many

unforeseen insights.

Our primary object of study is the random geometric graph model on the sphere, Geod(n, p). In

this model, a graph is sampled by choosing n vectors v1, . . . ,vn uniformly at random from the d-

dimensional sphere S
d−1, identifying vi with vertex i, then connecting each pair i, j whose vectors

vi,v j have inner product exceeds a threshold τ(p), chosen so that Pr[
〈
vi,v j

〉
> τ(p)]= p. A compelling

aspect of this model is that the graph structure is derived from a geometric representation of the

vertices; this makes it suitable for modeling applications in, say, data science, where we think of

network nodes as representable by a feature vector in some d-dimensional space, with neighboring

nodes sharing similar features.

Though random geometric graphs on the sphere (and also on other domains, such as [0,1]d) have

been studied extensively (see the monograph [Pen03]), the focus has been on the low-dimensional

setting, where we think of d is fixed as n → ∞. However, the high-dimensional setting, in which

d →∞ as a function of n, is still poorly understood. In low dimensions, one can understand Geod(n, p)

as a fine random discretization of Sd−1, but we no longer expect Geod(n, p) to behave in this way in

the high-dimensional setting.

This opens an intriguing possibility: what are the properties of Geod(n, p) in the high-dimensional

setting? And, what are the undiscovered applications of these random objects in algorithm design

and in mathematics? One reason to study this question is that the high-dimensional setting is a

more faithful model for graphs arising from modern high-dimensional data (e.g. high-dimensional

feature vectors). Thus, high-dimensional geometric random graphs could constitute a more useful

benchmark for algorithmic methods, or a more useful starting point for designing algorithms for

the semirandom setting. Another reason to study this distribution is that it may yield graphs with

properties that we have not yet realized are possible; this has historical precedent, for example,

Erdős-Rényi graphs witnessing the existence of certain Ramsey graphs [AS04].

Devroye, György, Lugosi, and Udina [DGLU11] made the first exploration of Geod(n, p) in the

high-dimensional regime. They study the classic property of the chromatic number in random geo-

metric graphs, and also raise the following fundamental question: for which d = d(n, p) is it possible

to test for the presence of an underlying geometry? When can one distinguishGeod(n, p) from G(n, p)?

For intuition, one can see that if d →∞ for n fixed, the Geod(n, p) distribution approaches G(n, p):

the vectors v1, . . . ,vn are effectively mutually orthogonal, τ(p) is very small, and conditioning on the

1



presence of the edge (i, j) (or equivalently on 〈vi,v j〉 > τ(p)) has little impact on the probability that

the edges (i, k) and/or ( j, k) are present. How fast must d grow as a function of n to realize this

limiting behavior? In [DGLU11] the authors observe that if d ≫ exp(n2), a central limit theorem

implies that Geod(n, p) and G(n, p) are indistinguishable; they also note that this bound is likely far

from tight.

Determining the asymptotic threshold in d when geometric graphs become indistinguishable

from Erdős-Rényi graphs is a most basic question that we must address if we wish to make a serious

study of high-dimensional random geometric graphs. Bubeck, Ding, Eldan, and Rácz [BDER16] were

the first to tackle this question, showing that in dense graphs (when p =Θ(1)), the threshold occurs

at d ≍ n3; when d ≫ n3 the total variation distance goes to 0, and when d ≪ n3 the “signed triangle

count” provides a good test statistic. But in the arguably more interesting sparse case p = Θ
(

1
n

)
,

[BDER16] are only able to establish that signed triangle counts distinguish when d = O(log3 n).

They conjecture that when d =Ω(log3 n), the distributions are indistinguishable.

The current best bound, due to Brennan, Bresler, and Nagaraj [BBN20], asserts that in the

regime p =Θ
(

1
n

)
, dTV (Geod(n, p),G(n, p))→ 0 so long as d ≫ n3/2. In essence, their bound relies on

the fact that independent random vectors vi,v j ∼S
d−1 have |〈vi,v j〉| = Õ( 1p

d
) with high probability;

when d ≫ n3/2, these inner products are small enough relative to n that vi has negligible projection

(of order ≈
√∑

j 6=i〈vi,v j〉2 = O(
p

n/d)) into span{v j} j 6=i, which is enough to guarantee approximate

independence of edges. This argument is carried out with technical sophistication in [BBN20], but

clearly, this technique cannot be extended to d < n, much less to d = polylogn, as the vectors in

{v j} j 6=i then span all of Rd .

In this work, we come close to closing this gap in the sparse regime, confirming the conjecture of

[BDER16] up to polylogarithmic factors: we show that if p =Θ( 1
n

), the total variation distance goes

to zero when d ≫ log36 n. We also give a separate improved bound on the total variation distance

for the entire parameter regime p ≪ 1, showing that the total variation distance goes to 0 when

d ≫ n3 p2, improving upon previous bounds by polynomial factors. Our proof relies on a number

of novel technical contributions. Crucially, we must understand, for “typical” G ∼ Geod(n, p), the

distribution of (subsets of the) vectors v1, . . .,vn sampled from S
d−1 conditioned on giving a vector

embedding for G. In order to understand this complicated conditional distribution, we use the Belief

Propagation (BP) algorithm, where our variables are the vertices [n] and their “labels” are vectors in

S
d−1. To analyze BP, we rely on a (to our knowledge) novel concentration inequality, which we prove

using optimal transport, for the area of the intersection of a random spherical cap with any subset

L ⊆S
d−1. We also demonstrate a coupling of G ∼Geod(n, p) and G+ ∼G(n, p+ o(p)) which produces

G ⊆ G+ (meaning G is a subgraph of G+) with high probability. We feel that these techniques may

find other applications, and be of independent interest.

1.1 Our results

Our main result is an indistinguishability result for sparse Random Geometric Graphs and Erdős-

Rényi graphs when the dimension d exceeds polylogn.

Theorem 1.1. For any fixed constant αÊ 1, if d =Ω(log36 n), then

lim
n→∞

dTV

(
Geod

(
n, α

n

)
,G

(
n, α

n

))
= 0.
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Our result settles the conjecture of [BDER16] up to logarithmic factors, an exponential improve-

ment over the previous bound of [BBN20], which required d ≫ n3/2. We remark that we have not

made an effort to optimize the logarithmic factors; it is possible that our current proofs in combina-

tion with chaining-style arguments will yield log3 n, matching their conjecture. We also obtain an

improved result for general p =Ω
(

1
n

)
:

Theorem 1.2. For any fixed constant α> 0, if α
n
< p < 1

2
and d = Ω̃(p2n3),

lim
n→∞

dTV (Geod (n, p),G (n, p))= 0.

This improves by polynomial factors (in p and n) on the previous bound of [BBN20], which re-

quired d ≫ min{pn3 log 1
p

, p2n7/2polylogn} and d ≫ npolylogn. However, this result is not tight

(at least for small p) since in particular it does not recover Theorem 1.1. Given that we have

come close to establishing the conjecture of [BDER16] in the sparse case, it is tempting to inter-

polate between the upper and lower bounds of [BDER16] in the p = Θ(1) regime and their con-

jecture for the p = Θ( 1
n

) regime and speculate that for all p É 1
2
, the testing threshold occurs at

d ≍ (nH(p))3 = O(n3 p3 log3 1
p
), for H(p) the binary entropy function. In Appendix A, we show that

the “signed triangle count” test statistic analyzed by [BDER16] in the p = Θ(1) regime can in fact

distinguish whenever d ≪ (nH(p))3 for all p =Ω( 1
n

), establishing that the testing threshold occurs at

some d =Ω((nH(p)3). If d ≍ (nH(p))3 is indeed the threshold, our Theorem 1.2 is tight up to a factor

of Õ(p).

Relaxed stochastic dominance by Erdős-Rényi graphs. En route to proving Theorem 1.1 and

Theorem 1.2, we establish a result which may be of independent interest. We show that whenever d =
Ω̃(p2n2), a random geometric graph G ∼Geod(n, p) can be coupled with an Erdős-Rényi graph G+ ∼
G(n, p+ o(p)) (and with G− ∼G(n, p− o(p))) in such a way that the Erdős-Rényi graph “stochastically

dominates”1 the geometric graph with high probability over the coupling, in the sense that every

edge in G is also contained in G+ (respectively, every edge in G− is also contained in G).

Proposition 1.3. For any constant α > 0 there exist constants C1,C2 > 0 such that if α
n
É p É 1

2
and

d ÊC1 ·(n2 p2+log4 n) log4 n, for any εÊ C2

√
1
d

(np+ logn) log4 n, one can simultaneously sample G− ∼
G(n, (1−ε)p), G ∼Geod(n, p), and G+ ∼G(n, (1+ε)p) in a correlated manner so that with probability

at least 1−n−Ω(logn), G− ⊆G ⊆G+.

The notation G ⊆ G+ means that G is a subgraph of G+. We find it intriguing that this coupling

succeeds whenever d = Ω̃(p2n2), which is well below the speculative “interpolated” threshold d =
Ω̃(p3n3) for large p.

1.2 Prior and related work

Prior Works. Random geometric graphs in fixed dimension are a well-studied model, with con-

nections to Poisson processes and continuum percolation. The tools used to study fixed-dimensional

random graphs are of a very different flavor from ours; for example, in low dimensions it is often

useful to compare Geod(n, p) to a random process on an appropriate low-dimensional infinite lattice

which discretizes the space. We refer the reader to the survey [Wal11] and the monograph [Pen03].

1Strictly speaking we only have stochastic dominance conditioned on the success of the coupling; that is why we say

that it is “relaxed” stochastic dominance.
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The study of random geometric graphs in high dimension was initiated by [DGLU11]. The main

result of [DGLU11] is a bound on the clique number of Geod(n, p); for example in the dense case

p =Θ(1), they show that the clique numbers of Geod(n, p) and G(n, p) become indistinguishable when

d =Ω(log3 n). The authors of [DGLU11] also note that if d →∞ fast enough as a function of n (they

require d ≫ exp(n2)), Geod(n, p) and G(n, p) are indistinguishable. This naturally raises the question:

for which d is it possible to test for the underlying geometry?

The authors of [BDER16] are the first to directly study the testing phase transition in d. They

show that at any density, if d ≫ n3, then the total variation distance between Geod(n, p) and G(n, p)

goes to zero with n, and conversely, if d ≪ n3, then in the dense regime p =Θ(1), the signed triangle

count statistic furnishes a hypothesis test between the distributions. However in the sparse regime

p = Θ
(

1
n

)
, their results are not as conclusive; they are able to show that triangle counts furnish

a test if and only if d ≪ log3 n, and they conjecture that if d ≫ log3 n the total variation distance

goes to zero. Briefly, their bound on the TV distance is via a reduction to the indistinguishability of

Wishart matrices and matrices from the Gaussian Orthogonal Ensemble (GOE); the idea is that one

can obtain a sample from G(n, p) by thresholding the off-diagonal entries of a GOE matrix B with

independent entries sampled from N (0, 1
d

) at threshold ≈ τ(p), and similarly obtain a sample from

Geod(n, p) by thresholding the off-diagonal entries of a Wishart matrix AA⊤ at ≈ τ(p), where A ∈
R

n×d with rows sampled independently from N (0, 1
d
1d). Hence, if B and AA⊤ are indistinguishable

from their off-diagonal entries, one can conclude that G(n, p) and Geod(n, p) are indistinguishable as

well. It makes sense, then, that the result may not be tight in the sparse regime, as thresholding at

a higher value τ(p) (corresponding to a sparser graph) intuitively reveals less information about the

original GOE or Wishart matrix. The proof in [BDER16] directly compares the Wishart and GOE

densities to obtain the TV bound. Independently, [JL15] obtain the same bounds on the TV distance

of Wishart and GOE matrices.

Following the work of [BDER16], [BBN20] study the question of detecting underlying geometry in

greater generality. The authors show that for any
log n

n2 < p É 1
2
, if d ≫min

{
pn3 log 1

p
, p2n7/2polylogn

}

and d ≫ n log4 n, then dTV (Geod(n, p),G(n, p))→n 0. In particular, they match the bound appearing

in [BDER16] for dense graphs, and in sparse graphs with p =Θ
(

1
n

)
they improve the bound to d ≫

n3/2polylogn. At a high level, their proof applies information-theoretic inequalities to reduce the

question to bounding the Chi-square divergence of the marginal of a single edge in Geod(n, p) vs.

G(n, p); they then bound this Chi-squared divergence by showing that if one conditions v1, . . . ,vn ∼
(Sd−1)⊗n on the event that they produce a “typical” random geometric graph G excluding edge (n−
1, n), then the vectors vn,vn−1 remain sufficiently independent that Pr[〈vn−1,vn〉 > τ(p)] ≈ p. They

achieve this by showing that vn−1 and vn each have a small projection onto span{v1, . . . ,vn−2}, even

after conditioning on their adjacency into [n −2]. Their argument is essentially oblivious to the

particular choice of G, and merely uses properties that hold with high probability over independently

sampled vectors in S
d−1. This argument relies on v1, . . .,vn−2 not spanning the entirety of Rd , and

the authors of [BBN20] explicitly state that improving their bound to any d < n requires a different

approach.

Techniques. We describe our techniques in detail in Section 2, but here we discuss some connec-

tions in the literature. To improve upon the bounds of [BBN20], we draw upon tools from several

areas. At the heart of the proofs of both Theorem 1.1 and Theorem 1.2 are new sharp concentra-

tion of measure results for intersections of random spherical caps with arbitrary subsets of Sd−1; to

4



prove these bounds, we make use of optimal transport inequalities in the Wasserstein metric (see e.g.

[Vil08]). To our knowledge this is the first application of optimal transport in this context, and may

be of independent interest. These tail bounds (in combination with Pinsker’s inequality and some

simple arguments) are enough to yield Theorem 1.2, proving that the total variation distance goes to

zero if d ≫ n3 p2.

Then, to break the d ≍ n barrier for sparse graphs and prove Theorem 1.1, we must answer

the following question: if v1, . . . ,vn are sampled uniformly conditioned on producing a vector em-

bedding of a fixed graph G, how strong are the correlations in the marginal distributions on {vi}i∈S

for small subsets S ⊂ [n]? This is similar to establishing decay of correlations, as in the analysis

of Gibbs sampling (c.f. [DSVW04, Wei06]). To achieve this, we carry out a rigorous analysis in the

style of the “cavity method” from statistical physics (c.f. [MP03]): we compute the marginal over the

depth-
logn

loglog n
-neighborhood of vertices in S via the Belief Propagation (BP) algorithm, under arbi-

trary boundary conditions on the rest of the graph. The cavity method has been previously used to

compute solution geometry phase transitions for a number of prominent discrete spin systems, such

as coloring, Ising and Potts models, and more (c.f. [DMSS14, COKPZ18, Pan09, Tal03]); cavity-style

arguments have also been employed in a similar way to establish decay of correlation properties in

the analysis of Glauber dynamics, as in [GKM15]. In our instantiation of Belief Propagation, the

variables are the vertices in the graph, and their “labels” or “assignments” are vectors in S
d−1, the

constraints are that vectors corresponding to edges have inner product at least τ, and hence the

“messages” passed from variable to variable are convolutions of marginal distributions with spheri-

cal caps; the concentration of measure for intersections of sets with random spherical caps is again

useful in the analysis of this BP.

Applications of high-dimensional geometric graphs in Theoretical CS. A line of work in-

cluding [FS02, FLS04] has utilized a distribution similar to Geod(n, p), to obtain integrality gaps for

semidefinite relaxations of max-cut or graph coloring. In their setting, a graph G is sampled by first

placing n vertices in a “regular” configuration on a d-dimensional sphere, after which n′ = exp(Θ(d)))

vertices are randomly subsampled independently with some probability q,2 and the sample is a

graph induced on these n′ vertices, in which vertices are connected if their inner product lies in some

range of distances (τ1,τ2) (as opposed to the Geod(n, p) case in which the connectivity criteria is inner

product at least τ(p)). The resulting G comes with a natural embedding into S
d−1, which is utilized

in constructing the semidefinite programming certificate. Similar constructions are also used in

[KTW14] to give the optimal approximation ratio of constraint satisfaction problems assuming the

unique games conjecture. Though these graphs are not sampled from Geod(n, p), they are sampled

from a distribution over a high-dimensional sphere which is qualitatively similar. We feel that this

points to the promise of high-dimensional random geometric graphs for applications in theoretical

computer science.

Phase transitions between Wishart and GOE matrices. The works mentioned above are those

most closely related to our results. We mention as well additional works concerning the phase tran-

sition between Wishart and GOE matrices: the work of [RR19] studies the phase transition between

Wishart and GOE at a higher resolution in the dense regime, deriving the expression for the total

variation distance as a function of c = d/n3 when limn→∞ d/n is finite. The result [BG18] generalizes

2For small enough q these are equivalent to n′ independent samples from the uniform measure over S
d−1.
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the d ≫ n3 bound to Wishart matrices in vectors drawn from log-concave measures, and in [EM20]

the authors study the phase transition for Wishart matrices in vectors drawn from non-isotropic

Gaussian measures, drawing conclusions for hypothesis testing dense geometric graphs derived from

these ensembles as well. Other similar questions that have been studied are hypothesis testing in

noisy Wishart matrices [LR21], in which the entries are with some probability independently re-

sampled from the Gaussian distribution, and masked hypothesis testing between Wishart and GOE

matrices, in which only a subset of the matrix’s entries are revealed [BBH21]. In both of these cases,

it has been demonstrated the presence of noise or masking can shift the threshold in interesting

ways.

Organization of the paper

In Section 2, we explain our techniques and the proofs of Theorem 1.1 and Theorem 1.2 at a high

level. Section 3 contains preliminaries and definitions. In Section 4 we use optimal transport to

derive tail bounds for the measure of the intersection of a random spherical cap with an arbitrary

subset (or distribution) on S
d−1, and in Section 5 we utilize these bounds to get tight concentration

for a sequence of random caps and anti-caps. In Section 6 we prove our coupling Proposition 1.3.

Then, in Section 7, we use the Belief Propagation algorithm to analyze the marginal distributions

on vectors conditioned on producing a specific graph G; we then put these ingredients together in

Section 8 to prove Theorem 1.2 and Theorem 1.1. Finally, in Appendix A we show that the signed

triangle count hypothesis test of [BDER16] can be extended to work so long as d ≪ (np log 1
p

)3 for the

full range of p, and in Appendix B we give some deferred proofs from Section 3.

2 Technical overview

2.1 Relative entropy tensorization

Our goal is to determine d at which the total variation distance dTV (G(n, p),Geod(n, p)) goes to 0 as

n →∞. Like the authors of [BBN20], we relate the TV distance between these two distributions to

their relative entropy (Definition 3.1) D(Geod(n, p)‖G(n, p)) via Pinsker’s inequality (Theorem 3.3),

and then apply the tensorization of the relative entropy (Claim 8.1). Roughly, the tensorization says

that given a decomposition of G(n, p) as a product distribution, we can reduce the problem of bound-

ing D(Geod(n, p)‖G(n, p)) to bounding the relative entropy over (potentially simpler) distributions

with smaller support.

G(n, p) is conveniently a product distribution over edges. However, unlike [BBN20], we do not

use this straightforward decomposition of G(n, p) by edge. Instead, let µt be the distribution of vertex

t’s edges to [t−1]. Similarly, let νt be the marginal distribution of vertex t’s edges to [t−1] over the

graph being sampled from Geod(n, p). Our bound via tensorization now becomes

D(Geod(n, p)‖G(n, p))=
n∑

t=1

E
Gt−1∼Geo(t−1,p)

[
D

(
νt(· |G t−1)‖µt

)]
É n · E

Gn−1∼Geo(n−1,p)

[
D

(
νn(· |Gn−1)‖µn

)]

where the final inequality follows after applying the chain rule for relative entropy (Claim 8.2).

