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Abstract

We show a �ow-augmentation algorithm in directed graphs: �ere exists a randomized polynomial-time

algorithm that, given a directed graph G, two vertices s, t ∈ V (G), and an integer k, adds (randomly) to G
a number of arcs such that for every minimal st-cut Z in G of size at most k, with probability 2−poly(k)

the

set Z becomes a minimum st-cut in the resulting graph. We also provide a deterministic counterpart of this

procedure.

�e directed �ow-augmentation tool allows us to prove �xed-parameter tractability of a number of problems

parameterized by the cardinality of the deletion set, whose parameterized complexity status was repeatedly

posed as open problems:

1. Chain SAT, de�ned by Chitnis, Egri, and Marx [ESA’13, Algorithmica’17],

2. a number of weighted variants of classic directed cut problems, such as Weighted st-Cut or Weighted

Directed Feedback Vertex Set.

By proving that Chain SAT is FPT, we con�rm a conjecture of Chitnis, Egri, and Marx that, for any graph H , if

the List H-Coloring problem is polynomial-time solvable, then the corresponding vertex-deletion problem is

�xed-parameter tractable.

∗
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1 Introduction

�e study of graph separation problems has been one of the more vivid areas of parameterized complexity in

the recent 10–15 years. �e term “graph separation problems” is here used widely, and captures a number of

classic graph problems where, given a (undirected or directed) graph G with a cut budget k (and possibly some

annotations, such as terminal vertices), one aims at obtaining some separation via at most k edge or vertex

deletions. For example, the classic st-Cut problem asks to delete at most k edges so that there is no s-to-t path in

the resulting graph and the Feedback Vertex Set asks to remove at most k vertices so that the resulting graph

does not contain any cycles (i.e., is a forest in the undirected se�ing or a DAG in the directed se�ing). In all these

problems, the cardinality of the deletion set is a natural parameter to study.

In 2004, Marx introduced the notion of important separators [Mar04, Mar06] that turned out to be the key to

�xed-parameter tractability of MultiwayCut andDirected FeedbackVertex Set [CLL
+

08], among many other

examples. In subsequent years, the study of graph separation problems resulted in a rich toolbox of algorithmic

techniques, such as shadow removal [MR14], treewidth reduction [MOR13], or randomized contractions [CCH
+

16,

CLP
+

19, CKL
+

21].

�is resulted in a relatively mature, but not fully complete, landscape of the parameterized complexity of

graph separation problems in undirected graphs. �e remaining questions tackled mostly weighted variants

of the problems (e.g., the weighted Multicut problem) or more intricate variants of classic problems (e.g., the

Coupled Mincut problem
1
).

For directed graphs, the chartered landscape is much less complete. �e notion of important separators

and related technique of shadow removal generalizes to directed graphs, leading to �xed-parameter tractability

of Directed Feedback Vertex Set [CLL
+

08], Directed Multiway Cut [CHM13], and Directed Subset

Feedback Vertex Set [CCHM15]. A number of problems whose undirected counterparts are FPT turned out to

be W [1]-hard in the directed se�ing, including Directed Multicut [CHM13, PW18] or Directed Odd Cycle

Transversal [LRSZ20].

However, these results are far from satisfactorily charting the parameterized complexity of directed graph

separation problems. Arguably, we seem to lack algorithmic techniques. Most notably, the powerful treewidth

reduction theorem [MOR13], stating that (in undirected graphs) all separations of size at most k between two

�xed terminals live in a part of the graph with treewidth bounded by 2O(k)
, seems not to have any meaningful

counterpart in directed graphs. As a result, essentially all known FPT algorithms for graph separation problems

in directed graphs rely in some part on important separators, which is a greedy argument bounding the number

of cuts between two terminals of bounded size that have inclusion-wise maximal set of vertices reachable from

one of the terminals. For problems where such a “greedy” aspect of the solution cannot be assumed, such as

problems with weights or annotations, this method fails to apply.

On the other hand, despite e�orts in the last years, we were not able to prove lower bounds for FPT algorithms

for many directed graph separation problems. �is suggests that maybe there are still more algorithmic techniques

to be explored, leading to more positive tractability results.

In this work, we provide such a technique, which we call �ow-augmentation.

�eorem 1.1. �ere exists a randomized polynomial-time algorithm that, given a directed graph G, two vertices
s, t ∈ V (G), and an integer k, outputs a set A ⊆ V (G)× V (G) such that the following holds: for every minimal

st-cut Z ⊆ E(G) of size at most k, with probability 2−O(k4 log k) Z remains an st-cut in G+A and, furthermore,

Z is a minimum st-cut in G+A.

Here, a set Z ⊆ E(G) is an st-cut if there is no path from s to t in G−Z ; it is minimal if no proper subset of

Z is an st-cut and minimum if it is of minimum possible cardinality. By G+A we mean the graph G with all

elements of A added as in�nity-capacity arcs.

�e proof of �eorem 1.1 is presented in Section 3. (�ere, we actually prove a slight generalization that is

handy in some applications.) We also provide a deterministic counterpart.

�eorem 1.2. �ere exists an algorithm that, given a directed graph G, two vertices s, t ∈ V (G), and an integer k,

in time 2O(k4 log k)|V (G)|O(1)
outputs a set A ⊆ 2V (G)×V (G)

of size 2O(k4 log k)(log n)O(k3)
such that for every

minimal st-cut Z ⊆ E(G) of size at most k there exists A ∈ A such that Z remains an st-cut in G + A and,

furthermore, Z is a minimum st-cut in G+A.

1
In this problem, we are given an undirected graph G with distiguished terminals s, t ∈ E(G) and some edges coupled up in pairs. �e

question is to separate s from t at minimum cost under the following conditions: at cost 1 one can delete an unpaired edge or both edges

from a pair, but for every undeleted pair (e, e′), one cannot leave both e and e′ reachable from s in the remaining graph.
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We remark that

(log n)O(k3) = 2O(k3 log logn) ≤ 2O(k4+(log logn)4) = 2O(k4)no(1). (1)

However, in some applications in [KKPW22b], we stack a bounded-in-k number of usages of �eorem 1.2 on top

of each other, and for the sake of the analysis there it is more convenient to keep the part of the running time

bound that depends on n in the form of (log n)f(k), as opposed to f(k) · no(1) in (1).

Applications To illustrate the applicability of the directed �ow-augmentation, let us �rst consider theWeighted

st-Cut problem. Here, we are given a directed graph G with two terminals s, t ∈ V (G), a weight function

ω : E(G) → Z+, and two integers k,W ∈ Z+, and we ask for an st-cut Z of cardinality at most k and total

weight at most W . �is problem is known to be NP-hard and FPT when parameterized by k +W [KLM
+

20].

By using directed �ow-augmentation, we can ensure that the sought solution Z is actually a minimum

st-cut (i.e., of minimum cardinality). �en, a solution can easily be found in polynomial-time: take M :=
1 +

∑
e∈E(G) ω(e), set the capacity of every edge e as ω(e) +M , and �nd an st-cut of minimum capacity. �is

yields the following.

�eorem 1.3. Weighted st-Cut can be solved in time 2O(k4 log k)nO(1)
.

�e above approach turns out to apply more generally. An instance of Bundled Cut consists of a directed

multigraph G, vertices s, t ∈ V (G), a nonnegative integer k, and a family B of pairwise disjoint subsets of E(G).

�e elements of B are henceforth called bundles. A cut in a Bundled Cut instance I = (G, s, t, k,B) is an

st-cut Z with Z ⊆
⋃
B. �e Bundled Cut problem asks for an st-cut that intersects at most k bundles, that is,

|{B ∈ B | Z ∩B 6= ∅}| ≤ k. One can also de�ne a weighted variant of the Bundled Cut problem where every

bundle B ∈ B is equipped with a weight ω(B) ∈ Z+, we are given also a weight bound W , and we ask for an

st-cut Z that intersects at most k bundles whose total weight is at most W .

If all bundles are singletons, then Bundled Cut just asks for an st-cut of size at most k (with the edges of

E(G) \
⋃
B being undeletable), so it is polynomial-time solvable. It is known that, when restricted to bundles of

size 2, Bundled Cut is W [1]-hard when parameterized by k [MR09]. To get tractability, we de�ne the following

restriction. An edge e ∈ E(G) is so� if e ∈
⋃
B and crisp otherwise. An edge e ∈ E(G) is deletable if it is so�

and there is no parallel arc to e that is crisp, and undeletable otherwise. Clearly, we can restrict ourselves to cuts

Z that consist of deletable arcs only. An instance (G, s, t, k,B) has pairwise linked deletable edges if for every

B ∈ B and every two deletable edges e1, e2 ∈ B, there exists a path in G from an endpoint of e1 to an endpoint

of e2 that uses only edges of B and undeletable edges. Note that this path may have length zero, i.e., it su�ces

that e1 and e2 intersect.

Using directed �ow-augmentation, we show the following.

�eorem 1.4. Weighted Bundled Cut, restricted to instances with pairwise linked deletable edges, is FPT when

parameterized by k and the maximum number of deletable edges in a bundle.

For an integer ` ≥ 1, the `-Chain SAT problem is the Bundled Cut problem, where every bundle is a path

of length at most `. At ESA’13, Chitnis, Egri, and Marx [CEM13, CEM17] de�ned the `-Chain SAT problem and

showed that �xed-parameter tractability of `-Chain SAT (for every �xed ` ≥ 1) is equivalent to the following

conjecture.

Conjecture 1.5 (Conjecture 1.1 of [CEM17]). For every graphH , if ListH-Coloring problem is polynomial-time

solvable, then the vertex-deletion variant (delete at most k vertices from the input graph to obtain a yes-instance to

List H-Coloring) is �xed-parameter tractable when parameterized by k.

Clearly, an `-Chain SAT instance is a Bundled Cut instance with at most ` deletable edges in a bundle and

pairwise linked deletable edges (the bundle itself provides the desired connectivity between deletable edges in a

bundle). Hence, �eorem 1.4 implies the following.

Corollary 1.6. `-Chain SAT is FPT when parameterized by ` and k, even in the weighted se�ing. Consequently,

Conjecture 1.5 is con�rmed.

By standard reductions (spelled out in Section 4.2), a Directed Feedback Vertex Set instance can also be

represented as a Bundled Cut instance with pairwise linked deletable edges (with maximum size of a bundle
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and budget bounded linearly in the parameter of the input instance). Furthermore, in case of a weighted variant
2

the reduction preserves weights. Hence, we obtain the following.

Corollary 1.7. Weighted Directed Feedback Vertex Set, parameterized by the cardinality of the deletion set, is

FPT.

�e question of parameterized complexity of Weighted Directed Feedback Vertex Set (which we answer

a�rmatively in Corollary 1.7) has been asked e.g. at Recent Advances in Parameterized Complexity school in

December 2017 [Sau17] and in [LRS18].

Subsequent and accompanying work �is paper is the �rst part in a series that explores variants and

applicability of the new technique. In this part, the main emphasis is on �eorem 1.1 itself, with aforementioned

corollaries stated as motivation.

In the second part [KKPW21], we show that in undirected graphs one can get an improved success probability

of 2−O(k log k)
and a linear running time for the augmentation procedure. �e proof is also arguably simpler.

In the Min SAT(Γ) problem, we are given an instance of a Constraint Satisfaction Problem over language Γ and

an integer k to delete at most k clauses to get a satis�able instance. Here, we restrict only to binary alphabet. Note

that if Γ allows unary clauses and equalities, Min SAT(Γ) becomes the question of minimum (undirected) st-cut

and when Γ allows unary clauses and implications, Min SAT(Γ) becomes the question of minimum (directed)

st-cut. In the third part of the series [KKPW22b], we show full dichotomy for parameterized complexity of Min

SAT(Γ) for �nite boolean languages Γ, parameterized by the deletion budget k. Here, �ow-augmentation turned

out to be pivotal for two new isles of tractability, one of them being a wide generalization of the aforementioned

Coupled Mincut problem.

