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Abstract

The question of finding expander graphs with strong vertex expansion properties such as
unique neighbor expansion and lossless expansion is central to computer science. A barrier to
constructing these is that strong notions of expansion could not be proven via the spectral
expansion paradigm.

A very symmetric and structured family of optimal spectral expanders (i.e., Ramanujan
graphs) was constructed using number theory by Lubotzky, Phillips and Sarnak, and was
subsequently generalized by others. We call such graphs Number Theoretic Ramanujan Graphs.
These graphs are not only spectrally optimal, but also posses strong symmetries and rich
structure. Thus, it has been widely conjectured that number theoretic Ramanujan graphs are
lossless expanders, or at least unique neighbor expanders.

In this work we disprove this conjecture, by showing that there are number theoretic Ramanujan
graphs that are not even unique neighbor expanders. This is done by introducing a new
combinatorial paradigm that we term the closed orbit method.

The closed orbit method allows one to construct finite combinatorial objects with extermal
substructures. This is done by observing that there exist infinite combinatorial structures with
extermal substructures, coming from an action of a subgroup of the automorphism group of the
structure. The crux of our idea is a systematic way to construct a finite quotient of the infinite
structure containing a simple shadow of the infinite substructure, which maintains its extermal
combinatorial property.

Other applications of the method are to the edge expansion of number theoretic Ramanujan
graphs and vertex expansion of Ramanujan complexes. Finally, in the field of graph quantum
ergodicity we produce number theoretic Ramanujan graphs with an eigenfunction of small
support that corresponds to the zero eigenvalue. This again contradicts common expectations.

The closed orbit method is based on the well-established idea from dynamics and number
theory of studying closed orbits of subgroups. The novelty of this work is in exploiting this idea
to combinatorial questions, and we hope that it will have other applications in the future.

1 Introduction

On Ramanujan graphs, and Number Theoretic Ramanujan graphs. Various combinatorial
questions are studied using sparse graphs. Their solution is often based on a spectral analysis of the
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underlying graph, and in particular on the fact that the given graph is a good expander, meaning
that the second eigenvalue of its adjacency matrix is very far from its first eigenvalue ([8]). The
strongest spectral expansion condition is the Ramanujan property, which says that the second largest
non-trivial eigenvalue in absolute value of the adjacency operator of a d-regular graph is bounded
by 2

√
d− 1.

An explicit family of Ramanujan graphs, which we call LPS graphs, was constructed in the
celebrated work of Lubotzky, Phillips, and Sarnak ([16]). This construction is based on number
theory and in particular on the theory of automorphic forms, using deep results of Deligne and
others. There are various possible variations on the construction (e.g., [19, 24]), including the much
earlier work of Ihara ([9]). We will focus on the work of Morgenstern ([22]), who gave another
such explicit family which we call Morgenstern graphs (the essential difference between the two
works is replacing the field Q by Fq(t), where Fq is the finite field with q elements). We call the
graphs resulting from the different variations number theoretic graphs, to distinguish them from other
constructions of Ramanujan graphs (e.g., the graphs constructed by [18]). The number theoretic
Ramanujan graphs have various other wonderful properties – for example, they are Cayley Graphs
and have a very large girth (i.e., the length of the shortest cycle is large).

1.1 Vertex Expansion and the Spectral Method

There are some notoriously hard combinatorial questions about graphs where the spectral theory
falls short of proving the desired answer. A notable example is the question of finding a family of
explicit d-regular graphs which are lossless-expanders. For X a d-regular graph, and a subset Y of
the vertices of X, we define the expansion ratio of Y as |N(Y )|

|Y | , where N(Y ) is the set of neighboring
vertices of the set Y , which may include vertices from Y itself. This ratio is obviously bounded by
d. For d large but fixed as the size of the graph grows to infinity, we say that a family of graphs
is a family of lossless expanders if there is a constant α > 0 such that for every set Y ⊂ X of size
|Y | ≤ α|X|, its expansion ratio is d − o(d). There are constructions of graphs satisfying weaker
notions ([5, 1]), but even going beyond expansion ratio d/2 is a major open question ([8]).

The best results using the spectral method are due to Kahale ([10]). He shows that for a
Ramanujan graph the expansion ratio of sets of size bounded by α|X| is at least d/2 − β, where
β → 0 as α → 0 (see Theorem 5.6 for an alternative proof). Kahale also constructs a family of
graphs which are almost-Ramanujan, in the sense that their second largest eigenvalue in absolute
value is bounded by 2

√
d− 1 + o(1), having a subset Y of two vertices which has expansion ratio

d/2. In particular, he shows that the best expansion ratio that it is possible to get solely by using
spectral arguments cannot exceed d/2 for linear sized sets.

One of the reasons that passing the d/2 barrier is important is that graphs with vertex expansion
greater than d/2 are also unique neighbor expanders, for if a set Y has an expansion ratio that is
greater than d/2, then there exists a vertex that has a unique neighbor in Y . Unique neighbor
expanders were constructed by Alon and Capalbo ([1]), but the resulting graphs are not lossless
expanders. A weaker desired property is odd neighbor expansion, which says that there is a vertex
that is connected to an odd number of elements in Y . We refer to [8] for a discussion of vertex
expansion and its applications from different points of view.

Kahale’s example has a short cycle of length 4. It is also very far from being a Cayley graph.
For graphs with large girth, Kahale actually proved that small sets have expansion ratio d − o(d)
(see also [20]). For the LPS graphs or Morgenstern graphs, which are the d-regular graph that have
the best known girth, this implies that sets of size smaller than |X|1/3−ǫ have expansion ratio close
to d.

The fact that Kahale’s construction does not share many of the wonderful properties of the
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number theoretic construction led various researchers to speculate that Ramanujan number theoretic
graphs, which have very large girth, should be lossless expanders, or at least graphs with vertex
expansion strictly greater than d/2.

We show that this common belief is not true. As a matter of fact, some Morgenstern Ramanujan
graphs are not even odd neighbor expanders, and therefore not unique neighbor expanders. Here is
one of our main theorems:

Theorem 1.1 (Number theoretic Ramanujan graphs that are not odd neighbor expanders). For
every prime power q, there exists an infinite family of (q + 1)-regular number theoretic Ramanujan
graphs X, and a subset Y ⊂ X, |Y | = O(

√

|X|), such that every x ∈ N(Y ) has precisely 2 neighbors
in Y . Therefore, Y has no unique neighbors and |N(Y )| = q+1

2 |Y |.
Explicitly, for every odd prime power q and m large enough, there exists a (q + 1)-regular bipartite

Morgenstern Ramanujan graph

X = Cayley
(

PGL2

(

Fq2m
)

, {γ1, ..., γq+1}
)

,

with generators γ1, ..., γq+1, such that the subgroup 〈γ21 , ..., γ2q+1〉 is isomorphic to PGL2(Fqm). Moreover,
the graph

Y = Cayley
(〈

γ21 , ..., γ
2
q+1

〉

,
{

γ21 , ..., γ
2
q+1

})

is also a (q + 1)-regular bipartite Morgenstern Ramanujan graph.
The subset Y ⊂ X is of size |Y | = O(

√

|X|), and every x ∈ N(Y ) has precisely 2 neighbors in
Y .

The theorem is based on a new idea we introduce to Combinatorics called the closed orbit
method, which is based on working with the simply connected covering object, a topic we explain
in the next subsection of this long introduction. In Subsection 1.3 we describe how the general
method applies to the vertex expansion question. We also discuss vertex expansion in Ramanujan
complexes. In Subsection 1.4 we discuss the problem of edge expansion in Ramanujan graphs
and how our method addresses it. In Subsection 1.5 we describe the surprising application of our
method to the field of quantum ergodicity of graphs, where we show in Theorem 1.9 the existence
of a concentrated eigenfunction of the adjacency operator, again contradicting a natural belief that
such eigenfunctions do not exist for number theoretic graphs. In Subsection 1.6 we explain the
closed orbit machinery in more detail, from a group theoretic point of view, and present our main
abstract result, Theorem 1.10. Finally, in Subsection 1.7 we discuss the inverse situation in which
closed orbits do not exist. We pose the conjecture that the non-existence of closed orbits implies
lossless expansion of number theoretic graphs.

1.2 Combinatorics via the Covering object

In our work, we study finite d-regular graphs by understanding new properties that they inherit
from their infinite simply-connected cover, the d-regular tree Td, together with the action of some
group G on it. We will usually call Td by BG below, since we think of it with the G-action. The
infinite covering object is already evident in the definition of a Ramanujan graph – it is a finite
d-regular graph that inherits the spectrum of its covering object. Namely, the graph’s non-trivial
spectrum is contained in the spectrum of Td.

The action of the group G on Td is more subtle, but it underlies the number theoretic constructions
of Ramanujan graphs. For example, the LPS construction ([16]) is based on the action of the p-adic
group G = PGL2(Qq) (Qq is the q-adic field) on its Bruhat-Tits tree BG = Tq+1. Using number
theory which is related to quaternion algebras, it is possible to construct an arithmetic lattice Γ in
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G such that by taking the quotient of Tq+1 by Γ we get a (q + 1)-regular graph which inherits the
spectrum of the infinite tree, namely, a graph with the Ramanujan property.

In our work, we focus on the action of a subgroup H ≤ G on BG. An orbit of the H-action on
BG gives a substructure Z ⊂ BG with various desired properties. This substructure Z is used to
solve some combinatorial questions for the infinite cover.

We then look at the projection of Z into the finite quotient graph X. We want to understand the
image Y ⊂ X of the map, as it inherits the properties of Z. Usually, this map is very complicated,
and in particular, its image Y is the entire finite graph X. However, using the closed orbit method
that we introduce in this work, we show that there are special situations when this map is simple,
and in particular, its image Y may be small relative to X.

As we explain in Subsection 1.6, the special situations happen if the orbit Γ\H in the compact
space Γ\G is closed, hence the name of the method1. The notion of a closed orbit is basic in ergodic
theory, and has many uses in homogeneous dynamics, number theory, and representation theory.
The novelty of our work is exploiting this well-known notion to get a new understanding of finite
combinatorial questions.

All the above seems quite abstract, so let us now explain how we apply it to the problem of
vertex expansion. This will require a more technical discussion.

1.3 Vertex Expansion and the Closed Orbit Method

Using subgroups to find an infinite subgraph with bad vertex expansion. Consider the
field Fq((t)) of Laurent series over the finite field Fq with q elements (q being a prime power). This
field is analogous to the q-adic field Qq when Q is replaced by the field Fq(t). As with the group
PGL2(Qq), the group G = PGL2(Fq((t))) acts naturally on a (q + 1)-regular Bruhat-Tits tree BG.
Notice that in this case, there is a subfield Fq((t

2)) ⊂ Fq((t)). This subfield gives rise to a subgroup
H = PGL2(Fq((t

2))) ≤ G. Notice that the groups G and H are isomorphic, so H acts on its own
(q + 1)-regular Bruhat-Tits tree BH .

Next, consider the H-action on BG, via the embedding of H in G. An orbit of H gives rise to an
embedding of the vertices of the (q+1)-regular tree BH in BG (see Figure 1.1 and the discussion in
Subsection 4.2). The embedding can also be described as an embedding of the (q + 1, 2)-biregular
subdivision graph of BH in the (q + 1)-regular tree BG.

Notice that the image of the embedding is very thin, in the sense that a large ball in BG with
n vertices will contain Θ(

√
n) vertices of BH . The following lemma says that the embedded set has

bad expansion properties.

Lemma 1.2 (Lemma 4.2). Let Z ⊂ BG be the embedding of the vertices of BH in BG. Then each
vertex v ∈ N(Z) is a neighbor of precisely two vertices of Z.