The coupling view. The tensorization inequality reduces bounding the TV distance to compar-

ing the probability distribution of the neighborhood of the “final” vertex in G(n, p) and Geo(n, p, d).
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Specifically, we study EGn−1∼Geo(n−1,p)

[
D

(
νn(· |Gn−1)‖µn

)]
by considering the following scenario: we

already have a graph Gn−1 sampled on n−1 vertices, and we want to incorporate vertex n into our

graph. By the definition of the Erdös-Rényi distribution, µn will sample the neighbor set S ⊆ [n−1]

with probability p|S|(1−p)n−1−|S|. For a random geometric graph, we can sample a vector vn ∼ ρ, and

take its dot products to vectors v1, . . . ,vn−1 sampled uniformly from S
d−1 conditioned on producing

Gn−1, to determine the neighbors of n in G (which we denote by NG(n)). Our goal now is to compare

PrG∼G(n,p)[NG(n)= S] and PrG∼Geod (n,p)[NG(n)= S] for S ⊆ [n−1].

2.2 A geometric interpretation of neighborhood probability

For G ∼ Geod(n, p), if vertex i is associated to a (random) vector vi, and (i, j) is an edge, we conse-

quently know that 〈vi,v j〉 Ê τ. On the sphere S
d−1, the locus of points where v j can be, conditioned

on (i, j) being an edge, is a sphere cap centered at vi with a p fraction of the sphere’s surface area,

which we denote by cap(vi). Similarly, if we know that i and j are not adjacent, the locus of points

where v j can fall is the complement of a sphere cap, which we call an “anti-cap,” with measure 1− p.

Equipped with this geometric picture, we can view the probability that vertex n’s neighborhood

is exactly equal to S ⊆ [n−1] as the measure ρ(LS), where LS ⊆S
d−1 is a random set defined as

LS :=
(
⋂

i∈S

cap(vi)

)
∩

(
⋂

i∉S

cap(vi)

)

To show that the distance between Geod(n, p) and G(n, p) is small, we must show that ρ(LS) concen-

trates around p|S|(1− p)n−1−|S|, which is the probability that n’s neighborhood is equal to S under

the Erdős–Rényi model.

Optimal transport. The backbone of our result is a (to our knowledge) novel application of optimal

transport. In Section 4, we prove for a generic distribution L supported on S
d−1, and z sampled

uniformly at random over S
d−1, that

Pr
x∼L

[〈x, z〉Ê τ]∈ (1±ε) · p for εÉ Õ



√

log‖L ‖∞
d




with high probability over z. In other words, how tightly the random variable XL (z)=Prx∼L [〈x, z〉Ê
τ] concentrates is directly related to the maximum value of its relative density, ‖L ‖∞.

To give some intuition for this result, first consider the case when L = ρ, the uniform distribution

over S
d−1. Then, the variable Xρ(z) = Prx∼ρ[〈x, z〉 Ê τ] = p deterministically. Now, when L 6= ρ, we

can work with a transport map D between ρ and L , and we can couple y∼L and x∼ ρ according to

D, so that

XL (z)= Pr
y∼L

[〈y, z〉 Ê τ]= Pr
(x,y)∼D (ρ,L )

e=y−x

[〈x, z〉 Ê τ−〈e, z〉].

The smaller ‖L ‖∞ is, the smaller the average of the transport distance ‖e‖ = ‖x− y‖; further when

z ∼ ρ the quantity 〈e, z〉 concentrates tightly around 1p
d
‖e‖. In this way, we translate the concentra-

tion of transport distance into tail bounds on |Xρ(z)−XL (z)|.
To analyze ρ(L) for L the intersection of caps and anti-caps defined above, we will apply the

above in sequence inside a martingale concentration argument, building up L one cap at a time

(Lemma 5.1, Corollary 6.1). Using this approach, our transport result alone is enough to conclude

Theorem 1.2. (The proof is assembled in Section 8.1.1.)
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The need to resample vectors. In the general p setting, we can think of our analysis of νn(·|Gn−1)

as considering a fixed vector embedding v1, . . . ,vn−1 of Gn−1, and then analyzing the probability that

n connects to some S ⊆ [n −1]. When p = α
n

, this does not yield tight results; moreover, one can

show that this is not due to loose tail bounds on ρ(L), as our concentration results have matching

anti-concentration results.

Hence, in order to prove Theorem 1.1, we must additionally consider the concentration of ρ(LS)

on average over vector embeddings of Gn−1 as well. We will first sample Gn−1, and then for each set

S, we bound the deviation in the random variable ρ(LS)= ρ(
⋂

i∈S cap(ui)∩
⋂

j 6∈S cap(u j)) conditioned

on u1, . . . , un−1 producing Gn−1. To do this, we will use a “cavity-method” style argument: we will

view all vectors at distance > ℓ= log n
loglog n

from S as fixed and arbitrary, and then exactly compute the

marginal distributions over ui for i at distance É ℓ from S, conditional on forming Gn−1.

2.3 Neighborhood containment as a constraint satisfaction problem.

We first reduce the need for high-probability estimates for PrGeo,Gk−1
[N(k) = S] to obtaining esti-

mates for PrGeo,Gk−1
[N(k) ⊇ S] instead. This simplification is possible because the measure of anti-

cap intersections concentrates dramatically better than the measure of cap intersections. With this

step, we eliminate the need to study anti-correlations between vi,v j that do not have an edge be-

tween them.

Given S and Gn−1 (and its corresponding vectors), we fix all vectors except those corresponding

to the depth-
logn

loglogn
neighborhood of S in Gn−1, which is with high probability a union of trees. To

formally analyze the distribution of the unfixed vectors upon resampling them, we set up a 2-CSP

(constraint satisfaction problem) instance over a continuous alphabet that encodes the edges of Gn−1

within the trees around S: each node has a vector-valued variable in S
d−1, and the constraints are

that nodes joined by an edge must have vectors with inner product at least τ.

Belief propagation. Since our 2-CSPs are over trees, the belief propagation (BP) algorithm ex-

actly computes the marginal distribution of each variable vector (see Section 3.6 for the definition

of BP). Using our results on the concentration of Prx∼L [〈x, z〉 Ê τ] over z uniform on S
d−1, we can

quantify the TV distance between the marginal distributions of our resampled vectors and the uni-

form distribution over S
d−1. At a high level, the farther some vi is from a fixed vector in our 2-CSP,

the closer its distribution is to uniform. The key insight is that the message from i to its neighbor j in

our belief propagation algorithm correspond to a convolution of the marginal distribution of vi with

a spherical cap. We can then use our concentration of measure for spherical caps from Section 4 to

show that convolutions of spherical caps mix to uniform rapidly, causing the correlations between far

away vertices to decay. This can be seen as a form of the “decay of correlations” phenomenon. This

analysis gives us the finer-grained control over Pr[NG(n)= S] needed to conclude Theorem 1.1.3

2.4 Further connections between Erdős-Rényi and geometric random graphs.

In the course of proving Theorem 1.1, we prove Proposition 1.3, which demonstrates a coupling of

G− ∼ G(n, p − o(p)), G ∼ Geod(n, p), and G+ ∼ G(n, p + o(p)) that satisfies G− ⊆ G ⊆ G+ with high

3Unfortunately, this analysis only works for p = α
n ; otherwise the neighborhoods around vertices in S are only trees at

a depth which is too shallow for the correlations to decay sufficiently, so the resampled vectors’ distributions are not close

enough to uniform.
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probability. We use this coupling in the proof of Theorem 1.1 to leverage known structural results

on Erdős–Rényi graphs to reason about the structure of random geometric graphs. For instance,

to upper bound the probability that the depth-ℓ neighborhood of some i ∈ [n] forms a tree under

Geod(n, p), we rely on known bounds on the probability of this event under G(n, p(1± o(1))). We

remark that this coupling may be of independent interest.

3 Preliminaries

Basic notation. Throughout this paper, we use boldface for random variables. We use log x to

denote the natural base logarithm, and for x ∈ [0,1], H(x) = x log 1
x
+ (1− x) log 1

1−x
denotes the binary

entropy function (with the understanding that H(0)= H(1)= 0). We use standard big-O notation, and

we use Õ and Ω̃ to hide polylogn factors. The notation f (x)≫ g(x) to denote that limx→∞
g(x)
f (x)

= 0; the

argument x will be clear from context.

We use ρ to denote the uniform distribution on S
d−1. Given a function f :Sd−1 →R, we define its

p-th norm for p <∞ as:

‖f ‖p :=
(

E
z∼ρ

| f (z)|p
)1/p

and for p =∞ as:

‖f ‖∞ := sup
z

| f (z)|.

Given a distribution ν on S
d−1, we overload notation and use ‖ν‖p to denote

∥∥∥ dν
dρ

∥∥∥
p
. We will also

frequently use the symbol ν itself to denote its relative density to ρ. For a set A, we overload notation

and use A to denote the uniform distribution on A when it is clear from context. We’ll use X | E to

denote the random variable X sampled from the conditional distribution of X conditioned on the

event E .

Given a graph G, and a subset of its vertices S, we use G[S] to denote the induced subgraph of

G on S. We use BG(v,ℓ) to denote the ball of radius-ℓ around a vertex v in graph G, and similarly

use SG(v,ℓ) to denote the corresponding sphere of radius-ℓ. We use NG(i) to denote the neighbors of

vertex i in graph G.

Given a collection of vectors V = (v1, . . . ,vn) ∈
(
S

d−1
)n

the associated geometric graph denoted

gg(V , p) = ([n],E) is given by choosing the edge set as all {i, j} where 〈vi,v j〉 Ê τ(p). In particular,

when V ∼ ρ⊗n, gg(V , p) is distributed as Geod(n, p). For an n-vertex graph G, we use ρG to denote

the conditional distribution ρG = ρ⊗n | gg(V , p)=G.

3.1 Divergences between probability distributions

We use the relative entropy to compare probability distributions.

Definition 3.1 (Relative Entropy). Given two probability distributions µ and ν over Ω where ν is

absolutely continuous with respect to µ, the relative entropy between µ to ν is:

D(ν‖µ) :=
∫

Ω

log

(
dν

dµ
(x)

)
dν(x).

If ν is not absolutely continuous with respect to µ, then we define the relative entropy to be ∞.

A simple but useful observation is the following.
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Observation 3.2. If for all x ∈Ω, dν
dµ

(x)É C: (1) D(ν‖µ)É logC, and (2) for any event E : ν(E )É C·µ(E ).

We will use Pinsker’s inequality to bound the total variation distance between two probability

distributions in terms of the relative entropy.

Theorem 3.3 (Pinsker’s inequality). For distributions µ,ν over the same domain, dTV

(
ν,µ

)2 É 1
2
D(ν‖µ).

See e.g. [Mas07, Theorem 2.16] for a proof.

3.2 Sphere caps and dot products of unit vectors

Here, we introduce some useful bounds on the measure of sphere caps, and a concentration bound on

the dot products of two unit vectors. Proofs for some of these lemmas are provided in the appendix,

along with some additional facts about the geometry of the unit sphere that we use to prove them.

Definition 3.4 (p-cap). For a vector v ∈S
d−1, its p-cap is capp(v) := {x ∈S

d−1 : 〈v, x〉 Ê τ(p)}. Similarly,

we define its p-anticap as capp(v) := {x ∈S
d−1 : 〈v, x〉 < τ(p)}. We drop the p in the subscript when its

value is clear from context.

Recall Lévy’s theorem for concentration of measure on the unit sphere [Mat13, Theorem 14.1.1]. We

use it to upper bound the measure of a sphere cap with threshold τ.

Lemma 3.5. Let y ∈S
d−1 be any vector. Then: Prw∼Sd−1 [|〈w, y〉| Ê τ]É 4exp(−τ2d/2).

We now present a convenient upper bound on the dot product threshold τ(p) of a p-cap. Its proof is

provided in Appendix B.

Lemma 3.6. For any p É 1
2
, we have τ(p)É

√
2log(1/p)

d
.

The next lemma helps us understand the deviations in cap volume p when we make small adjust-

ments to its dot product threshold τ(p). Its proof is also in Appendix B.

Lemma 3.7. Fix x ∈S
d−1. Let p := Prz∼ρ[〈z, x〉 Ê τ]. For any εÊ 0, there is a universal constant C3.7

such that:

Pr
z∼ρ

[τ−εÉ 〈z, x〉É τ+ε] É p ·
(
C3.7εexp(2dτε)

√
d log(1/p)

)

3.3 Subgaussian random variables

We will need concentration inequalities for martingales that arise as a sum of subgaussian random

variables.

Definition 3.8 (Subgaussian norm). The subgaussian norm of a real-valued random variable X is

defined as:

‖X‖ψ2
:= inf

{
K > 0 : Eexp(X2/K2)É 2

}
.

We say X is a subgaussian random variable if ‖X‖ψ2
<∞.

We will need a version of Azuma’s inequality for martingales with centered subgaussian incre-

ments. A proof may be found in [VH14], Lemma 3.7.
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Lemma 3.9 (Subgaussian martingale concentration inequality). There exists a constant C3.9 > 0

such that if X0, X1, . . ., Xm is a martingale sequence with respect to a filtration (Vt)t∈[m] and K i :=
supVi−1

‖X i −X i−1|Vi−1‖ψ2
<∞ for all i ∈ [m], then:

Pr [|Xm −X0| Ê t]É 2exp

(
−C3.9

t2

∑m
i=1

K2
i

)
.

Also, we will make use of the following statement to bound the subgaussian norm of a random

variable in terms of its tail probabilities.

Lemma 3.10 ([Ver18], Proposition 2.5.2). There exists a constant C3.10 > 0 such that if X is a random

variable satisfying Pr[|X | > t]É 2exp
(
− t2

K2

)
for all t Ê 0, then ‖X‖ψ2

É C3.10 ·K.

3.4 Random graphs

In this section, we include some facts about Erdős–Rényi random graphs. First, we state a high-

probability upper bound of O
(

logn

log logn

)
on the maximum degree in both random graph models when

p = α
n

for constant α. This allows us to ignore graphs where the max degree is too high when we

upper bound dTV (G(n, p),Geod(n, p)). Since the degree of each vertex is distributed like Binom(n, p),

by applying the standard tail bound for a Binomial random variable and taking a union bound over

all vertices we get the following.

Lemma 3.11. Let ∆(G) denote the maximum degree of a graph G. If p = α
n

, then for both G ∼G(n, p)

and G ∼Geod(n, p) and for all d:

Pr[∆(G)Ê k]É n ·
(

k

eα

)−k

.

More generally, we know the following bound on the number of vertices in an Erdős–Rényi graph

at distance É ℓ from any given vertex, as well as a high probability statement about their structure.

Lemma 3.12 ([BLM15, Lemma 29]). Let G ∼ G(n, p) for p = α
n

for constant α. Define ht(v) as the

number of vertices with distance exactly t from v in G. Then for any vertex v, there are constants c,C

such that:

Pr
[
∃t Ê0 : ht(v)> sαt

]
É C exp(−cs).

Lemma 3.13 ([BLM15, Lemma 30]). Let G ∼G(n, p) for p = α
n

for constant α, and let BG(v, t) be the

set of all vertices with distance É t from vertex v in G. Then, for any vertex v, there is a constant c′

such that:

Pr[BG(v, t) is not a tree]É
c′αt

n

3.5 Conditional vector distributions

Given an n-vertex graph G, we are interested in V ∼ ρ⊗n|gg(V , p)=G, whose distribution we shorten

to ρG . A simple but crucial observation for us is the following.

Observation 3.14. Let f :
(
S

d−1
)n → {0,1} be a Boolean-valued function. If EV∼ρ⊗n f (V )É δ, then:

Pr
G∼Geod(n,p)

[
E

V∼ρG
f (V )Ê

p
δ

]
É
p
δ.

Proof. We can write: EV∼ρ⊗n f (V ) = EG∼Geod (n,p) EV∼ρG f (V ) É δ. The statement then follows from

Markov’s inequality.
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3.6 Constraint satisfaction problems and Belief Propagation

Definition 3.15. A constraint satisfaction problem instance (CSP instance) I consists of a variable

set V and a constraint set E. The variables v ∈V each belong to an alphabet Σ, while the constraints

f ∈ E consist of a k-tuple of variables ∂ f and a function ψ f :Σk → {0,1}. An assignment to variables

c : V →Σ is satisfying if for each constraint f ∈ F, ψ f (c(∂ f ))= 1, i.e. it is satisfied.

Remark 3.16. In our setting, we choose Σ=S
d−1.

Definition 3.17. We can represent any CSP instance I as a bipartite graph F, which we call a factor

graph. The two sides of the bipartition are V and E, and we place an edge between v ∈V and f ∈ E

if v participates in f . We use ∂v and ∂ f to denote the neighborhoods of variables v and clauses f ,

respectively, in this graph.

When the factor graph F is a does not contain cycles, the marginal on a variable v can be com-

puted exactly from the fixed point of the belief propagation algorithm. We state this precisely below.

Definition 3.18 (Belief propagation fixed point). A belief propagation fixed point for a factor graph

F is a collection of messages {
mv→ f , m f→v

}
v∈V , f ∈E

for all pairs v, f such that f is a neighbor of v, where each message is a probability distribution on Σ,

such that

m f→v(x)∝
∫

c|∂ f :c(v)=x
ψ f (c|∂ f )

∏

v′∈∂ f \v

mv′→ f (c(v′)) (1)

mv→ f (x)∝
∏

f ′∈∂v\ f

m f ′→v(x) (2)

Theorem 3.19 (e.g. [MM09], Theorem 14.1). Suppose F is a forest factor graph corresponding to a

CSP instance I where every vertex is attached to a unary constraint. Then there is a unique belief

propagation fixed point and the marginal distribution ν on variable v over the uniform distribution

over satisfying assignments to i is given via the following formula.

ν∝
∏

f ∈∂v

m f→v.

4 Concentration via optimal transport

In this section we establish that for a probability distribution ν over S
d−1, a random p-cap on the

sphere contains a p-fraction of ν’s measure with high probability, where the strength of the concen-

tration depends on ‖ν‖∞. We do so by analyzing the optimal transport mapping D between ν and the

uniform measure ρ.

4.1 Optimal transport and the Wasserstein metric

The Wasserstein metric quantifies the “physical distance” between a pair of probability distributions.

We say π(x, y) is a transport coupling between distributions µ and ν if π(x, ·)=µ(x) and π(·, y)= ν(y).
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Definition 4.1 (Wasserstein Distance). Let µ and ν be two probability distributions over Ω, and Π

be the set of all transport couplings π(x, y) between µ and ν. Then, their Wasserstein-2 distance is

W2(µ,ν) :=

√
inf
π∈Π

∫

Ω×Ω
‖x− y‖2

2
dπ(x, y)

It is straightforward to verify that W2(·, ·) is in fact a metric.

In other words, the square of the Wasserstein distance is the average squared Euclidean distance

‖x− y‖2 between (x, y)∼ π for the most efficient “transport coupling” π. For intuition, we may think

of µ’s density of a pile of sand over Ω, and of π as a map that shifts grains of sand from µ to form the

shape of ν in such a way that minimizes the average distance traveled.

Fact 4.2 ([BGL13, Proposition 9.1.2]). Given two probability distributions µ and ν over Ω, there exists

a coupling π such that: ∫

Ω×Ω
‖x− y‖2

2dπ(x, y)=W2(µ,ν)2.

We call any such π an optimal coupling.