In [KPSW22], Sharma and a subset of the current authors explored further application in the realm of weighted

graph separation problems. Using the new isles of tractability of [KKPW22b] as starting points, they showed

tractability of weighted versions of Multicut in undirected graphs and Directed Subset Feedback Vertex

Set, among others. Prior to [KPSW22], Galby et al [GMS
+

22] used �ow-augmentation to show tractability

of weighted Multicut in trees. Flow-augmentation has been also used in [HJL
+

22] to show �xed-parameter

tractability of Multicut in directed graphs with three terminal pairs, resolving another long-standing open

problem.

2 Preliminaries

2.1 Cuts, �ows

All our graphs allow parallel edges. Edges may have capacities 1 or +∞. Since we never consider �ows of value

greater than k, a +∞-capacity edge is equivalent to (k + 1) copies of an edge of capacity 1. If G is a graph and

A ⊆ V (G)× V (G), then G+A is the graph G with every (ordered) pair of A added as an arc with capacity +∞.

For a directed graph G and a set X ⊆ V (G), the set δ+G(X) is the set of arcs with tails in X and heads in

V (G) \X . Similarly δ−G(X) is the set of arcs with tails in V (G) \X and heads in X . We write δ+G(v) and δ−G(v)
for δ+G({v}) and δ−G({v}). When the graphG under consideration is clear from the context, we omit the subscript

G.

Let G be a directed graph and let s, t ∈ V (G). An st-�ow is a collection P of paths from s to t such that no

edge of capacity 1 lies on more than one path of P . �e value of the �ow is the number of paths. By λG(s, t) we

denote the maximum possible value of an st-�ow; note that it may happen that λG(s, t) = +∞. An st-�ow is a

maximum st-�ow or st-max�ow if its value is λG(s, t). By convention, if λG(s, t) = +∞, then any st-�ow that

contains a path with all edges of capacity +∞ is considered an st-max�ow.

A set Z ⊆ E(G) is an st-cut if it contains no edge of capacity +∞ and there is no path from s to t in G− Z .

An st-cut Z is minimal if no proper subset of Z is an st-cut and minimum (or st-mincut) if it has minimum

possible cardinality. By Menger’s theorem, if λG(s, t) < +∞ then the size of every st-mincut is exactly λG(s, t)
and there are no st-cuts if λG(s, t) = +∞.

An st-cut Z is a star st-cut if for every (u, v) ∈ Z , in the graph G−Z there is a path from s to u but there is

no path from s to v. Note that every minimal st-cut is a star st-cut, but the implication in the other direction

2
In Weighted Directed Feedback Vertex Set, the input graph is equipped with vertex weights being positive integers and one asks for

a solution of cardinality at most k and total weight bounded by a threshold given on input.
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does not hold in general. For a star st-cut Z in G, by coreG(Z) ⊆ Z we denote the set of arcs (u, v) ∈ Z such

that there exists a path from v to t in G− Z . We drop the subscript if the graph G is clear from the context.

We observe the following.

Lemma 2.1. If Z is a star st-cut in a graph G, then core(Z) is a minimal st-cut.

For an st-cut Z , the s-side of Z is the set of vertices reachable from s in G − Z , and the t-side of Z is the

complement of the s-side. Note that this is not symmetric, that is, we do not mandate that t is reachable from all

elements of the t-side in G− Z . In a star st-cut Z , all tails of edges of Z are in the s-side of Z and all heads of

edges of Z are in the t-side of Z .

We say that a set of arcs A ⊆ V (G) × V (G) is compatible with a star st-cut Z if the following holds: for

every v ∈ V (G), there is a path from s to v in G− Z if and only if there is a path from s to v in (G+A)− Z .

Equivalently: the s-sides and t-sides of Z are unchanged in G and G + A, or put another way, no arc of A
simultaneously has its tail in the s-side of Z in G and its head in the t-side of Z in G.

An immediate yet important observation the following.

Lemma 2.2. If Z is a star st-cut in G and A ⊆ V (G) × V (G) is compatible with Z , then Z is a star st-cut in
G+A as well.

We remark that albeit in the se�ing of Lemma 2.2 the cut Z remains a star st-cut in G+A, it may happen

that coreG(Z) ( coreG+A(Z), as the arcs of A may add some new reachability towards t.
Assume Z is a star st-cut in G such that core(Z) is an st-mincut. An st-max�ow P is a witnessing �ow if

E(P) ∩ Z = core(Z), that is, P contains one edge of core(Z) on each �ow path and no other edge of Z . A

witnessing �ow may not exist in general, even if core(Z) is an st-mincut. However, our �ow-augmentation

procedure will ensure that not only core(Z) becomes an st-mincut in the augmented graph, but also a �ow is

returned that is a witnessing �ow in the augmented graph. Formally, for a star st-cut Z in G, A ⊆ V (G)×V (G),

and an st-max�ow P̂ in G+A, we say that (A, P̂) is compatible with Z if A is compatible with Z , coreG+A(Z)

is an st-mincut in G+A, and P̂ is a witnessing �ow for Z in G+A. Our �ow-augmenting procedure will return

a pair (A, P̂) that is compatible with a �xed star st-cut Z with good probability.

An edge e ∈ E(G) is a bo�leneck edge if there exists an st-mincut that contains e.
For an st-�ow P , the residual network GP is constructed from G by �rst adding a capacity-1 arc (u, v) for

every P ∈ P and (v, u) ∈ E(P ) (an edge (u, v) is added multiple times if (v, u) appears on multiple paths of P)

and then deleting all capacity-1 arcs on paths of P . An augmenting path is a path from s to t in GP . Recall that

P is an st-max�ow if and only if there is no augmenting path for P and G.

Let C be an st-mincut and P be an st-max�ow. First, note that for every P ∈ P there is exactly one edge of

C ∩E(P ). �is edge splits P into a part in the s-side of C and a part in the t-side of C . We say that an edge or a

vertex on P is before (a�er) C on P if it is in the s-side (t-side, respectively) of C . We infer that every path in G
that goes from a vertex in the s-side of C to a vertex in the t-side of C visits an edge of C and, furthermore, no

augmenting path goes from a vertex in the s-side of C to a vertex in the t-side of C .

By submodularity, if Z1 and Z2 are st-mincuts and X1 is the s-side of Z1 and X2 is the s-side of Z2, then

both δ+(X1 ∪ X2) and δ+(X1 ∩ X2) are st-mincuts. �is implies that there exists a unique st-mincut with

inclusion-wise minimal s-side and a unique st-mincut with inclusion-wise maximal s-side. We call them the

st-mincut closest to s and the st-mincut closest to t.

2.2 Color-coding and its derandomization

A standard color-coding step is the following randomized step: given two sets A,B, we randomly sample a

function f : A→ B. �e goal is that for some unknown subset A′ ⊆ A and an unknown function f ′ : A′ → B,

we aim at f extending f ′. Obviously, this happens with probability |B|−|A|′ . In applications, usuallyA′ and f ′ are

some objects associated with the unknown sought solution. For the deterministic version of �ow-augmentation,

we will need the following derandomization statement (cf. [CFK
+

15] for a wider discussion).

�eorem 2.3. Given two �nite setsA andB and an integer k, one can in |A|O(1) ·2O(k log |B|)
time output a family

F of functions A → B of size 2O(k log |B|) · O(log |A|) such that for every A′ ⊆ A of size at most k and every

f ′ : A′ → B, there exists f ∈ F that extends f ′.

We will also need the following random separation version; this exact statement is taken from [CCH
+

16,

CKL
+

21].
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�eorem 2.4. Given a set U of size n and integers 0 ≤ a, b ≤ n, one can in time 2O(min(a,b) log(a+b))n log n
construct a family F of at most 2O(min(a,b) log(a+b)) log n subsets of U such that the following holds: for any sets

A,B ⊆ U with A ∩B = ∅, |A| ≤ a, and |B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

3 Directed Flow-Augmentation

An instance is a tuple I = (G, s, t, k) where G is a directed graph, s, t ∈ V (G), and k is a nonnegative integer.

An instance with a �ow is a pair (I,P) where I = (G, s, t, k) is an instance and P = {P1, P2, . . . , Pλ} is an

st-�ow. In an instance with a maximum �ow we additionally require λ = λG(s, t), that is, P is a maximum

st-�ow. With an instance with a �ow (I,P) we associate the residual graph GP .

In this section we prove the following results that generalize �eorems 1.1 and 1.2.

�eorem 3.1. �ere exists a randomized polynomial-time algorithm that, given an instance I = (G, s, t, k), returns

a set A ⊆ V (G)× V (G) and an st-max�ow P̂ in G+A such that for every star st-cut Z of size at most k, with

probability 2−O(k4 log k)
the pair (A, P̂) is compatible with Z .

�eorem 3.2. �ere exists an algorithm that, given an instance I = (G, s, t, k), runs in time 2O(k4 log k)nO(1)
and

returns a setA of size 2O(k4 log k)(log n)O(k3)
such that every element ofA is a pair (A, P̂)whereA ⊆ V (G)×V (G)

and P̂ is an st-max�ow in G+A. Furthermore, we have the following guarantee: for every star st-cut Z of size at

most k there exists a pair (A, P̂) ∈ A that is compatible with Z .

A few remarks are in place. First, Lemma 2.2 ensures that if A is compatible with Z , then Z remains a star

st-cut in G + A. Second, we not only guarantee that A is compatible with Z with good probability and that

coreG+A(Z) is an st-mincut in G+A, but also that P̂ is a witnessing �ow; in particular, that a witnessing �ow

exists at all. �ird, a usage of �eorem 3.1 makes sense even for cuts Z with core(Z) being an st-mincut for the

sake of the witnessing �ow: we may need to add some edges to G for a witnessing �ow to exist, let alone being

returned by the algorithm. Finally, due to the convention that for λG+A(s, t) = +∞, any �ow containing an

st-path with all arcs of capacity +∞ is an st-max�ow, the algorithm is allowed to return a pair (A, P̂) such that

λG+A(s, t) = +∞ and P̂ contains an st-path with all edges of capacity +∞ (but clearly such a pair (A, P̂) is

not compatible with any star st-cut Z of size at most k).

We will prove �eorems 3.1 and 3.2 in parallel, as the proofs are mostly the same. �e leading narration will

be for the randomized case, as we �nd it more natural. In most cases, the di�erence is that in the randomized

case we perform a random guess, and in the deterministic case we branch. �is becomes a bit more tricky when

the random step is of color-coding type (cf. Section 2.2), in particular when one combines outputs of recursive

calls from di�erent areas highlighted by color-coding.

If λG(s, t) = 0, then for every star st-cut Z in G we have core(Z) = ∅, so we can return A = ∅ and P = ∅
in �eorem 3.1 and A = {(∅, ∅)} in �eorem 3.2. If λG(s, t) > k, then there is no star st-cut Z of size at most k,

so A = ∅ and P being any st-max�ow is a valid outcome for �eorem 3.1 while A = ∅ is a valid outcome for

�eorem 3.2. Henceforth we assume 0 < λG(s, t) ≤ k.

We set a threshold `big := 4k2 + 3 for later use. Note that while the algorithm is recursive and the value of k
may decrease in the recursive calls, the threshold `big is set once at the beginning, using the initial value of k.

3.1 Reachability patterns, leaders, and mincut sequences

Let (I = (G, s, t, k),P = {P1, . . . , Pλ}) be an instance with a maximum �ow.

A reachability pa�ern is a directed graph H with vertex set V (H) = [λ], that is, each vertex i ∈ V (H)
corresponds to a path Pi ∈ P , that contains a self-loop at every vertex. �e pa�ern associated with (I,P) is a

graphH with V (H) = [λ] and (i, j) ∈ E(H) if and only if there exists v ∈ V (Pi)\{s, t} and u ∈ V (Pj)\{s, t}
such that there is a v to u path in GP . Note that H is a reachability pa�ern if and only if every path Pi has at

least one internal vertex.

