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Deterministic Graph Coloring in the Streaming Model
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Abstract

Recent breakthroughs in graph streaming have led to the design of single-pass semi-streaming
algorithms for various graph coloring problems such as (∆ + 1)-coloring, degeneracy-coloring,
coloring triangle-free graphs, and others. These algorithms are all randomized in crucial ways
and whether or not there is any deterministic analogue of them has remained an important open
question in this line of work.

We settle this fundamental question by proving that there is no deterministic single-pass
semi-streaming algorithm that given a graph G with maximum degree ∆, can output a proper
coloring of G using any number of colors which is sub-exponential in ∆. Our proof is based on
analyzing the multi-party communication complexity of a related communication game, using
random graph theory type arguments that may be of independent interest.

We complement our lower bound by showing that just one extra pass over the input allows
one to recover an O(∆2) coloring via a deterministic semi-streaming algorithm. This result is
further extended to an O(∆) coloring in O(log∆) passes even in dynamic streams.
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1 Introduction

Coloring graphs with a small number of colors is a central problem in graph theory with a wide
range of applications in computer science. A proper c-coloring of a graph G = (V,E) assigns a
color from the palette {1, . . . , c} to the vertices so that no edge is monochromatic. We study graph
coloring in the semi-streaming model introduced by [FKM+05]: the edges of an n-vertex input
graph are arriving one by one in a stream and the algorithm can make one (or a few) passes over
the stream and use a limited memory of O(n·polylog(n)) bits. At the end, it should output a proper
coloring of the input graph. The semi-streaming model is particularly motivated by its applications
to processing massive graphs and has received extensive attention in the last two decades.

Similar to the classical setting, it is known that approximating the minimum number of colors for
proper coloring is quite intractable in the semi-streaming model [HSSW12,ACKP19,CDK19]. As
a result, the interest in this problem in graph streaming has primarily been on obtaining colorings
with number of colors proportional to certain combinatorial parameters of input graphs, such as
maximum degree or degeneracy. On this front, a breakthrough result of [ACK19] gave the first
semi-streaming algorithm for (∆ + 1) coloring of graphs with maximum degree ∆ (see also the
independent work of [BG18] that obtained an O(∆) coloring algorithm). Another remarkable
result is that of [BCG20] that gave a semi-streaming algorithm for (κ + o(κ))-coloring of graphs
with degeneracy κ. See [BDH+19,CDK19,AA20,BBMU21] for other related results.

Perhaps, the single most common characteristic of all results in this line of work is that they
crucially rely on randomization. For instance, one of the strongest tool for streaming graph coloring
is the palette sparsification theorem of [ACK19] which states the following: if we sample O(log n)
colors from {1, . . . ,∆+ 1} for each vertex independently and uniformly at random, then with high
probability, the entire graph can be colored using only the sampled colors of each vertex. This result
immediately leads to a semi-streaming algorithm for (∆+1) coloring: after sampling O(log n) colors
for each vertex, only O(n log2(n)) edges can potentially become monochromatic under any coloring
of vertices from their sampled colors; thus, the algorithm can simply store these edges throughout
the stream and find the desired coloring at the end (which is guaranteed to exist by the palette
sparsification theorem). But the resulting algorithm is inherently randomized with this tool.

This state-of-affairs of graph coloring in admitting only randomized semi-streaming algorithms is
rather unusual in the literature. Indeed, most problems of interest in the semi-streaming model such
as (minimum) spanning trees [FKM+05], edge/vertex connectivity [GMT15], cut and spectral spar-
sifiers [McG14], spanners [FKM+05,FKM+08] and weighted matchings [PS17] all admit determinis-
tic algorithms with the same performance as best known randomized algorithms1 (or altogether do
not admit non-trivial randomized algorithms; see, e.g. [FKM+08,AKL16,ACK19,CDK19,BBMU21]
for various examples of such impossibility results). Consequently, there has been a general inter-
est in de-randomizing the semi-streaming algorithms for graph coloring, following the same recent
trend in various closely related models such as distributed computing [Par18,CDP20,CPS20,GK20]
and Massively Parallel Computation (MPC) algorithms [CDP21a,CDP21b]. This has led to the
following important open question:

Can we design deterministic semi-streaming algorithms for graph coloring with
similar guarantees as the randomized ones? In particular, are there deterministic semi-
streaming algorithms for (∆ + 1)-coloring, O(∆) coloring, or even poly(∆) coloring?

1There are some other exceptions to this rule also; moreover, in many cases, randomization can further help, e.g.,
by reducing the runtime of algorithms, but typically not that much with their space. We also emphasize that this
“rough equivalence of power” of deterministic vs randomized algorithms only exist in the semi-streaming model: once
we reduce the space to o(n), deterministic algorithms are much weaker than randomized ones for most problems.
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1.1 Our Contributions

Our main result is a strong negative answer to this fundamental open question: coloring graphs
even with exp

(
∆o(1)

)
colors is not possible with a deterministic semi-streaming algorithm!

Result 1. There does not exist any deterministic single-pass semi-streaming algorithm for
coloring graphs of maximum degree ∆ using at most exp(∆o(1)) colors (even when ∆ is known
to the algorithm at the beginning of the stream).

We note that Result 1 extends to the entire range of streaming algorithms with o(n∆) space as
well; see Corollary 4.7 for the formalization of this result and precise bounds.

Previously, no space lower bound was known for deterministic semi-streaming algorithms even
for (∆+1)-coloring and even for dynamic streams that also allow for deleting edges from the stream2

(but see Section 1.3 for a recent independent work). On the other hand, Result 1 effectively rules
out any non-trivial algorithm for graph coloring: the best thing to do in O(n logq(n)) space is to
either store the entire input graph when ∆ . logq (n) and find a (∆+1) coloring at the end, or color
all vertices differently which results in n ≈ exp

(
∆1/q

)
-coloring for ∆ & logq (n). Combined with

the randomized algorithm of [ACK19] for (∆ + 1) coloring, Result 1 presents one of the strongest
separations between deterministic and randomized algorithms in the semi-streaming model.

Given the strong impossibility result of Result 1, it is natural to consider standard relaxation
of the problem. For this, we consider multi-pass algorithms that read the stream more than once.
Multi-pass algorithms have also been studied extensively since the introduction of semi-streaming
algorithms in [FKM+05]. We show that unlike in a single pass, deterministic semi-streaming multi-
pass algorithms can indeed solve non-trivial graph coloring problems already in just two passes.

Result 2. There exist deterministic semi-streaming algorithms for coloring graphs of maximum
degree ∆ using O(∆2) colors in two passes or O(∆) colors in O(log∆) passes. The algorithms
can be implemented even in dynamic streams with edge deletions (still deterministically).

Previously, no non-trivial deterministic semi-streaming algorithm was known for graph coloring.
In light of Result 1, our algorithms in Result 2 also provide one of the strongest separation between
two-pass and single-pass algorithms (see [AD21] for another example via min-cuts). Finally, our
algorithms in Result 2 are among the first deterministic algorithms that work on dynamic streams.

All in all, our results collectively establish surprising aspects of graph coloring in the semi-
streaming model, further cementing the role of this fundamental problem in capturing various
different separations and properties in this model.

1.2 Our Techniques

We now give a quick summary of our techniques here. More details can be found in the high-level
overview of our approach in Section 2.

2Unlike insertion-only streams, all known algorithms in dynamic streams are randomized and for a crucial reason.
It is easy to see that any non-trivial algorithm that should return a single edge from the graph cannot be deterministic
in dynamic streams: one can simply use the memory of the algorithm to recover the entire input by passing each
returned edge as a deletion to the algorithm, hence forcing it to return another edge of the graph, until we recover
the entire graph. This means the memory of the algorithm has to be Ω(n2) bits, enough to store the entire input.
This approach however does not apply to (∆ + 1)-coloring at it does not require returning any edge as output.
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Lower bound of Result 1. Our lower bound in Result 1 is proven by considering themulti-party
communication complexity of the coloring problem: here, the edges of input graph are partitioned
across the players and they can speak in turn, once each, to compute a proper coloring of the input
using as small as possible number of colors. It is a standard fact that communication complexity
lower bounds the space of streaming algorithms. The main technical contribution of our work is
thus a communication lower bound for this problem.