We specifically will need bounds on the Wasserstein-2 distance between an arbitrary distribution

ν on the unit sphere and the uniform distribution on the unit sphere ρ. We obtain a handle on the

distances we need via an entropy-transport inequality, which bounds the Wasserstein-2 distance in

terms of the relative entropy. The following is a direct corollary of [Vil08, Theorem 22.17, part (i)]

and [DEKL14, Corollary 2].

Lemma 4.3 (Talagrand’s T2 inequality on the sphere). For any distribution ν on S
d−1, and ρ the

uniform measure on S
d−1,

W2(ν,ρ)É

√
2

d−1
·D(ν‖ρ).

For a reader interested in the proof of Lemma 4.3, we recommend the proof of the analogous

statement in Gaussian space by [Tal96] due to its relative simplicity. In fact, it is possible to derive a

slightly weaker bound of
√

2
d
·D(ν‖ρ)+ 2p

d
from the Gaussian case via an elementary proof. We also

find it worthwhile to point to [BGL13, Theorem 9.2.1] for a comprehensive exposition.

4.2 The concentration of sphere cap measure

Let ρ be the uniform measure over S
d−1, let ν be a probability measure over S

d−1, and let D be a

coupling between them. For (x, y)∼D we use the convention that x is distributed according to ν and

y is distributed according to ρ. We first prove quantitative bounds on the concentration of ‖x− y‖
when (x, y)∼D.

Lemma 4.4. Let ν be a distribution over S
d−1 and let D be the optimal transport coupling of ν and

ρ. Then for all t >0,

Pr
(x,y)∼D

[
‖x− y‖Ê t+

√
2

d−1
log‖ν‖∞

]
É exp

(
−

d−1

8
t2

)
.
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Proof. Let (x, y)∼D with x∼ ν and y∼ ρ. Let Es be the event that ‖x− y‖ Ê s, and let ps :=PrD[Es].

Let D
s =D|Es, and let D

s
ν,Ds

ρ be the marginal distributions of D
s on x and y respectively. We claim

W2(Ds
ν,Ds

ρ)Ê s.

Indeed, suppose not; then, one could obtain a coupling which further decreases the transport distance

between ν and ρ, contradicting the optimality of D. Now, since W2 is a metric:

s ÉW2(Ds
ν,Ds

ρ)ÉW2(Ds
ρ ,ρ)+W2(Ds

ν,ρ)É

√
2

d−1
D(Ds

ρ‖ρ)+

√
2

d−1
D(Ds

ν‖ρ), (3)

where we have used the triangle inequality in conjunction with Talagrand’s T2 inequality (Lemma 4.3).

Finally, since D
s
ρ(x)= ρ(x|Es)É 1

ps
ρ(x),

D(Ds
ρ‖ρ)=

∫

Sd−1
D

s
ρ(x) · log

D
s
ρ(x)

ρ(x)
dxÉ

∫

Sd−1
D

s
ρ(x) · log

1

ps

dx= log
1

ps

,

and similarly, because D
s
ν(x)= ν(x|Es)É 1

ps
ν(x)É ‖ν‖∞

ps
ρ(x),

D(Ds
ν‖ρ)=

∫

Sd−1
D

s
ν(x) · log

D
s
ν(x)

ρ(x)
dxÉ

∫

Sd−1
D

s
ν(x) · log

‖ν‖∞
ps

dx= log
1

ps

+ log‖ν‖∞.

Putting these together with (3) and using
p

a+b É
p

a+
p

b, we have

s É 2

√
2

d−1
log

1

ps

+

√
2

d−1
log‖ν‖∞,

and then re-arranging we have

ps É exp


−d−1

8

(
s−

√
2

d−1
log‖ν‖∞

)2
 ,

when s Ê
√

2
d−1

log‖ν‖∞. Applying a change of variables completes the proof.

Having established in Lemma 4.4 that the optimal transport map π(ν,ρ) between x∼ ν and y∼ ρ

has bounded length with high probability, we can translate this into a tail bound for the inner product

〈z, x− y〉 for a random vector z ∼ ρ.

Lemma 4.5. Let ν be a distribution on S
d−1, and let D be the optimal transport coupling of ν and ρ.

For z ∈S
d−1, t ∈R

+ and any κ> 0, define X (z, t) as:

X (z, t) := Pr
(x,y)∼D

[
|〈z, x− y〉| Ê

(√
2

d−1
log‖ν‖∞+

√
8κ

d−1

)
· t

]
.

Then:

Pr
z∼ρ

[
X (z, t)Ê 2exp(−dt2/4)+exp(−κ)

]
É 2exp(−dt2/4).

Remark 4.6. One should think of X (z, t) as a measure of how often a randomly chosen transport

vector x− y, with (x, y)∼D, has a large projection in the z direction.
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Proof of Lemma 4.5. For any z ∈S
d−1 and (x, y)∼D, suppose |〈z, x− y〉|Ê

(√
2

d−1
log‖ν‖∞+

√
8κ

d−1

)
· t,

then |〈z, x− y〉| Ê ‖x− y‖ · t or ‖x− y‖Ê
√

2
d−1

log‖ν‖∞+
√

8κ
d−1

. Defining

Y (z, t) := Pr
(x,y)∼D

[|〈z, x− y〉| Ê ‖x− y‖ · t] ,

we can write

X (z, t)ÉY (z, t)+ Pr
(x,y)∼D

[
‖x− y‖Ê

√
8κ

d−1
+

√
2

d−1
log‖ν‖∞

]
ÉY (z, t)+exp(−κ) (4)

where to obtain the upper bound we have applied Lemma 4.4. Next, we prove that

Pr
z∼ρ

[
Y (z, t)Ê 2exp(−dt2/4)

]
É 2exp(−dt2/4), (5)

by showing E [Y (z, t)]É 4exp(−dt2/2), which implies (5) via Markov’s inequality.

E
z∼ρ

[Y (z, t)]= Pr
z∼ρ

(x,y)∼D

[|〈z, x− y〉|Ê ‖x− y‖ · t]= Pr
z∼ρ

(x,y)∼D

[
|〈z,

x− y

‖bx− y‖
〉| Ê t

]

É 4exp(−dt2/2). (by Lemma 3.5)

We can then complete the proof starting at (5) as follows:

Pr
z∼ρ

[
Y (z, t)+exp(−κ)Ê 2exp(−dt2/4)+exp(−κ)

]
É 2exp(−dt2/4)

Pr
z∼ρ

[
X (z, t)Ê 2exp(−dt2/4)+exp(−κ)

]
É 2exp(−dt2/4). (by (4))

This yields the desired conclusion.

Since a p-cap around x is given by the set of vectors z with inner product 〈x, z〉 Ê τ(p), and

〈x, z〉 = 〈y, z〉 ± |〈x− y, z〉 |, we can finally use Lemma 4.5 to relate X (z) = Prx∼ν[〈z, x〉 > τ(p)], the

measure of ν that falls into the p-cap of z, to p =Pry∼ρ[〈z, y〉 > τ(p)]. That is, we can now show that

X (z) for z ∼ ρ concentrates tightly around p, so that most vectors in S
d−1 contain very close to a

p-fraction of ν’s mass in their p-caps.

Lemma 4.7. Let ν be a distribution on S
d−1. For z ∈ S

d−1, let X (z) := Prx∼ν[〈x, z〉 > τ(p)], and for

any κ> 0, let u(t) :=
(√

8
d−1

log‖ν‖∞+
√

8κ
d−1

)
· t. Then for any t Ê 0:

Pr
z∼ρ

[|X (z)− p| > p ·ε(t)]É 2exp(−dt2/4)

where ε(t) := C3.7 ·u(t) ·exp(2dτ(p)u(t)) ·
√

d log 1
p
+ 2exp(−dt2/4)+exp(−κ)

p
.

Proof. Let D be the optimal transport coupling between ν and ρ. For any z ∈S
d−1 and t Ê 0:

X (z)= Pr
(x,y)∼D

[〈y, z〉 > τ(p)−〈z, x− y〉]

É Pr
(x,y)∼D

[〈y, z〉 > τ(p)−max{〈z, x− y〉, u(t)}]

É Pr
y∼ρ

[〈y, z〉> τ(p)−u(t)]+ Pr
(x,y)∼D

[|〈z, x− y〉| > u(t)]
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É p

(
1+C3.7 ·u(t) ·exp(2dτ(p)u(t)) ·

√
d log

1

p

)
+ Pr

(x,y)∼D

[|〈z, x− y〉|> u(t)] (6)

where the last step of the chain of inequalities follows from Lemma 3.7. Identically,

X (z)Ê p

(
1−C3.7 ·u(t) ·exp(2dτ(p)u(t)) ·

√
d log

1

p

)
− Pr

(x,y)∼D

[|〈z, x− y〉|> u(t)] (7)

Then by Lemma 4.5, when z ∼ ρ, we can obtain an upper bound of 2exp(−dt2/4)+ exp(−κ) on the

second term in the RHS of (6) and (7) that holds except with probability 2exp(−dt2/4), which implies

Pr
z∼ρ

[
|X (z)− p| > p ·C3.7 ·u(t) ·exp(2dτ(p)u(t)) ·

√
d log

1

p
+2exp(−dt2/4)+exp(−κ)

]
É 2exp(−dt2/4).

thus completing the proof.

4.3 Different parameterizations of the sphere cap concentration

We’ll now derive a few useful corollaries of Lemma 4.7. First, for intuition, consider the following

immediate consequence regarding the intersection of a set in S
d−1 with a random sphere cap.

Corollary 4.8. Let d Ê log10 n and let Q ⊆S
d−1 be a set such that ρ(Q)Ê 1

nlog3 n
. Then for z ∼ ρ:

ρ(cap(z)∩Q)

ρ(cap(z)) ·ρ(Q)
∉

(
1±

log5 n
p

d
±n− log2 n

)

with probability at most n−Ω(log3 n).

We will make use of the following convenient specialization of Lemma 4.7.

Corollary 4.9. Let ν be a distribution on S
d−1 and for z ∈S

d−1, let X (z) :=Prx∼ν[〈x, z〉Ê τ(p)]. Then

for s É1 and for some constant C4.9,

Pr
z∼ρ

[|X (z)− p| > ps]É 2exp


−

ds2

C4.9

(√
log‖ν‖∞+

√
log d

p

)2

· log 1
p
· log d

p




Proof. The idea is to apply Lemma 4.7 by setting κ= 4log d
p

and using the parameterization

t =
s

2
(√

8log‖ν‖∞+
√

32log 1
p

)√
log 1

p

.

Clearly, the statement is true when

s É

√
C4.9

2d
·
(
√

log‖ν‖∞+

√
log

d

p

)
·

√
log

1

p
· log

d

p

since Pr[|X (z)− p| > ps]É 1< 2exp(−1/2). Hence, we restrict our attention to when

s ∈ H :=



√

C4.9

2d
·
(
√

log‖ν‖∞+

√
log

d

p

)
·

√
log

1

p
· log

d

p
,1


.
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Let ε(t) and u(t) be as in the statement of Lemma 4.7. Using s É 1 and Lemma 3.6, we know

exp(2dτ(p)u(t))ÉO(1). This tells us that for some constant C,

ε(t)É C



√

8

d−1
log‖ν‖∞+

√
32log 1

p

d−1



√

d log
1

p
t+

2exp(−dt2/4)+ p4

d4

p
.

We can choose our constant C4.9 to be a large enough so that when s ∈ H, then t Ê 4

√
log d

p

d
. Observe

that once t Ê 4

√
log d

p

d
, for large enough d:

ε(t)É 2C



√

8

d−1
log‖ν‖∞+

√
32log 1

p

d−1



√

d log
1

p
t

= C′ ·2
(
√

8log‖ν‖∞+

√
32log

1

p

)
·

√
log

1

p
· t

= C′s

for some other constant C′. Then by Lemma 4.7, when s ∈ H:

Pr[|X (z)− p| > ps]É 2exp


−

ds2

4C′2
(√

8log‖ν‖∞+
√

32log 1
p

)2

log 1
p




É 2exp


−

ds2

C4.9

(√
log‖ν‖∞+

√
log d

p

)2

· log 1
p
· log d

p




where the second inequality arises from choosing C4.9 to be large enough, which completes the proof.

Corollary 4.9 can be extended to the case when z ∼ µ with a worse quantitative upper bound

depending on µ from Observation 3.2.

Corollary 4.10. Let ν and µ be distributions on S
d−1 and for z ∈S

d−1, let X (z) :=Prx∼ν[〈x, z〉> τ(p)].

Then for s É1 we have:

Pr
z∼µ

[|X (z)− p| > ps]É 2exp


−

ds2

C4.9

(√
log‖ν‖∞+

√
log d

p

)2

· log 1
p
· log d

p


 · ‖µ‖∞

5 Concentration for intersections of caps and anti-caps

In this section, we prove concentration of measure for the intersection of random p-caps and p-

anticaps with any fixed set L ⊆S
d−1.
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Lemma 5.1 (Concentration for the intersection of j caps and k− j anti-caps). Let ρ be the uniform

measure over S
d−1, and let L ⊂S

d−1, and let k > 0 be an integer. For (v1, . . . ,vk)∼ ρ⊗k, let

Si :=





cap(vi) if i É j

cap(vi) if i > j,

and let L t = L∩
⋂t

i=1
Si. Then the ratio R := ρ(Lk)

ρ(L)p j (1−p)k− j is concentrated as follows:

Pr [|R−1| > s]É ε1(s)+kε1(.5)+ε2

where

ε1(s) := 2exp

(
−

ds2

C′( j+ (k− j)p2)F( j)

)

ε2 :=
4k

p2
exp

(
−

d

CF( j)

)

F( j) :=
(√

log 1
ρ(L)

+ j log 1
p
+ (k− j) log 1

1−p
+

√
log d

p

)2

log 1
p

log d
p

, and C,C′ > 0 are universal constants.

A caricature of the proof of the above lemma is the following. The main takeaway from Section 4

is that the intersection of a random p-cap with a set L has measure (1±ε)pρ(L) where the fluctuation

ε is centered and has typical magnitude Õ
(√

log 1
ρ(L)

/d
)
. As an upshot the intersection of a random

p-anti-cap with L has measure ρ(L)− (1± ε)pρ(L) =
(
1± pε

1−p

)
(1− p)ρ(L). Thus, when intersecting

j random caps and (k− j) random anticaps, we expect a multiplicative fluctuation that resembles(
1±

(√
jε+

√
k− j · p

1−p
·ε

))
. Since the fluctuation term per anti-cap is roughly pε instead of merely

ε, we get extremely strong concentration for intersections of anti-caps, as articulated by the below

corollary. For example, in the p = α
n

regime, an intersection of m =Θ(n) anti-caps will have measure

(1−p)m(1±ε) with typical deviations ε= o(
p

1/n) if d > polylogn for a sufficiently large power of logn.

(See also Corollary 6.1 for another application of Lemma 5.1).

Corollary 5.2 (Intersection of anti-caps). Suppose m, n, d ∈ Z+, a Ê 1, and p ∈ R+ satisfy m É n,

d É n100, 1
n2 ≪ p É 1

2
, and mp É loga n for n sufficiently large. Let L ⊂ S

d−1 with ρ(L) Ê e− loga n.

Let v1, . . .,vm ∼ S
d−1 uniformly at random, and let A = {w ∈ S

d−1 | 〈w,vi〉 É τ(p) ∀i ∈ [m]} be the

intersection of anti-caps of the vi ’s. Then there exist universal constants C,C′ such that for all n

sufficiently large, for all t Ê0,

Pr
A

[∣∣∣∣
ρ(A∩L)

(1− p)mρ(L)
−1

∣∣∣∣> t ·
√

mp2

]
É exp

(
−C min

{
t2 ·d

(logn)a+2
,

p
d−C′(logn)a+3

(logn)a+2

})
.

Proof. Using that log(1+ x)É x for x> 0,

1

log 1
p

log d
p

√
F( j)=

√
log 1

ρ(L)
+m log(1+ p

1−p
)+

√
log d

p
É

√
log 1

ρ(L)
+

√
m

p

1− p
+

√
log d

p
É c · loga n,

for c > 0 a universal constant, where in the final inequality we have applied the assumption p É 1
2

and the assumption p ≫ n−2. Re-arranging, we have F( j)É c′(log n)a+2 for some constant c′. Hence,

Lemma 5.1 implies that there exist constants c′′, c′′′ so that for n sufficiently large,

Pr
A

[∣∣∣∣
ρ(A∩L)

(1− p)mρ(L)
−1

∣∣∣∣> s

]
É 2exp

(
−c′′

ds2

mp2(log n)a+2

)
+

(
2k+

4m

p2

)
·exp

(
−c′′′

d

(logn)a+2

)
,
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where we used our bounds on p, k, m to combine the ε2 and kε1(1
2
) terms from Lemma 5.1 into our

second term. The conclusion now follows by substituting s = t
√

mp2 and applying asymptotic sim-

plifications.

Our proof proceeds by a martingale argument. First, we notice that the (rescaled) area of the

intersection of sets is a martingale.

Observation 5.3 (Scaled intersection is a Martingale). Define Rt := ρ(Lt)

ρ(L)
∏t

i=1 ρ(Si)
, and L t = L ∩

⋂t
i=1

Si, as introduced in Lemma 5.1. Then (Rt)t∈[k] is a martingale with respect to the filtration

(Vt)t∈[k] induced by v1,v2, . . ., with E[Rt | Vt−1]= Rt−1 and |Rt| É 1
ρ(L)p j (1−p)k− j .

Proof. The quantities ρ(Si) are fixed for all i. To see that Rt Ê 0 is bounded, note that Rt É 1
p j (1−p)k− j ,

as ρ(L t)É ρ(L). Now, note that by definition Rt =
ρ(St∩Lt−1)

ρ(L)·
∏t

i=1 ρ(Si )
. Since vt ∼S

d−1 independently of Vt−1,

Evt∼Sd−1 [ρ(St ∩L t−1)]= ρ(St) ·ρ(L t−1). The conclusion now follows, since Evt∼Sd−1 [Rt]= Rt−1.

Now, we will prove concentration for the martingale introduced in Observation 5.3, using the

concentration inequality for martingales with subgaussian increments, Lemma 3.9. The (Rt)t∈[k] do

not quite have subgaussian increments as described. Thus we must “tame” them by making some

minor technical modifications.

Proof of Lemma 5.1. Recall the martingale sequence Rt defined in Observation 5.3. We are then

interested in deviation bounds for |Rk −1|. Our proof strategy is to couple Rt with a more well-

behaved martingale sequence and use the subgaussian martingale concentration inequality on the

more well-behaved sequence. Let T be the first time at which RT > 2 or RT < 1
2
. Define the process

(Qt)tÊ1 so that

Q i =





Ri i É T

RT otherwise.

Note that the sequence (Qt)tÊ1 is a martingale. This is because when t É T, Qt −Qt−1 | Vt−1 has the

same distribution as Rt −Rt−1 | Vt−1 and hence E[Qt −Qt−1 | Vt−1] = 0, and when t Ê T, Qt −Qt−1 |
Vt−1 is identically zero. We will need to make an additional modification on top of Q i to make the

random variable well-behaved, since Corollary 4.9 only guarantees that Pr [|Q i −Q i−1| > s] remains

subgaussian up to s = 1. We will truncate Q i as described by the following definition:

Definition 5.4 ((α,β)-truncation). Given a centered random variable X , we define a random variable

Xα,β for α,β∈RÊ0. First, let θ =min
(

Pr[|X |>α]
β

,1
)
. Now, define

Xα,β :=





X | |X | Éα with probability (1−θ)Pr[|X | Éα]

E [X | |X | >α] ·β with probability (1−θ) ·θ
0 otherwise.