For a vertex v ∈ V (G), the set RReach(v) is the set of vertices reachable from v inGP . For a vertex v ∈ V (G)
and an index i ∈ [λ], the last vertex on Pi residually reachable from v, denoted LastReach(v, Pi), is the last

(closest to t) vertex u on Pi that is reachable from v in GP . Note that if u is reachable from v in GP , then all

vertices preceeding u on Pi are also reachable from v in GP , that is, the set of vertices of Pi reachable from v
in GP form a pre�x of Pi. Furthermore, note that if v1 and v2 are on Pj and v1 is earlier than v2 on Pj , then

LastReach(v1, Pi) is not later than LastReach(v2, Pi) on Pi (they may be equal).

5



We have the following simple observation.

Lemma 3.3. Let P be an st-max�ow in instance I = (G, s, t, k) and assume λG(s, t) > 0. �en for every

v ∈ V (G) exactly one of the following options hold:

• s ∈ RReach(v), t /∈ RReach(v), and δ+G(RReach(v)) is an st-mincut;

• s, t ∈ RReach(v), v is on the t-side of every st-mincut, and δ+G(RReach(v)) = ∅;

• s, t /∈ RReach(v), t is not reachable from v in G, and δ+G(RReach(v)) = ∅.

Proof. Note that s ∈ RReach(v) if and only if there is a path from v to a vertex on P in G. �e forward

implication follows from that any directed path from v to V (P) in GP contains as a pre�x a subpath from v to

V (P) which is also a path in G. �e backward implication is trivial.

To begin with, consider the case when no vertex on P is reachable from v in G. From the observation in

the previous paragraph, it follows that no vertex on P is reachable from v in GP as well. In particular, we

have s, t /∈ RReach(v). It remains to note that any edge contained in δ+G(RReach(v)) is on P since otherwise

the head of the edge would have been included in RReach(v). From RReach(v) ∩ V (P) = ∅, we conclude

δ+G(RReach(v)) = ∅.
�erefore, we turn to the case when some vertex on P is reachable from v in G, which subsumes s ∈

RReach(v). First, if t /∈ RReach(v), observe that the set of vertices on Pi reachable from v in GP forms a proper

pre�x of Pi for every i ∈ [λ]. �erefore, δ+G(RReach(v)) takes precisely one edge from each Pi ∈ P . It su�ces

to show that C := δ+G(RReach(v)) is an st-cut. Indeed, an st-path in G− C contains a path in G− E(P) from

a vertex on Pi before C ∩ E(Pi) to a vertex on Pj a�er C ∩ E(Pj) for some i, j ∈ [λ]. �at is, a vertex on P
a�er C ∩E(P) is reachable from v in GP , a contradiction. Second, if t ∈ RReach(v), then RReach(v) contains

the entire vertices on P and thus δ+G(RReach(v)) = ∅. �at v is on the t-side of every st-mincut immediately

follows from the condition t ∈ RReach(v).

Let C be an st-mincut in I and let H be a reachability pa�ern. For i ∈ [λ], the leader of the path Pi a�er C
(with respect to the pa�ern H), denoted leaderH(C, i), is the �rst (closest to s) vertex v on Pi such that for every

(i, j) ∈ E(H) the vertex LastReach(v, Pj) is a�er C on Pj . A few remarks are in place. First, the notion of the

leader is well-de�ned as the vertex t is always a feasible candidate. Second, since a reachability pa�ern is required

to contain a self-loop at every vertex, for every i ∈ [λ] there is at least one edge (i, j) ∈ E(H) to consider. �ird,

as C is oriented from the t-side to the s-side in GP , leaderH(C, i) is a�er C on Pi and, furthermore, the entire

path in GP from leaderH(C, i) to LastReach(leaderH(C, i), Pj) for every (i, j) ∈ E(H) lies on the t-side of C .

For an st-mincut C and a reachability pa�ern H , we de�ne the mincut H-subsequent to C as follows. If t ∈
RReach(leaderH(C, i)) for some i ∈ [λ], the mincut H-subsequent to C is unde�ned. Otherwise, Lemma 3.3 im-

plies that δ+(RReach(leaderH(C, i))) is an st-mincut for every i ∈ [λ]. LetX =
⋃
i∈[λ] RReach(leaderH(C, i)).

By submodularity, C ′ := δ+(X) is also an st-mincut; we proclaim C ′ to be the mincut H-subsequent to C .

Observe that, by de�nition, for every i ∈ [λ], the leader leaderH(C, i) lies in the t-side of C and s-side of

C ′, the set RReach(leaderH(C, i)) lies in the s-side of C ′ and for every (i, j) ∈ E(H) any path in GP from

leaderH(C, i) to a vertex on Pj in the t-side of C (in particular, to LastReach(leaderH(C, i), Pj)) lies entirely

in the t-side of C and s-side of C ′.
For a reachability pa�ern H , an H-sequence of mincuts is a sequence C1, C2, . . . , C` of mincuts de�ned as

follows. C1 is the st-mincut closest to s and for a > 1 the mincut Ca is the mincut H-subsequent to Ca−1, as

long as it is de�ned. Observe that for every 1 ≤ a < b ≤ ` and i ∈ [λ] we have that the edge of Ca on Pi lies

strictly before the edge of Cb on Pi. �at is, the s-side of Ca is contained in the s-side of Cb and, furthermore, on

every path Pi the s-side of Ca is a strict subset of the s-side of Cb. See Figure 1 for an illustration.

For a ∈ [`− 1], let G′ be the graph obtained from G by contracting the s-side of Ca and the t-side of Ca+1,
and P ′ be the maximum st-�ow of G′ obtained by shortening each Pi so as to start with the edge E(Pi) ∩ Ca
and to end with the edge E(Pi) ∩ Ca+1 for i ∈ [λ]. Observe that the pa�ern associated with (I ′,P ′) is precisely

the pa�er associated with (I,P).
We say that the instance I has proper boundaries if both δ+(s) and δ−(t) are st-mincuts and δ+(s)∩δ−(t) = ∅,

that is, there is no arc (s, t). In other words, I has proper boundaries if δ+(s) is the st-mincut closest to s, δ−(t)
is the st-mincut closest to t, and these cuts are disjoint. Note that in particular if I has proper boundaries, then

the pa�ern H associated with it is a reachability pa�ern. We have the following observations.
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Pa�ern H :

P1 P2 P3 P4

Figure 1: A schematic example of an H-sequence of mincuts. �e cuts are marked red. �e last cut needs to be

that late, because a connection from P1 to P4 is missing. Recall that the reachability is checked in the residual

graph, where the �ow paths are traversed backwards.

Lemma 3.4. Let (I,P) be an instance with a maximum �ow such that I has proper boundaries and let H be the

associated reachability pa�ern. Let C1, C2, . . . , C` be theH-sequence of mincuts. �en C1 = δ+(s) and ` ≥ 2, that
is, C2 is de�ned.

Proof. C1 = δ+(s) by the de�nition of having proper boundaries. By the de�nition of H , for every (i, j) ∈ E(H)
there exists a vertex vi,j ∈ V (Pi) \ {s, t} and ui,j ∈ V (Pj) \ {s, t} such that ui,j is reachable from vi,j in GP .

Consequently, leaderH(C1, i) 6= t for every i ∈ [λ]. Since δ−(t) is an st-mincut, t /∈ RReach(leaderH(C1, i))
for every i ∈ [λ]. �us, C2 is de�ned.

Lemma 3.5. Let (I,P) be an instance with a maximum �ow such that I has proper boundaries and let H be the

associated reachability pa�ern. Let C1, C2, . . . , C` be the H-sequence of mincuts. If ` ≥ 3, then H is transitive.

Proof. Let (i1, i2) and (i2, i3) be two arcs of H . Our goal is to prove that (i1, i3) ∈ E(H).

By the construction of C3, since (i1, i2) ∈ E(H), there exists v ∈ V (Pi1) and u ∈ V (Pi2) such that both v
and u are a�er C2 and before C3 on paths Pi1 and Pi2 , respectively, and u is reachable from v in GP . Similarly,

by the construction of C2, since (i2, i3) ∈ E(H), there exists v′ ∈ V (Pi2) and u′ ∈ V (Pi3) such that both v′

and u′ are a�er C1 but before C2 on paths Pi2 and Pi3 , respectively, and u′ is reachable from v′ in GP . Since u is

a�er C2 on Pi2 and v′ is before C2 on Pi2 , v′ is before u on Pi2 and hence v′ is reachable from u in GP . We infer

that u′ ∈ V (Pi3) \ {s, t} is reachable from v ∈ V (Pi1) \ {s, t} in GP , hence (i1, i3) ∈ E(H), as desired.

3.2 Recursion structure and initial steps

�e algorithms of �eorem 3.1 and of �eorem 3.2 are recursive. �e input is an instance with a �ow (I =
(G, s, t, k),P = {P1, . . . , Pλ}) and an integer κ. In the randomized case, the goal is to return a set A ⊆
V (G)×V (G) and an st-max�ow P̂ inG+A such that λG+A(s, t) ≥ κ and for every star st-cut Z with |Z| ≤ k
and |coreG(Z)| ≥ κ, (A, P̂) is compatible with Z (i.e., A is compatible with Z , coreG+A(Z) is an st-mincut in

G+A, and P̂ is a witnessing �ow for Z in G+A) with good probability. In the deterministic case, we want a

small family A of pairs (A, P̂) with λG+A(s, t) ≥ κ and P̂ being an st-max�ow in G+A, such that for every

star st-cut Z with |Z| ≤ k and |coreG(Z)| ≥ κ, at least one element of A is compatible with Z .

For an input (I,P, κ), the algorithm may perform some randomized choices / branching steps and a number

of recursive calls. In each case, we will argue that the returned output (one of the returned outputs) (A, P̂) is

compatible with Z , usually using the fact that a similar property holds for outputs of recursive subcalls. While

performing random choices or branching steps, we will always say what to aim for (e.g., for a vertex v we may

randomly guess if it is on the s-side or t-side of the hypothethical cut Z) and bound the probability of a correct

choice. Furthermore, for some recursive calls (I ′,P ′, κ′) we will de�ne a star st-cut Z ′ (depending usually on Z)

and prove that if the returned output (A′, P̂ ′) is compatible with Z ′, then the �nal output (A, P̂) is compatible

with Z (if the returned family A′ contains an element compatible with Z ′, then the �nal output A contains an

element compatible with Z respectively in the deterministic case).

7



However, for sake of clarity in the description of the algorithm we will not perform a formal probability

analysis. (We perform a formal probability analysis for �eorem 3.1 in Section 3.6 and an analysis of the size of

the output family A for �eorem 3.2 in Section 3.7.) Instead, we always informally indicate what is the measure

of progress in the recursive subcalls, so that the claim that the success probability in the randomized case is

lower bounded by a function of k would be clear (but the exact estimate on the success probability requires some

tedious calculations).

A meticulous reader can notice that the �ow P is not used in the de�nitions above. We will use it to keep

track of the progress of the algorithm; in some recursive calls the only progress will be that the �ow P at hand

changes structure in some sense.

Let us proceed now to the description of the algorithm.

Given (I,P, κ), the algorithm �rst performs a number of preprocessing steps. First, if P is not an st-max�ow,

we compute an st-max�ow P ′ and recurse on (I,P ′, κ). �us, we henceforth assume P is an st-max�ow,

λ = λG(s, t).

If λ = 0, then every star st-cut Z satis�es core(Z) = ∅. In this case we return A = ∅ and P̂ = ∅ if κ = 0

and A = {(s, t)} and P̂ consisting of one �ow path along the edge (s, t) if κ > 0. (�e deterministic algorithm

returns a familyA with a single element being the pair (A, P̂) as above.) Notice that if λ = 0 and κ > 0, any star

st-cut Z has core(Z) = ∅, hence there is no Z that the output set A ⊆ V (G)× V (G) needs to be compatible

with.