Using the closed orbit method to get a finite set with bad vertex expansion. Once we
demonstrated the non-expanding set Z ⊂ BG in the infinite world, we may take a quotient of BG

by a lattice, and look at the image Y of Z in the resulting finite graph.
Since every neighbor of Z is connected to Z by at least two edges, the same is true for its image

Y ⊂ X. Therefore, Y has no unique neighbors, which is the property we are looking for. However,
Y may contain a lot of vertices, and even the whole of the graph X. The closed orbit method allows

1More generally, we are actually interested in a periodic orbit, which is an H-orbit supporting a finite H-invariant
measure. When Γ\G is compact, which is the case of interest to combinatorics, both notions are equivalent, and we
think that the closed orbit method simply sounds better.
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Figure 1.1: Part of the tree of PGL2

(

F2

((

t2
)))

(left) embedded in part of the tree of PGL2 (F2 ((t)))
(right). See Subsection 4.2 for the meaning of the vertex labels.

us to find an arithmetic quotient where Y maintains its volume in the tree. Namely, we have the
following:

Lemma 1.3 (Special case of Theorem 1.10). It is possible to choose a family of arithmetic lattices
Γ ≤ G, such that the projection Y of the set Z into the finite graph X = Γ\BG is of size |Y | =
O
(

√

|X|
)

.

Most of the non-explicit part of Theorem 1.1 follows from Lemma 1.3 and the discussion above.
The discussion implies that every vertex x ∈ N(Y ) is connected by at least two edges to Y . The
fact that x has precisely two neighbors in Y follows from a symmetry trick we explain in Lemma 2.8.
This implies that there are number theoretic Ramanujan graphs that are not even odd neighbor
expanders.

In the following, we apply the closed orbit method to the Morgenstern Ramanujan graphs ([22]).
This will give explicit number theoretic graphs with bad vertex expansion, and the explicit part of
Theorem 1.1.

Morgenstern graphs: Explicit number theoretic graphs that are not lossless expanders.

Let us describe how the above can be applied to the construction of Ramanujan graphs by Morgenstern
([22]), for q an odd prime power. Morgenstern constructs a lattice Γ ≤ PGL2 (Fq ((t))) that acts
simply transitively on the Bruhat-Tits tree BG, with generators γ1, ..., γq+1. If Γn is a normal
subgroup of Γ, the graph Γn\BG is then naturally isomorphic to the Cayley graph X = Cayley (Γ/Γn, {γ1, ..., γq+1}).

When Γn is chosen by some explicit congruence conditions we get the Morgenstern graphs, which
have plenty of nice properties, described in [22, Theorem 4.13], and are very similar to the celebrated
LPS graphs ([16, 13]). In particular, Γ/Γn is isomorphic to PGL2(Fqm), the graphs are Ramanujan
graphs, and their girth is at least 4/3 logq(|X|).
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The general method applies as follows: It turns out that after a “change of variables”, for
H = PGL2(Fq((t

2))), the subgroup Γ ∩H is generated by δ1 = γ21 , . . . , δq+1 = γ2q+1 and is actually
also a Morgenstern lattice of H, which acts simply transitively on the Bruhat-Tits tree BH . After
some computations, we end up with the explicit part of Theorem 1.1.

Lossless expansion for Ramanujan complexes. A promising option for graphs with good
vertex expansion are the underlying graphs of the Ramanujan complexes constructed in [17, 12]
(see Subsection 4.2 for some discussion of Ramanujan complexes).

Unlike d-regular graphs, higher dimensional Ramanujan complexes have a rigid local structure,
which implies interesting combinatorial properties. For example, many recent works used the
Garland method to show that they are high dimensional expanders (see [15] and the references
therein). Therefore, one may speculate that the rigid local structure will imply some form of
lossless expansion.

However, we show that the underlying graph on the vertices of the complex can have bad vertex
expansion:

Theorem 1.4 (Skeleton graphs of Ramanujan complexes are not unique neighbor expanders). Let
n be prime, q a prime power, G = PGLn(Fq((t))) and BG be the Bruhat-Tits building of G. Then
there is an infinite family of Ramanujan quotients Γ\BG such that its underlying graph X has a
subset Y of size |Y | = O

(

|X|1/2
)

, with no unique neighbors.

The proof of Theorem 1.4 is based on applying the closed orbit method to H = PGLn(Fq((t
2))) ≤

G = PGLn(Fq((t))). The basic observation is the following lemma:

Lemma 1.5 (Lemma 4.2). The embedding Z of the vertices of the building of BH in the vertices
of the building of BG have no unique neighbors.

The lemma implies that the projection Y ⊂ X of Z ⊂ BG will also have no unique neighbors.
However, it does not have to be small. The closed orbit method allows us to find lattices such that
the image Y satisfies |Y | = O(

√

|X|).

1.4 Bad Edge Expansion for Number Theoretic Graphs

The results about vertex expansion we described above have an analog for edge expansion. The
edge expansion of a set S ⊂ X is the ratio M(S,X−S)

|S| , where M(S,X − S) is the number of edges
between S and its complement in X. Another way of studying this ratio is by looking at the number
M(S, S) of internal edges in S, as M(S,X − S) + M(S, S) = d|S|. Finally, M(S,S)

|S| is simply the
average degree of the induced graph on S, which is the property we will actually study.

A graph is a good edge expander if the average induced degree for every small set S is small. The
best result about the connection between spectral gap and edge expansion is given in the following
result of Kahale:

Theorem 1.6 (Kahale ([10]), see also Theorem 5.5). Let X be a
(

q2 + 1
)

-regular Ramanujan graph,
with |X| → ∞. Then for every subset Y ⊂ X with |Y | = o (|X|), the average degree of the induced
graph on Y is bounded by

√
q + 1 + o (1).

As with vertex expansion, we can prove that there exist number theoretic graphs with as bad
edge expansion as allowed by Kahale’s result:

Theorem 1.7 (Kahale’s spectral bound for edge expansion is tight). For every prime power q,
there exists an infinite family of

(

q2 + 1
)

-regular number theoretic Ramanujan graphs X, and a

(q + 1)-regular induced subgraph Y ⊂ X, |Y | = O
(

√

|X|
)

.

6



(

1 0

t
2

)

(

1 0

t

)

(

1 0

1

) (

t 1

t

)

(

t 0

1

)

(

t 1

1

)

(

1 0

t
2

)

(

1 0

t

)

(

1 0

1

) (

t 1

t

)

(

t 0

1

)

(

t 1

1

)

(

t α

t

)

(

t α + 1

t

)

(

t α

1

)

(

t α + 1

1

)

Figure 1.2: Part of the tree of PGL2 (F2 ((t))) (left) embedded in part of the tree of PGL2 (F4 ((t)))
(right). We denote F4 = {0, 1, α, α + 1}.

The proof of this theorem is based on applying the general construction to G = PGL2

(

Fq2 ((t))
)

and H = PGL2 (Fq ((t))). This gives as embedding Z of BH in BG. The basic property of this
embedding is described in Figure 1.2 and the following Lemma:

Lemma 1.8. Every vertex of Z is connected to q + 1 other vertices of Z.

When projected to a finite quotient, the image Y of Z still has an induced degree of at least
q + 1. The closed orbit method allows us to find an arithmetic lattice such that this projection is
small.

1.5 Concentrated eigenfunctions of number theoretic graphs

The closed orbit machinery could be useful beyond the specific question of expansion. Indeed, we
use this idea to construct an eigenfunction with eigenvalue 0, which has small support, in a number
theoretic graph.

There is a lot of recent work, initiated by Brooks and Lindenstrauss ([4]), whose aim is to
understand eigenfunctions of the adjacency operator on (q + 1)-regular graphs. Similar to the
setting of vertex expansion, eigenfunctions on a (q + 1)-regular graph with girth at least β logq n have

support of size at least Θ
(

n
β
4

)

(see [7, Subsection 1.1]). Therefore, the support of eigenfunctions on

the graphs X of Theorem 1.1 is of size at least n1/3−o(1). More generally, Brooks and Lindenstrauss
([4]) proved that for a (q + 1)-regular graph X with girth β logq n, for every ǫ > 0 there is δ > 0 such
that if a set Y supports ǫ of the mass of an eigenfunction f (where the eigenfunction is normalized to
‖f‖2 = 1 and the mass is determined by |f |2), then |Y | ≥ Ωǫ

(

nδ
)

. This was improved by Ganguly

and Srivastava ([7]) to |Y | = Ω
(

ǫnǫβ/4
)

.
Recently, Alon, Ganguly and Srivastava ([2]), extending the results of Ganguly and Srivastava

([7]), constructed a family of (q + 1)-regular graphs of high girth, with many eigenfunctions of
small support, of eigenvalues that are dense in

(

−2
√
q, 2

√
q
)

. Their graphs have second eigenvalue
bounded by 3√

2

√
q ≈ 2.121

√
q, which is close to being Ramanujan.
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As for our contribution, let X,Y be the graphs from Theorem 1.1, with X identified with
PGL2(Fq2m) and Y identified with PGL2(Fqm). Let f : X → C be

f (x) =











+1 x ∈ PSL2 (Fqm)

−1 x ∈ PGL2 (Fqm)− PSL2 (Fqm)

0 x /∈ PGL2 (Fqm)

.

Recall that Y is a bipartite graph. The function f is simply the function giving the value +1 to one
part of Y , the value −1 to the other part of Y , and the value 0 for the vertices in X − Y .

Theorem 1.9 (Number theoretic Ramanujan graphs with concentrated eigenfunctions). The function
f ∈ L2 (X) is an eigenfunction of the adjacency operator A of X with eigenvalue 0.

Therefore, for every odd prime power q there exists a (q+1)-regular number theoretic Ramanujan
graph X of girth greater than 4/3 logq(|X|), with an eigenfunction of the adjacency operator of

eigenvalue 0, which is supported on O(
√

|X|) vertices.

Proof. Let x ∈ X. Notice that if γkx ∈ Y , then also γ−1
k x = γ−2

k γkx ∈ Y . Moreover, γkx and γ−1
k x

are on different parts of Y , as they differ by γ2k which is a generator of Y as a Cayley graph, and
Y is bipartite. Therefore, the total number of +1 contributions to (Af) (x) is equal to the total
number of −1 contributions to (Af) (x). Therefore (Af) (x) = 0.

Notice that after normalization our eigenfunction to ‖f‖2 = 1, we have ‖f‖∞ = Ω
(

n−1/4
)

. By
moving the eigenfunction with the automorphisms of the Cayley graph, we actually get Θ(

√
n) such

functions. We are not familiar with any similar construction of an explicit non-trivial eigenfunction
on number-theoretic graphs. However, our method is limited to the eigenvalue 0.

We remark that our method is similar to the work of Milićević about large values of eigenfunctions
of arithmetic hyperbolic 3-manifolds ([21]), and also to the earlier work of Rudnick and Sarnak
([27]). Their methods show that an automorphic eigenfunction can have a large supremum-norm at
closed orbits of smaller subgroups. The work [21], in particular, uses subgroups coming from field
extensions. The main difference is that in our combinatorial setting we can explicitly construct the
eigenfunction, and this eigenfunction is not automorphic in the sense that it is not an eigenfunction
of the other Hecke operators that act on the space. However, the eigenvalue 0 can be perhaps
explained by the existence of an automorphic lift from the smaller group. It will be interesting to
clarify this. Finally, it will be interesting to apply the methods of [27, 21] to graphs, as they may
prove the existence of more general eigenfunctions with a large supremum norm.

1.6 The Closed Orbit Method

In the following, we explain the closed orbit method more accurately and state our abstract theorem
about it.