We obtain our lower bound by designing an adversary that specifies the inputs of players via
random subgraphs chosen adaptively based on the messages of prior players. The adaptivity in
distribution of inputs allows us to prove a lower bound specifically for deterministic algorithms
(as a non-adaptive distributional lower bound also works for randomized algorithms by Yao’s min-
imax principle [Yao77]). At the same time, working with these distributional inputs makes our
arguments much simpler compared to using a typical counting argument over all possible graphs
(we elaborate more on this in Section 2). One main ingredient of this proof is determining the
power of communication protocols for “compressing non-edges” in a random subgraph, compared
to standard approaches that bound the number of edges that can be recovered from a compression.

Algorithms of Result 2. Our algorithmic results are based on finding a way to non-properly
color the graph using a small number of colors, so that the number of monochromatic edges is small.
We can then store these edges explicitly and use them to further refine this non-proper coloring to
a proper coloring of the entire graph (for O(∆2) coloring) or further extending a partial coloring
and recurse (for O(∆) coloring).

To be able to implement this strategy, we design families of coloring functions of small size so
that for any given graph, at least one of these coloring functions lead to the desired non-proper
coloring with a small number of monochromatic edges. These families are obtained via standard
tools in de-randomization, namely, near-universal hash functions.

1.3 Recent Related Work

Independently and concurrently to us, [CGS21] studied graph coloring in the semi-streaming model
but for adversarially robust algorithms (see [CGS21] and [BJWY20] for definition and context).
They prove that no semi-streaming algorithm can be adversarially robust when using o(∆2) col-
oring. As all deterministic algorithms are adversarially robust, their result also implies that no
deterministic semi-streaming algorithm can achieve an o(∆2) coloring. The authors of [CGS21]
also state that: “A major remaining open question is whether this [lower bound] can be matched,
perhaps by a deterministic semi-streaming O(∆2) coloring algorithm. In fact, it is not known how
to get even a poly(∆)-coloring deterministically”. Our Result 1 fully settles their open question for
deterministic algorithms in negative. Incidentally, [CGS21] provides a randomized but adversarially
robust semi-streaming algorithm for O(∆3) coloring. Thus that one cannot hope for an exp(∆o(1))
coloring lower bound like ours in their model. Technique-wise, the two work are entirely disjoint.

1.4 Further Related Work

Recently, there has been a surge of interest in graph coloring and related problems in graph streams
[HHLS16,CDK18,ACK19,BDH+19,CDK19,KPRR19,BCG20,AA20,BBMU21]. Beside what al-
ready mentioned, another work related to ours is [AA20] that studied graph theoretic aspects
of palette sparsification theorem of [ACK19] and obtained semi-streaming algorithms for coloring
triangle-free graphs and (deg+1)-coloring. Moreover, [BBMU21] showed that some of the “easiest”
problems in coloring are still intractable in the semi-streaming model (even with randomization).
See also [McG14] for an excellent overview of work on other problems in the semi-streaming model.
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2 High-Level Overview

We give a streamlined overview of our approach in this section. We emphasize that this section
oversimplifies many details and the discussions will be informal for the sake of intuition.

2.1 Lower Bound of Result 1

As stated earlier, the proof of Result 1 is by considering the multi-party communication complexity
of the coloring problem. To start, let us consider the simple case of two players Alice and Bob,
receiving edges of a graph G with maximum degree ∆. Alice sends a message M to Bob and
Bob outputs a proper coloring of G using as small as possible number of colors. What is the best
strategy of players for solving the problem with limited communication and small number of colors?

Before getting to this question, let us make an important remark: Coloring with more than ∆
colors is inherently a search problem not a decision one as all graphs can be colored with ∆ + 1
colors after all. Thus, the above question is basically asking how much Bob should learn about
Alice’s input to agree on a proper coloring of the entire graph (without knowing all edges of Alice).
This view will be important throughout this discussion and our formal lower bound arguments.

Two-player communication complexity of coloring. There is a simple solution to our two-
player communication game using ≈ n size messages and O(∆2) colors. Alice simply sends a (∆+1)
coloring of her input graph to Bob and Bob further finds a (∆+1) coloring of each of Alice’s color
classes individually to obtain a proper (∆ + 1)2 coloring of the entire input graph. Let us show
that this is essentially the best one can do using O(n) size messages and for a specific choice of
∆ = Θ(

√
n) (neither of these assumptions are needed in our main lower bound).

Suppose Alice receives an arbitrary graph with maximum degree
√
n and maps it to a message

of size O(n). As the graphs with maximum degree
√
n are a constant fraction of graphs with

(n3/2/2) edges, we have that there is a message, to which, Alice is mapping at least

Ω(1) ·
( (n

2

)

n3/2

2

)
· 2−O(n) & exp

(
n3/2

4
· ln (n)

)
· 2−O(n),

many different graphs. At the same time, given this message, Bob should avoid coloring any pairs
of vertices the same if they appear in some graph mapped to this message. But having so many
graphs mapped to the same message only allows for O(n3/2) pairs of vertices to not have any edge
at all in any of these graphs; this is because the total number of graphs with maximum degree

√
n

whose edges avoid a fixed set of O(n3/2) pairs of vertices have size at most

((n
2

)
−O(n3/2)

n3/2

2

)
.

( (n
2

)

n3/2

2

)
· (1− 1

O(
√
n)

)(
n3/2

2
) . exp

(
n3/2

4
· ln (n)

)
· 2−O(n).

At this point, this means that from the perspective of Bob, only O(n3/2) pairs of vertices can be
colored the same, even ignoring his own input graph (see Figure 1 for an illustration). Moreover,
a Markov bound implies that half the vertices only have O(

√
n) non-edges from the perspective of

Bob. Thus, Bob will “see” a set S of Θ(n) vertices where each one has at most O(
√
n) non-edges

inside S. But recall that we are considering the case where maximum degree can be as large as
Θ(

√
n). So Bob’s own input can simply contain all non-edges inside S while keeping the maximum

degree of the graph still O(
√
n). At this point, the induced subgraph on vertices S, from the

perspective of Bob, is simply a clique, and thus requires |S| = Ω(n) colors. Since ∆ = Θ(
√
n), this

gives us an Ω(∆2) lower bound on the number of colors.
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G 1 G
2

G3

(a) Alice has to map several graphs to the same
message. These graphs are individually “sparse”:
they have max -degree .

√
n.

(b) Bob however “sees” all these edges as part
of the input. So, from Bob’s perspective, this
subgraph is “dense”: it hasmin-degree& n−√

n.
Thus, even a “sparse” input to Bob with max-
degree .

√
n, turns this subgraph into a clique.

Figure 1: An illustration of the two-player communication lower bound.

Multi-party communication complexity of coloring. Given the protocol mentioned earlier
for two players, to prove Result 1, we need to consider a larger number of players. In general, the
same strategy outlined above also implies a protocol for k players with O(n) communication per
player and an O(∆k) coloring. Our goal is to match this in our lower bound.

Suppose now we have k players P1, . . . , Pk and the input edges are partitioned between them.
Let us again present a graph of maximum degree ≈ ∆/k to the first player. We can again use
a similar counting argument to bound the number of non-edges in inputs mapped to a message
of player P1 (assuming that it has size, say, O(n)). We would like to continue this procedure, by
choosing the input graph of player P2 in a way that “destroys” many of these pairs, while having
maximum degree of still ≈ ∆/k; then recourse on the third player and so on. However, continuing
the above counting argument directly seems intractable at this point.