If λ > k, then there is no star st-cut Z with |Z| ≤ k. Hence, we can return A = {(s, t)} and P̂ consisting of

one �ow path along (s, t). (Again, in the deterministic case, we return A = {(A, P̂)} for A and P̂ as above.)

In the remaining (and most interesting) case 0 < λ = λG(s, t) ≤ k, we start by computing C← and C→, the

st-mincuts closest to s and t, respectively. We can also assume κ ≥ λ, as we can replace κ := max(κ, λ).

If C← 6= δ+(s), we proceed as follows. Let A← be the set of tails of edges of C←, except for s. In the

randomized case, we make a random guess: with probability 0.5 we guess that there exists a vertex v ∈ A←
that is on the t-side of Z , and with the remaining probability we guess that there is no such vertex. �e guess is

correct with probability 0.5.

In the �rst case, we additionally guess one tail v ∈ A← that is on the t-side of Z (there are |A←| ≤ λ ≤ k
options, so we are correct with probability at least k−1). Let G′ = G+ {(v, t)} and note that λG′(s, t) > λG(s, t)

as C← is the st-mincut closest to s. We recurse on ((G′, s, t, k),P, κ), obtaining a pair (A′, P̂ ′) and return

(A′ ∪ {(v, t)}, P̂ ′). Clearly, if the guess is correct, Z remains a star st-cut in G′ and, if furthermore the output

(A′, P̂ ′) is compatible with Z in G′, then (A′ ∪ {(v, t)}, P̂ ′) is compatible with Z in G. �e probability that we

correctly entered this case is at least (2k)−1, and in the recursive call the value λG(s, t) increased.

(In the deterministic case, we replace the guess with branching in a standard manner: we invoke a branch for

each v ∈ A← that assumes that v is in the t-side of Z and recurse as above, and as a last branch proceed with the

second case as in the next paragraph.)

In the second case, we de�ne G′ as G with the whole s-side of C← contracted onto s, recurse on G′ (with

the �ow paths of P shortened to start from the edges of C←), obtaining in the randomized case a pair (A′, P̂ ′),

and return A := A′ ∪ {(s, v) | v ∈ A←} and P̂ being the �ow P̂ ′ with every path potentially prepended with

the appropriate edge (s, v), v ∈ A←. (In the deterministic case, we obtain a set A′ from the recursive call and

perform the above modi�cation to every element ofA′.) If all tails of edges of C← are on the s-side of Z , then we

did not contract any edge of core(Z), core(Z) remains a minimal st-cut in G′ and Z ′ := Z ∩ E(G′) remains a

star st-cut in G′. It is straightforward to observe if furthemore (A′, P̂ ′) is compatible with Z ′ in G′, then (A, P̂)
is compatible with Z in G. Furthermore, in the recursive call the st-mincut closest to s in G′ is δ+(s) (being the

image of C←).

We perform a symmetric process if C→ 6= δ−(t). �at is, let A→ be the set of heads of edges of C→, except

for t. If there is a v ∈ A→ that is in the s-side of Z , we guess so (with probability 0.5), guess v (with probability

at least k−1), recurse on G′ = G+ {(s, v)}, obtaining a pair (A′, P̂ ′) and return (A′ ∪ {(s, v)}, P̂ ′). As before,

in the recursive call λG′(s, t) > λG(s, t) as C→ is the st-mincut closest to t. Otherwise, we guess that this is the

case (with probability 0.5) and contract the t-side of C→ onto t. We observe that if the guess is correct, then no

edge of Z is contracted onto t, Z remains a star st-cut in the resulting graph G′. Similarly as before, we recurse

onG′, obtaining a pair (A′, P̂ ′) and returnA := A′∪{(v, t) | t ∈ A→} and P̂ constructed from P̂ ′ by appending

an appropriate arc (v, t), v ∈ A→ to some of the paths. In the recursive call the st-mincut closest to t is δ−(t)
(being the image of C→). �e deterministic counterpart of the above process is fully analogous.

As a result, we either already recursed and returned an answer (being a correct guess with probability Ω(k−1)
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in the randomized case or invoking O(k) recursive calls in the deterministic case) or in the input graph, δ+(s)
and δ−(t) are st-mincuts.

As a last preprocessing step, we check if G contains an arc (s, t). If this is the case, then clearly (s, t) ∈ Z for

any st-cutZ and (s, t) is one of the paths inP , say Pi. We recurse onG′ := G−{(s, t)}withP\{Pi}, parameter

k−1 instead of k, and κ−1 instead of κ, obtaining a pair (A′, P̂ ′) in the randomized case. Furthermore,Z\{(s, t)}
remains a star (s, t)-cut in G′. �us, we can safely return (A′, P̂ ′ ∪ {Pi}) in this case. (In the deterministic case,

we obtain the set A′ from recursion and apply the same modi�cation to every (A′, P̂ ′) ∈ A′).

Hence, we are le� with I being an instance with proper boundaries. We compute the reachability pa�ern H
of (I,P) and the H-sequence of mincuts C1, C2, . . . , C`. We have C1 = δ+(s) and, by Lemma 3.4, ` ≥ 2. We

split into three cases, tackled in the next three subsections:

• |E(H)| = |V (H)|, that is, H contains only self-loops at every vertex;

• ` ≤ `big, that is, the H-sequence C1, . . . , C` is short;

• ` > `big, that is, the H-sequence C1, . . . , C` is long.

3.3 Base case: only self-loops in H

We now deal with the base case |E(H)| = |V (H)|, that is, H consist of λ vertices with self-loops and nothing

else.

We have the following observation.

Lemma 3.6. Let (I,P) be an instance with maximum �ow with proper boundaries and let H be its reachability

pa�ern. Assume |V (H)| = |E(H)|. For every i ∈ [λ], v ∈ V (Pi) \ {t}, and a bo�leneck edge e on Pi, if e lies
before v on Pi, then any path from s to v in G visits e. Consequently, any set consisting of one bo�leneck edge from

each path Pi is an st-mincut in G.

Proof. For the �rst claim, let Q be a path from s to v in G avoiding e. By the assumption on proper boundaries,

t /∈ V (Q). If Q contains a vertex of V (Pj) \ {s, t} for some j 6= i, then a minimal subpath of Q from a vertex of⋃
j 6=i V (Pj) \ {s, t} to a vertex of V (Pi) \ {s, t} is a path also in GP and thus contradicts the assumption that

H contains only self-loops.

Let C be an st-mincut witnessing that e is a bo�leneck edge. Since e is before v on Pi, the concatenation of

Q and a subpath of Pi from v to t is an st-path disjoint with C , a contradiction. �is �nishes the proof of the �rst

claim.

For the second claim, pick a bo�leneck edge ei ∈ E(Pi) on every path Pi and let Y = {ei | i ∈ [λ]}. Assume

Y is not an st-mincut. �is implies that there exists a path Q in G that starts on a path Pi in a vertex v before ei,
ends on a path Pj in a vertex u a�er ej and does not contain any edge of Y nor any internal vertex on paths of P .

In particular, Q does not contain any edge of P .

Note that if v 6= s and u 6= t, then (i, j) ∈ E(H) by the de�nition of the graph H . Hence, either i = j, or

v = s, or u = t. Note that if v = s or t = u we could have chosen i = j anyway, so it su�ces to consider the case

i = j. Prepend Q with a subpath of Pi from s to v, obtaining a path Q′ from s to u avoiding ei. �is contradicts

the �rst claim.

Lemma 3.7. Let (I,P) be an instance with maximum �ow with proper boundaries and let H be its reachability

pa�ern. Assume |V (H)| = |E(H)| and let Z be a star st-cut in G. �en exactly one of the following cases hold.

• �ere exists i ∈ [λ] such that no edge of Z ∩E(Pi) is a bo�leneck edge and core(Z) is not an st-mincut, that

is, |core(Z)| > λG(s, t).

• core(Z) is an st-mincut, that is, |core(Z)| = λG(s, t), and no edge of Z \ core(Z) is a bo�leneck edge of G.

Proof. Assume �rst there is i ∈ [λ] such that no edge of Z ∩ E(Pi) is a bo�leneck edge. �en, Z contains no

st-mincut, in particular, core(Z) is not an st-mincut, and the �rst option holds.

In the other case, for every i ∈ [λ], pick the �rst (closest to s) bo�leneck edge ei ∈ Z ∩ E(Pi) and denote

Z ′ = {ei | i ∈ [λ]}. By Lemma 3.6, Z ′ is an st-mincut. Furthermore, for every i ∈ [λ], every edge e on Pi a�er ei
is in the t-side of Z ′. Since Z is a star st-cut, such an edge e is not in Z ; in particular, Z ′ are the only bo�leneck

edges in Z . We infer that for every i ∈ [λ] we have ei ∈ core(Z), that is, Z ′ ⊆ core(Z). As Z ′ is an st-cut,

Z ′ = core(Z) and the second case holds.
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We proceed as follows with the randomized algorithm. If κ = λ, with probability 0.5 guess that core(Z) is an

st-mincut inG. In this case, for every i ∈ [λ] proceed as follows. Let (ui,1, vi,1), . . . , (ui,ai , vi,ai) be the bo�leneck

edges ofPi, in the order of their appearance onPi. Denote vi,0 = s, ui,ai+1 = t,Ai = {(vi,b, ui,b+1) | 0 ≤ b ≤ ai}
and P ′i to be the path consisting of edges (s, ui,1), (ui,1, vi,1), (vi,1, ui,2), . . . , (ui,ai , vi,ai), (vi,ai , t). We return

(A :=
⋃
i∈[λ]Ai, P̂ = {P ′i | i ∈ [λ]}). By Lemma 3.7, (A, P̂) is compatible with Z .

If κ > λ, or κ = λ but (with the remaining probability 0.5) we guessed that core(Z) is not an st-mincut in G,

we randomly guess i ∈ [λ], aiming at Z ∩E(Pi) containing no bo�leneck edge. We set A0 to be the copies of

all bo�leneck edges of Pi, recurse on G′ := G+A0, obtaining a pair (A′, P̂ ′), and return (A := A′ ∪A0, P̂ ′).

Clearly, if the guess is correct, A0 is compatible with Z and Z remains an star st-cut in G′. Furthermore, if

(A′, P̂ ′) is compatible with Z in G′, then (A, P̂ ′) is compatible with Z in G. Since we added a copy of every

bo�leneck edge on one �ow path, λG′(s, t) > λG(s, t). �is �nishes the description of this case.

�e deterministic counterpart of the above process is the natural one. First, we insert to the constructed

family A the pair (A, P̂) from the �rst case above. �en, we branch into λ cases, one for each i ∈ [λ], recurse as

in the second case above, obtaining a set A′, and insert into A a pair (A′ ∪A0, P̂ ′) for every (A′, P̂ ′) ∈ A′.

3.4 Small ` case

In the next case we assume |E(H)| > |V (H)| and ` ≤ `big. Recall `big := 4k2 + 3.

For clarity, we describe only the randomized case of �eorem 3.1 below, as all guesses can be replaced by

branching steps in a straightforward manner (in particular, we do not use any color-coding steps here).

If there is no star st-cut Z of size at most k with |core(Z)| ≥ κ, then any pair (A, P̂) with λG+A(s, t) ≥ κ is

a valid outcome, so we can assume at least one such star st-cut exists. For the sake of analysis, �x one star st-cut

Z with |Z| ≤ k and |core(Z)| ≥ κ.

Let B =
⋃`
i=1 V (Ci), that is, B is the set of endpoints of the cuts C1, . . . , C`. Let B← be the set of elements

of B on the s-side of Z and B→ be the set of vertices of B on the t-side of Z .

For every i ∈ [λ], we guess the last vertex vi of B← (there is always one, as s is a candidate) and the �rst

vertex ui of B→ on Pi (or guess ui = ⊥ meaning that there is no such vertex). �ere are at most 2`big(2`big + 1)
options per index i, so in total the success probability is 2−O(k log k)

.