Let G be a locally compact group, H ≤ G a closed subgroup and Γ ≤ G a cocompact lattice.
For Γx ∈ Γ\G, we may look at the H-orbit ΓxH ⊂ Γ\G. The H-action defines a map

F̃Γ : Γx,H\H → Γ\G,

where Γx,H = x−1Γx ∩H, given by sending Γx,Hh to Γxh. Its image is ΓxH ⊂ Γ\G.
An H-orbit, which is the image of this map, can be quite complicated topologically. However,

when Γx,H is a lattice in H, the map becomes much simpler, and in particular, it becomes a
topological embedding, and its image is closed. We will focus of the case when x = e ∈ G is the

8



identity, and denote ΓH = Γe,H = Γ∩H. For our combinatorial purposes, we move from the group
G itself to a discrete space. We assume that G and H ≤ G are semisimple p-adic groups, and let
K ≤ G be a compact open subgroup. The space G/K is a discrete space with a G-action, which
is closely related to the Bruhat-Tits building BG of G. For simplicity, we will work with the space
G/K instead of the Bruhat-Tits building BG. The left H-action on G/K defines an embedding

H/KH → G/K,

where KH = H ∩K.
The reader may restrict herself to the case when G = PGLn (Fq((t))), H = PGLn

(

Fq((t
2))
)

,
K = PGLn (Fq[[t]]) and KH = PGLn

(

Fq[[t
2]]
)

. Then G/K and H/KH may be identified with the
vertices of the Bruhat-Tits buildings BG and BH .

When we insert Γ again into the picture, we get a map of discrete spaces

FΓ : ΓH\H/KH → Γ\G/K.

When ΓH is a lattice in H, this is a map between two finite combinatorial objects.
For the applications, we want two properties: First, ΓH should indeed be a lattice in H. Second,

we want ΓH\H/KH to be as small as possible relative to Γ\G/K.
To achieve the two properties we turn to number theory. Our general method will be:

1. Construct an arithmetic lattice Γ ≤ G such that ΓH is a lattice in H.

2. Take congruence covers Γn of Γ, such that the index [ΓH : Γn ∩ ΓH ] will grow far slower than
the index [Γ : Γn].

We implement the above when H and G are related by field extension. The actual details are
based on the theory of semisimple groups over adelic rings, and is done in Section 3. Here is a
non-precise version of our general abstract theorem. A precise version is given in Theorem 3.7.

Theorem 1.10 (The Closed Orbit Method). Assume that k0 is a non-Archimedean local field,
l0 is a finite field extension of k0 and G is a semisimple algebraic group defined over k0. Let
H = G (k0) ≤ G = G (l0). Then in many cases described in Section 3, we may choose a cocompact
arithmetic lattice Γ ≤ G, such that ΓH = Γ∩H ≤ H is also a cocompact arithmetic lattice. Moreover,
we may choose a sequence {Γn} of principal congruence subgroups of Γ of growing index, such that

[ΓH : Γn ∩ ΓH ] = O
(

[Γ : Γn]
1/[l0:k0]

)

.

Therefore, it holds that |(Γn ∩ ΓH)\H/KH | = O
(

|Γn\G/K|1/[l0:k0]
)

. We conclude that we can

construct a map between a small combinatorial object and a large combinatorial object, which locally
looks like the embedding of H/KH in G/K.

1.7 Vertex Expansion without Closed Orbits

Our explicit construction is based on the graphs of Morgenstern ([22]) and not on the more famous
LPS graphs of Lubotzky, Phillips and Sarnak ([16]). As a matter of fact, our method completely
fails for LPS graphs, since they are based on lattices in PGL2 (Qp), p prime, and Qp has no closed
subfields. In particular, PGL2 (Qp) has no closed subgroup, which behave similarly to the closed
subgroup PGL2

(

Fq

((

t2
)))

of PGL2 (Fq ((t))).
More generally, the LPS graphs are constructed from quaternion algebras over Q, and Q has no

subfields, which prevents us from applying the method we explain in Section 3.
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While our results may suggest that the LPS graphs may also have bad vertex expansion, we
believe that the results actually point in the other direction. One can perhaps use the lack of similar
subgroups to show that the LPS graphs have good vertex expansion, although implementing this
idea seems hard.

Therefore, we end the introduction with the following conjecture:

Conjecture 1.11 (LPS graphs are lossless expanders). Let q be fixed and large, and Xn be the
family of (q + 1)-regular Ramanujan graphs constructed in [16]. Then for every ǫ > 0, there is n
large enough such that for every set Y ⊂ Xn with |Y | ≤ |Xn|1−ǫ, we have

|N(Y )| ≥ (q + 1− o(q))|Y |.

Structure of this Article

In Section 2 we prove the explicit part of Theorem 1.1, showing explicit number theoretic Ramanujan
graphs with bad vertex expansion for odd prime powers. We assume the results of [22], the proof
uses elementary number theory in function fields, and is independent of the rest of the paper.

In Section 3 we state and prove the precise version of Theorem 1.10, which is our general theorem
presenting the closed orbit method. The proof is based on the theory of semisimple groups over the
adeles, and in particular on the strong approximation theorem.

In Section 4 we present the implications of the closed orbit method to vertex expansion and
edge expansion. We apply Theorem 1.10 to division algebras, discuss the Bruhat-Tits building, and
prove Theorem 1.7 and Theorem 1.4. We also prove the non-explicit part of Theorem 1.1.

Finally, in Section 5, we present simple proofs of Kahale’s theorems, using the results of [3].
This section is independent of the other sections.
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2 Explicit Number Theoretic Graphs with Bad Vertex Expansion

The main goal of this section is to prove the explicit part (i.e., for odd prime powers q) of Theorem 1.1.
The theorem is more than a special case of Theorem 1.10, since the lattices do not come from simply
connected groups, as we assume (implicitly) in Theorem 1.10. This allows us to construct very
explicit Cayley graphs, but add another layer of complication, which we resolve using Morgenstern’s
results.

Let us first give a short explanation how the explicit construction fits into the general framework.
Let Γ = 〈γ1, ..., γq+1〉 be a free group with γ1, ..., γq+1 as generators and their inverses. Let Γ′ be
the subgroup of Γ generated by δ1, ..., δq+1, where δi = γ2i .

The Cayley graph TΓ = Cayley(Γ, {γ1, ..., γq+1}) is a (q + 1)-regular tree. Similarly, TΓ′ =
Cayley(Γ′, {δ1, ..., δq+1}) is also a (q+1)-regular tree. The embedding of Γ′ in Γ gives an embedding
of the vertices of TΓ′ in TΓ. Moreover, each edge in TΓ′ corresponds to two edges in TΓ, or
alternatively, the embedding extends to a graph embedding of the (q + 1, 2)-biregular subdivision
graph of TΓ′ in TΓ. We deduce that if Z ⊂ TΓ is the embedding of the vertices of TΓ′ into TΓ, then
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every vertex v ∈ N(Z) is connected to two vertices of Z. This is a version of Lemma 1.2 in our
case.

Now, let Γn be a finite index normal subgroup of Γ. Then we may look at the Cayley graph
X = Cayley(Γ/Γn, {γ1, ..., γq+1})) (with the elements being identified with their image in Γ/Γn).
Alternatively, X can be identified with the quotient of TΓ by Γn. There is a natural embedding
Γ′/(Γ′ ∩ Γn) → Γ/Γn. The image Y of this embedding can be identified with the projection of
Z ⊂ TΓ to X. We deduce that every neighbor of Y is also connected to Y by at least two edges.

The problem is then to find a subgroup Γn such that |Y | will be much smaller than |X|, or
alternatively [Γ′ : Γ′ ∩ Γn] will be much smaller than [Γ : Γn], which will be an explicit version
of Lemma 1.3. During the proof, we will show that this holds for the Morgenstern graphs using
explicit calculations.

It may be hard to identify the relation between the proof and the general theory, which involves
p-adic groups. After setting some preliminaries we explain some of it in Remark 2.5, and later we
explain another part of the connection in Subsection 4.1.1.

Throughout the proof, we freely use basic number theory in function fields. See [26] for a good
introduction to this subject.

We start by recalling the construction of the Morgenstern Ramanujan graphs ([22]). Let q be an
odd prime power, with Fq the corresponding finite field. Consider the quaternion algebra A (Fq (u)),
which has a base 1, i, j, ij over Fq (u), with relations

i2 = ǫ, j2 = u− 1, ij = −ji,

where ǫ ∈ Fq is a non-square. This algebra has a norm

N (a+ bi+ cj + dij) = a2 − ǫb2 +
(

ǫd2 − c2
)

(u− 1) .

We let A× (Fq (u)) /Z
× be the quotient of the invertible elements of A (Fq (u)) by the equivalence

condition α ∼ α′ if and only if there is a ∈ Fq (u) with aα = α′.
Denote by A (Fq [u]) the elements of A with a, b, c, d ∈ Fq[u]. There are q + 1 elements

{

γ′1, ..., γ
′
q+1

}

⊂ A (Fq [u]), satisfying

γ′k = 1 + ckj + dkij,

with ck, dk ∈ Fq and N (γ′k) = u. Those elements correspond to the q + 1 solutions of ǫd2 − c2 = 1.
We let S = {γ1, ..., γq+1} be the image of those elements in A× (Fq (u)) /Z

×. Finally, let Γ be
the group generated by γ1, ..., γq+1.

Theorem 2.1 ([22, Corollary 4.7]). Γ is a free group on q+1
2 generators, with γ1, ..., γq+1 as

generators and their inverses. Moreover, there is a bijection between Γ and the set

{

α = a+ bi+ cj + dij ∈ A (Fq [u]) :∃l ≥ 0, N (α) = ul,

u− 1| gcd (a− 1, b) , u ∤ gcd (a, b, c, d)
}

.

The bijection is given by choosing for every γ ∈ Γ the unique element in its equivalence class in
A×(Fq(u)) from the set above.

Now let g ∈ Fq [u] be an irreducible polynomial of degree 2m. Then the congruence subgroup
Γ (g) of Γ is the set of elements of Γ who have in their equivalence class an element a+bi+cj+dij ∈
A (Fq [u]), satisfying g ∤ a, g|b, g|c, g|d.
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Recall that the Legendre symbol for f, g ∈ Fq (u), g 6= 0 irreducible is defined as

(

f

g

)

=











0 g|f
1 f is a square6= 0 mod g

−1 else

≡ f(q
deg g−1)/2 (mod g).

Theorem 2.2 ([22, Theorem 4.13]). The Cayley graph Xg = Cayley (Γ/Γ (g) , {γ1, ..., γq+1}) is a
(q + 1)-regular Ramanujan graph.

There are two possibilities, depending on the Legendre symbol
(

u
g

)

:

1. If
(

u
g

)

= −1 then the group Γ/Γ (g) is isomorphic to PGL2

(

Fq2m
)

, the graph Xg is bipartite

and its girth is at least 4
3 logq (|Xg|).

2. If
(

u
g

)

= 1 then the group Γ/Γ (g) is isomorphic to PSL2

(

Fq2m
)

, the graph Xg is not bipartite,

and its girth is at least 2
3 logq (|Xg|).

We now consider the q + 1 elements S′ = {δ1, ..., δq+1} ⊂ A× (Fq (u)) /Z
× satisfying δk = γ2k, so

explicitly
δk = 2− u+ 2ckj + 2dkij.

Let Γ′ = 〈δ1, ..., δq+1〉 ≤ Γ.
To prove Theorem 1.1 we need to understand the group Γ′/ (Γ′ ∩ Γ (g)) and its Cayley structure

relative to the generators δ1, ..., δq+1.
It is simpler to work with valuations instead of divisions. Recall that the valuations of the field

Fq (u) are v1/u defined by v1/u

(

f
g

)

= degu g− degu f , f, g ∈ Fq [u], and for every irreducible monic

polynomial p ∈ Fq (u) the valuation νp

(

pa f
g

)

= a, where f, g ∈ Fq (u) are not divisible by p.