It turns out however that there is an easier way to implement this strategy by providing the
input of players as random subgraphs. Specifically, the process goes as follows (see Figure 2):

• We present the first player P1 with a random Erdős-Rényi graph with probability ≈ (∆/kn) for
each edge (so max-degree ≈ ∆/k with high probability). We prove that (see our Compression

Lemma below) that there is some message M1 of P1 that creates . k ·n2/∆ non-edges from the
perspective of remaining players. We further remove all vertices with non-edge-degree & k2n/∆
which by Markov bound are only . n/k.

• To player P2, we give a random subgraph of (remaining) non-edges left by M1 where each edge
appears with probability ≈ (∆2/k3n) now. By the bound of . k2n/∆ on the non-edge-degree
of remaining vertices, it is easy to see that the input given to P2 still has max-degree ≈ ∆/k
with high probability. We again use the Compression Lemma to find a message M2 of P2 that
creates . k3n2/∆2 non-edges from the perspective of subsequent players, and continue. This
way, each step to the next player will remove . n/k vertices while reducing non-edge-degree of
remaining vertices by a & ∆/k2 factor.

• Eventually, we will be able to give a random subgraph of non-edges left by M1, . . . ,Mk−1 to the
player Pk with edge probability ≈ (∆k/k2kn), and bound the total maximum-degree of the graph
by k ·∆/k = ∆ as desired. But if we assume that (∆/k2)k ≈ n (again, this assumption is only for
simplicity of exposition here), it means that we turned the remaining vertices of the graph, from

5



G 1

G
2

G3

(a) Player Pi’s different inputs that are mapped
to the same message. The right (white) part are
the vertices already removed from consideration
and the left (dark) part are the “dense” subgraph
of the input from the perspective of Pi.

(b) For player Pi+1, the left (dark) part “looks”
even more “dense” than it was for player Pi,
as multiple different graphs of Pi’s input are
mapped to the same message.

G 1

G2

G3

(c) We further remove “less dense” part of the
input (middle layer) and provide the inputs of
Pi+1 inside the remaining subgraph.

(d) We continue like this until the last player; at
that point, the remaining “super dense” part of
the input (left most part) from the perspective
of Pk is simply a clique.

Figure 2: An illustration of the multi-player communication lower bound.

the perspective of Pk, into a clique entirely3. Moreover, since we only removed . n/k vertices for
each player, we still have ≈ n/k vertices left in this clique. Thus, the number of colors needed by
Pk to color this clique is ≈ n/k & (∆/k3)k (which is larger than poly(∆) for sufficiently large k).

Finally, we also state our compression lemma that is used to find the messages M1, . . . ,Mk−1 that
create “small” number of non-edges in the above discussion.

• Compression Lemma: LetH be any arbitrary graph and consider a distribution over subgraphs
of H obtained by sampling each edge with probability p. Any compression scheme that maps
the graphs sampled from this distribution into s-bit summaries will create a summary so that at
most O(s/p) edges are missing from all graphs mapped to this summary.

This bound should be contrasted with more standard compression arguments that in the same
setting, prove that O(s · log−1(1/p)) edges exist in all graphs mapped to the summary. The proof is
a simple exercise in random graph theory plus showing that an s-bit compression cannot “capture”
events that happen with probability < 2−s in the input distribution. This concludes the description
of our lower bound approach for establishing Result 1.

3We emphasize that this clique is not part of a single input graph, but rather is a union of various inputs, which
are all consistent with the view of player Pk based on the input and messages received.

6



2.2 Algorithms of Result 2

We now turn to our algorithmic results for multi-pass semi-streaming algorithms for graph coloring.

O(∆2) coloring in two passes. The key ingredient of this algorithm is the following family of
coloring functions for any integers n,∆ ≥ 1:

• C(n,∆): there are O(n) functions C : V → [∆] in the family so that given any n-vertex graph
G = (V,E) with max-degree ∆, there is some function C in the family such that assigning
color C(v) to each vertex v only creates O(n) monochromatic edges. Moreover, each of these
functions can be implicitly stored in O(log n) bits.

The proof of existence of this family is via probabilistic method by choosing these functions to
be near-universal hash functions and a simple probabilistic analysis.

Now, consider the following simple two-pass algorithm. In the first pass, maintain O(n) counters
on the number of monochromatic edges of G for each of the functions C ∈ C(n,∆): the counter for
function C simply needs to add one for each edge (u, v) appearing in the stream with C(u) = C(v).
This only requires O(n) space. Given that we already know at least one of these counters only count
up to O(n) by the guarantee of C(n,∆), we will use the function C of that counter and store all
monochromatic edges of G under C. Given that G had maximum-degree ∆, these monochromatic
edges under C can themselves be properly colored using (∆+1) colors. Taking the product of these
two colorings then will give us an O(∆2) coloring as desired.

O(∆) coloring in O(log∆) passes. The idea behind this algorithm is to gradually grow a coloring
of G over multiple passes, using an extension of the ideas in the previous algorithm. For this, we
need another family of coloring functions for integers n,∆:

• C⋆(n,∆): there are O(n) functions C : V → [O(∆)] in the family so that given any n-vertex
graph G = (V,E) with max-degree ∆ and any partial (valid) coloring C0 of some subset
of vertices, there is some function C in the family such that assigning color C(v) to every
vertex v uncolored by C0 only creates o(n0) monochromatic edges, where n0 is the number of
uncolored vertices by C0. Moreover, each function can be implicitly stored in O(log n) bits.

The proof of existence of this family is again via probabilistic arguments although it needs a more
detailed analysis.

The algorithm is then as follows. We start with a coloring C0 that leaves all vertices uncolored.
Then, iteratively, we first make one pass and use O(n) counters to find a desired coloring function
C ∈ C⋆(n,∆) as specified by the above result; in the second pass we pick all o(n0) monochromatic
edges of this coloring with respect to C0. This allows us to color (1 − o(1)) fraction of uncolored
vertices of C0 by C without creating any monochromatic edges. We continue this for O(log∆)
iterations so that C0 only leaves O(n/∆) vertices uncolored. We make one final pass over the input
and store all O(n) edges incident on these remaining vertices and then at the end, simply color
them greedily using (∆ + 1) colors (as any partial coloring can be extended to a (∆ + 1) coloring
greedily). This gives our O(∆) coloring algorithm.

We conclude this part by noting that even though both our algorithms turn out quite simple,
their design, based on families C(n,∆) and C⋆(n,∆), requires a careful consideration to ensure one
can also verify the guarantees of respective families in limited space4.

4For instance, a “more standard” guarantee instead of C(n,∆) that bounds the maximum-degree of monochromatic
edges can also be obtained via pair-wise independent hash functions (see, e.g. [CDP20,BCG20]); but then that would
require Θ(n) space per each function to verify whether or not the function satisfies the desired property.
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3 Preliminaries

Notation. For an integer t ≥ 1, we define [t] := {1, 2, . . . , t}. For a tuple (X1, . . . ,Xt) and any
i ∈ [t], we define X<i := (X1, . . . ,Xi−1). For a distribution µ, supp(µ) denotes the support of µ.

For a graph G = (V,E), we use ∆(G) to denote the maximum degree of G. For a vertex v ∈ V ,
we use N(v) to denote the neighbors of v in G. For any integer c ≥ 1, a c-coloring function is any
function C : V → [c] and does not necessarily need to be a proper coloring of G. A monochromatic
edge under C is any edge (u, v) of G with C(u) = C(v). We further define a partial c-coloring
function as any function C : V → [c] ∪ {⊥}; we refer to vertices v with C(v) =⊥ as uncolored
vertices and not consider edges (u, v) with C(u) = C(v) =⊥ as monochromatic edges.

We use the following standard form of Chernoff bound in our proofs.

Proposition 3.1 (Chernoff bound; c.f. [DP09]). Suppose X1, . . . ,Xm are m independent random
variables with range [0, 1] each. Let X :=

∑m
i=1 Xi and µL ≤ E [X] ≤ µH . Then, for any ε > 0,

Pr (X > (1 + ε) · µH) ≤ exp

(
−ε2 · µH

3 + ε

)
and Pr (X < (1− ε) · µL) ≤ exp

(
−ε2 · µL

2 + ε

)
.