Xα,β is well-defined; in the case when θ = 1 it takes value 0 deterministically, and otherwise if θ < 1

the probabilities sum to 1.

We make two useful observations about (α,β)-truncations.

Observation 5.5. For a random variable X and parameters α,β, E Xα,β = (1−θ)E X .
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Observation 5.6. For a random variable X and parameters α,β satisfying βÉ 1, dTV

(
X , Xα,β

)
É 2θ.

We prove these observations at the end of the section; for now, we proceed with the proof of Lemma 5.1.

Define ∆i :=Q i −Q i−1, and define ∆̃i | Vi−1 := (∆i | Vi−1)α,β where

α=





1 if i É j

p
1−p

if i > j.

and β = p2α. We have chosen α such that Corollary 4.9 guarantees that we can control the tail

probability Pr[|∆i| > t] for t < α. Since |∆i| É 1
p

, |E[∆i | |∆i| >α]| ·βÉ pα, and consequently |∆̃i| É α.

Let (Q̃t)tÊ1 be the random process obtained by setting Q̃1 = Q1 and Q̃t = Q̃t−1 + ∆̃t for t Ê 2. By

Observation 5.5, (Q̃t)tÊ1 is a martingale.

Next, we obtain bounds on the subgaussian norms of ∆̃i|Vi−1. For Vi−1 such that i > T,
∥∥∆̃i|Vi−1

∥∥
ψ2

=
0. For any Vi−1 where i É T and s Ê pα:

Pr
[∣∣∆̃i

∣∣> s | Vi−1

]
ÉPr[|∆i | > s | Vi−1]1[s Éα]

=Pr[|Ri −Ri−1| > s | Vi−1]1[s Éα]

=Pr

[
Ri−1 ·

∣∣∣∣
ρ(Si ∩L i−1)

ρ(Si) ·ρ(L i−1)
−1

∣∣∣∣> s | Vi−1

]
1[s Éα]. (8)

Since i É T, we know Ri−1 É 2 and ρ(L i−1)Ê ρ(L)
∏i

t=1 ρ(St)

2
Ê ρ(L)p j (1−p)k− j

2
. When i É j:

Pr
[∣∣∆̃i

∣∣> s | Vi−1

]
É 2exp


−

ds2

C ·
(√

log 1
ρ(L)

+ j log 1
p
+ (k− j) log 1

1−p
+

√
log d

p

)2

log 1
p

log d
p




and when i > j:

Pr
[∣∣∆̃i

∣∣> s | Vi−1

]
É 2exp


−

ds2

C · p2 ·
(√

log 1
ρ(L)

+ j log 1
p
+ (k− j) log 1

1−p
+

√
log d

p

)2

log 1
p

log d
p




for all s > 0 and for some constant C > 0, where the case of s É pα holds vacuously since the right

hand side exceeds 1, and the case of s > pα holds by (8) and Corollary 4.9. Using F( j) to denote

(√
log

1

ρ(L)
+ j log

1

p
+ (k− j) log

1

1− p
+

√
log

d

p

)2

log
1

p
log

d

p
,

we can more legibly write the above as:

Pr
[∣∣∆̃i

∣∣> s|Vi−1

]
É 2exp

(
−

ds2

Cp2·1[i> j] ·F( j)

)

Consequently,
∥∥∆̃i|Vi−1

∥∥
ψ2

É Cp1[i> j] ·
√

F( j)
d

for all Vi−1 by Lemma 3.10.

By the subgaussian martingale concentration inequality (Lemma 3.9), for some constant C′ > 0:

Pr
[∣∣Q̃k −1

∣∣Ê s
]
É ε1(s) := 2exp

(
−

ds2

C′( j+ (k− j)p2)F( j)

)
.
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By a union bound we also know:

Pr
[
∃i :

∣∣Q̃ i −1
∣∣> s

]
É kε1(s).

It remains to relate Q̃k back to Rk. By Observation 5.6, and a union bound, there is a coupling

between the sequence of ∆̃i and the sequence of ∆i such that ∆̃i =∆i for all i except with probability

at most 2kmaxi∈[k]
Pr[|∆i |>α]

pα
, which with Corollary 4.9 we can bound by

ε2 :=
4k

p2
exp

(
−

d

CF( j)

)

The upshot of the above is:

Pr
[
∃i ∈ [k] : |Q i −1| > s or Q i 6= Q̃ i

]
=Pr

[
∃i ∈ [k] :

∣∣Q̃ i −1
∣∣> s or Q i 6= Q̃ i

]
É kε1(s)+ε2.

Suppose |Q i −1| < .5 for i = 1, . . . , k, then Q i = Ri for i = 1, . . ., k. Thus:

Pr
[
∃i ∈ [k] : Q̃ i 6= Ri

]
ÉPr

[
∃i ∈ [k] : Q̃ i 6= Ri or Q i 6= Q̃ i

]

=Pr
[
∃i ∈ [k] : Q i 6= Ri or Q i 6= Q̃ i

]

É kε1(.5)+ε2.

Consequently,

Pr[|Rk −1| > s]ÉPr
[∣∣Q̃k −1

∣∣> s
]
+Pr

[
Q̃k 6= Rk

]

É ε1(s)+kε1(.5)+ε2.

We now give the deferred proofs of our observations regarding truncated variables.

Proof of Observation 5.5. If θ = 1, Xα,β = 0 and the statement holds. Otherwise (and actually in any

case), we can write:

E Xα,β = (1−θ)Pr[|X | Éα]E[X | |X | Éα]+ (1−θ) ·
Pr[|X | >α]

β
·E [X | |X | >α] ·β

= (1−θ)E[X ·1[|X | Éα]]+ (1−θ)E[X ·1[|X | >α]] = (1−θ)E X .

Proof of Observation 5.6. If θ = 1, the bound holds trivially, so assume that θ < 1. We can couple X

and Xα,β by sampling Xα,β in the following way: sample c ∼ Ber(1−θ) and X . If c = 1 and |X | É α,

let Xα,β = X ; otherwise let Xα,β =E [X | |X | >α] ·β with probability (1−θ)θ and 0 with the remaining

probability. If β É 1, then by definition θ Ê βθ = Pr [|X | >α]. Hence under this coupling, X 6= Xα,β

with probability at most θ+βθ É 2θ, yielding the total variation bound.

6 Stochastic domination by Erdős-Rényi graphs

Here, we will prove Proposition 1.3: we’ll show that so long as d = Ω̃((np)2), there is a three-way

“coupling” between G ∼Geod(n, p), G− ∼G(n, (1−Õ(
√

np

d
))p), and G+ ∼G(n, (1+Õ(

√
np

d
))p) such that

with high probability G is sandwiched between G− and G+. This will be crucial for the proof of

Theorem 1.1 in reasoning about the structure of random geometric graphs.

We will need the following corollary of Lemma 5.1, which lower bounds the area of intersections

of j random p-caps and k− j random anti-p-caps.
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Corollary 6.1 (Area of ≈ pk caps and ≈ (1−p)k anti-caps). Let n, j, k, d ∈Z+, and let p ∈R+, satisfying
1
n2 ≪ p É 1

2
, 1 É d É n100, j É k É n, with j = pk +∆. Draw v1, . . . ,vk uniformly from S

d−1 and

let L =
(⋂ j

i=1
cap(vi)

)
∩

(⋂k
i= j+1

cap(vi)
)
. Then there exist constants C6.1,C′

6.1 > 0 such that for all n

sufficiently large,

Pr




∣∣∣∣∣∣∣

ρ(L)

e−kH(p)
(

p
1−p

)
∆
−1

∣∣∣∣∣∣∣
Ê t


É exp

(
−C6.1 ·min

(
dt2

M(k, p,∆)2 logn
,

d

M(k, p,∆)2 logn
−C′

6.1 logn

))
,

where M(k, p,∆)=max(kH(p), |∆| log 1
p

, logn).

Proof. We will apply Lemma 5.1. Applying asymptotic simplifications, in our case,

√
F( j)

log 1
p

log d
p

=
√

kH(p)+∆ log
1−p

p
+

√
log d

p
É c ·

(√
kH(p)+|∆| log 1

p
+

√
logn

)
,

for c > 0 a universal constant. Re-arranging and applying the inequality a2+b2 Ê 1
2

ab,

F( j)É c′ · log
1

p
logn

(
kH(p)+|∆| log 1

p
+ logn

)
.

Now applying Lemma 5.1 and letting B = kH(p)+|∆| log 1
p

(and using j+ (k− j)p2 = kp+ (1− p2)∆+
k(1− p)p2 É 2kp+|∆|, and hence F( j)( j+ (k− j)p2)É c′′(B+ log n)B logn for some constant c′′),

Pr




∣∣∣∣∣∣∣

ρ(L)

e−kH(p)
(

p
1−p

)∆ −1

∣∣∣∣∣∣∣
Ê t


É 2exp

(
−c1

ds2

(B+ logn)B logn

)
+2kexp

(
−c2

d

(B+ log n)B logn

)

+
4k

p2
exp

(
−c3

d

(B+ log n) log 1
p

logn

)

É 2exp

(
−c1

ds2

M2 log n

)
+

(
2k+

4k

p2

)
exp

(
−c3

d

M2 logn

)
,

for universal constants c1, c2, c3 > 0 and M =max(kH(p), |∆| log 1
p

, logn). Applying asymptotic simpli-

fications yields our desired result.

Proposition (Restatement of Proposition 1.3). For any constant α> 0 there exist constants C1,C2 > 0

such that if α
n
É p É 1

2
and d Ê C1 · (n2 p2 + log4 n) log4 n, for any ε Ê C2

√
1
d

(np+ logn) log4 n, one can

simultaneously sample G− ∼ G(n, (1− ε)p), G ∼ Geod(n, p), and G+ ∼ G(n, (1+ ε)p) in a correlated

manner so that with probability at least 1−n−Ω(logn), G− ⊆G ⊆G+.

Proof of Proposition 1.3. We describe how to sample G−,G,G+ jointly so that the above holds. We

consider vertices arriving one at a time, and we’ll determine the adjacency of the arriving vertex

to all previous vertices in a way that correlates G−,G,G+. In G, each vertex is identified with a

vector; an arriving vertex’s vector starts with the entirety of Sd−1, then iteratively refines the set of

candidates by intersecting with the spherical caps (or anti-caps) of the previous vectors.

1. Choose v1 ∼S
d−1 uniformly at random.
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2. For each i ∈ {2, . . ., n}:

(a) Initialize the set of candidates for vector vi as A i,0 =S
d−1.

(b) For each k ∈ {1, . . . , i−1}:

i. Choose a threshold value θ ∼Unif([0,1]).

ii. If θ < (1−ε)p, add the edge (i, k) to G−

iii. Let Sk = {u ∈S
d−1 | 〈u,vk〉 Ê τ(p)}. If θ < ρ(Ai,k−1∩Sk)

ρ(Ai,k−1)
, let A i,k = A i,k−1 ∩Sk. Otherwise

let A i,k = A i,k−1 ∩Sk.

iv. If θ < (1+ε)p, add the edge (i, k) to G+.

(c) Choose vi uniformly at random from A i,i−1.

3. Set G = ggτ(p)(v1, . . .,vn).

The marginal distributions over G− and G+ are clearly G(n, (1−ε)p) and G(n, (1+ε)p) respectively.

The marginal distribution over G is Geod(n, p): since we choose A i,k = A i,k−1∩Sk independently with

probability proportional to the measure ρ(A i,k−1 ∩Sk), each vi ∼S
d−1 independently of v1, . . . ,vi−1.

Note that for i > k, the edge (i, k) will be present in G if and only if A i,k = A i,k−1∩Sk. Hence, the

sampled graphs will satisfy G− ⊆G ⊆G+ if and only if for every i > k it is the case that

(1−ε)p É
ρ(A i,k−1 ∩Sk)

ρ(A i,k−1)
É (1+ε)p. (9)

We now argue that this occurs with high probability. Each A i,k−1 is an intersection of j =Binom(p, k−
1) caps and k−1− j anti-caps. Using Bernstein’s inequality, with probability 1−n− logn, j = kp+∆
for |∆| É C ·lognmax(

√
kp, logn) for C a universal constant. Hence, applying Corollary 6.1 with t = 1

2

and a union bound, we have that so long as d ≫ max(kH(p), log3 n)2 log2 n = O((np+ log2 n)2 log4 n),

with probability at least 1−
(n

2

)
·n−Ω(logn), ρ(A i,k)Ê 1

2
exp−C′·kH(p)−log2 n for all 1É k < i É n, and hence

log(‖ρAi, j
‖∞)É C′ ·

(
n ·H(p)+ log2 n

)
.

Using this, we may apply Lemma 4.7 with κ = 4log d
p

and t = 4logn

√
1
d

, in conjunction with a

union bound over all 1 É j < i É n to conclude that the probability that (9) holds for all such i > j

is at least 1− n−Ω(logn) for any ε Ê C′′
√

1
d

(np+ logn) log4 n, where C′′ is a universal constant. This

completes the proof.

7 Distribution of a neighborhood

In this section, we analyze the probability distribution of the neighborhood of a vertex in a random

geometric graph conditioned on the remaining graph. Throughout this section we will assume that

log36 n É d É n100 and p = α
n

for constant αÊ 1. 4

Concretely, let G ∼Geod(n, p) and let Gn−1 be the induced subgraph on [n−1]. We analyze the dis-

tribution of NG(n)|Gn−1, and in particular prove that it closely tracks the neighborhood distribution

in an Erdős-Rényi graph.

4The upper bound of n100 on d isn’t actually necessary for our proof techniques, but this assumption slightly simplifies

calculations. Since indistinguishability results are already known when d Ê n100 from prior work, we prioritize having

somewhat less symbol-dense calculations.
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Lemma 7.1. With probability 1−n−Ω(logn) over the randomness of Gn−1, for every S ⊆ [n−1] such that

|S| É log2 n, the following is true. Let ℓ< log n

loglogn
be such that the balls {BGn−1

(x,ℓ) : x ∈ S} are pairwise

disjoint trees, and let d > log20 n. Then:

Pr[NG(n)= S|Gn−1] ∈
(
1±2η(ℓ)

)
p|S|(1− p)n−1−|S|

where

η(ℓ) :=min





log8 n
p

d
,max





2



√

log28 n

d



ℓ

,8 ·

√
log11 n

nd









.

We prove Lemma 7.1 in Section 7.5, after establishing the necessary ingredients.

7.1 Setup and outline

The distribution of NG(n) is given by sampling wn ∼ ρ, then sampling (w1, . . . ,wn−1) ∼ ρGn−1 , and

choosing NG (n)= {x : 〈wx,wn〉 Ê τ(p}. For every S ⊆ [n−1] satisfying |S| É log2 n, we are interested in

Pr[NG(n)= S|Gn−1], which is the expected measure of the intersection of some collection of caps and

anticaps. In particular:

Pr[NG(n)= S|Gn−1]= E
(wi )i∈[n]∼ρGn−1

ρ

(
⋂

j∈S

cap(w j)∩
⋂

j∈[n−1]\S

cap(w j)

)
.

The random variable ρ
(⋂

j∈S cap(w j)∩
⋂

j∈[n−1]\S cap(w j)
)

may appear daunting at first due to the

complicated correlation structure of (wi)i∈[n−1]. Our situation is greatly simplified by tight concen-

tration for the measure of the intersection of random anticaps with sets of lower bounded measure.

In particular, we show in Section 7.5 that with high probability:

ρ

(
⋂

j∈S

cap(w j)∩
⋂

j∈[n−1]\S

cap(w j)

)
∈

(
1± Õ

(√
1

nd

))
·ρ

(
⋂

j∈S

cap(w j)

)
(1− p)n−1−|S|.

This lets us write Pr[NG(n)= S|Gn−1] as

Pr[NG(n)= S|Gn−1] ∈
(
1± Õ

(√
1

nd

))
(1− p)n−1−|S| ·Eρ

(
⋂

j∈S

cap(w j)

)
.

Now,

Eρ

(
⋂

j∈S

cap(w j)

)
=Pr[NG (n)⊇ S|Gn−1]

and so to study the probability that NG(n) = S, it suffices to study the probability that NG(n) ⊇ S,

which can equivalently be written as:

Pr[NG(n)⊇ S|Gn−1]=Pr[∀x ∈ S : 〈wx,wn〉 Ê τ(p)].

We next notice that we are spared from working with the potentially complicated full ensemble

(wi)i∈[n−1], since the above depends only on its marginal distribution on wi for i ∈ S. Indeed, we

prove that for most sets S, the vectors (wi)i∈S roughly behave like independent and uniform vectors

on the unit sphere, a statement which is made concrete below.

24



Lemma 7.2. With probability 1− n−Ω(logn), for every S ⊆ [n−1] such that |S| É log2 n, the following

is true. Suppose ℓ < log n

log logn
is such that the balls {BGn−1

(x,ℓ) : x ∈ S} are all trees and are pairwise

disjoint, then:

Pr[NG(n)⊇ S|Gn−1]∈
(
1±η(ℓ)

)
p|S|

where

η(ℓ) :=min





log8 n
p

d
,max





2

√
log28 n

d

ℓ

,8

√
log11 n

d









.

We now give a brief proof overview of Lemma 7.2. The way we think about the quantity we wish

to obtain a handle on is articulated by the following equality.

Pr[NG(n)⊇ S |Gn−1]= E
wn∼ρ

(wi )i∈[n−1]∼ρGn−1

∏

x∈S

1[〈wx,wn〉 Ê τ(p)].

If (wx)x∈S was a collection of independent random vectors distributed uniformly on the sphere

then the above quantity is exactly equal to p|S|. Our proof of Lemma 7.2 is by establishing that both

of these properties are approximately true. The following gives a rough outline of the proof along

with how it’s organized in this section.

• Our intuition is that any “large” correlations between vertices x and y are explained by the

existence of paths in between them. Thus, we study the distribution of (wx)x∈S|(wx)x∉B(S,ℓ)

for some ℓ where (wx)x∉B(S,ℓ) is sampled according to ρGn−1 and attempt to prove approximate

independence for this ensemble.

• In Section 7.2, we define a constraint satisfaction problem instance on a forest factor graph

with variable set indexed by the vertices of B(S,ℓ), and in Section 7.4 show that the marginals

of the uniform distribution F
′ on satisfying assignments to this CSP instance on the variables

indexed by S is very close to the distribution of (wx)x∈S .

• (wx)x∈S is an independent ensemble when sampled from F
′ for the simple reason that they are

all in different connected components of the factor graph. The bulk of the technical work in

this section is in proving that each wx “behaves like” a uniform vector, which is performed in

Section 7.3.

• The key relevant property of the uniform distribution on the sphere ρ for us is that for every w,

Prv∼ρ[〈v,w〉 Ê τ(p)]= p. Thus, for each vertex x ∈ S, we show the following about the marginal

of F
′ on wx.

For most w, Pr[〈wx,w〉 Ê τ(p)]= p(1±ε).

• The way we establish this “pseudo-uniformity” property of wx is by using the fact that its

marginal can be computed exactly from belief propagation fixed point messages by virtue of

arising from a forest factor graph. Our analysis of the belief propagation fixed point messages

is based on diffusion properties of the random walk on the sphere where each transition moves

from a point v to a random point in the p-cap around v.
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7.2 A relaxation of containment probabilities

We now turn our attention towards proving Lemma 7.2.