We now consider a number of corner cases. We use the �rst applicable corner case, if possible, so that in

subsequent corner cases we can assume that the earlier ones are not applicable.

Corner case 1: B→ = ∅, that is, for every i ∈ [λ] we guessed ui = ⊥. In other words, all endpoints of

edges of

⋃`
a=1 Ca are on the s-side of Z . In particular, all endpoints of C` are on the s-side of Z and t is not

a head of any edge of C`. Let G′ be the graph G with the s-side of C` contracted onto s. �en, core(Z) is a

minimal st-cut in G′ as well, Z ′ := Z ∩ E(G′) is a star st-cut in G′, and the paths Pi, shortened to start from

the edge of C`, form a maximum st-�ow PG′ in G′. Furthermore, as G has proper boundaries, so has G′ (the cut

C` becomes δ+G′(s) in G′). Let H ′ be the reachability pa�ern of G′ and PG′ . We claim the following.

Claim 1. E(H ′) ( E(H).

Proof. Clearly E(H ′) ⊆ E(H), as any path in the residual graph of G′ and PG′ witnessing (i, j) ∈ E(H ′) is

also a path in GP and thus witnesses (i, j) ∈ E(H).

We claim that if E(H ′) = E(H), then C`+1 would have been de�ned. Indeed, from the de�nition of H ′

for every (i, j) ∈ E(H ′) there exist vertices vi,j ∈ V (Pi) \ {t} and ui,j ∈ V (Pj) \ {t} that are a�er C` on

their Pi and Pj respectively such that ui,j is reachable from vi,j in the residual graph of G′ and PG′ (and hence

also in GP ). If E(H ′) = E(H), this witnesses that leaderH(C`, i) 6= t for every i ∈ [λ]. Since δ−G(t) is an

st-mincut in G and thus t is not reachable from any vertex on V (Pi) \ {t} in GP for every i ∈ [λ], we have

t /∈ RReach(leaderH(C`, i)) for every i ∈ [λ]. �erefore, C`+1 would have been de�ned, a contradiction.

We recurse on G′, PG′ , k, and κ obtaining a pair (A′, P̂ ′). We set A0 = {(s, v) | v ∈ B} and return

(A := A0 ∪A′, P̂), where every �ow path of P̂ is constructed from a �ow path of P̂ ′ by potentially prepending

it with an appropriate edge of A0. Clearly, if (A′, P̂ ′) is compatible with Z ′ in G′, then (A, P̂) is compatible with

Z in G.
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Corner case 2: for some i ∈ [λ], there is a vertex of B→ before a vertex of B← on Pi. �at is, for some

i ∈ [λ] the guessed �rst vertex ui ∈ B→ ∩ V (Pi) is before the guessed last vertex vi ∈ B← ∩ V (Pi). De�ne

A0 = {(s, vi), (ui, t)} and observe that A0 is compatible with Z and in G+A0 there is an augmenting path for

P : start with the edge (s, vi) ∈ A0, go along reversed Pi to ui, and �nish with the edge (ui, t) ∈ A0. Hence, we

can just recurse on G′ := G+A0, k, and κ, obtaining a pair (A′, P̂ ′) and return (A′ ∪A0, P̂ ′).

Note that if Corner case 2 does not happen, from the guesses we can deduce whole sets B← and B→: for

every i ∈ [λ], all vertices of B ∩ V (Pi) up to the (guessed) last vertex of B← are in B← and the remainder of

B ∩ V (Pi) is in B→. Hence, we can de�ne

A0 = {(s, v) | v ∈ B←} ∪ {(u, t) | u ∈ B→}.

Note that A0 is compatible with Z (if the guesses are correct).

In G+A0, we de�ne an st-�ow P ′ = {P ′i | [λ]} as follows: for every i ∈ [λ], the �ow path P ′i consists of the

arc (s, vi) ∈ A0, a subpath of Pi from vi to ui, and the arc (ui, t) ∈ A0.

Corner case 3: λG+A0
(s, t) > λG(s, t). In this case we can just recurse on G′ := G + A0, P ′, k, and κ,

obtaining a pair (A′, P̂ ′), and return (A′ ∪A0, P̂ ′).

If we are not in this corner case, we have that P ′ is an st-max�ow in G+A0.

Corner case 4: there is i ∈ [λ] such that P ′i contains exactly one edge e of capacity 1. �en clearly

e ∈ core(Z). We can recurse on the graph G′ := G+A0 − {e}, the �ow P ′ \ {P ′i}, the parameter k− 1 instead

of k, and the parameter κ− 1 instead of κ, obtaining a pair (A′, P̂ ′), and return (A := A′ ∪A0, P̂ ′ ∪ {P ′i}).

Two remarks are in place. First, this corner case covers the case where Z ∩
⋃`
a=1 Ca 6= ∅. Second, if we are

not in this corner case, then in particular the whole C1 is in the s-side of Z as C1 = δ+(s).

Main case We are le� with the main case, where none of the aforementioned corner cases occur.

Since on every Pi the arcs of C1, C2, . . . , C` appear in this order, by the excluded Corner case 1 at least one

head of an arc of C` is in B→. By the excluded Corner case 4, the tail of the said arc of C` is also in B→.

Let a ∈ [`] be maximum such that all endpoints of Ca are in B←. �is is well-de�ned as C1 = δ+G(s) and all

endpoints of C1 are in B← as we are not in the Corner case 4. Also, by the assumption of this main case, a < `,
that is, Ca+1 is de�ned.

Let C be the st-mincut in G+ A0 closest to t. Since A0 features arcs from s to all endpoints of Ca, C lies

entirely in the t-side of Ca. By the de�nition of a, there is an arc of Ca+1 whose endpoints lie in B→ and thus

have arcs to t in A0. Hence, C contains at least one arc whose endpoints are on the t-side of Ca and on the s-side

of Ca+1. Furthermore, clearly C is an st-mincut in G as well (but of course not necessarily closest to t) because

Corner case 3 is excluded.

We randomly guess whether there is a vertex v ∈ V (C) that is in the s-side of Z . With probability 0.5 we

guess that there is such a vertex. �en, with probability 0.5 we guess if there is a head of an edge of C that is in

the s-side of Z . If this is the case, we guess such a head v ∈ V (C) (at most λ options) and otherwise we guess a

tail v ∈ V (C) that is in the s-side of Z (again, at most λ options). In the end, we obtain either an edge (v, u) ∈ C
with v on the s-side of Z and u on the t-side of Z (thus (v, u) ∈ Z) or a head v of an edge of C that is in the

s-side of Z . �e probability of a correct guess is at least (4λ)−1.

In the �rst case, we recurse on G′ := G− {(v, u)} with �ow P \ {Pi} where Pi is the �ow path containing

(v, u) and the parameter k − 1, obtaining a pair (A′, P̂ ′). It is straightforward to check that then we can return

(A := A′ ∪ {(s, v), (u, t)}, P̂ := P̂ ′ ∪ {((s, v), (v, u), (u, t))}).

In the second case, we recurse on G′ := G + (A0 ∪ {(s, v)}), k, and κ, obtaining a pair (A′, P̂ ′). Note

that A0 ∪ {(s, v)} is compatible with Z , if the guess is correct. Hence, we can return (A0 ∪ {(s, v)} ∪A′, P̂ ′).

Furthermore, as C is the closest to t mincut of G+A0, we have λG′(s, t) > λ.

�us we are le� with the most interesting case, guessed with probability 0.5, where all vertices of V (C) are

in the t-side of Z . �e crucial observation now is the following.

Claim 2. �ere exists i ∈ [λ] such that leaderH(Ca, i) lies in the t-side of C .

Proof. By the de�nition of a, there exists e ∈ Ca+1 with an endpoint in B→. By the excluded Corner case 4, both

endpoints of e are in B→; let v be the tail of e. Clearly v is on the t-side of C because (v, t) ∈ A0.
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By the de�nition ofCa+1, there exists i ∈ [λ] such that v ∈ RReach(leaderH(Ca, i)). Again by the de�nition

of Ca+1, the whole RReach(leaderH(Ca, i)) is on the s-side of Ca+1, in particular leaderH(Ca, i) is. Since

C is an st-mincut in G as well, while v is reachable from leaderH(Ca, i) in GP and v is on the t-side of C ,

leaderH(Ca, i) is also on the t-side of C . �is �nishes the proof.

Let G′ be constructed from G by contracting �rst the s-side of Ca onto s and then the t-side of C onto t.
Note that both Ca and C are st-mincuts in G and on every path Pi the arc of Ca appears strictly before the arc

of C . Hence, G′ has proper boundaries and the paths of Pi naturally shorten to a maximum st-�ow PG′ in G′.

We recurse on G′, PG′ , and k, obtaining a pair (A′, P̂ ′). We return A = A0 ∪ A′ ∪ {(v, t) | v ∈ V (C)} and a

�ow P̂ constructed from �ow paths P̂ ′ by potentially prepending them with an edge (s, v) ∈ A0 for v being a

head of an edge of Ca or adding at the end an edge (v, t) ∈ A for v being a tail of an edge of C .

Consider a star st-cut Z in G. Assume we guessed correctly that all vertices of B← are in the s-side of Z
and vertices of B→ and all endpoints of C are in the t-side of Z . �en, core(Z) is a minimal st-cut in G′ and

Z ′ := Z ∩ E(G′) is a star st-cut in G′. Furthemore, if (A′, P̂ ′) is compatible with Z ′ in G′, then (A, P̂) is

compatible with Z in G, as desired.

Let H ′ be the reachability pa�ern of G′ and PG′ . To bound the success probability, the following observation

is crucial.

Claim 3. E(H ′) ( E(H).

Proof. Clearly, any path witnessing (i, j) ∈ E(H ′) in the residual network of G′ and PG′ is also a path in GP so

it witnesses (i, j) ∈ E(H ′). We need to exhibit an element of E(H) \ E(H ′).

Let i ∈ [λ] be the index asserted by Claim 2. Since v := leaderH(Ca, i) lies in the t-side of C , while the head

of the edge of Ca ∩ E(Pi) lies in the s-side of C , the predecessor v′ of v on Pi lies in the t-side of Ca. �ere

is a reason why v′ is before leaderH(Ca, i) on Pi: there exists (i, j) ∈ E(H) such that LastReach(v′, Pj) is

before Ca on Pj . Since v is in the t-side of C , we have that for every u ∈ V (Pi) ∩ V (G′) \ {s, t} it holds that

LastReach(u, Pj) is before Ca on Pj . Consequently, (i, j) /∈ E(H ′), as desired.

Hence, in the recursive call |E(H ′)| decreases, which is the progress giving the desired bound on the success

probability. (For formal proof of the success probability lower bound, see Section 3.6; for the corresponding

analysis of the number of subcases if the guesswork is replaced with branching, see Section 3.7.)

3.5 Large ` case

In the remaining case we have |E(H)| > |V (H)| and ` > `big. By Lemma 3.5, H is transitive. Also, |E(H)| >
|V (H)| implies that λ ≥ 2.

In this section the narrative is led by the randomized case of �eorem 3.1, but due to color coding steps,

derandomization is nontrivial in a few places and mandates some discussion.

In the argumentation, we will frequently use the predicate of being in the s-side or t-side of a cut Ca. For

brevity, we extend this notion to all indices a ∈ Z, not only a ∈ [`]. �at is, every vertex and edge of G is in the

t-side of Ca for a ≤ 0 and in the s-side of Ca for a > ` while neither a vertex nor an edge of G is in the s-side of

Ca for a ≤ 0 and in the t-side of Ca for a > `.
Fix a star st-cut Z of size at most k such that |core(Z)| ≥ κ. Let Zts be the set of those edges (v, u) ∈⋃λ

i=1E(Pi) such that v is on the t-side of Z while u is on the s-side of Z . Note that for every i ∈ [λ] we have

|Zts ∩ E(Pi)| ≤ |Z ∩ E(Pi)| − 1 and hence |Zts| ≤ k − λ.