Finally, we use the following basic property of any proper coloring, in creating many pairs of
vertices which are colored the same. The proof is standard and is presented for completeness.

Proposition 3.2. In any proper c-coloring of a graph G = (V,E) for c ≤ n
2 , there are at least

n2

4c
pairs of vertices that are colored the same.

Proof. For any i ∈ [c], let ni vertices denote the number of vertices colored i in the given c-coloring.
Since this is a proper coloring, we have,

number of pairs colored the same =

c∑

i=1

(
ni

2

)
=

1

2
·
(

c∑

i=1

n2
i − ni

)

=
1

2
·
(

c∑

i=1

n2
i

)
− 1

2
· n

(as
∑c

i=1 ni = n since all vertices are colored)

≥ 1

2
·
(
c · (n

c
)2 − n

)
≥ n2

4c
,

(as sum of quadratic-terms is minimized when they are all equal)

where the last inequality is by the assumption c ≤ n/2. This concludes the proof. Proposition 3.2

4 The Lower Bound

We present our lower bound in this section and formalize Result 1. We start by introducing a key
tool used in our lower bound regarding a family of random graphs and its key compression aspect
for our purpose. We then define the communication game we use in proving Result 1 formally, and
next present the proof the communication lower bound.
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4.1 A Random Graph Distribution and its Compression Aspects

We introduce a basic random graph distribution in this subsection that forms an important com-
ponent of the analysis of our lower bound. The key difference of our distribution from standard
random graph models is that it generates random subgraphs of arbitrary (base) graphs, as opposed
to subgraphs of cliques (which means some edges may never appear in the support of this distri-
bution if they are not part of the base graph). The other change is that we ensure a deterministic
bound on the maximum degree of the graphs sampled from this distribution.

Definition 4.1. For a base graph GBase = (V,EBase) and parameters p ∈ (0, 1), d ≥ 1, we
define the random graph distribution G := G(GBase, p, d) as follows:

(i) Sample a graph G on vertices V and edges E by picking each edge of EBase independently
and with probability p in E;

(ii) Return G if ∆(G) < 2p · d, and otherwise repeat the process.

We will eventually set d to be approximiately ∆(GBase). Since the average degree of a vertex
is at most p · ∆(GBase) ≈ p · d, the second condition of Definition 4.1 rarely kicks in by Chernoff
bound, and thus this distribution is basically sampling random subgraphs of GBase. We will make
these statements more precise in the proof of Claim 4.4.

We now consider algorithms that aim to “compress” graphs sampled from G.

Definition 4.2. Consider G(GBase, p, d) for a base graph GBase = (V,EBase) and parameters
p ∈ (0, 1), d ≥ 1, and an integer s ≥ 1. A compression algorithm with size s is any function
Φ : supp(G) → {0, 1}s that maps graphs sampled from G into s-bit strings. For any graph
G ∈ supp(G), we refer to Φ(G) as the summary of G. For any summary φ ∈ {0, 1}s, we define:

• Gφ as the distribution of graphs mapped to φ by Φ, i.e., Gφ := G ∼ G | Φ(G) = φ.

• GMiss(φ) = (V,EMiss(φ)), called the missing graph of φ, as a graph on vertices V and
edges missed by all graphs in Gφ, i.e.,

EMiss(φ) := {(u, v) ∈ EBase | no graph in supp(Gφ) contains the edge (u, v)} .

We use the graphs from distribution G (for different base graphs and probability parameters)
in the design of our lower bounds. The compression algorithms in Definition 4.2 then correspond
to streaming algorithms that compress these graphs into their s-bit memory.

The notion of a missing graph is particularly useful for us, as from the perspective the streaming
algorithm, only pairs of vertices with an edge in the missing graph are known to not have an edge in
the original input. This implies that these are the only pairs of vertices that can be monochromatic
in the final coloring without violating the correctness of the algorithm on some input.

The following lemma summarizes the main property of compression algorithms for our random
graph distribution required in our main proof. Roughly speaking, it states that the missing graph
of a “small-size” compression algorithm cannot have “many” edges5.

5An intuition about the bounds of this lemma: given a graph G with maximum degree ∆, an O(n log n)-bit
compression can ensure the presence of O(n) edges in all graphs mapped to a fixed summary by storing these edges
explicitly. However, it can also ensure absence of up to O(n2/∆) edges from all graphs mapped to a summary by
instead storing a (∆ + 1) coloring of G. Our lower bound in this lemma focuses on the latter type of bounds and
prove they are (almost) tight (for this specific instantiation, think of s ≈ n, p ≈ ∆/n, and a clique for base graph).
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Lemma 4.3. Let GBase = (V,EBase) be an n-vertex graph, s ≥ 1 be an integer, and p ∈ (0, 1)
and d ≥ 1 be parameters such that d ≥ max{∆(GBase), 4 ln (2n)/p}. Consider the distribution
G := G(GBase, p, d) and suppose Φ : supp(G) → {0, 1}s is a compression algorithm of size s for G.
Then, there exist a summary φ∗ ∈ {0, 1}s such that in the missing graph of φ∗, we have

|EMiss(φ
∗)| ≤ ln 2 · (s+ 1)

p
.

Proof. Define the distribution G̃ as the distribution of graphs in Line (i) of Definition 4.1 (i.e.,
without the check on max-degree and re-sampling step). This way, we have

G =
(
G ∼ G̃ | ∆(G) < 2p · d

)
. (1)

We shall use this view in the following for bounding the probabilities of certain events. In particular,
we have the following simple claim. This is because the graphs sampled from G̃ already satisfy the
conditioned event above with high enough probability.

Claim 4.4. For any event E, PrG (E) ≤ 2 · Pr
G̃
(E) .

Proof. Fix any vertex u ∈ V , and for any v ∈ N(u) (in GBase), define an indicator random variable
Xuv ∈ {0, 1} which is 1 iff the edge (u, v) is sampled in G̃. Let Xu :=

∑
v∈N(u) Xuv which will be

equal to the degree of u in the sampled graph of G̃.

We have that E [Xu] is the expected degree of u, which is at most p · ∆(GBase) ≤ p · d as we
sample each neighbor of u with probability p. Since Xu is a sum of independent random variables,
by Chernoff bound (Proposition 3.1 with ε = 1 and µH = p · d),

Pr
G̃

(Xu ≥ 2p · d) ≤ exp

(
−p · d

4

)
≤ exp (− ln(2n)) =

1

2n
,

by the promise of the lemma statement that d ≥ 4 ln(2n)/p. A union bound on all n vertices
ensures that

Pr
G̃

(∆(G) ≥ 2p · d) ≤ n · 1

2n
=

1

2
.

We can now conclude by Eq (1) that for any event E ,

Pr
G

(E) = Pr
G̃

(E | ∆(G) < 2p · d) =
Pr

G̃
(E and ∆(G) < 2p · d)
Pr

G̃
(∆(G) < 2p · d) ≤ 2 · Pr

G̃

(E) ,

as desired. Claim 4.4

For any summary φ ∈ {0, 1}s, its distribution Gφ, and its missing graph GMiss(φ),

Pr
G

(G is sampled from Gφ) ≤ Pr
G

(no edge of GMiss(φ) is sampled in G) , (2)

because edges in GMiss(φ) cannot belong to the graphs in the support of Gφ by Definition 4.2. We

can bound the RHS of Eq (2) using the distribution G̃ and apply Claim 4.4 to get the result for G
also. By the independence in the choice of edges in G̃, we have,

Pr
G̃

(no edge of GMiss(φ) is sampled in G) =
∏

e∈EMiss(φ)

(1− p) = (1− p)|EMiss(φ)| ≤ exp
(
− p · |EMiss(φ)|

)
.