We use W to refer to the collection (wi)i∈[n−1] ∼ ρGn−1 , and for any subset A ⊆ [n], we use the

notation WA to refer to the subcollection (wi)i∈A. Let ℓ be an integer chosen so that {BGn−1
(x,ℓ) :

x ∈ S} are pairwise disjoint trees, and ℓ< logn
loglog n

. Define K :=
⋃

x∈S V
(
BGn−1

(x,ℓ−1)
)

and denote the

remaining vertices as R := [n−1]\ K . Note that it is possible for ℓ= 0, in which case K is empty. We

can write

Pr[NG (n)⊇ S|Gn−1]= E
wn∼ρ

[
E

WR

[
Pr

WK |WR

[∀x ∈ S : 〈wx,wn〉 Ê τ(p)]

]]
. (10)

The distribution of WK |WR is uniform on the space of vectors producing Gn−1, conditioned on the

choice of WR :

F (WR ) := {(wi)i∈K : gg(w1, . . . ,wn−1)=Gn−1, and wr = wr for r ∈R}.

We “relax” F (WR ) to a slightly larger set F
′(WR)⊇F (WR ), which admits a description in terms of the

solution space of a constraint satisfaction problem on a forest; in particular, the induced subgraph

T(Gn−1) := Gn−1[K ]. The reason for doing so is we can precisely calculate marginals of the uniform

distribution on F
′(WR) using the belief propagation algorithm. To help define F

′(W), we let L(WR ) :=
⋂

j∈R cap
(
w j

)
, and similarly let L i(WR ) := ⋂

j∈R\NR (i) cap
(
w j

)
∩⋂

j∈NR (i) cap
(
w j

)
where NR (i) denotes

the set of neighbors of i within R. Observe that for i ∈V with distance less than ℓ−1 to some j ∈ S,

the set L i = L(WR ).

Definition 7.3. F
′(WR ) is the collection of satisfying assignments to the following CSP instance

I (WR) on variables indexed by V (K ), comprised of unary constraints and binary constraints.

• Unary constraints. For each i ∈V (K ), vi ∈ L i(WR ). In words, the set of neighbors of the vector

assignment vi within R must be equal to NGn−1
(i)∩R.

• Binary constraints. For every {i, j} ∈ T(Gn−1):
〈
vi,v j

〉
Ê τ(p). In words, for every edge {i, j},

the vector assignments vi and v j must also have an edge in between them.

We use F(WR ) to denote the factor graph representation of I (K ).

Notice that Definition 7.3 enforces that gg(WK ∪WR) contains Gn−1 as an edge-induced subgraph. In

Section 7.4, we will show that with high probability, gg(Wk ∪WR ) is also precisely equal to Gn−1.

Our main result about F
′ is the following.

Lemma 7.4. Suppose ℓÊ 1. Then for every S such that |S| É log2 n:

Pr
wn∼Sd−1

WK∼F
′(WR )

[∀x ∈ S : 〈wx,wn〉 Ê τ(p)] ∈
(
1±η(ℓ)

)
p|S|

except with probability at most n−Ω(logn) over the randomness of Gn−1 where

η(ℓ) :=max






C

√
log27 n

d



ℓ

,4

√
log11 n

nd





for some absolute constant C.5

The proof of Lemma 7.4 is carried out in Section 7.3.

5Recall that Lemma 7.4 is a stepping stone towards proving Lemma 7.2, and the case of ℓ= 0 is handled directly within

the proof of Lemma 7.2.
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7.3 Belief propagation for relaxed distribution

BP update rule. Recall that given a CSP instance I with variable set V and constraint set E, the

marginals on specific variables can be accurately computed from the belief propagation fixed point

messages when the factor graph is a forest using Theorem 3.19.

In our setting, the BP equations are the following:

Variable-to-constraint messages. mv→ f =
∏

e∈∂v\ f me→v

∫∏
e∈∂v\ f me→v(x)dρ(x)

(11)

Constraint-to-variable messages (unary case). m f→v =
f∫

f (x)dρ(x)
(12)

Constraint-to-variable messages (binary case). Let ∂ f = {v,w}, then:

m f→v(xv)=
∫

f (xv, xw) ·mw→ f (xw)dρ(xw)∫∫
f (xv, xw) ·mw→ f (xw)dρ(xw)dρ(xv)

.

(13)

7.3.1 Interpreting binary constraint-to-vertex messages as convolutions

The denominator in the binary case of constraint-to-vertex messages further simplifies as follows:
∫∫

f (xv, xw) ·mw→ f
t (xw)dρ(xv)dρ(xw)=

∫
m

w→ f
t (xw)

∫
1[〈xv, xw〉 Ê τ(p)]dρ(xv)dρ(xw)

= p

∫
m

w→ f
t (xw)dρ(xw)

= p.

The final equality comes from the fact that each message m
w→ f
t is a distribution. Thus, for binary

constraints f such that ∂ f = {v,w} we can rewrite the constraint-to-vertex messages as:

m
f→v

t+1
(xv)=

∫
f (xv, xw)

p
m

w→ f
t (xw)dρ(xw),

which, in particular, can be written as Pmw→ f for a linear operator P, defined as follows:

Definition 7.5. Let P be the linear operator defined so that for any function h :Sd−1 →R,

Ph(x)=
1

p

∫

capp(x)
h(y) dρ(y),

which we alternately denote 1
p

h(capp(x)).

In words, the operator P convolves its input with the uniform distribution over a spherical cap.

Since P is a convolution operator, it preserves the ℓ1-norm of nonnegative functions.

Observation 7.6. Suppose ν is a nonnegative function, then ‖Pν‖1 = ‖ν‖1. Additionally, for an

arbitrary function ν, ‖Pν‖1 É ‖ν‖1.

When ν is a distribution in particular, P can be construed as the transition operator of the Markov

chain on S
d−1 where a single step entails walking from v to a uniformly random point in cap(v).

The following useful observations are immediate from how we define the operator P.

Observation 7.7. For any function ν, ‖Pν‖∞ É ‖ν‖1

p
. This is because ν(cap(z))É ‖ν‖1 for any z ∈S

d−1.
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7.3.2 A potential function for analyzing BP.

Here, we introduce the notion of the spread profile, which we will use as potential function for track-

ing how close the density defined by a message is to uniform over L(WR ). We’ll show that with each

successive application of the operator P which occurs when messages pass from the leaves to the

root of the tree, the spread of the function improves, until ultimately the spread of the root’s function

guarantees that it is close to uniform.

Definition 7.8. Given a function ν on S
d−1, its deviation profile is the function Devν :R+ → [0,1]:

Devν(ε) := Pr
z∼ρ

[
ν(z)∉ E

y∼ρ
[ν(y)]±ε · ‖ν‖1

]
.

The spread profile of ν, denoted Sprν(δ), is

Sprν(δ) := inf{ε ∈R+ : Devν(ε)É δ} .

In the special case where ν is a relative density of a distribution with respect to ρ,

Devν(ε) = Pr
z∼ρ

[|ν(z)−1| > ε].

We comment that we can think of the spread profile as an “inverse” to the deviation profile, since it

takes in a tail probability and returns the corresponding deviation ε.

It now follows from averaging arguments that the deviation profile and spread profile of a distri-

bution ν give us useful upper and lower bounds on dTV

(
ν,ρ

)
.

Observation 7.9. For any ε> 0 and distribution ν,

Devν(ε) ·εÉ dTV

(
ν,ρ

)
É ε+Devν(ε) · ‖ν‖∞

Similarly, for any δ> 0 and distribution ν,

δ ·Sprν(δ)É dTV

(
ν,ρ

)
ÉSprν(δ)+δ · ‖ν‖∞

We list some properties of the deviation and spread profiles that will be useful in our analysis.

Observation 7.10. Both the deviation profile and spread profile are non-increasing functions.

Observation 7.11. For ν= ρ, we have Devν(ε)= 0 for all ε> 0 and Sprν(δ)= 0 for all δ> 0.

Observation 7.12. Both the deviation and spread profiles are invariant under a constant factor

multiplication to ν, i.e. for α 6= 0:

Devαν(ε)=Devν(ε) and Sprαν(δ)=Sprν(δ)

Observation 7.13. For ν= ν1 +ν2, and ε> 0, the deviation profile satisfies:

Devν

(
ε ·

‖ν1‖1 +‖ν2‖1

‖ν‖1

)
ÉDevν1

(ε)+Devν2
(ε)

The “triangle inequality” follows from the following containment of events:

{ν(z)∉ E
y∼ρ

[ν(y)]±ε · (‖ν1‖1 +‖ν2‖1)}⊆ {ν1(z)∉ E
y∼ρ

[ν1(y)]±ε · ‖ν1‖1}∪ {ν2(z) ∉ E
y∼ρ

[ν2(y)]±ε · ‖ν2‖1}.

Similarly, we also have a “triangle inequality” for the spread profile. For ν= ν1+ν2 and δ1,δ2 > 0:

‖ν‖1 ·Sprν(δ1 +δ2)É ‖ν1‖1 ·Sprν1
(δ1)+‖ν2‖1 ·Sprν2

(δ2)

We can think of the left hand side as the (1−δ1 −δ2)-confidence interval of ν, and the right hand

terms as the (1−δ1)- and (1−δ2)-confidence intervals of ν1 and ν2, respectively.
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7.3.3 Diffusion of distributions under convolutions with caps.

We will show that the cap-convolution operator P “flattens” functions over S
d−1. Concretely:

Lemma 7.14. Let ν be any function on S
d−1 with Ey∼ρ ν(y)= 0, and suppose d Ê log10 n·

(
1+ log3 ‖ν‖∞

‖ν‖1

)
.

Then:

DevPν

(
ε ·

‖ν‖1

‖Pν‖1

)
É n− log4 n,

where ε :=
√

1
d
· C log5.5 n ·

(
2log

‖ν‖∞
‖ν‖1

+8log d
p

)
for C an absolute constant. Thus, SprPν(n− log4 n) É

ε · ‖ν‖1

‖Pν‖1
.

A special case of Lemma 7.14 is where ν=µ−1 for µ a relative density. In this scenario we have

n− log4 n ÊDevPν

(
ε

‖ν‖1

‖Pν‖1

)
= Pr

z∼ρ

[
|Pν(z)| > ε

‖ν‖1

‖Pν‖1

· ‖Pν‖1

]
= Pr

z∼ρ

[
|Pµ(z)−1| > ε ·dTV

(
µ,ρ

)]
,

and hence by an averaging argument dTV

(
Pµ,ρ

)
É ε ·dTV

(
µ,ρ

)
+n− log4 n. In such a way, Lemma 7.14

characterizes the diffusion of distributions under P.

This is our main ingredient in the proof of Lemma 7.1; the geometric decay of

(√
log28 n

d

)ℓ
in the

definition of η(ℓ) is due to a factor of εℓ arising from the ℓ applications of P occur as the messages

travel from from the leaves of K to the roots (i.e., the vertices of S).

The key property we use to establish Lemma 7.14 is that the value of ν(cap(z)) concentrates when

z is chosen uniformly at random from S
d−1 and ‖ν‖∞ is reasonably bounded.

Proof of Lemma 7.14. First, let us write ν= ν+−ν− where ν+ = max(ν,0) and ν− =−min(ν,0). Here,

both ν+ and ν− are nonnegative functions, and ‖ν‖ = 2
∥∥ν+

∥∥ = 2‖ν−‖ =
∥∥ν+

∥∥+‖ν−‖ for ‖ · ‖ any ℓp

norm. Since Pν= Pν+−Pν−, by Observation 7.13 and Observation 7.12:

DevPν

(
ε ·

∥∥Pν+
∥∥

1 +‖Pν−‖1

‖Pν‖1

)
ÉDevPν+ (ε)+DevPν− (ε)=Dev

P ν+
‖ν+‖

(ε)+DevP ν−
‖ν−‖

(ε).

Note that 1
‖ν+‖1

ν+ and 1
‖ν−‖1

ν− are both probability measures. By Definition 7.5, for any x ∈S
d−1:

P
ν+(x)

‖ν+‖1

=
1

p
·
ν+(cap(x))

‖ν+‖1

and P
ν−(x)

‖ν−‖1

=
1

p
·
ν−(cap(x))

‖ν−‖1

By Corollary 4.9 with s set as 1
d
·C log5 n ·

(
2log

‖ν+‖∞
‖ν+‖1

+8log d
p

)
for some constant C > 0:

Pr
x∼ρ

[∣∣∣∣
1

p
·
ν+(cap(x))

‖ν+‖1

−1

∣∣∣∣> C ·C4.9

√
1

d
· log

(
1

p

)
· log5(n) ·

(
2log

‖ν+‖∞
‖ν+‖1

+8log
d

p

)]
É

1

2
·n− log4 n.

Using p Ê 1
n

,
∥∥ν+

∥∥
∞ É‖ν‖∞ and

∥∥ν+
∥∥

1 =
1
2
‖ν‖ we can conclude:

Dev
P ν+
‖ν+‖

(ε)É
1

2
n− log4 n.

Identically, DevP ν−
‖ν−‖

(ε)É 1
2

n− log4 n, and thus:

DevPν

(
ε ·

∥∥Pν+
∥∥

1 +‖Pν−‖1

‖Pν‖1

)
É n− log4 n.

Since ν+ and ν− are nonnegative functions,
∥∥Pν+

∥∥=
∥∥ν+

∥∥ and ‖Pν−‖ = ‖ν−‖, and the desired state-

ment then immediately follows.
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Diffusion of intersection of anti-caps under P. Since the BP constraints require that the vec-

tors be contained in L(WR ), we would also like to understand the diffusion of L(WR ) under P. Since

L(WR ) is an intersection of anticaps, we can greatly strengthen Lemma 7.14 for such sets.

Lemma 7.15. Define

g(Gn−1) := Pr
w1,...,wn−1∼ρGn−1

[
DevPL(WR )(ε)> n− log4 n

]

= Pr
w1,...,wn−1∼ρGn−1

[
SprPL(WR )

(
n− log4 n

)
> ε

]

for ε=
√

log11 n

nd
. Then, g(Gn−1) is at most O

(
n− log2 n

)
except with probability O

(
n− log2 n

)
.

Proof. While we ultimately want control on DevPL(WR ), our starting point is to control only DevPL(W).

We take advantage of concentration over W to deduce concentration over WT , for any T ⊆ [n−1] of

sufficiently large size. We will show below that the following hold:

(I) Concentration of anticap intersection: with probability 1−O(n− log2 n) over randomness of Gn−1,

Pr
w1,...,wn−1∼ρGn−1

[
DevPL(W)(ε/2)> n− log5 n

]
ÉO

(
n− log2 n

)
.

(II) Bounded pairwise cap intersections: for any x ∈S
d−1:

Pr
w1,...,wn−1∼ρGn−1

[
∃i ∈ [n−1] s.t. ρ(cap(x)∩cap(wi))Ê 2p2

]
ÉO

(
n− log3 n/2

)

except with probability O
(
n− log2 n

)
over the randomness of Gn−1.

Assume first that Property (I) and Property (II) hold. Define

h(w1, . . . ,wn−1)) := Pr
x∼ρ

[
∃i ∈ [n−1] s.t. ρ(cap(x)∩cap(wi))Ê 2p2

]

Property (II) implies:

E
w1,...,wn−1∼ρGn−1

h(w1, . . .,wn−1))ÉO
(
n− log3 n/4

)
(14)

except with probability O
(
n− log3 n/4

)
. By Markov’s inequality, whenever (14) holds:

Pr
w1,...,wn−1∼ρGn−1

[
h(w1, . . . ,wn−1)ÉO

(
n− log3 n/8

)]
ÉO

(
n− log3 n/8

)
.

Suppose w1, . . .,wn−1 are such that DevPL(W)(ε/2)É n− log4 n and h(w1, . . . ,wn−1)ÉO
(
n− log3 n/8

)
. By our

assumptions, these conditions hold with probability at least 1−O
(
n− log2 n

)
when w1, . . . ,wn−1 ∼ ρGn−1 ,

with probability at least 1−O
(
n− log2 n

)
over the randomness of Gn−1. For x∼S

d−1, with probability

at least 1−O
(
n− log2 n

)
:

ρ

(
n−1⋂

i=1

cap(wi)∩cap(x)

)
∈ (1±ε/2)(1− p)n−1 p

ρ(cap(x)∩cap(wi))É 2p2 ∀i ∈ [n−1].
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As a consequence, with probability at least 1−O
(
n− log2 n

)
as well:

ρ

(
⋂

i∈[n−1]

cap(wi)∩cap(x)

)
= ρ

((
⋂

i∈R

(cap(wi)∩cap(x))

)
\

⋃

j∈[n−1]\R

(cap(w j)∩cap(x))

)

Ê ρ

(
⋂

i∈R

cap(wi)∩cap(x)

)
−2(n−1−|R|)p2.

The inequality follows from assuming the sets cap(w j) for j ∈ [n−1]\R are disjoint in the worst case.

On the other hand, as R ⊆ [n−1],

ρ

(
⋂

i∈[n−1]

cap(wi)∩cap(x)

)
É ρ

(
⋂

i∈R

cap(wi)∩cap(x)

)
.

The above can be rearranged as:

ρ

(
⋂

i∈[n−1]

cap(wi)∩cap(x)

)
É ρ

(
⋂

i∈R

cap(wi)∩cap(x)

)
É ρ

(
⋂

i∈[n−1]

cap(wi)∩cap(x)

)
+2(n−1−|R|)p2,

and thus

ρ

(
⋂

i∈R

cap(wi)∩cap(x)

)
∈ p · (1− p)|R| ·

(
(1−ε) · (1− p)n−1−|R|, (1+ε) · (1+C(n−1−|R|)p)

)

for constant C. By applying a union bound to Lemma 3.12 along with Proposition 1.3 and our bounds

on ℓ and |S|:
n−1−|R| = |K | É nlog(2α)/ loglog n · log2 n

except with probability at most n−Ω(logn). Thus, the above simplifies to:

ρ

(
⋂

i∈R

cap(wi)∩cap(x)

)
∈ p · (1− p)|R| · (1−ε,1+ε) .

This establishes that DevPL(WR )(ε)ÉO
(
n− log5 n

)
É n− log4 n.

It remains to prove Property (I) and Property (II). Property (I) follows from a combination of

Observation 3.14 and Corollary 5.2 with parameter setting t = C

√
log11 n

d
for some constant C and

m = n. To prove Property (II), first observe that applying a union bound to Corollary 4.8 implies that

when w1, . . . ,wn−1 ∼ ρ⊗n−1, ρ(cap(x)∩cap(wi)) is at most 2p2 for all i ∈ [n−1] except with probability

at most n− log3 n/2. Property (II) then follows from Observation 3.14, hence completing our proof.

Applying P to distributions close to L(WR). We now describe our main result about the diffusion

properties of P when applied to distributions close to the uniform distribution on L(WR ).

Lemma 7.16. Let ν be a distribution over S
d−1 such that ‖ν‖∞ É nlog5 n, and let δ = dTV (ν,L(WR )).

Then,

SprPν

(
2n− log4 n

)
Émax



2

√
log11 n

nd
,Cδ ·

√
log23 n

d





for a universal constant C.
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Proof. We can express ν = L(WR )+∆. Then, the triangle inequality for SprPν as articulated in

Observation 7.13 implies:

SprPν(2n− log4 n)ÉSprPL(WR ))(n
− log4 n)+‖P∆‖1 ·SprP∆(n− log4 n). (15)

By Lemma 7.15, SprPL(WR )(n
− log4 n)É

√
log11 n

nd
.