Using the language of valuations, Γ (g) contains all the elements of A× (Fq (u)) /Z
×, which are

in the free group generated by γ1, ..., γq+1, and further have an element α = a + bi + cj + dij in
their equivalence class satisfying:

vg (a) = 0, vg (b) > 0, vg (c) > 0, vg (d) > 0.

Next we make the change of variables t = u
2−u . It holds that u = 2t

t+1 , u − 1 = t−1
t+1 and

2− u = 2
t+1 .

When make a change of variables, the quaternion algebra A changes to the quaternion algebra
A1 = span{1, i1, j1, i1j1} over Fq(t) with i21 = ǫ, j21 = t−1

t+1 , i1j1 = −j1i1. In the new algebra, we
have

γk = 1 + ckj1 + dki1j1

δk =
2

t+ 1
+ 2ckj1 + 2dki1j1.

Let T : Fq (u) → Fq (t), T (f (u)) = f
(

2t
t+1

)

be the isomorphism of fields defined by the change

of coordinates. There is a bijection between valuations v of Fq (u) and valuations σ of Fq (t), defined
by v (f) = σ (T (f)) for every f ∈ Fq (u). Let us describe this bijection.
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The change of variables is a composition of two simpler operations: A linear transformation
t = au+ b, a 6= 0, b ∈ Fq and an inversion t = 1/u.

For t = au+b, the bijection is as follows: v1/u corresponds to σ1/t, and for g (u) monic irreducible,

deg g = m′, let h (t) = a−m′

g (at+ b). Then vg corresponds to σh.
For t = 1/u, the bijection is as follows: v1/u corresponds to σt, vu corresponds to σ1/t, and

for g (u) monic irreducible, g (u) 6= u, deg g = m′, g(u) = um
′

+ am′−1u + .... + a0, let h (t) =
a−1
0 tm

′

g (1/t) = tm
′

+ a1a
−1
0 tm

′−1 + ...+ am′−1a
−1
0 t+ a−1

0 . Then vg corresponds to σh.
Applying the above to t = u

2−u , u = 2t
t+1 , the bijection is

v1/u ↔ σt+1

vu−2 ↔ σ1/t,

and for g (u) 6= u−2 of degree m′, let h (t) the monic polynomial corresponding to (t+ 1)m
′

g
(

2t
t+1

)

.

Then vg ↔ σh.
The other direction of this correspondence is given as follows: For h (t) 6= t+1 of degree m′, let

g (t) be the monic polynomial corresponding to (u− 2)m
′

h
(

u
2−u

)

. Then σh ↔ vg.

Lemma 2.3. Using the correspondence above, for g (u) 6= u− 2, it holds that
(

u
g(u)

)

=
(

2t(t+1)
h(t)

)

.

Proof. The Legendre symbol
(

f(u)
g(u)

)

for vg (f) ≥ 0 is determined by whether the image of f in

the finite field {f ′ ∈ Fq (u) : vg (f
′) ≥ 0} / {f ′ ∈ Fq (u) : vg (f

′) > 0} is zero, a non-zero square, or
neither. Since u = 2t

t+1 and 2t (t+ 1) = 2t
t+1 (t+ 1)2, the result follows.

Returning to Γ (g), let h (t) correspond to g (u) as above. Then after the change of coordinates
we have:

Lemma 2.4. The group Γ (g) is isomorphic subgroup of A×
1 (Fq (t)) /Z

× generated by γ1, .., γq+1,
γk = 1 + ckj1 + dki1j1, such that there is an element in the equivalent class satisfying

vh (a) = 0, vh (b) > 0, vh (c) > 0, vh (d) > 0. (2.1)

The group Γ/Γ (g) is isomorphic to PGL2

(

Fq2m
)

if and only if
(

2t(t+1)
h(t)

)

= −1.

Next, we change the algebra to an equivalent algebra. Let A2 = span {1, i2, j2, i2j2} be the
quaternion algebra over Fq (t) with i22 = ǫ, j22 = (t+ 1) (t− 1) = t2 − 1, i2j2 = −j2i2. Then
A1 (Fq (t)) ∼= A2 (Fq (t)), with the explicit isomorphism

a+ bi1 + cj1 + di1j1 ∈ A1 (Fq (t)) ↔ a+ bi2 +
c

t+ 1
j2 +

d

t+ 1
i2j2 ∈ A2 (Fq (t)) .

In the new algebra,

γk = 1 +
ck

t+ 1
j2 +

dk
t+ 1

i2j2

δk =
2

t+ 1
+

2

t+ 1
ckj2 +

2

t+ 1
dki2j2

= 1 + ckj2 + dki2j2.

The last equality follows from the fact that we work in A×
2 (Fq (t)) /Z

×.
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Moving to A×
2 (Fq (t)) /Z

×, Γ is generated by γ1, ..., γq+1 ∈ A×
2 (Fq (t)) /Z

×, while Γ (g) consists
of the elements with an element in their equivalence class satisfying Equation (2.1).

Therefore Γ′ is generated by δ1, ..., δq+1 ∈ A×
2 (Fq (t)), and Γ′ ∩ Γ (g) are the elements in Γ′

satisfying Equation (2.1).
Denote s = t2. Notice that A2 is defined over Fq (s), and moreover A2 (Fq (s)) is the quaternion

algebra defined by the relations i22 = ǫ, j22 = s − 1, i2j2 = −j2i2. Therefore, A2 (Fq (s)) is the
same algebra as A (Fq (u)), up to changing u to s. Moreover, the elements δ1, ..., δq+1 are actually
defined over Fq (s), and correspond to the elements γ1, ..., γq+1 of A (Fq (u))! This is the “miracle”
underlying this construction.

Remark 2.5. Let us stop the proof for a moment and explain the connection between Theorem 1.1
and Theorem 1.10.

After the change of variables, look at the group G = A×
2 (Fq((t))) /Z

× ∼= PGL2 (Fq((t))). Morgenstern
shows that Γ acts simply transitively on the Bruhat-Tits building BG of G, so the Cayley graph of
Γ with respect to γ1, ..., γq+1 can be identified with BG.

Denote H = A×
2

(

Fq

((

t2
)))

/Z× ∼= PGL2

(

Fq

((

t2
)))

which is a closed subgroup of G. It is not
hard to see that Γ′ = Γ ∩H. The calculation above implies that Γ′ acts simply transitively on the
Bruhat-Tits building BH of H, and its Cayley graph with respect to δ1, ..., δq+1 is isomorphic to BH .
Therefore, Γ′ = Γ ∩H is a lattice in H, which is far from obvious. As we explain in Section 4, this
fact also follows from the fact that A2 is actually defined over Fq(s) = Fq

(

t2
)

.
The embedding of the group Γ′ in Γ is the same as the embedding of BH in BG. This implies

that the embedding of Γ′/ (Γ′ ∩ Γ(g)) in Γ/Γ(g) is the same as the embedding of (Γ′ ∩ Γ(g)) \BH in
Γ(g)\BG.

In the next part of the proof we study the growth of [Γ′ : (Γ′ ∩ Γ(g))] relative to [Γ : Γ(g)] as in
Lemma 1.3 or Theorem 1.10. We will actually understand a bit more than that.

Continuing the proof, we may assume that Γ′ ⊂ A×
2 (Fq (s)) /Z

×. However, we still need to
handle the conditions of Equation (2.1) to understand Γ′ ∩ Γ (g).

There are two cases: the “good case” h ∈ Fq

(

t2
)

= Fq (s) (i.e., h only has t to an even power)
and the “bad case” h /∈ Fq

(

t2
)

= Fq (s).

In the good case, let h̃ (s) ∈ Fq (s) be polynomial satisfying h̃
(

t2
)

= h (t). Notice that deg
(

h̃
)

=

deg (h) /2 = deg (g) /2 = m.
In the bad case, let h̃ (s) ∈ Fq (s) be the polynomial satisfying h̃

(

t2
)

= h (t)h (−t).

In both cases, h̃ (s) ∈ Fq (s) = Fq

(

t2
)

is an irreducible polynomial (or prime), which lies below
the irreducible polynomial h (t) ∈ Fq (t) in the extension of Fq (s) to Fq (t). In other words, it holds
that h (t)Fq [t] ∩ Fq [s] = h̃ (s)Fq [s] and for f ∈ Fq (s), vh

(

f
(

t2
))

= vh̃ (f (s)).
This implies that we may identify Γ′ as the subgroup of A×

2 (Fq (s)) /Z
×, generated by δk =

1+ ckj2+ dki2j2, and Γ′∩Γ (g) as its subgroup of elements with an element in the equivalence class
satisfying vh̃ (a) = 0, vh̃ (b) > 0, vh̃ (c) > 0, vh̃ (d) > 0.

The final description is exactly the description of the Morgenstern graph, with u replaced by s
and g (u) replaced by h̃ (s). Therefore:

Theorem 2.6. Yg = Cayley (Γ′/ (Γ′ ∩ Γ (g)) , {δ1, ..., δq+1}) is isomorphic to the Morgenstern graph
Xh̃.

In particular, the subgroup Γ′/ (Γ′ ∩ Γ (g)) ≤ Γ/Γ(g) is isomorphic to either PSL2

(

qdeg h̃
)

or

PGL2

(

qdeg h̃
)

.
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Our next goal is to understand which of the two cases, PSL2 or PGL2 happens. In the “good
case”, h̃ (s) ∈ Fq (s) = Fq

(

t2
)

remains irreducible in the extension to Fq (t). In other words, it
is inert in the extension. Since this is a quadratic extension, it is well known that it happens

if and only if
(

s
h̃(s)

)

= −1. In this case, by Theorem 2.2, Yg is a bipartite Cayley graph on

PGL2

(

F
qdeg h̃

)

= PGL2 (Fqm).

In the “bad case”, h (s) ∈ Fq (s) = Fq

(

t2
)

splits in the extension to Fq (t). This happens if

and only if
(

s
h̃(s)

)

= 1. In this case, by Theorem 2.2, Yg is a non-bipartite Cayley graph on

PSL2

(

F
qdeg h̃

)

= PSL2

(

Fq2m
)

.

For Theorem 1.1, we need to prove that the good case may happen, and to understand Xg in
this case. For this we notice that we may first choose h̃ ∈ Fq (s) of degree m, which is inert in the
field extension to Fq (t), then get h (t) = h̃

(

t2
)

and finally get g (u) from it as the irreducible monic

corresponding to (u− 2)2m h
(

u
2−u

)

.

We recall quadratic reciprocity in Fq (s) ([26, Theorem 3.3]), which states that for f, g ∈ Fq [s]
irreducible

(

f

g

)

= (−1)
q−1

2
deg f deg g

(

g

f

)

.

Then

(

s

h̃ (s)

)

= (−1)
q−1

2
deg h̃

(

h̃ (s)

s

)

= (−1)
q−1

2
deg h̃

(

h̃ (0)

s

)

= (−1)
q−1

2
deg h̃

(

h̃ (0)

q

)

.

The last element is the usual Legendre symbol in Z.
Next,

(

2t (t+ 1)

h (t)

)

=

(

2

h (t)

)(

t

h (t)

)(

t+ 1

h (t)

)

.

Since h (t) is of even degree, Fq (t) /h (t)Fq (t) contains Fq2 . Therefore, every a ∈ Fq has a square

root in it and
(

2
h(t)

)

= 1. It holds by quadratic reciprocity, since the degree of h (t) is even, that

(

t

h (t)

)

=

(

h (t)

t

)

=

(

h (0)

t

)

=

(

h (0)

q

)

=

(

h̃ (0)

q

)

(

t+ 1

h (t)

)

=

(

h (t)

t+ 1

)

=

(

h (−1)

t+ 1

)

=

(

h (−1)

q

)

=

(

h̃ (1)

q

)

.