10



Thus, combined by Claim 4.4 and Eq (2), for any summary φ ∈ {0, 1}s, we have,

Pr
G

(G is sampled from Gφ) ≤ 2 · exp
(
− p · |EMiss(φ)|

)
. (3)

We now switch to lower bound the LHS of Eq (3) instead. Since Φ maps each graph sampled
from G to one of 2s messages φ ∈ {0, 1}s, we have,

∑

φ∈{0,1}s

Pr
G

(G is sampled from Gφ) = 1,

which means that there exist some φ∗ ∈ {0, 1}s such that

Pr
G
(G is sampled from Gφ∗) ≥ 2−s.

Combining this with Eq (3), we have that

exp (−s · ln 2) ≤ exp
(
ln 2− p · |EMiss(φ

∗)|
)
,

which implies

|EMiss(φ
∗)| ≤ ln 2 · (s+ 1)

p
,

concluding the proof. Lemma 4.3

4.2 The Coloring Communication Game

We prove our lower bound in Result 1 via communication complexity arguments in the following
communication game. (The setting of this game is called the number-in-hand multi-party commu-
nication complexity with shared blackboard in the literature).

Definition 4.5. For integers n,∆, k ≥ 1, the Coloring(n,∆, k) game is defined as:

i). There are k players P1, . . . , Pk. Each player Pi knows the vertex set V and receives a set
Ei of edges. Letting G = (V,E) where E = E1 ⊔ · · · ⊔ Ek, players are guaranteed that on
every input ∆(G) ≤ ∆ and their goal is to output a proper coloring of G.

ii). The communication is done using a shared blackboard. First player P1 writes a message
M1 based on E1 on the shared blackboard which will be visible to all subsequent players.
Then, player P2 writes the next message M2 based on E2 and M1. The players continue
like this until Pk writes the last message Mk which is a function of Ek and M<k.

iii). The goal of the players is to output a valid coloring of the input graph G by Pk writing it
last on the shared blackboard as the message Mk.

The communication cost of a protocol used by the players is defined as the worst-case number
of bits written by any one player on the blackboard on any input.

The following proposition is standard.

Proposition 4.6. Suppose there is a function f : N+ → N
+ and a deterministic streaming algo-

rithm that on any n-vertex graph G with known maximum degree ∆, outputs an f(∆)-coloring of G
using s = s(n,∆) bits of space. Then, there also exists a deterministic protocol for Coloring(n,∆, k)
for any k > 1 with communication cost O(s) bits that outputs an f(∆)-coloring of any input graph.

11



Proof. The players simply run the streaming algorithm on their input by writing the content of the
memory of the algorithm from one player to the next on the blackboard, so that the next player
can continue running the algorithm on their input. At the end, the last player computes the output
of the streaming algorithm and writes it on the blackboard.

The maximum message size written on the blackboard is proportional to the size of memory of
the streaming algorithm and is thus O(s) as desired. Proposition 4.6

A careful reader may have noticed from Proposition 4.6 that in Definition 4.5, we do not even
need the ability of the protocol to read the messages of all prior players (via the blackboard), and
the message of one player to the next suffice. We allow for this extra power for technical reasons as
it simplifies the proof of our lower bound (this is a typical approach in streaming lower bounds).

The following is the main technical result of our paper.

Theorem 1. There are absolute constants n0, η0 > 0 such that the following is true. Consider any
choice of the following parameters

n ≥ n0, ∆ ≥ 64 ln2 (2n), 1 ≤ k ≤ log∆(n), s ≥ n log ∆.

Then no deterministic communication protocol for Coloring(n,∆, k) with communication cost s can
color every valid input graph with fewer than

(
1

η0 · k

)2k

·
(
n ·∆
s

)k

colors.

As a corollary of this and Proposition 4.6, we can formalize Result 1 as follows. (other settings of
parameters in Theorem 1 imply various other lower bounds for streaming algorithms also.)

Corollary 4.7. For any q ≥ 1, α ∈ (0, 1), and sufficiently large n > 1, no deterministic single-pass
streaming algorithm can obtain a proper coloring of every graph with maximum degree at most ∆
for the following parameters:

i). O(n · logq n) space and fewer than exp
(
∆1/4q

)
colors for ∆ = 200 logq+1(n);

ii). O(n1+α) space and fewer than ∆1/3α colors for ∆ = n2α.

Proof. We prove both parts by Proposition 4.6 and using different parameters in Theorem 1.

i). Set k =
√

log∆ n = Θ(
√

logn
log logn) and s = O(n · logq n). These parameters, plus n and ∆, satisfy

the hypotheses of Theorem 1. As such, we get that the minimum number of colors needed to
color the input graph in this case is at least

(
1

η0 · k

)2k

·
(
n ·∆
s

)k

=

(
log log n · log n
Θ(1) · log n

)Θ(
√

log n
log log n

)

> exp

(
200 ·

√
log n

log log n

)
≫ exp

(
∆1/4q

)
,

by a simple calculation of the parameters in these bounds.

ii). Set k = log∆ n = 1/2α and s = O(n1+α). These parameters, plus n and ∆, satisfy the
hypotheses of Theorem 1. As such, we get that the minimum number of colors needed to color
the input graph in this case is at least

(
1

η0 · k

)2k

·
(
n ·∆
s

)k

=

(
nα

Θ(1)

)1/2α

= Θ(
√
n) ≫ ∆1/3α,

again by a simple calculation. This concludes the proof. Corollary 4.7
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4.3 A Communication Lower Bound for Coloring

Before getting to the lower bound construction, we specify a recursive set of parameters.

Parameters. Our construction is governed by the following two parameters:

• pi: the probability parameter used in defining the graph of each player Pi from the random
graph distribution G for base graphs chosen by the adversary;

• di: a threshold on maximum degree of base graph (used in G) chosen by the adversary for
each player Pi.

These parameters are defined recursively as follows (these expression would become clear shortly
from the description and analysis of the lower bound):

d1 = n, p1 :=
∆

2k · n, and for i > 1: di =
2 ln 2 · (s+ 1) · 2k

pi−1 · n
, pi =

∆

2k · di
. (4)

It is easier for us to work with the recursive definitions of these parameters in most of the analysis
(as their closed form is tedious to work with). But, we also compute them explicitly as follows.

Claim 4.8. For any i > 1, we have,

di = n ·
(
2 ln 2 · (s+ 1) · (2k)2

n ·∆

)i−1

pi =
∆

2k · n ·
(

n ·∆
2 ln 2 · (s+ 1) · (2k)2

)i−1

.

Proof. These equations can be verified by induction on i ≥ 1 in Eq (4). Claim 4.8

The lower bound construction is as follows (see Figure 3 for an illustration).

An adversary that generates the “hard” input of players (using parameters in Eq (4)).

(i) Let GBase(1) be a clique on n vertices V1 = V .

(ii) For i = 1 to k:

(a) Let Gi := G(GBase(i), pi, di) and let

Φi = Φi(Gi,M
∗
<i) : supp(Gi) → {0, 1}s

be the function generating the message of player Pi after seeing messages M∗
<i of the

first i− 1 players; we ensure that the input graph of player Pi given previous messages
M∗

<i is chosen from Gi and thus this is well defined.

(b) Notice that Φi is a compression algorithm. Apply Lemma 4.3 and let M∗
i be the spe-

cial summary of this compression algorithm, i.e., message for Pi. We shall verify the
hypotheses of the lemma in Lemma 4.9.

(c) Let Vi+1 be the set of vertices in GMiss(M
∗
i ) with degree at most di+1 and GBase(i + 1)

be the subgraph of GMiss(M
∗
i ) induced on Vi+1.

(iii) Let Gi = (Vi, Ei) ∈ supp(Gi) be such that Φi(Gi) = M∗
i for all i. Give player Pi the edge

set Ei as the adversarial input. We shall verify that this is a valid input in Lemma 4.10.
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EBase(1) =
(V
2

)
E1 EMiss(M

∗
1 )

EBase(2)

E2 EMiss(M
∗
2 )

· · ·

Figure 3: An illustration of edge set containments in the adversary construction.