We now turn our attention to P∆. We would like to understand P∆ through Lemma 7.14, but

the lower bound on d of log10 n ·
(
1+ log3 ‖ν‖∞

‖ν‖1

)
in the hypothesis of its statement prevents us from

applying it when δ is too small, and hence we case on the value of δ. Suppose δ É n−2log4 n, then by

Observation 7.6, ‖P∆‖1 É n−2log4 n and thus by Markov’s inequality SprP∆(n− log4 n)É nlog4 n. Plugging

this into (15) gives:

SprPν(2n− log4 n)É

√
log11 n

nd
+n− log4 n É 2

√
log11 n

nd
.

When δ> 2n− log4 n, by Lemma 7.14, we have for some constant C:

SprP∆(n− log4 n)É

√
1

d
·C log5.5 n ·

(
2log

nlog5 n

‖∆‖1

+8log
d

p

)
·
‖∆‖1

‖P∆‖1

É

√
1

d
·C log5.5 n ·

(
4log6 n+8log

d

p

)
·
‖∆‖1

‖P∆‖1

where the second inequality uses ‖∆‖1 = δ> n−2log4 n. Consequently, plugging into (15),

SprPν

(
n− log4 n

)
É

√
log11 n

nd
+C

√
log23 n

d
·δ

which completes the proof.

7.3.4 Analyzing vertex-to-constraint messages.

Recall that our vertex-to-constraint messages are given as a product of the vertex’s incoming mes-

sages. Each vertex’s incoming messages are themselves measures over S
d−1 with bounded spread;

we show that as long as a vertex’s degree is bounded, the spread of their product is not too large.

Lemma 7.17. Let ν1, . . . ,ν j be distributions over S
d−1 with intersecting support. For each i ∈ [ j],

suppose Sprνi
(ε) É η and ‖νi‖∞ É 1

p
. Further, assume η( j+1)< 1

2
and

jε

p j É η. Let ν be the distribution

whose density is ν(x)∝
∏ j

i=1
νi(x). Then,

Sprν( j ·ε)É 8 jη and ‖ν‖∞ É
2

p j
.

As a consequence of Observation 7.9:

dTV

(
ν,ρ

)
É 10 jη.

Proof. Let B be the “bad” domain defined B :=
{
x ∈S

d−1 : ∃i s.t. νi ∉ [1−η,1+η]
}
. We know ρ(B)É jε

by our assumption on the spread profiles of ν1, . . .,ν j. Thus, for x ∈S
d−1 \ B:

(1−η) j

Z
É ν(x)É

(1+η) j

Z
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where

Z =
∫ j∏

i=1

νi(x)dρ(x).

To obtain upper and lower bounds on Z, we write

Z =
∫ j∏

i=1

νi(x)1[x ∈S
d−1 \ B]dρ(x)+

∫ j∏

i=1

νi(x)1[x ∈B]dρ(x)




Ê (1−η) j(1− jε)Ê (1−η) j+1 Ê 1− ( j+1)η

É (1+η) j + jε

p j É 1+ jη

1− jη
+ηÉ 1+ ( j+1)η

1− jη
.

We can obtain lower and upper bounds on ν(x) for x ∈S
d−1 \ B as follows.

ν(x)Ê
(1−η) j

1+ ( j+1)η
1− jη

Ê
1− jη

1+ ( j+1)η
1− jη

= 1−
jη+ ( j+1)η

1− jη

1+ ( j+1)η
1− jη

Ê 1−5 jη

ν(x)É
(1+η) j

1− ( j+1)η
É

1+ jη

1− jη

1− ( j+1)η
= 1+

( j+1)η+ jη

1− jη

1− ( j+1)η
É 1+8 jη.

Since Z Ê 1− ( j+1)ηÊ 1
2
, and each ‖νi‖∞ É 1

p
, ‖ν‖∞ É 2

p j .

7.3.5 Tracking the spread in BP fixed point messages

We now study the spread properties of the BP fixed point messages.

In this section let T be a tree with a distinguished root vertex r. Let F be a factor graph associated

to the tree where the variable vertices are the vertices of T, with a binary constraint 1
[
〈vi,v j〉 Ê τ(p)

]

for every edge {i, j}∈ T, and a unary constraint 1[vi ∈ L i] for every vertex i ∈V (T).

Assumption 7.18. We assume that the degree of every vertex in T is bounded by log2 n, and that

for every i ∈V (T), ρ(L i)Ê n− log3 n.

For a variable vertex v ∈ F for v 6= r, we use Par(v) to denote the constraint vertex corresponding

to the edge {v,w} where w is the parent of v in T. We use Ch(v) to denote the set of constraint vertices

corresponding to edges {v,w} for w that are children of v in T. Finally, we use Un(v) to denote the

unary constraint vertex incident to v.

Remark 7.19. Observe that trees that arise from rooting connected components of T(Gn−1) at ver-

tices in S always have all leaves equidistant to the root and also satisfy the inequality

SprPL i

(
n− log4 n

)
É

√
log11 n

nd

for every internal vertex i, which are properties that trees meeting our above assumptions need not

satisfy. This may suggest adding these properties as assumptions too. However, we stick to the more

general setting as it is crucial in our proof relating the relaxed and true distributions.

We place our vertices in to “tiers”, which will let us quantify the spread of messages sent out by

them.
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Definition 7.20. We say i ∈ V (T) is a free vertex if L i = L(WR) and SprPL i

(
n− log4 n

)
É

√
log11 n

nd
. We

say i ∈ T is a anchored vertex if it is not a free vertex. We use Anch(T) to denote the set of anchored

vertices in T.

Definition 7.21. Given a vertex i ∈V (T) we say its tier is the distance to its closest descendant that

is an anchored vertex. In particular,

Tier(v)=min{β : v has a distance-β descendant in Anch(T)}.

We use the convention that v is a descendant of itself and hence Tier(v) = 0 when v is a anchored

vertex.

For a variable vertex i, the closeness of the distribution obtained by combining messages from its

children to ρ is governed by its tier.

Lemma 7.22. For a variable vertex i in F, let νi be the distribution

νi ∝
∏

a∈Ch(i)

ma→i.

Then:

Sprνi

(
n− log4 n/2

)
Émin



ε,max



εTier(i),C

√
log15 n

nd







 and ‖νi‖∞ É

2

plog2 n
.

where ε= C

√
log27 n

d
for some universal constant C.

Proof. In this proof, we will use j1, . . . , js to denote the children of i in T. Then Ch(i) = {a1, . . .,as}

where at connects i and j t in the factor graph.

We first show the weaker statement that Sprνi

(
n− log4 n/2

)
É ε and ‖νi‖∞ É 2

plog2 n
for every i ∈V (T)

via induction on the depth of the subtree rooted at i. When this depth is equal to 0, the vertex i has

no children, and then the result is clearly true since νi = ρ.

Now, suppose the weaker statement is true for every vertex with a depth-q subtree. Let i be a

vertex with a depth-(q+1) subtree. Note that mat→i = Pm jt→at . We know that m jt→at ∝ ν jt
·1

[
L jt

]
.

On one hand ∥∥ν jt
·1

[
L jt

]∥∥
∞ É

2

plog2 n

and on the other hand by the induction hypothesis and our assumption on L jt
,

∥∥ν jt
·1

[
L jt

]∥∥
1
Ê (1−ε) ·

(
n− log3 n −n− log4 n/2

)
Ê

1

2
n− log3 n,

and thus ∥∥∥m jt→at

∥∥∥
∞

É nlog5 n.

By Lemma 7.16, we know:

Sprmat→i

(
n− log4 n

)
ÉC

√
log23 n

d
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for some absolute constant C. We also know
∥∥mat→i

∥∥
∞ É 1

p
by Observation 7.7, and that s É log2 n by

assumption. Therefore, by Lemma 7.17,

Sprνi

(
n− log4 n/2

)
É C

√
log27 n

d

which establishes the weaker statement.

Next, we prove Sprνi

(
n− log4 n/2

)
Émax

{
εTier(i),

√
log15 n

nd

}
. We prove this statement by induction on

Tier(i). The base case of 0ÉTier(i)É 1 follows from the weaker statement proved above.

Now, suppose Tier(i) Ê 2. Note that
∥∥ν jt

∥∥
∞ É 2

plog2 n
and m jt→at ∝ ν jt

·1[L jt
]. Since Tier( j t) Ê

Tier(i)−1, we know Tier( j t)Ê 1, which in particular means that j t is a free vertex and consequently

SprPL jt

(
n− log4 n

)
É

√
log11 n

nd
.

By our induction hypothesis, the value of ν jt
·1

[
L jt

]
is in 1±max

{
εTier( jt),

√
log15 n

nd

}
on a subregion of

L jt
of measure at least:

ρ
(
L jt

)
−n− log4 n Ê

(
1−n− log4 n/2

)
·ρ

(
L jt

)

by our assumption that ρ(L jt
)Ê n− log3 n. Combined with our bound on

∥∥ν jt

∥∥
∞, we know that:

∥∥ν jt
·1

[
L jt

]∥∥
1 ∈ ρ

(
L jt

)
·


1±max



εTier( jt),

√
log15 n

nd



±n− log4 n/2


.

We can then write m jt→at as L jt
+∆ where ‖∆‖1 É max

{
εTier( jt),

√
log15 n

nd

}
and ‖∆‖∞ É nlog5 n. By

Lemma 7.16, mat→i = Pm jt→at satisfies the following for some constant C:

Sprmat→i

(
n− log4 n

)
Émax





√
log11 n

nd
,C

√
log23 n

d
max



εTier( jt),

√
log15 n

nd









=max





√
log11 n

nd
,C

√
log23 n

d
·εTier( jt)





where the equality is due to our lower bound on d. Additionally, since
∥∥mat→i

∥∥
∞ É 1

p
and s É log2 n,

we can use Lemma 7.17 to conclude:

Sprνi

(
n− log4 n/2

)
ÉC log2 nmax





√
log11 n

nd
,εTier(i)−1

√
log23 n

d





Émax



εTier(i),C

√
log15 n

nd



,

which completes the proof.
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7.3.6 Neighborhood containment for relaxed distribution

As final preparation to prove Lemma 7.4, we list some properties that hold with high probability over

the randomness of Gn−1 and WR for the forest T(Gn−1), and proceed by conditioning on these high

probability events for the rest of this section.

Lemma 7.23. The following events simultaneously occur with probability at least 1− n−Ω(logn) over

the randomness of Gn−1 and WR , and all choices of T(Gn−1),

(1) The maximum degree in Gn−1, and hence the maximum degree in T(Gn−1) is bounded by log2 n.

(2) For every x ∈ T(Gn−1), ρ(Lx(WR ))Ê n− log3 n.

(3) SprPL(WR )

(
n− log4 n

)
É

√
log11 n

nd
.

(4) |K | É nmax{log(2α),1}/ loglogn.

Proof. Property (1) follows from Lemma 3.11, Property (3) follows from Lemma 7.15, and Property (4)

follows from Proposition 1.3 and Lemma 3.12. It remains to prove Property (2). To obtain a lower

bound on ρ(Lx(WR )), we use:

ρ(Lx(WR ))Ê ρ(Lx(W)).

We will first prove that with probability 1−n−Ω(logn), for all Y ⊆ [n−1] such that |Y | É log2 n,

ρ

(
⋂

i∈Y

cap(wi)∩
⋂

i∈[n−1]\Y

cap(wi)

)
Ê n− log3 n,

which would then imply the desired statement. Suppose w1, . . . ,wn−1 ∼ ρ⊗n−1, then by Lemma 5.1

under setting the s parameter to, say, 1/2, and a union bound over all Y such that |Y | É log2 n:

ρ

(
⋂

i∈Y

cap(wi)∩
⋂

i∈[n−1]\Y

cap(wi)

)
Ê n− log3 n ∀Y ⊆ [n−1], |Y | É log2 n (16)

except with probability at most n− logn. By Observation 3.14, (16) is true with probability 1−n−Ω(logn)

when w1, . . . ,wn−1 ∼ ρGn−1 with probability 1− n−Ω(logn) over the randomness of Gn−1, which estab-

lishes Property (2).

Now we proceed with the proof of Lemma 7.4.

Lemma (Restatement of Lemma 7.4). Suppose ℓÊ 1. Then for every S such that |S| É log2 n:

Pr
wn∼Sd−1

WK∼F
′(WR )

[∀x ∈ S : 〈wx,wn〉 Ê τ(p)] ∈
(
1±η(ℓ)

)
p|S|

except with probability at most n−Ω(logn) over the randomness of Gn−1 where

η(ℓ) :=max






C

√
log27 n

d



ℓ

,4

√
log11 n

nd





for some absolute constant C.
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Proof of Lemma 7.4. Let WK ∼F
′(WR ), and without loss of generality let S = {1, . . ., s}. First observe

that w1, . . . ,ws are independent conditioned on WR . Now, we use Ci to denote the connected com-

ponent of T(Gn−1) where i belongs. With probability 1−n−Ω(logn) over the randomness of Gn−1 and

WR , the events in the statement of Lemma 7.23 occur. For the rest of the proof we assume that

these events occur. Then every Ci satisfies Assumption 7.18 and Anch(C) ⊆ SGn−1
(v,ℓ−1). Thus,

Tier(i)= ℓ−1, and consequently by Lemma 7.22 the distribution

νi ∝
∏

a∈Ch(i)

ma→i

satisfies the following for some absolute constant C:

Sprνi

(
n− log4 n

)
Émax





√
log27 n

d

ℓ−1

,C

√
log15 n

nd





and ‖νi‖∞ É
2

plog2 n
.

The marginal on wi is

ν̃i ∝ νi ·1[Lx(WR)].

Lx(WR)= L(WR ) when ℓÊ 2, and hence for ℓÊ 1, this satisfies

ν̃i = L(WR)+∆

with ‖∆‖1 É 2max

{(
C

√
log27 n

d

)ℓ−1

,C

√
log15 n

nd

}
and ‖ν̃i‖∞ É nlog5 n.

Then by the definition of P:

Pr
wn∼Sd−1

WK∼F
′(WR )

[∀x ∈ S : 〈wx,wn〉 Ê τ(p)]= ps E
wn∼Sd−1

s∏

i=1

Pν̃i(wn)

From Lemma 7.16, we know:

SprPν̃i

(
2n− log4 n

)
Émax





2

√
log11 n

nd
,2C ·


C

√
log27 n

d



ℓ−1

·

√
log23 n

d





Émax





2

√
log11 n

nd
,


C

√
log27 n

d



ℓ




.

Using the above along with the fact that ‖Pν̃i‖∞ É 1
p

for all i implies:

Pr
wn∼Sd−1

WK∼F
′(WR )

[∀x ∈ S : 〈wx,wn〉 Ê τ(p)] ∈


1±max





4

√
log11 n

nd
,


2C

√
log27 n

d



ℓ





 ps

which completes the proof.
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7.4 Relating relaxed and true distributions

In this section, we relate the uniform distribution on F (WR ) to the uniform distribution on F
′(WR ).

We first prove that a random sample from F
′(WR ) falls in F (WR ) with high probability.

Lemma 7.24. With probability at least 1−n−Ω(logn) over the randomness of Gn−1 and WR ,

Pr
(wi )i∈K∼F ′(WR )

[
(wi)i∈K ∉F (WR )

]
É pnO(1/ loglogn).

Proof. It suffices to prove that for every pair of vertices x, y ∈ K such that dT(Gn−1 )(x, y) Ê 2, the

probability that
〈
wx,wy

〉
Ê τ(p) is at most 2p. We can then apply the union bound over all x, y

pairs, of which there are nO(1/ loglogn) by Property (4) of Lemma 7.23. Let’s assume that the events

in Lemma 7.23 hold, which happens with probability at least 1− n−Ω(logn). Consequently, T(Gn−1)

satisfies Assumption 7.18. The marginal on wx is given by

ν̃x ∝
∏

a∈Ch(x)

ma→x ·1[Lx].

By Lemma 7.22 and the fact that ρ(Lx) Ê n− log3 n, we can write ν̃x as Lx +∆ where ‖∆‖1 É C

√
log27 n

d

for some constant C and ‖ν̃x‖∞ É nlog5 n. By Corollary 4.10, for wx ∼ ν̃x, (1) ρ(cap(wx)∩L y)É 3p
2
·ρ(L y),

and (2) ρ(cap(wx)∩Lz) Ê p
2
·ρ(Lz) for all z ∈ V (T(Gn−1)) simultaneously except with probability at

most n− log2 n.

The distribution of wy|wx is the marginal on variable indexed by y of the uniform distribution

over satisfying assignments to the following CSP instance. Define T ′ as the tree obtained by deleting

the subtree rooted at x from T(Gn−1). Let u denote the parent of x in T. Now, let F ′ be the factor

graph of the CSP instance I
′ with variables indexed by V (T ′) and constraints:

• Unary constraints. For each i ∈ V (T ′), if i 6= u, then vi ∈ L i(WR), and if i = u, then vu ∈
Lu(WR )∩cap(wx).

• Binary constraints. For every {i, j}∈ T ′:
〈
vi,v j

〉
Ê τ(p).

The distribution of wy|wx can be computed from the belief propagation fixed point on F ′.

Suppose wx is such that (1) and (2) hold. Since (2) holds, F ′ satisfies Assumption 7.18. By

Lemma 7.22 along with ρ(L y)Ê n− log3 n and the assumption that (1) holds, we know:

Pr
wy|wx

[
wy ∈ cap(wx)∩L y

]
É 1.6p.

Since (1) and (2) hold simultaneously except with probability at most n− log2 n:

Pr
wx,wy

[〈
wx,wy

〉
Ê τ(p)

]
= Pr

wx ,wy

[
wy ∈ cap(wx)∩L y

]
É 2p.

Our next ingredient is to prove that individual instantiations of vectors from the uniform distri-

bution over F
′(WR ) produce an intersection of sphere caps whose measure concentrates reasonably

well.

Lemma 7.25. With probability at least 1−n−Ω(logn) over the randomness of WR and Gn−1,

Pr
(wi )i∈K∼F ′(WR )

[
ρ

(
⋂

j∈S

cap
(
w j

)
)
∉

(
1±O

(
log15 n
p

d

))
p|S|

]
É n− log5 n.
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Proof. Each j ∈ S is in a separate connected component of the factor graph F(WR) and so the collec-

tion (w j) j∈S is a collection of independent random vectors. Denoting the distribution of w j with ν̃ j,

we know by Lemma 7.23 that with probability at least 1−n−Ω(logn) over the randomness of Gn−1 and

WR that every connected component of T(Gn−1) satisfies Assumption 7.18. Lemma 7.22 along with

Property (2) from Lemma 7.23 then implies that
∥∥ν̃ j

∥∥
∞ É nlog5 n. Since |S| É log2 n, the statement

follows from an iterated application of Corollary 4.10 and a union bound over all applications.

We are now finally prepared to prove Lemma 7.2.

Lemma (Restatement of Lemma 7.2). With probability 1− n−Ω(logn), for every S ⊆ [n−1] such that

|S| É log2 n, the following is true. Suppose ℓ< logn

loglog n
is such that the balls {BGn−1

(x,ℓ) : x ∈ S} are all

trees and are pairwise disjoint, then:

Pr[NG(n)⊇ S|Gn−1]∈
(
1±η(ℓ)

)
p|S|

where

η(ℓ) :=min





log8 n
p

d
,max





2

√
log28 n

d

ℓ

,8

√
log11 n

d









.

Proof of Lemma 7.2. We first establish that η(ℓ)É log8 np
d

. Recall that:

Pr[NG(n)⊇ S|Gn−1]= E
W∼ρGn−1

ρ

(
⋂

i∈S

cap(wi)

)
.