The last two elements in each row are the Legendre symbol in Z. Therefore,
(

2t(t+1)
h(t)

)

=
(

h̃(0)
q

)(

h̃(1)
q

)

determines whether Xg is PGL or PSL.
We conclude that by determining h̃ (0) , h̃ (1) we can make Yg be isomorphic to PGL2 (Fqm) and

Xg to be isomorphic to either of PGL2

(

Fq2m
)

or PSL2

(

Fq2m
)

. Finally, for m large enough, we may

freely choose h̃ (0) , h̃ (1) while keeping h̃ irreducible by Chabotarev’s density theorem ([26, Theorem
4.7 and Theorem 4.8]).

We collect our findings in the following lemma:

Lemma 2.7. For every m large enough, we may find a monic irreducible polynomial g of degree
2m such that:
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1. The Morgenstern Ramanujan Cayley graph Xg = Cayley (Γ/Γ (g) , {γ1, ..., γq+1}) is bipartite,
Γ/Γ (g) ∼= PGL2

(

Fq2m
)

and its girth is greater than 4/3 logq (|Xg|).

2. The subgroup Γ′/ (Γ′ ∩ Γ (g)) ≤ Γ/Γ(g) that is generated by
{

γ21 , ..., γ
2
q+1

}

is isomorphic to

PGL2 (Fqm). Moreover, Yg = Cayley
(

Γ′/ (Γ′ ∩ Γ (g)) ,
{

γ21 , ..., γ
2
q+1

})

is also a Morgenstern
Ramanujan graph.

Notice that the lemma implies that |Yg| = |PGL2 (Fqm)| = O
(√

∣

∣PGL2

(

Fq2m
)∣

∣

)

= O(
√

|Xg|).
By the discussion at the beginning of this section, we conclude that Lemma 2.7 is an explicit version
of Lemma 1.3.

We need however another result to complete the explicit part of the proof of Theorem 1.1.

Lemma 2.8. Every vertex x ∈ N(Yg) is connected to exactly two vertices in Yg.

Proof. If x ∈ N(Yg), then x = γiy, for y ∈ Yg, and γi a generator. Therefore, x is connected in Xg

to both y = γ−1
i x and γ2i y = γix ∈ Yg. Therefore, every neighbor of Yg is connected to at least two

vertices of it (we discussed this part of the proof at the beginning of the section).
Assume by contradiction that x ∈ N(Yg) is connected to more than two vertices of Yg, then by

applying the automorphism of the Cayley graph Xg defined by subgroup Γ′/ (Γ′ ∩ Γ (g)), we would
get O (|Yg|) other neighbors of Yg which are connected to more than 2 vertices of Yg. Then there
is some δ > 0 such that on average a neighbor of Yg is connected to 2 + δ vertices in Yg. This
contradicts Kahale’s vertex expansion Theorem 5.6.

Remark 2.9. Assume that we choose h̃ (s), deg h̃ (s) = m, such that it splits in the extension to
h̃
(

t2
)

= h (t) h (−t). Then a similar construction still works – we look at g (u) = g1 (u) g2 (u), where
g1 (u) corresponds to h (t) and g2 (u) corresponds to h (−t). Then Γ (g) = Γ (g1) ∩ Γ (g2) defines
a Cayley graph Xg = Cayley (Γ/Γ (g) , {γ1, ..., γq+1}). There is an embedding F : Yg

∼= Xh̃ → Xg,
which extends to a graph map on the subdivision graph Y ′

g of Yg.
In this case Yg will be a Cayley graph on PSL2 (Fqm), while Xg will be a Cayley graph on some

subgroup between PSL2 (Fqm)×PSL2 (Fqm) and PGL2 (Fqm)×PGL2 (Fqm). So again we get a similar
map from a small (q + 1, 2)-biregular graph and a big (q + 1)-regular Ramanujan graph.

2.1 Explicit Generators

We shortly describe how to construct our graphs explicitly. Assume we are given monic irreducible
h̃ (s) ∈ Fq (s), deg h̃ = m, which is inert (remains irreducible) in the extension to Fq (t).

Let h (t) = h̃
(

t2
)

be the irreducible polynomial of degree 2m in Fq (t) above h̃ (s). Let ǫ ∈ Fq

be a non-square and let i ∈ Fq (t) /h (t)Fq (t) be a square root of ǫ (which exists since h is of even
degree). Consider the following elements in PGL2 (Fq (t) /h (t)Fq (t)) ∼= PGL2

(

Fq2m
)

:

γk =

(

t+ 1 (ck − dki)
(ck + dki)

(

t2 − 1
)

t+ 1

)

δk = γ2k =

(

1 (ck − dki)
(ck + dki)

(

t2 − 1
)

1

)

(we work modulu center, so it makes sense). Recall that (ck, dk) are the (q + 1) solutions to ǫd2−c2 =
1.

Then γ1, ..., γq+1 generate a Ramanujan Cayley graph isomorphic to the Morgenstern Cayley

graph of the monic polynomial corresponding to (u− 2)2m h
(

u
2−u

)

. The elements {γ1, ..., γq+1}

16



generate PGL2

(

Fq2m
)

if and only if
(

2t(t+1)
h(t)

)

=
(

h̃(0)
q

)(

h̃(1)
q

)

= −1. The elements δk generate a

Ramanujan Cayley graph isomorphic to PGL2 (Fqm). This is simplest to see when m itself is even,
since then ǫ ∈ Fq

(

t2
)

/h̃
(

t2
)

Fq

(

t2
)

⊂ Fq (t) /h (t)Fq (t), and the δk are the generators given in [22,
Equation (14)].

3 The Closed Orbit Method

The goal of this section is to formalize and prove Theorem 1.10, which we do in Theorem 3.7. The
proof follows the standard construction of arithmetic cocompact lattices, and keeps track of its
behavior when taking field extensions. The essential results are the second part of Theorem 3.4 and
Lemma 3.6, which relates lattices in a group with a lattice in a subgroup.

We use several standard results about semisimple groups over global fields, which may be found
in Prasad’s work [25]. To keep our arguments short, we assume familiarity with the theory.

Here is our general setting: Let k be a global field (a number field or a finite extension of Fq (t))
and let l be a finite separable field extension of k. We denote the places of k using the letter v with
kv being the field completion. Similarly, we denote the places of l by the letter w, with lw being the
field completion. For the non-Archimedean places, we let Ov (resp. Ow) be the ring of integers of
kv (resp. lw), and let πv (resp. πw) be a uniformizer of kv (resp. lw).

Let Ak and Al be the adele rings of k and l, i.e.,

Ak =

{

(xv) ∈
∏

v

kv : xv ∈ Ov for almost every v

}

,

and similarly for Al.
Let G be a semisimple algebraic group defined over k, defined by set of equations as a subgroup

of SLN . We will use the same notation G for its extension of scalars to l. We assume that G is
connected, simply connected, and almost-simple over k and over l. Let G̃ be the split form of G,
so over the algebraic closure k of k (and l), G

(

k
) ∼= G̃

(

k
)

.
Notice that G (kv) and G (lw) are well-defined, and have a natural topology coming from the

embedding G (kv) ⊂ SLN (kv) ⊂ MN (kv). In addition, G (Ov) and G (Ow) are also well-defined for
almost every v and almost every w. For almost every place v of k, the isomorphism G

(

k
) ∼= G̃

(

k
)

is actually defined over kv, so there is an isomorphism G (kv) ∼= G̃ (kv). Moreover, after dropping
a finite number of places v of k, G (Ov) ∼= G̃ (Ov) is well-defined, and is a maximal compact
open subgroup of G (kv). For such v, let w1, ..., wm be the places of l over v. Then G (lwi

) ∼=
G̃ (lwi

), G (Owi
) ∼= G̃ (Owi

) and there is a diagonal embedding G (kv) →
∏m

i=1 G (kwi
), such that

G (kv) ∩
∏

G (Owi
) = G (Ov).

For the finite number of non-Archimedean places where the above does not hold, the embedding
G (kv) →

∏m
i=1G (kwi

) is still well-defined, and for every compact open subgroup of
∏m

i=1Kwi
≤

∏m
i=1G (lwi

), the subgroup Kv =
∏m

i=1 Kwi
∩G (kv) ≤ G (kv) is a compact open subgroup.

By the above, the adele group

G (Ak) =

{

(gv) ∈
∏

v

G (kv) : gv ∈ G (Ov) for almost every v

}

is well-defined, and has a natural topology coming from the topology of Ak and the embedding
G (Ak) ⊂ SLN (Ak) ⊂ MN (Ak). We have a diagonal embedding G (k) → G (Ak). The same is true
for l.
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The local embeddings G (kv) →
∏m

i=1G (kwi
) extend to a global embedding G (Ak) → G (Al) .

Under this embedding, it holds that G (Ak) ∩ G (l) = G (k). We consider all of our groups as
subgroups of G (Al). For finite sets of places V , W , there are natural projection maps

PV : G (Ak) →
∏

v∈V
G (kv)

PW : G (Al) →
∏

w∈W
G (lw) .

Recall that G is called isotropic over a field F if G (F ) contains a non-trivial split F -torus, and
is called anisotropic over F otherwise. If F is a local field, being anisotropic is equivalent to G (F )
being compact in the appropriate topology. We assume that G is anisotropic over l, which implies
that it is also anisotropic over k.

We have the following two basic theorems:

Theorem 3.1 (Borel, Behr, Harder). G (k) ≤ G (Ak) and G (l) ≤ G (Al) are cocompact lattices.

Theorem 3.2 (The strong approximation property – Platonov, Prasad). G satisfies the strong
approximation property over k and over l, i.e., for every place v where k is isotropic, G (k)G (kv)
is dense in G (Ak). The same is true for l.

Let V0 be a finite set of places of k. We let W0 be the places of l which lie over the places of V0.
We assume that G is isotropic over some place in V0, which implies that it is isotropic over some
place in W0. If we work over number fields, we further assume that G is anisotropic over all the
Archimedean places of l which are not in W0 (and therefore also over all the Archimedean places of
k which are not in V0).

We collect our various assumptions into the following definition.

Definition 3.3. Assume that there exist:

1. A global field k and l a finite separable field extension of k.

2. A semisimple algebraic group G defined over k which is connected, simply connected, and
almost-simple over k and over l. Moreover, G is anisotropic over l.

3. A finite set V0 of places of k, with W0 the places of l over the places of V0. The group G is
isotropic over some place in V0, and is anisotropic over all the Archimedean places of l which
are not in W0.

Then we say that the pair (G,H) of a group G and subgroup H ≤ G is good, where

G =
∏

w∈W0

G (lw)

H =
∏

v∈V0

G (kv) .

Given a good pair (G,H), our next goal is to choose a cocompact lattice Γ ≤ G, such that
Γ ∩H ≤ H is also a cocompact lattice.

Notice that G embeds into G (Al) by

G ∼=
∏

w∈W0

G (lw)×
∏

w/∈W0

{id} ≤ G (Al)
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and similarly H embeds into G (Ak).
We let

G

(

AW0

l

)

= {(gw)w ∈ G (Al) : ∀w ∈ W0, gw = id}

G

(

AV0

k

)

= {(gv)v ∈ G (Ak) : ∀v ∈ V0, gv = id} ,

with the natural induced topology. It holds that G(Al) = GG(AW0

l ) and G(Ak) = HG(AV0

k ).
For w 6∈ W0 non-Archimedean, fix a compact open subgroup Kw ≤ G (lw), equals almost

everywhere to G (Ow). For the w /∈ W0 Archimedean, let Kw = G (lw), which is compact by our
assumptions. For v /∈ V0, we let Kv =

∏m
i=1 Kwi

∩G (kv), where w1, ..., wm are the places of l over
v. By the above, Kv is a compact open subgroup of G (kv), which is equal almost everywhere to
G (Ov).