Notice that in this construction, we allow the players to know that their inputs come from a
smaller distribution Gi, not the entire space of edges. This is convenient for our analysis, and since
this only makes the players’ jobs easier (as they can simply ignore this information), this can only
strengthen our lower bound.

It is useful to note the containment relationships between various edge sets in the lower bound
construction. For all i ∈ [k], the edge sets Ei and EMiss(M

∗
i ) are disjoint because Gi was mapped to

M∗
i , and both are subsets of EBase(i) by definition. Also, EBase(i) itself is a subset of EMiss(M

∗
i−1)

by Line (ii)c of the construction, obtained by removing “high degree” vertices in EMiss(M
∗
i−1). A

visual is provided in Figure 3 for reference.

We start with two lemmas verifying that the above construction produces a valid input and
satisfies the hypotheses of Lemma 4.3 it invokes.

Lemma 4.9. For all i ∈ [k], the parameters pi and di in the distribution Gi = G(GBase(i), pi, di)
satisfy the hypotheses of Lemma 4.3. That is, di ≥ max{∆(GBase(i)), 4 ln(2n)/pi} and pi ∈ (0, 1).

Proof. The fact that di ≥ ∆(GBase(i)) follows from d1 = n in the case i = 1, and directly from the
construction of GBase(i) in Line (ii)c for all other i.

To show that di ≥ 4 ln(2n)/pi, we first note that pi ·di = ∆
2k by definition of pi in Eq (4). Hence

it suffices to show that ∆ ≥ 8k ln(2n). Referencing the constraints in the statement of Theorem 1,
we have ∆ ≥ 64 ln2(2n) which implies

√
∆ ≥ 8 ln(2n), and we have

√
∆ ≥ k, which combined with

the latter inequality, implies ∆ ≥ 8k ln(2n). This proves the bound for di.

We now prove the bound for pi. For this, it is easier to work with the closed-form of pi
in Claim 4.8. We have,

pi =
∆

2k · n ·
(

n ·∆
2 ln 2 · (s + 1) · (2k)2

)i−1

<
∆i

n
≤ ∆k

n
≤ 1,

as s ≥ n and k > 1 for the first inequality and by the upper bound of k ≤ log∆(n) for the last one.
It is also clear that pi > 0, thus concluding the proof. Lemma 4.9

Lemma 4.10. Any graph G constructed by the adversary has ∆(G) ≤ ∆ and no parallel edges.

Proof. Consider each graph Gi as input to player Pi. We have,

∆(Gi) < 2pidi =
∆

k
,

14



where the first inequality is by Definition 4.1 for G(GBase(i), pi, di) and the second equality is by the
definition of pi in Eq (4). This implies that the graph Gi presented to each player has maximum
degree at most ∆/k. Given that there are k players in the game, this means the final graph has
maximum degree at most ∆.

To show that there are no parallel edges, simply note that E1, . . . , Ek are pairwise disjoint by
the edge set containments noted above. Lemma 4.10

We start proving the communication lower bound. First, we show that the set Vk+1 obtained
at the end, i.e., after presenting last player’s input, still is “quite large”.

Lemma 4.11. For any i ∈ [k + 1], we have |Vi| ≥ n− (i− 1) · n

2k
.

Proof. The proof is by induction on i. For i = 1, we simply have V1 = V and thus |V1| = n; hence,
the base case holds. For the inductive step, it suffices to show that at most n

2k vertices are removed
after every player. By Lemma 4.3, for which we verified the hypotheses in Lemma 4.9, we have
that M∗

i satisfies

|EMiss(M
∗
i )| ≤

ln 2 · (s+ 1)

pi
.

Recall that Vi+1 is the set of vertices with degree at most di+1 in GMiss(M
∗
i ). Since any vertex in

Vi \ Vi+1 contributes at least di+1 edges to EMiss(M
∗
i ) (and each edge can be contributed at most

twice), we have,

|EMiss(M
∗
i )| ≥

1

2
· |Vi \ Vi+1| · di+1,

implying that

|Vi \ Vi+1| ≤
2 ln 2 · (s+ 1)

pi · di+1
=

n

2k
,

by the choice of pi and di in Eq (4). Lemma 4.11

We now formalize the idea we alluded to after defining the missing graph in Definition 4.2,
where we described how only the edges appearing in the missing graph can have the same color
assigned to both endpoints. Some extra care is needed here to account for the fact that the players
have their own compression algorithm which is defined based on the messages of previous players.

Lemma 4.12. For any two vertices u, v ∈ Vk+1 that have the same color in the output of Pk, the
edge (u, v) exists in EMiss(M

∗
k ).

Proof. Suppose toward a contradiction that (u, v) 6∈ EMiss(M
∗
k ). We first show that there exists i

such that (u, v) 6∈ EMiss(M
∗
i ) and (u, v) ∈ EBase(i). Recalling that EMiss(M

∗
k ) ⊆ · · · ⊆ EMiss(M

∗
1 ),

either (u, v) 6∈ EMiss(M
∗
1 ), in which case taking i = 1 suffices, or (u, v) ∈ EMiss(M

∗
i−1) \ EMiss(M

∗
i )

for some i > 1. Referencing the containments illustrated in Figure 3, either (u, v) ∈ EBase(i) or
(u, v) ∈ EMiss(M

∗
i−1) \ EBase(i). By Line (ii)c of the construction, the second case happens only

when u or v is dropped when restricting to Vi, which is impossible because u, v ∈ Vk+1 ⊆ Vi, so
(u, v) ∈ EBase(i) as desired.

Because (u, v) 6∈ EMiss(M
∗
i ) and (u, v) ∈ EBase(i), there should exists some graph G′

i ∈ supp(Gi)
that contains the edge (u, v) and is mapped to M∗

i by player Pi, i.e., Φi(G
′
i) = M∗

i . Consider giving
the graphs G1, . . . , Gi−1, G

′
i, Gi+1, . . . , Gk as input to the players P1, . . . , Pk, respectively. Because

the same messages are generated as in the original construction, Pk also outputs the same coloring.
But now (u, v) is in the input graph, so u and v should be colored differently. Lemma 4.12
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In this fina lemma, we bound the number of colors that can be used by player Pk to color G.

Lemma 4.13. Player Pk requires

c ≥ n2

16 ln 2 · (s + 1)
· pk

colors to color the graph G constructed by the adversary above.

Proof. Consider the number of pairs of vertices in Vk+1 that are assigned the same color by the
proper c-coloring created by player Pk. Because Vk+1 has at least n

2 vertices by Lemma 4.11, the

number of pairs is at least n2

16c by Proposition 3.2. (We have c ≤ n
2 by the choice of s > n.) At the

same time, the number of pairs of vertices that can be colored the same is at most |EMiss(M
∗
k )| by

Lemma 4.12, which by Lemma 4.3 is at most ln 2·(s+1)
pk

. In conclusion,

n2

16c
≤ ln 2 · (s+ 1)

pk
,

which rearranges to our desired bound. Lemma 4.13

Finally, by plugging in the explicit value of pk in Claim 4.8 in the bounds of Lemma 4.13, we
have that the minimum number of colors c used by the protocol is at least

c ≥ n2

16 ln 2 · (s+ 1)
· ∆

2k · n ·
(

n ·∆
2 ln 2 · (s+ 1) · (2k)2

)(k−1)

=
k

4
·
(

n ·∆
2 ln 2 · (s + 1) · (2k)2

)k

≥
(

1

η0 · k

)2k

·
(
n ·∆
s

)k

,

for some absolute constant η0 < 100. This concludes the proof of Theorem 1.

5 The Algorithms

We present our algorithmic results in this section that complement our strong lower bound for
single-pass algorithms. Our first algorithm achieves O(∆2)-coloring in only two passes.