Suppose W ∼ ρ⊗n−1, then by an iterated application of Corollary 4.8 and a union bound, with proba-

bility at least 1−n−Ω(log3 n),

ρ

(
⋂

i∈S

cap(wi)

)
∈

(
1±

log8 n
p

d

)
. (17)

By Observation 3.14, the same probability bound for (17) holding is true even when W ∼ ρGn−1 with

probability at least 1−n−Ω(log2 n) over the randomness of Gn−1.

The fact that ρ(
⋂

i∈S cap(wi)) is always in [0,1] and the upper bound on d together imply that

Pr[NG(n)⊇ S|Gn−1] ∈
(
1±O

(
log8

p
d

))
p|S|

with probability at least 1−n−Ω(log3 n). This establishes the desired statement when ℓ= 0.

Henceforth, we can assume ℓ Ê 1, which in particular means K is nonempty. Now we turn our

attention to proving that:

Pr[NG (n)⊇ S |Gn−1]∈
(
1±2η(ℓ)

)
· p|S|

where η(ℓ) :=max

{√
log28 n

d

ℓ

,4

√
log11 n

nd

}
. Let Gn−1 and WR be such that the conclusions of Lemma 7.4,

Lemma 7.24, and Lemma 7.25 hold. By Lemma 7.4,

E
WK∼F ′(WR )

ρ

(
⋂

i∈S

cap(wi)

)
∈

(
1±η(ℓ)

)
p|S|.
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Denoting PrWK∼F ′(WR )[WK ∈F (WR)] as q, we can also write:

E
WK∼F ′(WR )

ρ

(
⋂

i∈S

cap(wi)

)
= q · E

WK∼F ′(WR )|WK∈F (WR )
ρ

(
⋂

i∈S

cap(wi)

)
+ (1− q) · E

WK∼F ′(WR )|WK∉F (WR )
ρ

(
⋂

i∈S

cap(wi)

)
.

The first term on the right hand side of the above can be written as:

q · E
WK∼F (WR )

ρ

(
⋂

i∈S

cap(wi)

)
.

By Lemma 7.25 and Observation 3.2 along with the fact that ρ(
⋂

i∈S cap(wi)) is in [0,1], the sec-

ond term in the right hand side is in

(1− q) ·
((

1±
log15 n
p

d

)
· p|S|±

n− log5 n

1− q

)
⊆ (1− q) ·

(
1±

log15 n
p

d

)
· p|S|±n− log5 n

Rearranging the above in the expression

q · E
WK∼F ′(WR )|WK∈F (WR )

ρ

(
⋂

i∈S

cap(wi)

)
+ (1− q) · E

WK∼F ′(WR )|WK∉F (WR )
ρ

(
⋂

i∈S

cap(wi)

)
∈

(
1±η(ℓ)

)
p|S|

gives

E
WK∼F (WR )

ρ

(
⋂

i∈S

cap(wi)

)
∈

(
1±

1− q

q
·
log15 n
p

d
±

η(ℓ)

q

)
p|S|

By Lemma 7.24, q Ê 1− pnO(1/ loglogn), which implies that:

Pr[NG(n)⊇ S |Gn−1]= E
WK∼F (WR )

ρ

(
⋂

i∈S

cap(wi)

)
∈

(
1±2η(ℓ)

)
· p|S|

The above holds with probability at least 1− n−Ω(logn) over the randomness of Gn−1 and WR since

we only assumed the conclusions of Lemma 7.4, Lemma 7.24 and Lemma 7.25 hold, which completes

the proof of Lemma 7.2.

7.5 From neighborhood containment to neighborhood equality probabilities

In this section we prove Lemma 7.1 using Lemma 7.2.

Lemma (Restatement of Lemma 7.1). With probability 1− n−Ω(logn) over the randomness of Gn−1,

for every S ⊆ [n−1] such that |S| É log2 n, the following is true. Let ℓ< log n
loglogn

be such that the balls

{BGn−1
(x,ℓ) : x ∈ S} are pairwise disjoint trees, and let d > log20 n. Then:

Pr[NG(n)= S|Gn−1] ∈
(
1±2η(ℓ)

)
p|S|(1− p)n−1−|S|

where

η(ℓ) :=min





log8 n
p

d
,max





2



√

log28 n

d



ℓ

,8 ·

√
log11 n

nd









.

Proof of Lemma 7.1. Let C = ⋂
j∈S cap(w j), and let A = ⋂

j∈[n−1]\S cap(w j). We note that the area of

C is unlikely to be too small:
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Claim 7.26. With probability at least 1−n−Ω(logn), ρ (C)Ê 1
2

p|S| ÊΩ(n− logn).

We defer the proof of the claim to the end. We can thus use Claim 7.26 to apply Corollary 5.2 and

conclude that with probability at least 1−n−Ω(logn),

ρ (A∩C)∈


1±

√
log11 n

nd


 ·ρ(C) · (1− p)n−1−|S|. (18)

Now from Lemma 7.2, with probability 1−n−Ω(logn),

E
ρGn−1

[ρ (C)]=Pr[NG (n)S |Gn−1] ∈ (1±η(ℓ))p|S|. (19)

Let E be the event that Claim 7.26, (18) and (19) hold. We then have that

Pr[NG(n)= S |Gn−1,E ]=E[ρ(A∩C) | E ]=


1±

√
log11 n

nd


 ·E[ρ(C) | E ] · (1− p)n−1−|S|

=


1±

√
log11 n

nd


 · (1±η(ℓ))p|S|(1− p)n−1−|S|,

and since

√
log11 n

nd
É η(ℓ)/2≪ 1, we have our conclusion.

Now we prove Claim 7.26. We’ll apply Lemma 5.1 to conclude that any m = |S| vectors from ρ⊗n

have cap intersection area Ê e−polylogn with overwhelmingly large probability, then apply Observation 3.14

to conclude that the same is true for vectors sampled from ρGn−1 .

If v1, . . . ,vn ∼ ρ⊗n, then from Lemma 5.1 combined with a union bound over subsets of [n] of size

|S|, so long as d Ê log20 n,

Pr
ρ⊗n

[
ρ

(
⋂

j∈S

cap(v j)

)
<

1

2
p|S|

]
É

(
n

|S|

)
· Pr
ρ⊗|S|

[
ρ

(
|S|⋂

j=1

cap(v j)

)
<

1

2
p|S|

]
É

(
n

|S|

)
·n− log3 n É n−.5log3 n,

for n sufficiently large. Hence by Observation 3.14,

Pr
w1,...,wn−1∼ρGn−1

[
ρ

(
⋂

j∈S

cap(w j)

)
<

1

2
p|S|

]
É n−.25log3 n,

with probability at least 1−n−.25log3 n over the randomness of Gn−1, completing the proof.

8 Total variation bound

In this section, we prove Theorem 1.2 and Theorem 1.1. As was done in the prior work by Brennan,

Bresler, and Nagaraj [BBN20], we use an analogue of the tensorization of the relative entropy for

non-product measures:

Claim 8.1 (Relative entropy tensorization, similar to Lemma 2.1 of [BBN20]). Suppose µ=µ1⊗·· ·⊗
µn is a product measure and ν is a measure over the same domain. Let νt denote the marginal of ν

on the t-th coordinate xt, and let xa:b denote coordinates a through b of x. Then

D(ν‖µ)=
n∑

t=1

E
x1:t−1∼ν

[
D

(
νt(xt | x1:t−1)‖µt

)]
.
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Proof. By the chain rule for relative entropy,

E
x∼ν

log
ν(x)

µ(x)
=

n∑

t=1

E
x∼ν

log
νt(xt | x1:t−1)

µt(xt)
=

n∑

t=1

E
x1:t−1∼ν

(
E

xt∼νt|x1:t−1

log
νt(xt | x1:t−1)

µt(xt)

)
,

by linearity of expectation and by definition of the marginal distribution. The expression on the right

simplifies using the definition of the relative entropy, completing the proof.

In combination with Pinsker’s inequality, this lemma reduces bounding the TV distance between

a product measure µ and a general measure ν, to bounding the relative entropy D
(
νt(xt | x1:t−1)‖µt

)
.

Claim 8.2. Let µt be the distribution of the neighborhood of t to vertices [t−1] under G(n, p), and let

νt(· |G t−1) be the distribution of the neighborhood of t under Geod(n, p), conditioned on the subgraph

G t−1 ∼Geod(t−1, p) on the vertices [t−1]. Then,

2dTV (Geod(n, p),G(n, p))2 É n · E
Gn−1∼Geo(n−1,p)

[
D

(
νn(· |Gn−1)‖µt

)]

Proof. Applying Pinsker’s inequality (Theorem 3.3), 2 ·dTV

(
ν,µ

)2 ÉD(ν‖µ). We then apply Claim 8.1

with µ=G(n, p) and ν=Geod(n, p), and µt,νt as defined in the claim:

2dTV (Geod(n, p),G(n, p))2 É
n∑

t=1

E
Gt−1∼Geo(t−1,p)

[
D

(
νt(· |G t−1)‖µt

)]

Let GS denote a graph over vertices S, and let νS
t , µS

t refer to the distribution of vertex t’s neighbors

in S under Geod(n, p) and G(n, p) respectively. By symmetry, Ex[n]\t∼ν
[
D

(
ν[n]\t

t (· | x[n]\t)‖µn

)]
is the

same for all t ∈ [n]. Via the chain rule for relative entropy, and the non-negativity of relative entropy,

D
(
ν[n]\t

t (· |G[n]\t)‖µn

)
ÊD

(
ν[t−1]

t (· |G[n]\t)‖µ[t−1]
t

)
=D

(
ν[t−1]

t (· |G t−1)‖µ[t−1]
t

)

The final equality comes from the fact that t’s neighbors in [t−1] only depends on G t−1.

Upper bounding each D
(
νt(· |G t−1)‖µt

)
by D

(
νn(· |Gn−1)‖µn

)
completes the proof.

8.1 Bounding neighborhood relative entropy

Via Claim 8.2, our goal now is to upper bound:

E
Gn−1∼Geo(n−1,p)

[
D

(
νn(· |Gn−1)‖µt

)]
= E

Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
νn(S |Gn−1)

µn(S)
É o

(
1

n

)
.

For most events under ν[n−1] and νn(·|Gn−1), we will upper bound the relative entropy via a Chi-

square-like quantity: we use the Chi-squared distance, but we allow the omission of a low-probability

event E (to allow the removal of events which cause the Chi-square distance to blow up). We then

specialize the resulting Chi-square-like bound (Lemma 8.3) by removing different low-probability

events for the general p case (Section 8.1.1) and the sparse case (Section 8.1.2), and separately con-

clude Theorem 1.2 and Theorem 1.1. We now formally state the Chi-square bound:

Lemma 8.3. Let E be an event satisfying both

Pr
Gn−1∼Geod (n−1,p),S∼νn(·|Gn−1)

[E ]É o

(
1

n2 logn

)
and Pr

Gn−1∼Geod (n−1,p),S∼µn

[E ]É o

(
1

n2 logn

)

and for S ⊆ [n−1], define ∆Gn−1
(S)= νn(S|Gn−1)

µn(S)
−1. Then,

E
Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
νn(S |Gn−1)

µn(S)
É E

Gn−1∼ν[n−1]

E
S∼µn

∆Gn−1
(S)2 ·1(E )+ o

(
1

n

)
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Proof. Before we introduce the Chi-square bound, we first perform some conditioning on E .

E
Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
νn(S |Gn−1)

µn(S)
= E

Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
(
∆Gn−1

(S)+1
)

= E
Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
(
∆Gn−1

(S)+1
)
·1(E )+max

S

(
log

νn(S |Gn−1)

µn(S)

)
· Pr
Geod (n,p)

[E ]

The maximum of log
νn(S|Gn−1)

µn(S)
is upper bounded by n log 1

p
, which comes from bounding νn(S |Gn−1),

a probability, above by 1, and achieving the smallest possible µn(S) when |S| = n−1. Applying our

assumption on Pr[E ], the term max
(
log

νn(S|Gn−1)
µn(S)

)
·Pr[E ] is at most o

(
1
n

)
.

We now turn our attention to the remaining expectation term:

E
Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

log
(
∆Gn−1

(S)+1
)
·1(E )É E

Gn−1∼ν[n−1]

E
S∼νn(·|Gn−1)

∆Gn−1
(S) ·1(E )

= E
Gn−1∼ν[n−1]

E
S∼µn

(1+∆Gn−1
(S))∆Gn−1

(S) ·1(E )

= E
Gn−1∼ν[n−1]

E
S∼µn

∆Gn−1
(S) ·1(E )+ E

Gn−1∼ν[n−1]

E
S∼µn

∆Gn−1
(S)2 ·1(E )

The inequality follows because 1+ x É ex for all x, and the second equality follows from a change in

the randomness of S, and because (1+∆Gn−1
(S))= νn(S|Gn−1)

µn(S)
.

By the definition of ∆Gn−1
, we can further simplify the expectation of ∆Gn−1

(S) ·1(E ):

∣∣∣∣ E
Gn−1∼ν[n−1]

E
S∼µn

∆Gn−1
(S) ·1(E )

∣∣∣∣=
∣∣∣∣ Pr
Gn−1∼Geod (n−1,p),S∼µn

[E ]− Pr
Gn−1∼Geod (n−1,p),S∼νn(·|Gn−1)

[E ]

∣∣∣∣

É Pr
Gn−1∼Geod (n−1,p),S∼µn

[E ]+ Pr
Gn−1∼Geod (n−1,p),S∼νn(·|Gn−1)

[E ]É o

(
1

n2 logn

)

which completes the proof.

Remark 8.4. We will ultimately choose the event E based on when the Chi-square estimate is too

loose of an upper bound on the relative entropy. If the conditions of Lemma 8.3 hold, the overall TV

bound we want would follow from

E
Gn−1∼Geod (n−1,p)

E
S∼Binom(n−1,p)

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

·1(E )

]
= o

(
1

n

)
. (20)

8.1.1 The general p case

The goal of this section is to prove Theorem 1.2.

Theorem (Restatement of Theorem 1.2). For any fixed constant α> 0, if α
n
< p < 1

2
and d = Ω̃(p2n3),

lim
n→∞

dTV (Geod (n, p),G (n, p))= 0.

Proof. We apply Lemma 8.3, when E is the failure of degree concentration: |S| Ê pn+∆, with ∆ =
10max(log n, pn). Via Lemma 3.11, E has probability O(n−3), regardless of whether S ∼ µn or S ∼
νn(·|Gn−1) and Gn−1 ∼ Geod(n−1, p). (The latter distribution is equivalent to Gn ∼ Geo.) We thus

satisfy:

Pr
Gn−1∼Geod (n−1,p),S∼µn

[E ], Pr
Gn−1∼Geod (n−1,p),S∼νn(·|Gn−1)

[E ]É o

(
1

n2 logn

)
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After the reduction to (20) in Remark 8.4, we complete the proof by bounding:

E
Gn−1∼ν[n−1]

E
S∼Binom(n−1,p)

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

·1(E )

]

É
∫∞

0
Pr

Gn−1∼ν[n−1] ,S∼Binom(n−1,p)

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

> t |E
]

dt

We now apply Corollary 6.1 to control these tail probabilities. By conditioning on E , we may assume

∆= 10max(pn, logn) in the tail bound, as this choice of ∆ leads to the worst case tail probability for

all |S| É pn+∆. Recall that M(n, p,∆) = max(nH(p), |∆| log 1
p

, logn) in Corollary 6.1, and note that

p|S|(1− p)n−1−|S| = e−nH(p) ·
(

p

1−p

)∆
.

∫∞

0
Pr

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

> t |E
]

dtÉ
∫ 1

n log n

0
1 ·dt+

∫1

1
n log n

exp

( −C6.1d · t
M(n, p,∆)2 logn

)
dt

+
∫e2nH(p) ·

(
p

1−p

)
∆

1
exp

( −C6.1d

M(n, p,∆)2 logn
+C′

6.1 logn

)
dt

É
1

n logn
−

M(n, p,∆)2 logn

C6.1d
exp

( −C6.1d · t
M(n, p,∆)2 logn

)∣∣∣
1

1
n log n

+ e2nH(p) ·
(

p

1− p

)
∆

·exp

(
−C6.1d

M(n, p,∆)2 logn
+C′

6.1 logn

)

In the first line, we split the integral based on the appropriate tail bound expression in Corollary 6.1,

and also remark that it suffices to consider t É e2nH(p) ·
(

p
1−p

)∆
, as

νn(S|Gn−1)

p|S|(1−p)n−1−|S| is maximized at that

value when |S| É np+∆. If we choose d Ê n ·M(n, p,∆)2 · log3 n, we can bound each summation term

individually to obtain the desired bound on EGn−1∼ν[n−1]
ES∼Binom(n−1,p)

[(
νn(S|Gn−1)

p|S|(1−p)n−1−|S| −1
)2

·1(E )

]
.

∫∞

0
Pr

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

> t | E
]

dtÉ
1

n logn
+

1

n
· e− logn + e2nH(p) · e−Cn log2 n É o

(
1

n

)

We note that M(n, p,∆)É max(np logn, log2 n) for 1
n
É p É 1

2
, so we can restate our requirement on d

as d = Ω̃(n3 p2).

8.1.2 The sparse case

For the rest of this section, we assume p = α
n

, where α is a constant. The goal of this section is to

prove Theorem 1.1, reproduced below:

Theorem (Restatement of Theorem 1.1). For any fixed constant αÊ 1, if d =Ω(log36 n), then

lim
n→∞

dTV

(
Geod

(
n, α

n

)
,G

(
n, α

n

))
= 0.

Proof. As with the general case, we apply Lemma 8.3, but let E be the union of the following events

occurring for G ∼Geod(n−1, p):

• Failure of degree concentration: |S| Ê 10log2 n.
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• Failure of Proposition 1.3: If we sample G− ∼ G(n −1,(1− ε)p), and G+ ∼ G(n −1,(1+ ε)p),

corresponding to Gn−1 via the three-way coupling promised by Proposition 1.3 with ε>
√

n·H(p)
d

,

the graphs do not satisfy G− ⊆Gn−1 ⊆G+.

• Failure of Lemma 7.1: There exists an S such that |S| É log2 n for which the neighborhood

probability
νn(S |Gn−1)

p|S|(1− p)n−1−|S| ∉
(
1±η(ℓGn−1 ,S)

)
.

Here, we can define η(ℓ) :=min

{
log8 np

d
,max

{(
log29 np

d

)ℓ
,

log12 np
nd

}}
, and

ℓG,S :=min

{
logn

loglogn
,argmax

ℓ

{
⋃

i∈S

BG(i,ℓ) form |S| disjoint trees in G

}}

Via Lemma 3.11, the first event has probability n−Ω(logn), regardless of whether we are working over

Gn−1 ∼Geod(n−1, p),S ∼µn or Gn−1 ∼Geod(n−1, p),S ∼ νn(· |Gn−1).

The second and third events also exclusively deal with Gn−1. The probability of the second event

is n−Ω(logn) by Proposition 1.3. The third event also has probability at most n−Ω(logn) over Gn−1 ∼
Geod(n−1, p) by Lemma 7.1. We thus satisfy the conditions of Lemma 8.3:

Pr
Gn−1∼Geod (n−1,p),S∼µn

[E ], Pr
Gn−1∼Geod (n−1,p),S∼νn(·|Gn−1)

[E ]É o

(
1

n2 log n

)

It suffices to show that the following quantity is at most o
(

1
n

)
:

E
Gn−1∼Geod (n−1,p)

E
S∼Binom(n−1,p)

[(
νn(S |Gn−1)

p|S|(1− p)n−1−|S| −1

)2

·1[E ]

]
.