The choices of Kw define the compact open subgroup Kl =
∏

w∈W0
{id} × ∏

w 6∈W0
Kw of

G

(

AW0

l

)

. Then Kk = Kl ∩ G (Ak) is a compact open subgroup of G

(

AV0

k

)

of the form Kk =
∏

v∈V0
{id} × ∏v 6∈V0

Kv. Notice that Kl and G commute with each other, and GKl is an open
subgroup of G (Al).

We choose

Γ = PW0
(G (l) ∩GKl) (3.1)

Γ′ = PV0
(G (k) ∩HKk) ,

so that Γ,Γ′ are subgroups of G =
∏

w∈W0
G (kw) and H =

∏

v∈V0
G (kv).

Theorem 3.4. 1. Γ (resp. Γ′) is a cocompact lattice in G (resp. H).

2. It holds that Γ′ = H ∩ Γ.

Proof. Most of this theorem is standard, and we avoid giving the full details. See, for example, [22,
Lemma 3.1] for a similar statement.

The discreteness of Γ in G essentially follows from the discreteness of l ∩
(
∏

w/∈W0
Ow

)

in
∏

w∈W0
lw.

By Theorem 3.1, G (l) is a cocompact lattice in G (Al). By the strong approximation property
and our assumptions, G (l)G is dense in G (Al). Moreover, GK l is open in G (Al). This implies
that

G (l)GK l = G (Al) .

Therefore, the map
G → G (l) \G (Al) /Kl

is onto, and g, g′ ∈ G are sent to the same element if there are k ∈ Kl and γ ∈ G (l) such that

γg = g′k.

However, g and k commute, so we have γ = g′g−1k. This implies that γ ∈ G (l) ∩ GKl and
g′g−1 = PW0

(γ).
On the other hand, if γ ∈ G (l) ∩GKl and g′g−1 = PW0

(γ), then we may choose k ∈ Kl such
that γg = g′k. We conclude that there is an isomorphism

G (l) \G (Al) /Kl
∼= PW0

(G (l) ∩Kl) \G
= Γ\G.
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By considering the G right action on the two spaces and the compatibility of measures, we deduce
that Γ is a cocompact lattice in G.

For the same reasons, Γ′ = πV (G (k) ∩Kk) ≤ H is cocompact a lattice in H.
Finally, and this is where our proof is slightly less standard, since PW0

(G (l))∩H = PW0
(G (k))∩

H, G (k) ∩GKl = G (k) ∩HKk, and PW0
(G (Ak)) = PV0

(G (Ak)),

Γ ∩H = PW0
(G (l) ∩GKl) ∩H

= PW0
(G (k) ∩GKl) ∩H

= PW0
(G (k) ∩HKk)

= PV0
(G (k) ∩HKk) = Γ′,

as needed.

Next, we construct congruence subgroups of Γ. Let v1 be a place of k where it holds that
Kv1 = G (Ov) ∼= G̃ (Ov). Moreover, we want v1 to be inert in the extension to l, and let w1 be the
place of l over it. By Chebotarev’s density theorem, there are infinitely many such v1.

Notice that we have a (modw1)-homomorphism G (Ow1
) → G (Ow1

/πw1
Ow1

). This map is
onto, since the group G (Ow1

/πw1
Ow1

) ∼= G̃ (Ow1
/πw1

Ow1
) is generated by its unipotent elements,

which may be lifted to G (Ow1
).

As Pw1
(G (l) ∩GKl) ⊂ G (Ow1

), we have a homomorphism pw1
: Γ → G (Ow1

/πw1
Ow1

). Similarly,
we have a homomorphism p′v1 : Γ

′ → G (Ov1/πv1Ov1).
Now, choose the “congruence subgroups”

Γ (w1) = ker pw1
⊳ Γ (3.2)

Γ′ (v1) = ker p′v1 ⊳ Γ′.

The split group G̃ is a Chevalley group, which implies that its size over a finite field F (over
which it is defined) satisfies:

G̃ (F) = Θ
(

|F|dimG
)

.

Since v1 is inert in the extension, |Ow1
/πw1

Ow1
| = |Ov1/πv1Ov1 |[l:k]. Therefore, since G ∼= G̃ in our

case,

|G (Ov1/πv1Ov1)| = O
(

|G (Ow1
/πw1

Ow1
)|1/[l:k]

)

. (3.3)

Lemma 3.5. The maps pw1
and p′v1 are onto, so

Γ/Γ (w1) ∼= G (Ow1
/πw1

Ow1
)

Γ′/Γ′ (v1) ∼= G (Ov1/πv1Ov1) .

Proof. Let K ′
w1

= ker (G (Ow1
) → G (Ow1

/πw1
Ow1

)), which is a finite index group of Kw1
=

G (Ow1
), and therefore compact open. Let K

′

l
=
∏

w∈W0
{id} × K ′

w1
×∏w/∈W0∪{w1} Kw. Notice

that Γ (w1) = PW0

(

G (l) ∩GK
′

l

)

.
By the strong approximation theorem G (l)GK

′

l
= G (Al). Therefore, for every k ∈ Kw1

there
is γ ∈ G (l) and g ∈ G such that k ∈ γgK′

l
. This implies that γ ∈ G (l) ∩ GKl, so PW0

(γ) ∈ Γ.
Finally, pw1

(PW0
(γ)) = Pw1

(γ) = kK ′
w1

, so pw1
is onto as needed.

The claim for p′v1 is similar, by choosing

K ′
v1 = ker (G (Ov1) → G (Ov1/πv1Ov1))

= Kv1 ∩K ′
w1

and K
′

k
=
∏

v∈V0
{id} ×K ′

v1 ×
∏

v∈V0∪{v0} Kv.
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Lemma 3.6. Γ (w1) ∩H = Γ′ (v1).

Proof. Continuing the notations of the last proof Γ (w1) = PW0

(

G (l) ∩GK
′

l

)

, and

Γ (w1) ∩H = PW0

(

G (l) ∩GK
′

l

)

∩H

= PW0

(

G (k) ∩GK
′

l

)

∩H

= PW0

(

G (k) ∩HK
′

k

)

∩H

= PV0

(

G (k) ∩HK
′

k

)

= Γ′ (v1) .

We can finally state the precise form of Theorem 1.10.

Theorem 3.7. Let (G,H) be a good pair as above, Γ as in Equation (3.1), and Γ (w1) ⊳ Γ as in
Equation (3.2). Then Γ ∩H = Γ′ is a cocompact lattice in H, and for Γ′ (v1) = Γ (w1) ∩H it holds
that

[

Γ′ : Γ′ (v1)
]

= O
(

|Γ : Γ (w1)|1/[l0:k0]
)

.

Therefore, if W0 contains only non-Archimedean places and K is a maximal compact open subgroup
of G and KH = H ∩K is the corresponding compact open subgroup of H,

∣

∣Γ′ (v1) \H/KH

∣

∣ = O
(

|Γ (w1) \G/K|1/[l0:k0]
)

.

Proof. Almost all of the theorem was proven above, except for the last part. It holds that

|Γ\G/K| [Γ : Γ (w1)] |Γ ∩K|−1 ≤ |Γ (w1) \G/K| ≤ |Γ\G/K| [Γ : Γ (w1)] .

Since Γ\G/K and Γ ∩ K are finite (this is where we use the fact that W0 has no Archimedean
places),

|Γ (w1) \G/K| = Θ([Γ : Γ (w1)])

The arguments for Γ′ are the same.
The last part is therefore a consequence of the first part of the theorem.

4 Applications of the Closed Orbit Method

In this section we explain how the arguments of the last section apply to groups defined by quaternion
algebras and division algebras, which will then give us interesting lattices in SLn.

4.1 Closed Orbits in Division Algebras

Let A be a division algebra over a global field k. For simplicity, we assume that k is a function field
and the degree n of A is a prime.

Since we assume that n is prime, over any completion kv, A (kv) is either a division algebra, in
which case we say that A ramifies at v (alternatively, we say that Akv ramifies), or isomorphic to
Mn (kv), in which case we say that A splits or is unramified at v (alternatively, we say that Akv splits).
The Albert–Brauer–Hasse–Noether Theorem implies that given any subset of places v1, ..., vm, we
may choose A that will ramify only at a subset of v1, ..., vm, and may choose A (kv1) , ..., A

(

kvm−1

)

as we want up to isomorphism (A (kvm) will be determined by the others).
Now let l be a separable field extension of k. Given a place v of k and a place w of l over it,

it holds that A (lw) will be split if and only if it is possible to embed lw in A (kv). We will restrict
ourselves to quadratic extensions, and recall that n is prime. In this case:
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1. If n 6= 2 then A (lw) splits if and only if A (kv) splits.

2. If n = 2:

(a) If A(kv) splits, then A(lw) splits.

(b) If A(kv) ramifies, then it holds that A(lw) ramifies if and only if v splits in the extension
from l to k (i.e, w is not the only place over v).

Now consider the semisimple algebraic group G defined over k by

G (k) = {α ∈ A (k) : N (α) = 1} .

The group G is connected, simply connected and absolutely almost simple. The split form of G is
SLn. The group G is anisotropic over a kv (resp. lw) if and only if the algebra A ramifies at kv
(resp. lw). The group G is anisotropic over k (resp. l) if and only if A has a ramified place kv (resp.
lw).

We conclude that Definition 3.3 will hold if G has a ramified place over l, and if V0 contains a
place where A splits. Let us focus on the case when V0 = {v0} is a split place with a single place
w0 above v0 (so W0 = {w0}). Then G = G (lw0

) ∼= SLn (lw0
) and H = G (kv0)

∼= SLn (kv0). We
with to show that Theorem 3.7 applies to those cases.

Proposition 4.1. The pairs

(G,H) =
(

SLn (Fq ((t))) ,SLn

(

Fq

((

t2
))))

or (G,H) =
(

SLn

(

Fq2 ((t))
)

,SLn (Fq ((t)))
)

are good, i.e., satisfy Definition 3.3.

Proof. We start with the second case, as it is simpler. We first let k = Fq (t) and choose the place
v0 = t, so k0 = kv0 = Fq ((t)). We let l = Fq2 (t) be the quadratic constant field extension of k.
Then v0 is inert in the extension, i.e., have a unique place w0 = t over it, with lw0

= l0 = Fq2 ((t)).
We then let A be a division algebra of degree n which splits at k0 but ramifies over k and remains
ramified over l. It is easy to see that it can happen – for n > 2 we may choose any division algebra
over k (it will remain a division algebra over l), and for n = 2 we need to make sure that A will
also ramify at some place v corresponding to a polynomial of even degree, since v will then split in
the extension, and A will ramify for every place w above v, so will be ramified over l. Therefore, all
the conditions of Definition 3.3 hold for G = G (l0) ∼= SLn

(

Fq2 ((t))
)

, H = G (k0) ∼= SLn (Fq ((t))).
For the first case, we let k = Fq (s), and let l be a separable quadratic extension of k which

ramifies at the place v0 = s. For char q 6= 2 we may take l = Fq (t) for t2 = s. For char q = 2 this
extension no longer works since it is not separable. Instead, we may look at the extension Fq (u)
which we get by adding a root to u2 + su+1 = 0. Once again, we choose a division algebra A such
that it splits at k0 and ramifies over k and over l. It is simple to see that such A exists. In any
case, if w0 is the place of l over v0, then locally we have l0 = Fq ((t)) for some t such that t2 = s.
Therefore, G = G (l0) ∼= SLn (Fq ((t))) and H = G (k0) ∼= SLn

(

Fq

((

t2
)))

, as needed.