We say that an index a ∈ Z is touched if there exists e ∈ Z ∪ Zts with an endpoint that is in the t-side of Ca
and in the s-side of Ca+1. Note that a touched index a satis�es 0 ≤ a ≤ `.

We have the following observation.

Claim 4. �ere are at most 2|Z ∪ Zts| ≤ 4k − 2λ touched indices.

Proof. Every endpoint v of an edge e ∈ Z ∪ Zts gives raise to at most one index a being touched, namely the

maximum a ∈ Z such that v is in the t-side of Ca. Hence, there are at most 2|Z ∪Zts| ≤ 4k− 2λ touched indices

as desired.

A set L ⊆ V (H) is downward-closed (in H) if there is no arc (i, j) ∈ E(H) with i ∈ L but j /∈ L. For a set

L ⊆ V (H), let cl(L) be the minimal superset of L that is downward-closed; since H is transitive and contains a

loop at every vertex, we have

cl(L) = {i ∈ [λ] | ∃j∈L(j, i) ∈ E(H)}.
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For a ∈ [`], let La ⊆ [λ] be the set of those indices for which both endpoints of the unique edge of Ca ∩ E(Pi)
lie in the s-side of Z . We also de�ne La = [λ] for a ≤ 0 and La = ∅ for a > `.

We have establish a few properties of the objects de�ned above.

Claim 5. Let L ⊆ [λ] be downward closed in H . �en G admits no path

from
⋃
i∈L

V (Pi) \ {s, t} to
⋃

i∈[λ]\L

V (Pi) \ {s, t}.

Proof. Assume the contrary, let Q be a shortest such path. By minimality, no internal vertex of Q lies in⋃
i∈[λ] V (Pi) \ {s, t}. Since G has proper boundaries, neither s nor t lies on Q. Hence, Q is a path in GP ,

contradicting the de�nition of H and the assumption that L is downward-closed.

Claim 6. Let a be an integer. �en, for every i ∈ [λ] \ cl(La), every vertex on Pi in the t-side of Ca is also in the

t-side of Z .
In particular, if b ≥ a is an integer, then Lb ⊆ cl(La), and if additionally La is downward-closed, then Lb ⊆ La.

Proof. �e claim is obvious if a < 1 (as then La = [λ]) and if a > ` (as then no vertex is in the t-side of Ca), so

assume otherwise.

For every i ∈ [λ] \ cl(La), pick an endpoint vi of the unique edge of Ca ∩E(Pi) that is in the t-side of Z and

let Xi be the set of vertices of V (Pi) \ {t} that lie a�er vi on Pi. By Claim 5 applied to L := cl(La), for every

vertex v ∈
⋃
i∈[λ]\cl(La)Xi, any path from s to v of G passes though {vi | i ∈ [λ] \ cl(La)}. As vi is in the t-side

of Z , any such path contains an edge of Z . We infer that such v is in the t-side of Z . �is proves the main part of

the claim.

�e second part of the claim is trivial if b > ` (as then Lb = ∅), and follows directly from the �rst part if

1 ≤ a ≤ b ≤ `.

Claim 7. Assume a < b are two integers such that b− a ≥ λ− 1 and for every a ≤ c < b, c is untouched. �en,

Lb = cl(La). In particular, Lb is downward-closed.

Proof. Clearly, Lb ⊆ cl(La) by Claim 6. Also, since every c with a ≤ c < b is untouched, for every i ∈ La no

edge of Pi between the edge of Ca and the edge of Cb is in Z , so La ⊆ Lb.
If a < 1, then La = [λ] and we have Lb = [λ] as well. If b > `, then Lb = ∅ so from La ⊆ Lb is follows that

La = ∅ as well.

Hence, we can assume 1 ≤ a < b ≤ `. Since La ⊆ Lb ⊆ cl(La), it su�ces to show that if for some 1 ≤ c < `
we have that c is untouched and Lc is not downward-closed, then Lc+1 is a strict superset of Lc.

Clearly, as c is untouched Lc ⊆ Lc+1. Since Lc is not downward-closed, there is (i, j) ∈ E(H) with i ∈ Lc
but j /∈ Lc. By the construction of Cc+1, there exists v ∈ V (Pi) and u ∈ V (Pj), both in the t-side of Cc and

s-side of Cc+1 and a path Q in GP from v to u. Pick i, j, and Q as above so that the length of Q is minimum

possible.

Since in GP one cannot cross neither Cc nor Cc+1 from the s-side to the t-side, all vertices of Q are in the

t-side ofCc and s-side ofCc+1. By the minimality ofQ, no internal vertex ofQ lies on any path Pι, ι ∈ [λ]. Hence,

Q is a path in G as well. Since c is untouched, no edge of Q lies in Z . Also, no edge of Pi nor Pj between Cc and

Cc+1 (including Cc+1) lies in Z . We infer that j ∈ Lc+1, as desired. �is �nishes the proof of the claim.

Claim 8. Assume a ∈ [`] is such that La is downward-closed. Let i ∈ [λ] and e be the unique edge of Ca ∩ E(Pi).

• If i /∈ La, then the following holds. �e entire su�x of Pi from the head of e to t is in the t-side of Z . In
particular, no edge of the said su�x is in Z .

• If i ∈ La, then the following holds. �e entire pre�x of Pi from s to the tail of e is in the s-side of core(Z). In
particular, no edge of the said pre�x is in core(Z).

Proof. �e �rst claim follows directly from Claim 6, as we assume that La is downward-closed.

For the second claim, we proceed by contradiction. Assume there is a vertex on Pi that is in the t-side of

core(Z) and s-side of Ca. Let v be the earliest (on Pi) such vertex. Since v is in the t-side of core(Z), v 6= s.
By the choice of v, the predecessor of v on Pi is in the s-side of Z , that is, the edge on Pi with the head v is in

core(Z). By the minimality of core(Z), there is a path Q from v to t in G− core(Z).
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Since v is in the s-side of Ca, there is an edge of Ca onQ. Assume j ∈ [λ] is such that the edge of E(Pj)∩Ca
lies on Q. Since Q is a path in G− core(Z) ending in t, it is entirely in the t-side of core(Z). By the de�nition of

La, we have j /∈ La. However, as v ∈ V (Pi) and i ∈ La, the subpath of Q from v to the edge of E(Pj) ∩ Ca
contradicts Claim 5.

Claim 9. Let a ∈ [`] be such that for every a− (λ− 1) ≤ c < a the index c is untouched. �en, for every i ∈ La
there exists in G−Z a path from s to the tail of the unique edge of Ca ∩E(Pi) whose all vertices lie in the s-side of
Ca.

Proof. If a− (λ− 1) ≤ 1 (i.e., a ≤ λ), then there is no endpoint of the edge of Z in the s-side of Ca (note that if

0 is touched, then so is 1) and hence the pre�x of Pi from s to Ca satis�es the desired properties. We henceforth

assume then that b := a− (λ− 1) > 1.

Let e = (u, v) be the unique edge of Ca ∩ E(Pi). Since i ∈ La, both u and v are in the s-side of Z . Let Q be

a path from s to u in G− Z .

Since Q ends in u, Q contains an edge of Cb. Let e′ be the �rst edge of Cb on Q and let j ∈ [λ] be such that

e′ ∈ E(Pj) ∩ Cb. Since Q is in the s-side of Z , we have j ∈ Lb.
For b < c ≤ a, let L′c be the family of indices i′ ∈ [λ] such that there is a path from the head of e′ to the tail

of the unique edge of Cc ∩ E(Pi′) with all vertices in the t-side of Cb and s-side of Cc. We also de�ne L′b = {j}.
Since for every b ≤ c < a, c is untouched, we have that any path witnessing i′ ∈ L′c is contained completely in

the s-side of Z and hence L′c ⊆ Lc. Also, L′c ⊆ L′c′ for any b ≤ c ≤ c′ ≤ a.

Note that it su�ces to prove that i ∈ L′c for some b ≤ c ≤ a, as then the desired path can be formed

by concatenating the pre�x of Q up to e′, the path witnessing i ∈ L′c, and the part of Pi from Cc to u. As

b = a− (λ− 1), it su�ces to show that if i /∈ L′c for some b ≤ c < a, then L′c+1 is a proper superset of L′c.
If j = i then we are done, so assume that j 6= i. Fix b ≤ c < a such that i /∈ L′c. As j ∈ L′c and e′ ∈ E(Pj),

there is a subpath of Q, between e′ and u, that starts in a vertex of some Pj′ , j
′ ∈ L′c, ends in a vertex of some Pi′ ,

i′ /∈ L′c, and contains no internal vertices on paths of P . �is path witnesses that (j′, i′) ∈ E(H) and thus there

is a path R in GP from a vertex of Pj′ to a vertex of Pi′ that lies completely in the t-side of Cc and s-side of Cc+1.

A path R contains a subpath R′ with no internal vertices on P that starts on a path Pj′′ for some j′′ ∈ L′c and

ends on a path Pi′′ for some i′′ /∈ L′c. �is path is present in G. Consequently, by using a subpath of Pj′′ from Cc
to the start of R′, the path R′, and a subpath of Pi′′ from the end of R′ to Cc+1 we witness that i′′ ∈ L′c+1, as

desired.

Claims 7, 8, and 9 motivate the following de�nition. An index a ∈ [`] is a milestone if for every a− (λ− 1) ≤
c ≤ a, c is untouched. Claim 7 implies for a milestone a, the set La is downward-closed.

An arc (v, u) is a long backarc if there exists a milestone a with v in the t-side of Ca and u in the s-side of Ca.

Not all assertions of the following observations are used later, but we present them anyway as they give good

intuition about why the long backarcs are essentially irrelevant for the problem.

Claim 10. Let L be the family of long backarcs. �en,

• P is (still) a maximum st-�ow in G− L;

• G− L is (still) properly boundaried;

• the reachability pa�ern of (G− L,P) is (still) H ;

• C1, C2, . . . , C` is (still) an H-sequence of mincuts in (G− L, H);

• core(Z) is disjoint with L and is (still) a minimal st-cut in G− L;

• Z ′ ⊆ Z , consisting of those arcs of Z \ L whose tail is reachable from s in G− (Z ∪ L), contains core(Z)
and is a star st-cut in G− L.

Proof. �e �rst two properties are immediate as L does not contain any edge of P . For the third and fourth

properties, recall that ` > `big > 2 and notice that when de�ning Ca for 1 < a ≤ `, all paths in GP that witness

where leaderH(Ca−1, i) is for i ∈ [λ] are contained in the t-side of Ca−1 and in the s-side of Ca. Hence, these

paths do not use any edge of L.

For the penultimate property, clearly Z \L is an st-cut inG−L. Let e ∈ core(Z). Since core(Z) is a minimal

st-cut, there exists a path Q from s to t whose only intersection with core(Z) is e. Pick such a path Q that
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minimizes the number of edges of L. To prove the minimality of core(Z) in G− L, it su�ces to show that there

is no long backarc on Q (which in particular implies that e /∈ L).

To this end, we use Claim 8. Assume that Q contains at least one edge of L and let f = (v, u) be the last such

edge. Let a be the milestone index witnessing that f ∈ L. Since v is in the t-side of Ca and u is in the s-side of

Ca, Q contains an edge e1 of Ca before f and an edge e2 of Ca a�er f . Let i1, i2 ∈ [λ] be such that e1 ∈ E(Pi1)
and e2 ∈ E(Pi2).

If e1 /∈ La, then e is not later on Q than e1 and, by Claim 8, we can substitute the su�x of Q from the head

of e1 to t with the su�x of Pi1 from the head of e1 to t, contradicting the minimality of Q. If e2 ∈ La, then e2 is

before e on Q and, by Claim 8, we can substitute the pre�x of Q from s to the tail of e2 with the pre�x of Pi2 from

s to the tail of e2 all of whose vertices lie in the s-side of Ca, again contradicting the minimality of Q. Hence,

e1 ∈ La but e2 /∈ La. However, as e1 is before e2 on Q, the subpath of Q from e1 to e2 contradicts Claim 5.