Theorem 2. There exists a deterministic algorithm that given any n-vertex graph G with maximum
degree ∆ presented in an insertion-only stream, can find an O(∆2)-coloring of G in two passes and
O(n log n) bits of space.

Our second algorithm builds on the ideas developed for the first one and reduces the number
of colors to O(∆), at the cost of increasing the number of passes to O(log∆).

Theorem 3. There exists a deterministic algorithm that given any n-vertex graph G with maximum
degree ∆ presented in an insertion-only stream, can find an O(∆)-coloring of G in O(log∆) passes
and O(n log n) bits of space.

In the following, we first present two families of coloring functions that create few monochro-
matic edges in different settings, needed for our algorithms, and then present each of our algorithms.
Further extensions of our results such as to dynamic streams are presented at the end of this section.
These results collectively formalize Result 2.

16



5.1 Families of Coloring Functions with Few Monochromatic Edges

We start with the following simple result that shows existence of a fixed family of ∆-coloring
functions that allows for coloring any graph G with O(n) monochromatic edges via at least one of
the functions in the family. We shall use this result in our two-pass algorithm.

Lemma 5.1. For any integers n,∆ ≥ 1, there exists a family C := C(n,∆) of size at most (2n)
consisting of ∆-coloring functions such that for any n-vertex graph G = (V,E) with maximum
degree ∆, there is a coloring function C ∈ C such that G has at most (4n) monochromatic edges
under C. Moreover, each function in C can be generated via O(log n) bits.

Proof. The proof is by a probabilistic method. Let p be the smallest prime number larger than
n and note that we have p < 2n by Bertrand’s postulate. We simply pick C to be the following
standard family of near-universal hash functions:

C := {Ca(v) = ((a · v mod p) mod ∆) + 1 for all v ∈ V | a ∈ {0, 1, . . . , p− 1}} .

As such, since C is a near-universal hash family, for any two vertices u, v ∈ V , we have,

Pr
C∈C

(C(u) = C(v)) ≤ 2

∆
. (5)

For completeness, we provide the standard argument that proves Eq (5). Fix any two vertices
u 6= v ∈ V and consider Ca ∈ C. For Ca(u) to be equal to Ca(v), we should have,

(a · (u− v) mod p) ∈
{
−
⌊
(p− 1)

∆

⌋
·∆, . . . ,−2∆,−∆, 0,∆, 2∆, . . . ,

⌊
(p− 1)

∆

⌋
·∆
}
,

which includes at most 2p/∆ choices in the RHS. Since p is a prime, for any number z in the RHS,
there is only a unique choice of a ∈ {0, 1, . . . , p − 1} that can result in a · (u − v) to be equal to z
mod p. As such, for a random Ca, the probability that Ca(u) = Ca(v) is at most 2/∆ as desired.

Using Eq (5), for any graph G, we have,

E
C∈C

[
# of monochromatic edges of G under C

]
=

∑

(u,v)∈E

Pr
C∈C

(C(u) = C(v)) ≤ 2n∆ · 2

∆
= 4n.

Consequently, for any given graph G, there should exist a choice of C ∈ C with at most (4n)
monochromatic edges. Finally, any coloring function in C is specified uniquely by an integer in
{0, 1, . . . , p − 1} which requires O(log n) bits to store. This concludes the proof. Lemma 5.1

We next present our second family of functions which is used in our O(∆) coloring algorithm.

Definition 5.2. Let C1 : V → [c] ∪ {⊥} be a partial c-coloring function of a graph G = (V,E)
that has no monochromatic edges. Let C2 : V → [c] be a c-coloring function of V (not necessarily
a proper one). We define the extension of C1 by C2 as the c-coloring function C3 : V → [c]
such that for any v ∈ V ,

C3(v) =

{
C1(v) if C1(v) 6=⊥
C2(v) otherwise

,

i.e., C3 uses C1 to color vertices v with C1(v) 6=⊥ and use C2 to color the remaining vertices.
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The following family of coloring functions has the following property: for any graph G and
a partial coloring C1 of G, there is a coloring function C in the family with a small number of
monochromatic edges in the extension of C1 by C. Formally,

Lemma 5.3. For any integers n,∆ ≥ 1, there exists a family C⋆ := C⋆(n,∆) of size at most (2n)
consisting of (6∆)-coloring functions such that the following is true. For any n-vertex graph G =
(V,E) with maximum degree ∆ and any partial coloring function C1 of G with no monochromatic

edges, there is a (6∆)-coloring function C ∈ C⋆ such that extension of C1 by C has at most (
n0

3
)

monochromatic edges where n0 := |{v ∈ V | C1(v) =⊥}|, is the number of uncolored vertices by C1.
Moreover, each function in C⋆ can be generated via O(log n) bits.

Proof. The proof is again by the probabilistic method similar to that of Lemma 5.1. Let p be the
smallest prime number larger than n and note that we have p < 2n by Bertrand’s postulate. We
pick C⋆ to be the following standard family of near-universal hash functions:

C⋆ := {Ca(v) = ((a · v mod p) mod 6∆) + 1 for all v ∈ V | a ∈ {0, 1, . . . , p− 1}} .

Since C⋆ is a near-universal hash family, for any two vertices u, v ∈ V and any fixed color c ∈ [6∆],

Pr
C2∈C⋆

(C2(u) = C2(v)) ≤
2

6∆
=

1

3∆
and Pr

C2∈C⋆
(C2(u) = c) ≤ 2

6∆
=

1

3∆
. (6)

The proof is identical to that of Eq (5) by taking into account that the range of functions in C⋆ is
now [6∆]. We thus omit the proof.

For any edge (u, v) ∈ E to be monochromatic in the extension C3 of C1 by C2, we should have
that at least one of C1(u) or C1(v) is ⊥; otherwise, both retain u and v their colors in C1 which
contains no monochromatic edges. By symmetry suppose C1(u) =⊥ and so u will be colored by C2

in the extension C3. If C1(v) =⊥ also, then to get a monochromatic edge, we need C2(u) = C2(v)
which happens with probability at most 1/3∆ by the first part of Eq (6). Conversely, if C1(v) 6=⊥,
then to get a monochromatic edge, we need C2(u) = C1(v) which again happens with probability
at most 1/3∆ by the second part of Eq (6). All in all, only edges incident on {v ∈ V | C1(v) =⊥}
can be monochromatic and each one will become so with probability at most 1/3∆. Hence,

E
C2∈C⋆

[
# of monochromatic edges of G in extension of C1 by C2

]
≤

∑

v:C1(v)=⊥

∑

u∈N(v)

1

3∆

= n0 ·∆ · 1

3∆
=

n0

3
.

Hence, for any G and C1, there should exist a choice of C2 ∈ C with at most (n0/3) monochromatic
edges in the extension of C1 by C2. Also, any coloring function in C is specified uniquely by an
integer in {0, 1, . . . , p− 1} which requires O(log n) bits to store, concluding the proof. Lemma 5.3

5.2 A Two-Pass O(∆2)-Coloring Algorithm

We now present our two-pass semi-streaming algorithm for O(∆2) coloring and prove Theorem 2.
The key tool we use in this result is the coloring functions of Lemma 5.1.
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Algorithm 1. A two-pass deterministic semi-streaming algorithm for O(∆2) coloring.

(i) Let C = C(n,∆) = {C1, . . . , Ck} be the family of ∆-coloring functions guaranteed
by Lemma 5.1 for some k ≤ 2n.

(ii) In the first pass, for any i ∈ [k], maintain a counter φi that counts the number of monochro-
matic edges of G under the coloring Ci, i.e.,

φi = |{(u, v) ∈ G | Ci(u) = Ci(v)}| .

Let Ci⋆ ∈ C be the coloring function with the smallest value of φi⋆ , i.e., i
⋆ ∈ argmini∈[k] φi.