4.1.1 The Explicit Construction

Let us explain how the abstract arguments are related to the explicit construction. For char q 6= 2,
let k = Fq (s) and let l = Fq (t) for t2 = s. Let v0 = s, w0 = t, so k0 = Fq ((s)) and l0 = Fq ((t)). We
choose the algebra A2 with the basis 1, i, j, ij, and the relations i2 = ǫ, j2 = s−1, ij = −ji, for ǫ ∈ Fq
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non-square. The algebra A2 ramifies at the places 1/s and s−1. Over t the algebra A2 ramifies at t−1
and t + 1, and is isomorphic to the algebra A1 defined by the relations i2 = ǫ, j2 = t−1

t+1 , ij = −ji.

After a change of variables u = 2t
2+1 , the algebra A1 is isomorphic to the algebra A over Fq (u),

defined by i2 = ǫ, j2 = u− 1, ij = −ji. Moreover, the place t corresponds to the place u under this
isomorphism. Let G = PGL1 (A2).

Notice that G is not simply connected, but most of the general argument of Section 3 applies
to it, with some modifications we discuss below.

Since A2 over Fq (t) and A over Fq (u) are isomorphic, the construction of Morgenstern in [22]

allows us to find a compact open subgroup Kl ⊂ G

(

A
{t}
l

)

, such that Γ = P{t} (G (l) ∩GKl) ≤
G = G (l0) is a lattice in G which acts simply transitively on the Bruhat-Tits building of G, and
all of its congruence subgroups define Ramanujan graphs.

The arguments of Section 3 (when extended to the non-simply connected case) say that Γ′ =
Γ ∩ H ≤ H = G (k0) is a lattice in H. As a matter of fact, a direct calculation shows that Γ′ is
generated by γ21 , ..., γ

2
q+1, where γ1, ..., γq+1 are the generators of Γ, and more importantly, Γ′ acts

simply transitively on the Bruhat-Tits building of H. This implies that the map FΓ : Γ
′\BH → Γ\BG

is injective, since both sets are of size 1. Finally, we take congruence covers Γ (w1) and Γ′ (v1) as
above, to get a map from a small graph to a large graph.

The fact that G is not simply connected mainly implies that the exact behavior of Γ/Γ (w1) and
Γ′/Γ (v1) is not known from the general arguments. To understand it we need some more work that
is done by Morgenstern in [22] and the calculations of Section 2.

4.2 The Bruhat-Tits Building

In this subsection, let l0 = Fq ((t)) and we quickly recall the Bruhat-Tits building of SLn (l0) and
its Ramanujan quotients. When n = 2, the Bruhat-Tits building is a tree, and a good reference is
[13]. For n > 2, see [14] and the references therein.

It is simpler to work with G = PGLn (l0), as the buildings are the same, and SLn (l0) acts on
the building by its image PSLn (l0) ⊂ PGLn (l0) which is of index n. Let O = Fq [[t]] be the ring of
integers of l0. Let K = PGLn (O), which is a maximal compact open subgroup of G.

The Bruhat-Tits building BG of G is a clique complex whose vertices can be identified with
G/K (in general, we identify a building with its vertices). The set G/K can also be described as
all the O submodules of ln0 , up to homothety (multiplication by a scalar from l0). There is an edge
between two modules [M ] 6= [M ′] if they have representatives M,M ′ such that tM ( M ′ ( M .
There is a bijection between equivalence classes of modules [M ] and matrices AM ∈ Mn (Fq [t]), of
the form

AM =









tm1 f1,2 (t) f1,n (t)
0 tm2 f2,n (t)

0 0 tmn









,

such that:

1. m1 ≥ 0, ...,mn ≥ 0, for 1 ≤ i < j ≤ n.

2. fi,j ∈ Fq [t] satisfies deg fi,j < mi for i < j.

3. gcd (tm1 , ..., tmn , f1,2 (t) , ...fn−1,n (t)) = 1.

The bijection is given by sending a matrix A to the module generated by its columns. We identify
a module with the corresponding matrix by this bijection.
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Each module M has a color c (M) ∈ [n] = {0, ..., n − 1}. It is uniquely determined by det (AM ) =
tc(M)+nz, for some z ∈ N. For every color i, the subgroup PSLn (l0) ≤ G acts transitively on vertices
of color i.

Let M0 be the standard module corresponding to the identity matrix I, or the identity coset in
G/K. Its neighbors are the modules which corresponding to the set N = {AM1

, ..., AMt} of matrices
AMi

as above, which further satisfy:

1. 0 ≤ m1, ...,mn ≤ 1.

2. If mj = 1 then fi,j = 0 for i < j.

3. A 6= I.

Finally, for every module M , its neighbors correspond to matrices of the form {AMA : A ∈ N}, up
to dividing by a power of t which is the gcd of all the elements.

Given a lattice Γ ≤ PGLn (l0), we may look at the quotient space Γ\BG. Assuming that Γ
does not intersect a big enough neighborhood of the identity (and, in particular, is torsion-free),
Γ\BG is a simplicial complex. In the case n = 2 this is a (q + 1)-regular graph. We again refer
to [14] for a discussion of such complexes. If we have a lattice Γ′ ≤ SLn (l0) we may project it to
Γ ≤ PGLn (l0), and then, assuming that Γ′ is torsion free, |Γ′\SLn (l0) /SLn (O)| = 1

n |Γ\BG|, since
SLn (l0) preserves the color of the vertices of B (G).

For the lattices Γ constructed from division algebras in this work, for every compact subset
S ⊂ G, it holds that as w1 changes, eventually Γ (w1) ∩ S ∈ {e}. This implies that Γ (w1) \BG will
indeed eventually be a simplicial complex. A far deeper fact is that over function fields, Γ (w1) \BG

is a Ramanujan complex – see [17, 6, 11] for a general discussion of this concept, and specifically [6,
Section 7] for a proof (here we implicitly use the assumption that n is prime).

4.3 Vertex Expansion

Consider l0 = Fq ((t)) and its subfield k0 = Fq

((

t2
))

. Let Ok0 = Fq

[[

t2
]]

, Ol0 = Fq [[t]] be the
corresponding rings of integers.

We let G = PGLn (l0), H = PGLn (k0), and K = PGLn (Ol0), KH = H ∩K = PGLn (Ok0) the
maximal compact open subgroups. We have an action of H on Bruhat-Tits building BG of G, and
since the stabilizer of the standard module is KH , we have a map (on vertices) F : BH → BG. See
Figure 1.1 for a special case of this embedding for n = 2 and q = 2.

We consider the set N defining the neighbors in BG and the set NH defining the neighbors in BH ,
as in Subsection 4.2. There is a bijection T : N → NH , with A ∈ N corresponding to T (A) ∈ NH

where t is replaced by s = t2. Let A ∈ N with diagonal (tm1 , ..., tmn ), then we get T (A) by
simply replacing the diagonal with

(

t2m1 , ..., t2mn
)

. Moreover, if mj = 1 then the j-th column is
0 outside the diagonal, and this implies that T (A) = AD (A), where D (A) = diag (tm1 , ..., tmn) is
the diagonal matrix with the same diagonal as A. Notice that D (A) ∈ N . Therefore, if AM ∈ BH ,
then F (AMT (A)) = F (AM )AD (A). This discussion may be concluded as follows:

Lemma 4.2. Let M ∈ F (BH) ⊂ BG, and let M ′ = MA, A ∈ N be a neighbor of M in BG. Then
there is M ′′ = M ′D (A) = MT (A) ∈ F (BH), another neighbor of M ′ from F (BH).

Therefore, F(BH) ⊂ BG has no unique neighbors (i.e., neighbors that are connected to it by a
single edge).

We may now prove Theorem 1.4:
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Proof of Theorem 1.4. By Proposition 4.1, Theorem 3.7, and the discussion in Subsection 4.2, there
is a lattice Γ ≤ PGLn (l0) of arbitrarily large covolume, such that if we denote Y ′ = Γ ∩ H\BH ,

X = Γ\BG, then |Y ′| = O
(

|X|1/2
)

and X and Y ′ are Ramanujan complexes.

There is also a natural map FΓ : Y
′ → X. It holds that Y = FΓ (Y

′) is the image of F (BH)
under the projection BG → Γ\BG = X. By Lemma 4.2 F (BH) has no unique neighbors in BG.
Therefore, the set Y – the projection of F (BH) to X – has no unique neighbors.

We may also complete the non-explicit part proof of Theorem 1.1 (i.e., for even q).

Proof of Theorem 1.1. For n = 2 the complex X of Theorem 1.4 is a graph, and there is a subset
Y ⊂ X, |Y | = O(

√

|X|), such that each y ∈ N (Y ) is connected to at least two vertices of Y . Then
we can show that every y ∈ N (Y ) is connected to precisely 2 vertices of N (Y ), as in the proof of
Lemma 2.8 (see also the proof of Theorem 1.7 in Subsection 4.4).

4.4 Edge Expansion

Let us now take n = 2, l0 = Fq2 ((t)) and G = PGL2 (l0). Let k0 = Fq ((t)), and H = PGL2 (k0),
which is a subgroup of G.

The Bruhat-Tits building BG of G, which is described in the previous section, is a
(

q2 + 1
)

-

regular tree. Explicitly, the set N determining the neighbors contains

(

1 0
0 t

)

and

(

t a
0 1

)

for

a ∈ Fq2 .
The subgroup H acts on BG, and the stabilizer of the standard module M0 is H∩PGL2

(

Fq2 [[t]]
)

=
PGL2 (Fq [[t]]), which is a maximal compact open subgroup of H. We therefore have a map

F : BH → BG. Let NH be the set determining the neighbors in BH , which contains

(

1 0
0 t

)

and
(

t a
0 1

)

for a ∈ Fq. Notice that NH ⊂ H. Moreover, for A ∈ NH and M ∈ BH described by its

matrix, F (MA) = F (M)A. In other words, adjacent vertices in BH are sent to adjacent vertices
in BG (see Figure 1.2 for a special case).

The discussion above implies:

Lemma 4.3. Every vertex in F (BH) ⊂ BG is connected to q + 1 other vertices of F (BH).

We may now prove Theorem 1.7 from the introduction:

Proof of Theorem 1.7. By Proposition 4.1, Theorem 3.7, and the discussion in Subsection 4.2, there
is a lattice Γ ≤ PGL2 (l0) of arbitrarily large covolume, such that if we denote Y ′ = Γ ∩ H\BH ,

X = Γ\BG, then |Y ′| = O
(

|X|1/2
)

and X and Y ′ are Ramanujan graphs.

There is also a natural map FΓ : Y
′ → X. By Lemma 4.3, every vertex of Y = FΓ (Y

′) is
connected to at least q + 1 other vertices of Y , as Y = FΓ (Y ) is the image of F (Y ) by the
projection map BG → Γ\BG.

We claim that Y is (q + 1)-regular. This also implies that Y is a quotient of Y ′, and is therefore
a Ramanujan graph.

If Y is not (q + 1)-regular, there is a vertex y ∈ Y that is connected to more than (q + 1) other
elements of Y . We next use symmetry as in the proof of Lemma 2.8. Notice that the group Γ (w1) \Γ
acts on X, and its subgroup Γ′ (v1) \Γ′ (using the natural embedding Γ′ (v1) \Γ′ → Γ (w1) \Γ)
preserves Y . Therefore, there are Θ(|Γ′ (v1) \Γ′|) = Θ (|Y |) vertices in Y that are connected to
more than q+1 vertices. Since the minimal degree of Y is q+1, the average degree is greater than
q + 1 + δ for some explicit δ > 0. This is impossible by Kahale’s Theorem 1.6.
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5 Expansion Using Moore’s Bound

In this section, we reprove Kahale’s lower bounds about vertex and edge expansion in Ramanujan
graphs. While the bounds we get are a bit weaker than Kahale’s, we believe that they are easier to
understand.

First, let us set notations. An undirected graph is a finite set X of vertices, a finite set E
of directed edges, two maps s, t : E → X, and an involution · : E → E, satisfying the conditions
s (e) = t (e), e 6= e. We allow multiple edges and self loops, but no “half edges”. For x ∈ X we let
dx = # {e ∈ E : s (e) = x} be the degree of x. We assume that X is connected.