For the �nal property, note that the penultimate property implies core(Z) ⊆ Z ′ and thus Z ′ is an st-cut.

Since every arc of Z \Z ′ has its tail not reachable from s in G− (Z ∪L), the sets of vertices reachable from s in

G− (Z ∪ L) and G− (Z ′ ∪ L) are equal. Hence, for every e ∈ Z ′, the tail of e is reachable from s and the head

of e is not reachable from s in G− (Z ′ ∪ L). �is �nishes the proof that Z ′ is a star st-cut.

We remark here that it is possible that L ∩ Z 6= ∅ or Z ′ 6= Z \ L; Claim 10 only asserts that the properties of

core(Z) remain unchanged upon deletion of L.

We say that two indices a and b are close if |b − a| ≤ λ. Let 0 ≤ a1 < a2 < . . . < ar ≤ ` be the touched

indices; by Claim 4 we have r ≤ 4k − 2λ. A block is a maximal subsequence aα, aα+1, . . . , aβ such that ai and

ai+1 are close for every α ≤ i < β. Note that we have aβ − aα ≤ (β − α)λ ≤ (r − 1)λ.

Naturally, the sequence a1, . . . , ar partitions into a number of blocks. An index a ∈ Z is interesting if

aα − λ ≤ a ≤ aβ + λ for some block aα, . . . , aβ . Note that this condition is equivalent to |a− aα| ≤ λ for some

α ∈ [r]. We infer that the number of interesting indices is bounded by r · (2λ+ 1) ≤ 12kλ.

We randomly sample a subset Γ ⊆ {0, 1, . . . , `} in the following skewed way: every a ∈ {0, 1, . . . , `} belongs

to Γ with probability k−1, independently of the other indices. We aim at the following: for every interesting

index a, a ∈ Γ if and only if a is touched. Note that no integer outside the set {0, . . . , `} is touched, there are at

most 4k − 2λ touched indices and at most 12kλ interesting indices. �us we are successful with probability at

least

k−(4k−2λ) ·
(
1− k−1

)12kλ
= 2−O(k log k).

For the deterministic version of the above step, we use �eorem 2.4 to obtain a family of 2O(k log k) log n candidates

for Γ and branch on the choice of Γ.

A Γ-milestone is an index a ∈ [`] such that for every a− (λ− 1) ≤ c ≤ a, c /∈ Γ. Note that if the guess is

correct, every Γ-milestone is a milestone.

A Γ-block is a maximal sequence b1 < b2 < . . . < bζ of elements of Γ such that bi is close to bi+1 for

1 ≤ i < ζ . We perform the following cleaning procedure: for every Γ-block b1 < b2 < . . . < bζ such that

ζ > 4k − 2λ or bζ − b1 > (4k − 2λ− 1)λ, we delete all elements of the said block from Γ. If we are successful,

then even a�er the cleaning procedure every block is a Γ-block, but there may be numerous Γ-blocks that are

not blocks. Furthermore, if we are successful and (b1 < . . . < bζ) is a Γ-block, then both b1 − 1 (if b1 > 1) and

bζ + λ (if bζ + λ ≤ `) are Γ-milestones (and thus in particular actual milestones).

Let B1,B2, . . . ,Bξ
be the sampled Γ-blocks. For a Γ-block Bα = (b1 < b2 < . . . < bζ), we de�ne bα← = b1,

bα→ = bζ , and let Zα0 be the set of edges of Z with both endpoints on the t-side of Cb1 and s-side of Cbζ+λ.

We henceforth assume that the guess of Γ is a correct one. We have the following observations.

Claim 11. For every e ∈ Z \ L there exists a Γ-block Bα
that is an actual block such that both endpoints of e are

in the t-side of Cbα← and in the s-side of Cbα→+1.

Proof. Let a be maximum such that the head of e is in the t-side of Ca. Such a exists and a ≥ 1 as a = 1 is one of

the candidates. Clearly, a is touched. Let Bα
be the Γ-block (and an actual block) where a lies. It su�ces to prove

that the tail of e lies in the t-side of Cbα← and in the s-side of Cbα→+1.

By assumption, e is not a long backarc. If bα← > 1 then clearly also e cannot have a tail in the s-side of Cbα←−1
as the head of e is in the t-side of Cbα← . If bα→ + λ ≤ `, then bα→ + λ is a milestone and hence e does not have its

tail on the t-side of Cbα→+λ. We infer that actually both endpoints of e are on the t-side of Cbα←−1 and on the

s-side of Cbα→+λ. For every bα→ < a ≤ bα→ + λ, we have a /∈ Γ, and hence a is untouched as we assume the guess

of Γ is correct. Hence, by the de�nition of being touched, neither of the endpoint of e can lie at the same time in

the s-side of Cbα→+1 and in the t-side of Cbα→+λ. We infer that both endpoints of e are in the t-side of Cbα← and in

the s-side of Cbα→+1, as desired.
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Claim 11 asserts that (Zα0 )α∈[ξ] is a partition of Z − L.

Claim 12. For every Bα
, the following holds.

• Lbα←−1 = Lbα→+λ if Bα
is not an actual block or core(Z) ∩ Zα0 = ∅

• Lbα←−1 ) Lbα→+λ if Bα
is an actual block and core(Z) ∩ Zα0 6= ∅.

Proof. Claim 7 implies that both L′ := Lbα←−1 and L′′ := Lbα→+λ are downward-closed (recall that La = [λ] for

a ≤ 0 and La = ∅ for a > `). �en, Claim 6 implies L′′ ⊆ L′.
Assume �rst L′ 6= L′′ and pick i ∈ L′ \ L′′. Consider the path Pi. By Claim 8, there is no edge of core(Z) on

Pi before Cbα←−1 and no edge of Z on Pi a�er Cbα→+λ. As core(Z) is a minimal st-cut, and the last one on Pi
among the edges of E(Pi) ∩ Z is in core(Z), Pi goes through core(Z) between Cbα←−1 and Cbα→+λ. We infer

that there is an edge of core(Z) between Cbα←−1 and Cbα→+λ. By Claim 11, both endpoints of the said edge is

between Cbα← and Cbα→+1. Hence, Zα0 contains an edge of core(Z).

Assume now L′ = L′′ and, by contradiction, let e be any edge of core(Z) ∩ Zα0 . �at is, both endpoints of e
are in the t-side of Cbα← and in the s-side of Cbα→+1.

By the de�nition of core(Z), there exists an st-path Q whose only intersection with Z is the edge e. Let

f = (v, u) be the �rst edge of Cbα← on Q, let i ∈ [λ] be such that f ∈ E(Pi), and let Q1 be the pre�x of Q from s
to v. Since Q1 is contained in the s-side of Cbα← , while e is in the t-side of Cbα← , Q1 is a path in G− core(Z) as

well. Since bα← − 1 is untouched, f /∈ core(Z) and thus u is in the s-side of core(Z). �is witnesses that i ∈ Lbα←
and hence L′ 6= ∅. Since L′ = L′′, it holds that Lbα→+λ 6= ∅. In particular, bα→ + λ ≤ ` and thus Cbα→+λ is de�ned.

Recall that Q contains e. Since e has its head in the s-side of Cbα→+1, Q visits at least one edge of Cbα→+λ a�er

e Let f ′ be the last edge of Cbα→+λ on Q and let Q2 be the su�x of Q starting from the head of f ′. Clearly, f ′ is

a�er e on Q so e does not lie on Q2. Also, Q2 is contained completely on the t-side of Cbα→+λ by the choice of f ′.
Hence, Q2 is also a path in G− core(Z). Consequently, as core(Z) is an st-cut, f ′ lies on a path Pj for some

j /∈ Lbα→+λ = L′′. However, then the subpath Q3 of Q from the head of f to the tail of f ′ contradicts Claim 5.

�is is the desired contradiction.

Let α1 < α2 < . . . < αη be the indices of Γ-blocks that are actual blocks. We randomly guess the integer

1 ≤ η ≤ 4k − 2λ. We sample a sequence L = ([λ] = L0
Z ⊇ L1

Z ⊇ . . . L
η
Z = ∅) of downward-closed sets, aiming

at Lι−1Z = Lbαι←−1 and LιZ = Lbαι→+λ for every 1 ≤ ι ≤ η. We de�ne J ⊆ [η] to be the set of those indices ι ∈ [η]
such that Lι−1Z ( LιZ . We remark that in the deterministic se�ing the above step is replaced by branching in the

straightforward manner.

While we were able to guess sets (LιZ)0≤ι≤η , we cannot guess the indices (αι)1≤ι≤η , as there are too many

options. Instead, we perform a color-coding step, for every Γ-block guessing its potential place in the sequence

of actual blocks. More precisely, for every 1 ≤ α ≤ ξ − 1, we sample a set Lα ∈ L, and further denote

L0 = [λ] and Lξ = ∅. We aim that for every 1 ≤ ι ≤ η actually Lαι−1 = Lι−1Z and Lαι = LιZ . In the

deterministic se�ing, we use �eorem 2.3 to replace the above color-coding step with branching into at most

2O(η log η) · O(log n) = 2O(k log k) · O(log n) options.

In other words, for every 1 ≤ α ≤ ξ − 1, the sampled set Lα is a guess for the downward-closed set Lbα→+λ

(and thus Lα−1 is also a guess for the downward-closed set Lbα←−1). We aim at being correct in this guess around

(just before and just a�er) Γ-blocks that are actual blocks.

If this is the case, then consider a single Γ-block Bα
. If there is an index 1 ≤ ι ≤ η such that Lα−1 = Lι−1Z

and Lα = LιZ , then it is possible that Bα
is an actual block and α = αι. �ere may be multiple such blocks α for

a single value of ι and we will treat them in the same way, considering them candidates for Bαι
. On the other

hand, if for an index α no such index ι exists, we know that Bα
is not an actual block and we can add some edges

to the returned set A that simply bypass Bα
.

To implement the above intuition, we need a few notions. We say that an index 1 ≤ α ≤ ξ is good if there

exists 1 ≤ ι ≤ η such that Lα−1 = Lι−1Z , and Lα = LιZ . A good index α is excellent if additionally this ι belongs

to J , that is, Lα−1 6= Lα. Note that all indices αι for 1 ≤ ι ≤ η are good and αι is excellent if and only if

Lι−1Z 6= LιZ , which is equivalent to core(Z) ∩ Zαι0 6= ∅ by Claim 12. Furthermore, if α is excellent, then the

corresponding index ι ∈ J is uniquely de�ned and we denote it ι(α).

For every excellent 1 ≤ α ≤ ξ, we de�ne an instance Iα = (Gα, s, t, kα) with a maximum �ow Pα as

follows. Let Dα = Lα−1 \ Lα = L
ι(α)−1
Z \ Lι(α)Z (recall that for excellent α we have Lα−1 ) Lα). De�ne �rst a

graph Gα0 that consists of:
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• a subgraph of G induced by all vertices v ∈ V (G) which are on the t-side of Cbα←−1 and on the s-side of

Cbα→+λ, except for the vertices s and t;

• vertices s and t (but so far no arcs incident with them)

• if bα← > 1, then for every i ∈ Dα
an edge (s, vi) where vi is the head of the edge of E(Pi) ∩ Cbα←−1;

• if bα← ≤ 1, then all edges of the form (s, vi) that lie on paths {Pi | i ∈ Dα};

• if bα→ + λ ≤ `, then for every i ∈ Dα
an edge (ui, t) where ui is the tail of the edge of E(Pi) ∩ Cbα→+λ;

• if bα→ + λ > `, then all edges of the form (ui, t) that lie on paths {Pi | i ∈ Dα}

�e �ow Pα is of size λα := |Dα| and consists of, for every i ∈ Dα
, the arc (s, vi), the subpath of Pi between vi

and ui, and the arc (ui, t). �e graph Gα is the subgraph of Gα0 induced by all vertices that are at the same time

reachable from s and from which one can reach t in Gα0 . Note that the �ow Pα is present in Gα.