Due to the 1[E ] term, we can simplify the expression inside the expectation while assuming the

outcome of Lemma 7.1 holds, so this expression is bounded by

E
Gn−1∼Geod (n−1,p)

E
S∼Binom(n−1,p)

[
η(ℓGn−1 ,S)2 ·1[E ]

]

We can think of ℓGn−1 ,S itself as a random variable over {0, . . . ,⌈ logn

loglog n
⌉}, whose randomness is gov-

erned by Gn−1. Wishfully, if ℓGn−1 ,S ÊΩ

(
logn

log logn

)
always held true, then η(ℓGn−1 ,S)2 ÉO

(
log24 n

nd

)
. Then,

as desired, EGn−1∼Geod (n−1,p) ES∼Binom(n−1,p)

[
η(ℓGn−1 ,S)2 ·1[E ]

]
É o

(
1
n

)
when d ÊΩ(log30 n).

The reality is: with some (small) probability, ℓGn−1 ,S is small, so η(ℓGn−1 ,S)2 could be as large as
log16 n

d
. We need to upper bound the probability that ℓGn−1 ,S is small, so that the contribution of this

event to EGn−1∼Geod (n−1,p) ES∼Binom(n−1,p)

[
η(ℓGn−1 ,S)2 ·1[E ]

]
remains at most o

(
1
n

)
.

But in a sparse Erdős-Rényi graph G+ ∼ G(n, (1+ ε)p), it is well-known that ℓG+,S ÊΩ

(
logn

loglog n

)

with high probability when S ∼Binom(n, p), and further there exist known bounds on the probability

that ℓG+,S is small. We can now use the success of the coupling between Gn−1 and G+, guaranteed

by E , to argue that the same bounds hold over S and Gn−1 with high probability. After we make this

relationship between ℓGn−1 ,S and ℓG+,S explicit below, the remainder of the proof is accounting for

the events when ℓG+,S is small.
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Before diving into the distribution of ℓG+,S , we can first simplify

E
Gn−1∼Geod (n−1,p)

E
S∼Binom(n−1,p)

[
η(ℓGn−1 ,S)2 ·1[E ]

]

É E
Gn−1∼Geod (n−1,p)

E
S∼Binom(n−1,p)

[
min

(
log16 n

d
,max

((
log29 n

d

)ℓGn−1 ,S

,
log24 n

nd

))
·1[E ]

]

É E
G+∼G(n−1,(1+ε)p)

E
S∼Binom(n−1,p)

[
min

(
log16 n

d
,max

((
log29 n

d

)ℓG+ ,S

,
log24 n

nd

))
·1[E ]

]

É E
S∼Binom(n−1,p)

E
G+∼G(n−1,(1+ε)p)

[
min

(
log16 n

d
,max

((
log29 n

d

)ℓG+ ,S

,
log24 n

nd

))
·1[E ]

]

The second-to-last line relies on the success of the coupling from Proposition 1.3, with ε >
√

n·H(p)
d

,

and noting that when Gn−1 ⊆G+, we have ℓG+ ,S É ℓGn−1 ,S . The last line involves switching the order

of the expectations.

Again, as the bound need only apply when E occurs, we may assume |S| É log2 n. The theorem

now follows directly from the claim below.

Claim. For all |S| É log2 n, EG+∼G(n−1,(1+ε)p)

[
min

(
log16 n

d
,max

((
log29 n

d

)ℓG+,S

,
log24 n

nd

))]
É o

(
1
n

)
.

Proof of Claim. To understand the magnitude of dℓGn−1,S , we need to case on different depths ℓ.

E
G+∼G(n−1,(1+ε)p)

[
min

(
log16 n

d
,max

((
log29 n

d

)ℓG+,S

,
log24 n

nd

))]
= Pr

G+∼G(n−1,(1+ε)p)

[
ℓG+,S > logd(nd)

]
·
log16 n

nd

+ Pr
G+∼G(n−1,(1+ε)p)

[ℓG+,S = 0] ·
log24 n

d
+

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[
ℓG+,S = ℓ

]
·
(

log29 n

d

)ℓ

É
log16 n

nd
+ Pr

G+∼G(n−1,(1+ε)p)
[ℓG+,S = 0] ·

log24 n

d
+

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[
ℓG+,S É ℓ

]
·
(

log29 n

d

)ℓ

The
log16 n

nd
term is at most o

(
1
n

)
when d ÊΩ(log35 n). To understand the event ℓGn−1 ,S É ℓ, we compute

the probability of
⋃

i∈S BGn−1
(i,ℓ+1) does not form |S| disjoint trees. This event is contained in the

union of the following events:

I (ℓ): There exist i, j ∈S that are distance É 2ℓ+2 apart, so BGn−1
(i,ℓ+1) and BGn−1

( j,ℓ+1) intersect.

C (ℓ): For some i ∈ S, the ball BGn−1
(i,ℓ+1) contains a cycle.

Applying the union bound to events I and C , we can bound:

Pr
G+∼G(n−1,(1+ε)p)

[
ℓG+,S = 0

]
·
log24 n

d
É Pr

G+∼G(n−1,(1+ε)p)
[I (0)] ·

log24 n

d
+ Pr

G+∼G(n−1,(1+ε)p)
[C (0)] ·

log24 n

d

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[
ℓG+,S = ℓ

]
·
(

log29 n

d

)ℓ
É

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[I (ℓ)] ·
(

log29 n

d

)ℓ

+
logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[C (ℓ)] ·
(

log29 n

d

)ℓ
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Contribution of event I : To analyze event I , we consider its complement I . We lower bound

the probability of I by counting how many ways we can choose the vertices [i] via this greedy

process: we first choose v ∈ V , and then set V := V \ BGn−1
(v,2ℓ+2) before choosing the next vertex.

Using Lemma 3.12 and a union bound over all |S| vertices, with probability Ê 1− 1
n2 , the size of each

BGn−1
(v,2ℓ+2) is at most c log3 n(pn)2ℓ+2, for a universal constant c. This greedy process ensures

that all vertices chosen for S are distance Ê 2ℓ+2 apart.

Pr
G+∼G(n−1,(1+ε)p)

[I (ℓ)]Ê
n · (n− c log3 n(pn)2ℓ+2) · · · (n− (|S|−1)c log3 n(pn)2ℓ+2)

n|S| ·
(
1−

1

n2

)

Ê
[
1−

c log3 n|S|(pn)2ℓ

n

]|S|

−
1

n2
Ê 1−

c log3 n|S|2(pn)2ℓ+2

n
−

1

n2

First, we consider what happens when ℓG+,S = 0. (Recall p = α
n

.)

Pr
G+∼G(n−1,(1+ε)p)

[I (0)] ·
log24 n

d
É

(
c log3 n|S|2(pn)2

n
+

1

n2

)
·
log24 n

d
É

5cα2 log29 n

nd
.

When d ÊΩ(log36 n), this quantity is at most o
(

1
n

)
. Next, we consider what happens when ℓG+,S > 0.

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[I (ℓ)] ·
(

log29 n

d

)ℓ
É

logd (nd)∑

ℓ=1

(
c log3 n|S|2(pn)2ℓ+2

n
+

1

n2

)
·
(

log29 n

d

)ℓ

É 2

(
logd (nd)∑

ℓ=1

c(log29ℓ+3 n)|S|2(pn)2ℓ+2

n ·dℓ

)

The summand when ℓ= 1,
c(log32 n)|S|2α4

nd
has the largest magnitude, if

α2 log29 n

d
É 1. Thus, we can upper

bound the summation by 4cα4 · log33 n logd (nd)

n log36 n
É o

(
1
n

)
, as desired for the claim.

Contribution of event C : Let the event C (ℓ)i denote the event that BGn−1
(i,ℓ+1) contains a cycle

for i ∈ S. Using a union bound, we have PrG+∼G(n−1,(1+ε)p)[C (ℓ)]É |S| ·PrG+∼G(n−1,(1+ε)p)[C (ℓ)i]. Now,

using Lemma 3.13, there exists a universal constant c′ such that

|S| · Pr
Gn−1∼G(n−1,(1+ε)p)

[C j for ℓ]É |S| ·
c′(pn)ℓ+1

n

First, we consider the contribution of the event ℓG+,S = 0. (Recall p = α
n

.)

Pr
G+∼G(n−1,(1+ε)p)

[C (ℓ)] ·
log24 n

d
É

c′(log24 n)|S|(pn)

nd
É

2c′α log25 n

nd
É o

(
1

n

)

When d ÊΩ(log35 n), this quantity is at most o
(

1
n

)
. We lastly consider the events when ℓG+ ,S > 0.

logd (nd)∑

ℓ=1

Pr
G+∼G(n−1,(1+ε)p)

[C (ℓ)] ·
(

log29 n

d

)ℓ
É

logd (nd)∑

ℓ=1

c′ log29ℓ |S|(pn)ℓ+1

ndℓ

Again, the term for ℓ = 1,
c′(log29 n)|S|(pn)2

d
, is the largest term of the summation, if

α log29 n

d
É 1. The

summation is thus upper bounded by 2c′α2 · log31 n logd (nd)

n·log36 n
É o

(
1
n

)
as well.
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A Extending the analysis of the signed triangle statistic to all den-

sities

Associate the graph G with the string G ∈ {0,1}(
n
2) with G i j = 1[i ∼ j in G], and define the signed

triangle count statistic

T(G)=
∑

i< j<k∈[n]

(G i j − p)(G jk − p)(G ik − p).

In [BDER16], Theorem 2, the authors prove that for any fixed p ∈ (0,1), T(G) distinguishes be-

tween G ∼ Geod(n, p) and G ∼ G(n, p) whenever d ≪ n3 =Θ((nH(p))3). They also show in Theorem

3 that the unsigned triangle count is a distinguishing statistic for p =Θ( 1
n

)) whenever d ≪ log3 n =
Θ((nH(p))3).

Here we show that the analysis of T(G) from [BDER16] can be extended to show that the signed

count T(G) distinguishes between G(n, p) and Geod(n, p) for most p, so long as d ≪ (nH(p))3.

Lemma A.1. If 1
n2 ≪ p É 1−δ for any fixed constant δ> 0, then so long as d ≪ (nH(p))3,

∣∣∣∣ E
Geod (n,p)

T(G)− E
G(n,p)

T(G)

∣∣∣∣≫max

(√
Var

Geod (n,p)
T(G),

√
Var
G(n,p)

T(G)

)
,

where H(p)= p log 1
p
+ (1− p) log 1

1−p
is the binary entropy function.

Utilizing the independence of edges in G(n, p), it is easy to show that

E
G(n,p)

T(G)= 0 and Var
G(n,p)

T(G)=
(
n

3

)
p3(1− p)3.

In [BDER16], in the course of proving their Lemma 1, the authors prove that for any p < 0.49 there

exists a universal constant C such that

E
Geod (n,p)

[T(G)]Ê C

(
n

3

)
p3

√
(log 1

p
)3

d
.

Hence, if d ≪ (nH(p))3, one can already see that the expectation of T(G) under Geod(n, p) over-

whelms the standard deviation of T(G) under G(n, p). All that remains is to bound the variance

51



under Geod(n, p). For this, [BDER16] do not obtain sharp estimates for all p, obtaining simpler

bounds for the special cases p =Θ(1) and p =Θ( 1
n

). En route, the authors prove the following claim:

Claim A.2 (From the proof of Lemma 1 in [BDER16]). Let Q = PrGeod (n,p)[G12G13G23 = 1 |G23 = 1].

There exists a universal constant c >0 such that for all p < 0.49, Q = p2(1+ε) for εÊ c

√
log3 1

p

d
.

Here we will use this claim to extend the analysis of [BDER16] to all p ∈ ( 1
n2 ,0.49).

Proof of Lemma A.1. What remains is to bound the variance of T(G) under G ∼Geod(n, p), so here-

after all expectations are taken with respect to G ∼Geod(n, p). We may also assume p < 0.49, as for

constant p ∈ (0.49,1) we may invoke Theorem 2 of [BDER16]. Let Ti jk = (G i j − p)(G ik − p)(G jk − p)

and T i jk = Ti jk −E[Ti jk] for notational simplicity. We have that

Var

[
∑

i< j<k∈[n]

Ti jk

]
=E

[
∑

i< j<k

T
2

i jk +2
∑

i< j<k<ℓ∈[n]

T i jkT jkℓ+T i jℓT jℓk +T ikℓT jkℓ

]

=
(
n

3

)
·E

[
T

2

123

]
+6 ·

(
n

4

)
·E

[
T123T234

]
, (21)

where the first line follows because if triangles i, j, k and a, b, c do not share an edge, Ti jk and Tabc

are independent, and the second line follows from symmetry.

Because G2
i j
=G i j, we have that (G i j − p)2 = (1−2p)G i j + p2, and so

T2
123 = ((1−2p)G12 + p2) · ((1−2p)G13 + p2) · ((1−2p)G23 + p2), (22)

T123T234 = ((1−2p)G23 + p2) · (G12− p) · (G13 − p) · (G24 − p) · (G34− p). (23)

Now we will bound each of E[T
2

123] and E[T123T234] separately. First, we bound E[T
2

123] by expand-

ing (22) and utilizing the symmetry of G12,G23,G13,

E[T
2

123]=E[T2
123]−E[T123]2

= (1−2p)3 E[G12G13G23]+3(1−2p)2 p2 E[G12G13]+3(1−2p)p4 E[G12]+ p6

−
(
E[G12G13G23]−3pE[G12G13]+3p2 E[G12]− p3

)2

= (1−2p)3 E[G12G13G23]+3(1−2p)2 p4+3(1−2p)p5 + p6

−
(
E[G12G13G23]− p3

)2
,

where we have used that for any S ⊆
([n]

2

)
which corresponds to a tree, E

∏
(i, j)∈S G i j = p|S|. Recalling

that we have defined Q = p2(1+ε) =E[G12G13G23 |G23 = 1],

E[T
2

123]= (1−2p)3 · p ·Q+3(1−2p)2 p4+3(1−2p)p5 + p6 − (pQ− p3)2

= p3(1− p)3 + (1−2p)3 p3ε− p6ε2

=O((1+ε)p3). (24)

Dealing now with the second term, starting with (23),

E[T123T234]=E[T123T234]−E[T123]2

=E[T123T234]−ε2 p6
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=E[((1−2p)G23 + p2)(G12− p)(G13− p)(G24 − p)(G34− p)]−ε2 p6

= (1−2p) · p ·E[(G12 − p)(G13− p) |G23 = 1]2 + p2 E[(G12 − p)(G13− p)(G24− p)(G34 − p)]−ε2 p6

Where we have used that (G12 − p)(G13 − p) and (G24 − p)(G34 − p) are independent conditioned on

G23. Now again applying the simplification that tree-shaped products are independent,

= (1−2p)p(Q− p2)2 + p2(E[G12G13G24G34]− p4)−ε2 p6

= (1−2p)p5ε2 + p2(E[G12G13G24G34]− p4)−ε2 p6.

Now, we use that E[G12G13G24G34]ÉE[G12G13G24G34 |G23 = 1], and again applying independence

conditioned on G23,

É (1−2p)p5ε2 + p2(E[G12G13 |G23]2 − p4)−ε2 p6

= (1−2p)p5ε2 + p2(p4(1+ε)2 − p4)−ε2 p6

= (1−2p)p5ε2 +2p6ε.

Hence we have

E[T123T234]=O(p5ε2 +2p6ε). (25)

Putting together (21), (24), and (25), we have that there exists a constant C such that

p
Var[T(G)]

E[T(G)]
ÉC ·

√
(1+ε)p3n3 + p5ε2n4+ p6εn4

n3 p3ε
É C ·

(√
1+ε

p3n3ε2
+

1

n
p

p
+

1

n
p
ε

)
.

Since we have assumed that p ≫ 1
n2 , 1

n
p

p
→n 0. Also, by Claim A.2, 1

n
p
ε
É d1/4

nc1/2 log3/4 1
p

→n 0 so long as

d ≪ n4 log3 1
p

, which is implied by our assumption that d ≪ (nH(p))3. Finally, if ε> 1, then applying

Claim A.2,

1+ε

p3n3ε2
É

2ε

p3n3ε2
É

2

p3n3ε
É

2d1/2

cp3n3 log3/2 1
p

→n 0,

whenever d ≪ (nH(p))3. Alternatively, if ε< 1, applying Claim A.2 again,

1+ε

p3n3ε2
É

2

p3n3ε2
É

2d

c2 p3n3 log3 1
p

→n 0,

since d ≪ (nH(p))3. This concludes the proof.

B Deferred proofs from the preliminaries

We first provide a proof of Lemma 3.6, which provides a convenient upper bound on the dot product

threshold τ(p) corresponding to a p-cap.

Lemma (Restatement of Lemma 3.6). For any p É 1
2
, we have τ(p)É

√
2log(1/p)

d
.

We apply the following constant factor approximation for the measure of a sphere cap in terms of the

threshold τ(p), when τ(p)Ê
√

2
d

given by [BGK+01, Lemma 2.1(b)]:
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Theorem B.1. Consider a p-cap where τ(p)Ê
√

2
d

. Then:

1

6τ(p)
p

d

(
1−τ(p)2

)(d−1)/2 É p É
1

2τ(p)
p

d

(
1−τ(p)2

)(d−1)/2

Proof of Lemma 3.6. We case on whether τ(p) is smaller or larger than

√
2
d

. In the first case observe

that log(1/p)Ê 1 by our bound on p and so τ(p)É
√

2
d
É

√
2log(1/p)

d
.

When τ(p) Ê
√

2
d

, we use the upper bound in Theorem B.1. Let τ′ =
√

2log(1/p)

d
, and let p′ denote

its corresponding tail probability Prx,y∈Sd−1 [〈x, y〉 Ê τ′]. If we can show p′ É p, then we know τ(p)É τ′.

p′ É
1

2τ′
p

d
·
(
1− t2

)(d−1)/2 =
1

2
√

log(1/p)
·
(
1−

2log(1/p)

d

)(d−1)/2

É
1

2
√

log(1/p)
· p É p

Since p′ É p, this tells us τÉ τ′ as well, giving us the desired inequality.

We next prove Lemma 3.7. Understanding the joint distribution of two independently chosen unit

vectors in S
d−1 helps complete this proof. We first present a theorem from [BBN20] that present

some useful bounds on this distribution ψ.

Lemma B.2 ([BBN20, Lemma 5.1]). Let τ(p) be the value of t at which Prx,y∈Sd−1 [〈x, y〉 Ê t]= p, and

let ψd be the distribution of the inner products of two random unit vectors in R
2.

1. For 0É τÉ 1
2

and δ> 0, we have:

ψd(τ−δ)

ψd(τ)
É exp(2τdδ).

2. ψd(τ)É CB.2 p ·max{
p

d, dτ} for a universal constant CB.2.

3. ψ(τ(p))=
Γ

(
d
2

)

Γ

(
d−1

2

)p
π

·
(
1−τ(p)2

)(d−3)/2
.

Proof of Lemma 3.7. When t Ê0, the density ψd(t) is a decreasing function in t. Thus:

Pr
z∼ρ

[τ−εÉ 〈z, x〉 É τ+ε] =
∫τ+ε

τ−ε
ψd(t)dt

É (2ε) · [ψd(τ) ·exp(2dτε)]

In the last line, we used Part 1 of Lemma B.2, and noted that this is an upper bound even when ε> τ.

Using Part 2 of Lemma B.2, and Lemma 3.6, we can upper bound ψd(τ):

ψd(τ)ÉCB.2 p ·max{
p

d, dτ}É p ·
(
CB.2

p
2 ·

p
d ·

√
log(1/p)

)

from which the desired bound follows.
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