A non-backtracking path of length l in X is a sequence (e1, ..., el) of edges, with t (ei) = s (ei+1)
and ei+1 6= ei. We denote by Ml (X) the number of non-backtracking paths of length l in X.

Given a subset S ⊆ X, we have an induced graph on S, containing all the edges e ∈ E with
s (e) , t (e) ∈ S. Therefore, Ml (S) is well-defined. We also denote by Ml (S,X) the non-backtracking
paths (e1, ..., el) in X such that s (e1) , t (el) ∈ S.

Our proofs uses the results of [3], whose main technical result is:

Theorem 5.1 ([3]). Let X be an undirected graph with m directed edges, and assume that X has
no vertices of degree 1. Let

d̃− 1 =

(

∏

e∈E

(

ds(e) − 1
)

)1/m

=

(

∏

x∈X
(dx − 1)dx

)1/m

,

i.e., the geometric average over the edges of the degree of their source vertex minus 1. Then

Ml (X) ≥ m
(

d̃− 1
)l−1

.

While the number d̃ is somewhat complicated, it holds:

Lemma 5.2. Assume that X is a graph without vertices of degree 1. Then:

1. ([3]) d̃ ≥ d, where d is the average degree of X.
Moreover, for every C > 0 and ǫ > 0 there exists δ > 0 such that if d̃ ≤ d + δ and d ≤ C,

then there is an integer d ≥ 2 satisfying
∣

∣

∣d̃− d
∣

∣

∣ ≤ ǫ, and all but ǫn of the vertices of X are of

degree d.

2. If X is bipartite, d̃ − 1 ≥
√

(

dL − 1
) (

dR − 1
)

, where dL (resp. dR) is the average degree of

the left side (resp. the right side) of X.

Remark 5.3. A similar “moreover” argument is true for the bipartite case, but we will not need it.

Proof. For the first claim, it holds that m = dn. Therefore d̃− 1 =
(

∏

x∈X (dx − 1)dx
)1/dn

. So

log
(

d̃− 1
)

=
1

d

1

n

∑

x∈X
dx log (dx − 1) ≥ 1

d
d log

(

d− 1
)

= log
(

d− 1
)

,

where the inequality follows from the convexity of d log (d− 1) for d ≥ 2. The “moreover” part
follows from the strict convexity of d log (d− 1) for d ≥ 2.

For the second claim, let nL, nR be the number of vertices in XL,XR – the right and left sides
of X. Then

nLdL = nRdR = m/2.
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Therefore

d̃− 1 =

(

∏

x∈X
(dx − 1)dx

)1/dn

=





∏

x∈XL

(

(dx − 1)dx
)1/dLnL





1/2



∏

x∈XR

(

(dx − 1)dx
)1/dRnR





1/2

≤
√

(

dL − 1
) (

dR − 1
)

,

where the inequality is as in the proof of the first claim.

We combine the lower bound on Ml (S) coming from Moore’s bound, with a standard upper
bound from spectral graph theory, which we now describe.

We let L2 (X) be the set of functions f : X → C, with the usual inner product. The adjacency
operator A : L2 (X) → L2 (X) is defined as

(Af) (x) =
∑

e∈E,t(e)=x

f (s (e)) .

The operator A is self-adjoint and therefore diagonalizable, with real eigenvalues and an orthogonal
basis of eigenvectors. If X is d-regular, the constant function is an eigenvector of A, with eigenvalue
d. If X is bipartite, A has the eigenvalue −d, corresponding to the eigenvector that is equal to a
constant C on one part, and is equal to −C on the other part. If X is connected, as we assume,
those are the only eigenvectors with eigenvalues of absolute value d. We say that X is Ramanujan
if every eigenvalue λ of A satisfies either |λ| = d or |λ| ≤ 2

√
d− 1. This bound is optimal for large

graphs by the Alon-Boppana Theorem ([23]).

Lemma 5.4. Let X be a d-regular Ramanujan graph with n vertices, and let S ⊂ X be a subset.
For l such that |S| (d− 1)l/2 ≤ n, the number Ml (S,X) of non-backtracking paths in X that

start and end in S satisfies that Ml (S,X) ≤ |S| (l + 3) (d− 1)l/2.

Proof. We define a length l non-backtracking version of the adjacency operator, Al : L2 (X) →
L2 (X),

(Alf) (x) =
∑

(e1,...,el),t(el)=x

f (s (e1)) ,

where the sum is over the non-backtracking paths in X. Notice that it holds that Ml (S,X) =
〈Al1S,1S〉, where 1S is the characteristic function of S.

Since the graph is d-regular, there is a simple relation between the Al-s, given by

A = A1

A2 = dI +A2

AAl = (d− 1)Al−1 +Al+1 l > 1.

The relations imply that Al is a polynomial in A, given explicitly for l ≥ 2 by

Al = (d− 1)l/2
(

(

1− (d− 1)−1
)

Ul

(

A

2
√
d− 1

)

+ 2 (d− 1)−1 Tl

(

A

2
√
d− 1

))

,
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where Tl and Ul are the Chebyshev polynomials of the first and second kind, given by Ul (cos θ) =
sin((n+1)θ)

sin θ , Tl (cos θ) = cos (nθ). In particular, if f ∈ L2 (X) is an eigenvector of A, f is also an
eigenvector of Al. If the eigenvalue of A is bounded in absolute value by 2

√
d− 1, the corresponding

eigenvalue of Al is bounded in absolute value by (l + 1) (d− 1)l/2.
Returning to the relation Ml (S,X) = 〈Al1S,1S〉, first assume that X is non-bipartite. We

write 1S = |S|
n 1X + r, with r ⊥ 1X and ‖r‖22 ≤ ‖1S‖22 = |S|. Notice that Al1X = d (d− 1)l 1X . By

the Ramanujan assumption and the fact that Al is self-adjoint,

|〈Alr, r〉| ≤ (l + 1) (d− 1)l/2 ‖r‖22 .

Then

Ml (S,X) = 〈Al1S,1S〉

=
|S|2
n2

〈Al1X ,1X〉+ 〈Alr, r〉

≤ |S|2
n2

nd (d− 1)l + (l + 1) (d− 1)l/2 ‖r‖22

≤ |S|
(

|S| d (d− 1)l−1

n
+ (l + 1) (d− 1)l/2

)

≤ |S|
(

d

d− 1
+ l + 1

)

(d− 1)l/2 .

We conclude by noting that d
d−1 ≤ 2. The case of bipartite graphs is similar.

We can compare Ml (S,X) with Ml (S), as it is obvious that

Ml (S,X) ≥ Ml (S) .

The case of edge expansion essentially follows directly:

Theorem 5.5. Let X be a d-regular Ramanujan graph and let S ⊂ X be a subset with |S| (d− 1)l/2 ≤
|X|. Then the average degree of the graph S induced from X is bounded by

(

1 +O
(

ln(l+3)
l

))√
d− 1+

1.
Moreover, assuming |S| = o (|X|), for δ > 0 small enough, there is ǫ > 0, such that if the average

degree of |S| is larger than
√
d− 1 + 1 + ǫ, then

√
d− 1 + 1 is an integer and at most δ |S| of the

vertices of |S| have a degree different from
√
d− 1 + 1.

Proof. We may assume that the average degree of S is at least 2. We then may remove from S
vertices of degree 1 without lowering the average degree, until all the degrees are at least 2. Notice
that if we remove more than o (|S|) of the vertices, then the average degree grows by a constant.

By Theorem 5.1,

Ml (S) ≥ |S| d
(

d̃− 1
)l−1

≥ |S|
(

d̃− 1
)l

(d− 1)−1,

where d̃ is as in the theorem.
On the other hand, by Lemma 5.4,

Ml (S,X) ≤ |S| (l + 3) (d− 1)l/2 .
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Therefore,

d̃− 1 ≤ (l + 3)1/l (d− 1)1/2 = (1 +O (ln (l + 3) /l)) (d− 1)1/2 .

So by Lemma 5.2, d ≤ d̃ ≤ (1 +O (ln (l + 3) /l))
√
d− 1 + 1.

The “moreover” part follows from the “moreover” part of Lemma 5.2.

The vertex expansion result is similar, but one should be a bit more careful when handling
vertices of degree 1.

Theorem 5.6. Let X be a d-regular Ramanujan graph and let S ⊂ X be a subset with |S| (d− 1)l ≤
|X|. Let N (S) be the neighbors of |S|. Then

|N (S)| ≥ d

2
|S|
(

1−O

(

ln (l + 3)

l

))

.

Moreover, assuming that |S| = o (|X|), for every ǫ > 0 there is δ > 0, such that for |X| large enough,
if |N (S)| ≤ d

2 |S| (1 + δ) then all but at most ǫ |N (S)| of the vertices of |N (S)| are connected to
exactly 2 vertices of S.

Proof. We assume that X is bipartite and S ⊂ X is contained in one of the sides. See the proof of
Theorem 2 in [10] for this simple reduction.

Decompose N (S) = M ∪M ′, where M are vertices that are connected to two or more vertices
in S and M ′ are vertices that are connected to exactly one vertex in S. We may assume that every
vertex in S is connected to at least 2 vertices in M . Otherwise, assuming the ratio |N (S)| / |S| is
smaller than d − 1, when we remove a vertex that is connected to one or zero vertices in M , we
decrease S by 1 and decrease N(S) by at least d− 1, so we decrease the ratio |N (S)| / |S|.

Consider the bipartite graph Y on (S,M), where S is on the left side and M is on the right side.
Let m = |M |, m′ = |M ′|, s = |S|. Let e be the number of directed edges from S to M (notice that
it is half of the edges in Y , which contain edges from M to S as well).

It holds that

m′ = ds− e

|N (S)| = m+m′

= m+ ds− e.

The average left degree of Y is dL = e
s and the average right degree is dR = e

m . Write d′ =
√

(

dL − 1
) (

dR − 1
)

+ 1.

By Theorem 5.1 and Lemma 5.2,

Ml(Y ) ≥ |Y |
(

d′ − 1
)l−1

.

However, by Lemma 5.4,
Ml(Y ) ≤ |Y |(l + 3) (d− 1)l/2 ..

Denote ǫ = ln (l + 3) /l. Then we get, as before,

d′ − 1 ≤
√
d− 1 (1 +O (ǫ))

Therefore
√

e

s
− 1

√

e

m
− 1 ≤

√
d− 1 (1 +O (ǫ))
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Simplifying,

e

m
≤ 1 +

(1 +O (ǫ)) (d− 1) s

e− s
=

e+ (d− 2) s

e− s
(1 +O (ǫ))

m ≥ e (e− s)

e+ (d− 2) s
(1−O (ǫ))

m− e ≥ − e (d− 1) s

e+ (d− 2) s
(1 +O (ǫ)) .

Since e ≤ ds, we get

m− e ≥ −d

2
s (1 +O (ǫ)) .

and since |N (S)| = m− e+ ds, we deduce

|N (S)| ≥ d

2
s (1−O (ǫ)) .

The proof also says that if e ≤ αds for some fixed α < 1, then

|N (S) | ≥ β
d

2
s (1−O(ǫ))

for some β > 1 depending on α. Therefore, if we assume that |S| = o(|N |) and |N (S)| ≤
d
2s (1 + o (1)), then e ≥ ds (1− o (1)). Therefore, all but o (s) of the vertices of N (S) are connected
to at least 2 vertices of S, and by the bound on the size of N (S), all but o (s) of the vertices of
N (S) are connected to exactly 2 vertices of S.

Remark 5.7. The proofs of Kahale give slightly better bounds for both edge and vertex expansions,
where O (ln (l + 3) /l) is replaced by O (1/l).
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