(iii) In the second pass, store all monochromatic edges of G under Ci⋆ . Compute a (∆ + 1)
coloring C of the stored edges and return the following coloring function C⋆ as the answer:

for all v ∈ V : C⋆(v) = (Ci⋆(v)− 1) · (∆ + 1) + C(v).

Lemma 5.4. The space complexity of Algorithm 1 is O(n log n) bits.

Proof. The first pass of this algorithm requires storing O(n) counters of size O(log n) bits each, and
can be implemented in O(n log n) bits of space. The second pass requires storing only O(n) edges
by the guarantee of Lemma 5.1 which again can be done in O(n log n) bits of space. Lemma 5.4

We now argue that the final coloring C⋆ returned by the algorithm is a proper coloring of G,
i.e., it does not contain any monochromatic edges.

Lemma 5.5. Algorithm 1 always outputs a proper O(∆2) coloring of any given input graph with
maximum degree ∆.

Proof. Firstly, since maximum degree of G is ∆, we clearly have that maximum degree of stored
edges is also at most ∆, and consequently, the algorithm can always find a (∆+ 1) coloring of the
stored edges. For any edge (u, v) ∈ G, if Ci⋆(u) 6= Ci⋆(v),

|C⋆(u)− C⋆(v)| ≥ |Ci⋆(u)− Ci⋆(v)| · (∆ + 1)− |C(u)− C(v)| ≥ (∆ + 1)−∆ = 1,

thus C⋆(u) 6= C⋆(v) and so (u, v) will not be monochromatic. For any edge (u, v) ∈ G with
Ci⋆(u) = Ci⋆(v), the algorithm stores (u, v) in the second pass and thus by the coloring it finds, we
have C(u) 6= C(v), making C⋆(u) 6= C⋆(v) also.

Finally, since the total number of colors used by C⋆ is ∆ · (∆+1), we obtain an O(∆2) coloring
as desired. Lemma 5.5

This concludes the proof of Theorem 2.

5.3 An O(log∆)-Pass O(∆)-Coloring Algorithm

This section includes our O(log∆)-pass semi-streaming algorithm for O(∆) coloring, i.e., the proof
of Theorem 3. The key tool we use in this result is the coloring functions of Lemma 5.3.
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Algorithm 2. An O(log∆)-pass deterministic semi-streaming algorithm for (6∆) coloring.

(i) Let C⋆ = C⋆(n,∆) = {C1, . . . , Ck} be the family of (6∆)-coloring functions guaranteed
by Lemma 5.3 for some k ≤ 2n.

(ii) Let C be a partial coloring function, initially set to map all vertices to ⊥.

(iii) While C has more than n/∆ uncolored vertices:

(a) In one pass, for any i ∈ [k], maintain a counter φi that counts the number of monochro-
matic edges of G under the extension C ′

i of C by Ci, i.e.,

φi =
∣∣{(u, v) ∈ G | C ′

i(u) = C ′
i(v)

}∣∣ .

Let Ci⋆ ∈ C be the coloring function with the smallest φi⋆ , i.e., i
⋆ ∈ argmini∈[k] φi and

C ′
i⋆ be the extension of C by Ci⋆ .

(b) In another pass, store all monochromatic edges of G under C ′
i⋆ . For any vertex v ∈ V ,

if no monochromatic edges incident on v are stored, then set C(v) = C ′
i⋆(v).

(iv) Store all edges incident on the uncolored vertices of C. Greedily color all the remaining
uncolored vertices with a color not assigned to their neighbors.

We first note a direct invariant of the algorithm that will be used in our analysis.

Lemma 5.6. At any point of time in Algorithm 2, there are no monochromatic edges between
vertices colored by C.

Proof. This is simply because we always work with the extensions of C and thus if a vertex is
colored by C, we never change its color, and since we only color a vertex by C if it does not have
any monochromatic edges. Lemma 5.6

Note that if the while-loop finishes, then the coloring C computed greedily by the algorithm is
a proper (6∆) coloring of G as C contained no monochromatic edges throughout (by Lemma 5.6,
and the last step of using greedy coloring, only requires (∆+1) colors since we have stored all edges
incident on uncolored vertices. We thus want to show that the while-loop indeed finishes. This is
the main part of the analysis.

Lemma 5.7. There are O(log∆) iterations of the while-loop in Algorithm 2 before it terminates.

Proof. Fix an iteration of the while-loop and let n0 := |{v ∈ V | C(v) =⊥}| denote the number of
uncolored vertices by C at the beginning of this iteration. By the guarantee of Lemma 5.3 (and
since Lemma 5.6 verifies the hypothesis of this lemma), we know that the coloring C ′

i⋆ computed
by the algorithm in this iteration at most n0/3 monochromatic edges. This means that at least
n0 − 2n0/3 = n0/3 vertices not colored by C have zero monochromatic edges under C ′

i⋆ . All these
vertices will now be colored by C at the end of this iteration.

By the above discussion, the number of uncolored vertices reduces by a factor of at most 2/3 in
each iteration. As a result, after O(log∆) iterations, the number of uncolored vertices by C drops
below n/∆ and thus the while-loop terminates. Lemma 5.7
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Finally, we analyze the space complexity of the algorithm.

Lemma 5.8. The space complexity of Algorithm 2 is O(n log n) bits.

Proof. The first pass of each iteration of while-loop of Algorithm 2 requires maintaining O(n)
counters of size O(log n) bits each, and can be implemented in O(n log n) bits of space. The second
pass requires storing only O(n) edges by the guarantee of Lemma 5.3 (and since Lemma 5.6 verifies
the hypothesis of this lemma) which again can be done in O(n log n) bits of space. Finally, at the
end we are storing at most ∆ edges for each of the remaining n/∆ uncolored vertices and thus we
can store them in O(n log n) bits as well. Lemma 5.8

This concludes the proof of Theorem 3.

5.4 Further Extensions

Dynamic streams. In order to implement our algorithms in dynamic streams, we simply need
a way of recovering the O(n) monochromatic edges in each step of each one. (Maintaining the
counters is straightforward by simply adding and subtracting their values based on insertion and
deletion of monochromatic edges – recall that we already know the coloring we need to work with
and thus upon update of an edge, we know whether or not it is a monochromatic edge).

To recover these O(n) monochromatic edges, we can simply use any standard deterministic
sparse recovery algorithm over dynamic streams. The following result is folklore.

Proposition 5.9 (Folklore). There exists a deterministic algorithm that given an integer k ≥ 1
and a dynamic stream of of edge insertions and deletions for an n-vertex graph G, uses O(k · log n)
bits of space and at the end of the stream recovers all edges of in the graph under the promise that
G has at most k edges (the answer can be arbitrary when the promise is not satisfied).

As in our algorithms we only need to find monochromatic edges that are guaranteed to be at
most O(n) many, we can simply use Proposition 5.9 to recover these edges in O(n log n) bits even
in dynamic streams (we simply need to define the underlying graph as insertions and deletions
between monochromatic pairs and set k = O(n)).

This immediately extends both our Theorems 2 and 3 to dynamic streams with the same asymp-
totic space complexity and the same exact number of passes.

Removing the knowledge of ∆. Our algorithms in the previous part are described assuming
the knowledge of ∆. For our O(∆) coloring algorithm this is simply without loss of generality as we
can increase the number of passes by one and compute ∆ in the first pass—given that we report the
number of passes asymptotically anyway, this does not change anything. But the same approach
for our O(∆2) coloring algorithm increases the number of passes to three instead.

Nevertheless, there is a simple way to fix O(∆2) coloring algorithm without changing the number
of passes. In the first pass, pick O(log n) choices of for ∆ in geometrically increasing values and
maintain the counters for C(n, ·) for these O(log n) choices; in parallel, also compute ∆ in this pass.
At the end of the first pass, we know ∆ and can focus on the right choice of counters for C(n,∆′)
where ∆′ ≥ ∆ ≥ 1

2 ·∆′. The rest of the algorithm and its proof are exactly as before.
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