We de�ne Zα ⊆ Zα0 as the set of those (u, v) ∈ Z such that either:

• u, v ∈ V (Gα) \ {s, t},

• bα← ≤ 1 and u = s, v = vi for some i ∈ Dα
, or

• bα→ + λ > ` and u = ui, v = t for some i ∈ Dα
.

We remark that Zα0 \ Zα may be nonempty. For example, Zα0 may contain an edge e on a path Pi for some

i /∈ Dα
that has both endpoints beween Cbα← and Cbα→ and is an edge of Z \ core(Z). �is edge is not in Gα and

hence also not in Zα.

For every ι ∈ J we guess integers 0 ≤ κιZ ≤ kιZ ≤ k, aiming at κιZ = |Zαι ∩ core(Z)| and kιZ = |Zαι |. We

mandate that for every ι ∈ J it holds that |Lι−1Z \ LιZ | ≤ κιZ ≤ kιZ and that

∑
ι∈J k

ι
Z ≤ k. If these conditions

are not satis�ed, we just return either (A = ∅,P) if κ = λ or (A = {(s, t)}, {(s, t)}) if κ > λ from this recursive

call and terminate. (In the deterministic se�ing, the above guess is replaced by branching in the standard manner,

and we ignore branches where the conditions are not satis�ed.) Furthermore, for every excellent 1 ≤ α ≤ ξ, we

denote κα = κ
ι(α)
Z and kα = k

ι(α)
Z for brevity. �is de�nes the parameter kα in the instance Iα for an excellent

α and a parameter κα we will pass down in the recursion.

Let us lower bound the probability that all gueses are as we aim for. �e probability of guessing η correctly

is Ω(k−1). Guessing the sequence L boils down to guessing, for every i ∈ [λ], the maximum index 0 ≤ ι ≤ η
for which i ∈ LιZ . Hence, the success probability here is at least (η + 1)−λ = 2−O(k log k)

. �e integers

{κιZ | ι ∈ J} and {kιZ | ι ∈ J} are guessed correctly with probability 2−O(k log k)
and similarly correct sets Lα for

α ∈
⋃η
ι=1{αι− 1, αι} are guessed with probability 2−O(k log k)

. Hence, overall success probability is 2−O(k log k)
.

By a similar computation, in the deterministic counterpart we have 2O(k log k)O(log2 n) branches (there were

two color-coding steps so far).

We observe the following.

Claim 13. For every excellent 1 ≤ α ≤ ξ, Pα is a maximum st-�ow in Gα and Gα has proper boundaries.

Furthermore, one of the following options hold:

• either Dα 6= [λ] and thus |Pα| = |Dα| < λ and kα ≤ k − (λ− |Dα|) < k, or

• Dα = [λ],H is the reachability pa�ern of (Gα,Pα), and δ+Gα(s), Cbα← , Cbα←+1, . . . , Cbα→+λ−1, δ
−
Gα(t) is the

H-sequence of mincuts in (Gα,Pα) (without the �rst term if bα← = 1, without the last term if bα→ + λ > `,
and without all terms Cc for which c > `).

Proof. �e claim that Pα is a maximum st-�ow in Gα and that Gα is properly boundaried follows directly from

how we chose edges incident with s and t in Gα.

Consider �rst the simpler case Dα 6= [λ]. �e fact that |Pα| = |Dα| < λ is immediate. Since we mandate

kιZ ≥ |L
ι−1
Z \ LιZ | and

∑η
ι=1 k

ι
Z ≤ k, we have kα ≤ k − (λ− |Dα|).

Consider then the case Dα = [λ]. Observe that Gα0 is isomorphic to the graph G with the following

modi�cations: if bα← > 1, then contract the s-side of Cbα←−1 onto s and if bα→ + λ ≤ `, contract the t-side of

Cbα→+λ onto t. Furthermore, Pα can be then de�ned as the projection of P shortened to the part in the t-side of

Cbα←−1 and in the s-side of Cbα→+λ.
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To see that the reachability pa�ern of (Gα,Pα) is still H , �rst note that every path in the residual graph

of Gα and Pα that does not use s nor t is also a path in GP , and hence the residual graph of Gα and Pα is a

subgraph of H . In the second direction, since the entire part of G in the t-side of Cbα← and s-side of Cbα←+1 lies

in Gα0 (recall λ ≥ 2), and Cbα←+1 is the H-subsequent mincut to Cbα← , for every (i, j) ∈ E(H) there is a path

from V (Pi) \ {s, t} to V (Pj) \ {s, t} in GP that lies entirely in the t-side of Cbα← and in the s-side of Cbα←+1. By

the de�nition of Gα, this path is also present in Gα. Hence, it is also present in the residual graph of Gα and Pα.

To see that δ+Gα(s), Cbα← , Cbα←+1, . . . , Cbα→+λ−1, δ
−
Gα(t) is the H-sequence of mincuts in (Gα,Pα), recall

that δ+Gα(s) is the projection of Cbα←−1 if bα← > 1 and δ−Gα(t) is the projection of Cbα→+λ if bα→ + λ ≤ `.

Claim 14. Let 1 ≤ α ≤ ξ be such that Bα
is an actual block and α is excellent. �en, for every v ∈ V (Gα), it

holds that:

• there is a path from s to v in Gα − Zα if and only if v is in the s-side of Z ;

• there is a path from v to t in Gα − Zα if and only if there is a path from v to t in G− Z .
Proof. We �rst prove the⇒ implication for the �rst claim. It is immediate for v = s, so assume v 6= s. Let Q
be a path from s to v in Gα − Zα and let (s, vi), i ∈ Dα

, be the �rst edge of this path. By Claim 9, there exists

a path Qi from s to vi in G − Z that visits only vertices in the s-side of Cbα← (except for the endpoint). �e

concatenation of Qi and Q witnesses that v is in the s-side of Z .

�e proof for the⇒ implication of the second claim is very similar. It is immediate for v = t, so assume

v 6= t. Let Q be a path from v to t in Gα − Zα and let (ui, t), i ∈ Dα
, be the last edge of this path. By Claim 8,

the su�x of the path Pi from Cbα→+λ to t is disjoint with Z and in the t-side of Z . Hence, the concatenation of Q
and this su�x is a path from v to t in G− Z .

We now move to the⇐ direction for the �rst claim. Let Q be a path from s to v in G− Z , witnessing that v
is in the s-side of Z . Note that v 6= t. By the de�nition of Gα, there is a path R from v to t in Gα; let (uj , t) be

the last edge of this path.

Since v is in the t-side of Cbα←−1, Q intersects Cbα←−1; let e1 be the last edge of Cbα←−1 on Q and let i1 ∈ [λ]
be such that e1 lies on Pi1 . Since both endpoints of e1 are in the s-side of Z , i1 ∈ Lα−1.

We observe that no vertex w on Q can lie on a path Pi for i ∈ Lα. If w lies on both Q and Pi for i ∈ Lα,

then the subpath of Q from w to v and the subpath of R from v to uj contradicts Claim 5 as j ∈ Dα
so j /∈ Lα

and Lα is downward-closed. �is in particular implies that i1 ∈ Dα
.

In particular, Q contains no edge of Cbα→+λ, as all edges of Cbα→+λ that are in the s-side of Z lie on paths

Pi, i ∈ Lα. Consequently, the subpath Q′ of Q from the head of e1 to v is completely contained in the t-side of

Cbα←−1 and the s-side of Cbα→+λ. Concatenating Q′ with R witnesses that the whole Q′ is in fact present in Gα.

Hence, Q′, prepended with (s, vi1) is a path from s to v in Gα − Zα, as desired.

We are le� with the⇐ direction for the second claim, which is similar to the previous argumentation. Let Q
be a path from v to t in G− Z ; note that v 6= s. By the de�nition of Gα, there is a path R from s to v in Gα; let

(s, vj) be the �rst edge of this path.

Since v is in the s-side of Cbα→+λ, Q intersects Cbα→+λ; let e2 be the �rst edge of Cbλ→−1 on Q and let i2 ∈ [λ]
be such that e2 lies in Pi2 . We have i2 /∈ Lα.

We observe that no vertex w on Q can lie on a path Pi for i /∈ Lα−1. If w lies on both Q and Pi for i /∈ Lα−1,

then the subpath of R from vj to v and the subpath of Q from w to v contradicts Claim 5 as j ∈ Dα
so j ∈ Lα−1

and Lα−1 is downward-closed. �is in particular implies i2 ∈ Dα
.

In particular, Q contains no edge of Cbα←−1, as all edges of Cbα←−1 that are in the t-side of Z lie on paths Pi,
i /∈ Lα−1. Consequently, the subpath Q′ of Q from v to the tail of e2 is completely contained in the t-side of

Cbα←−1 and the s-side of Cbα→+λ. Concatenating R with Q′ witnesses that the whole Q′ is in fact present in Gα.

Hence, Q′ with the edge (ui1 , t) is a path from v to t in Gα − Zα, as desired.

Claim 15. Let 1 ≤ α ≤ ξ be such that Bα
is an actual block and α is excellent. �en Zα is a star st-cut in Gα.

Furthermore, core(Zα) = core(Z) ∩ Zα.
Proof. �is is an easy corollary of Claim 14.

Since Z is an st-cut, there is no vertex of G that has both a path from s to v and a path from v to t in G− Z .

Claim 14 implies that no vertex of Gα admits both a path from s to v and from v to t in Gα −Zα. �us, Zα is an

st-cut. �e �rst point of Claim 14 implies that from Z being a star st-cut in G follows that for every (u, v) ∈ Zα,

u is in the s-side of Zα in Gα and v is in the t-side of Zα in Gα. Finally, an arc (u, v) ∈ Zα we have that

(u, v) ∈ core(Zα) if and only if there is path from v to t in Gα − Zα, which by Claim 14 is equivalent to an

existence of a path from v to t in G− Z , which is equivalent to (u, v) ∈ core(Z).
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Claim 15 allows the following recursive step. For every excellent 1 ≤ α ≤ ξ, recurse on Iα, κα, and Pα,

obtaining a pair (Aα, P̂α) in the randomized case and a family Aα in the deterministic case. By Claim 13, all

recursive calls either consider smaller value of k or consider properly boundaried instance with the same k, λ,

and H , but fall into the ` ≤ `big case.

�ere is now an important delicacy in the deterministic case. By duplicating some elements of some setsAα, we

can assume that for �xed ι ∈ J , all setsAα with ι(α) = ι have the same size, which we denote byNι. Furthermore,

enumerate Aα as {(Aαi , P̂αi ) | 1 ≤ i ≤ Nι(α)}. We iterate over all tuples of (iι)ι∈J ∈
∏
ι∈J{1, 2, . . . , Nι}; for

each such tuple (iι)ι∈J we denote (Aα, P̂α) = (Aαiι(α)
, P̂αiι(α)

) for every excellent α and proceed as follows (i.e.,

in the same manner as in the randomized se�ing).

In the randomized se�ing, we aim at (Aα, P̂α) being compatible with Zα for all excellent α where Bα
is an

actual block. (Note that in the deterministic se�ing, this property is guaranteed for at least one choice of (iι)ι∈J .)

In this case, for any such α, we have κα ≤ λGα+Aα(s, t) = |coreGα+Aα(Zα)| ≤ |Zα| = kα. For every ι ∈ J , we

randomly guess an integer κιZ ≤ λιZ ≤ kιZ , aiming at λιZ = λGαι+Aαι (s, t). �e guess is correct with probability

2−O(k log k)
, and a straighforward branching replacement gives 2O(k log k)

subcases in the deterministic step.

We say that an excellent index α is superb if λGα+Aα(s, t) = λ
ι(α)
Z . Note that if our guess is correct, for every

excellent α, if Bα
is an actual block, then α is superb.

Return a set A (or insert into the constructed set A in the deterministic se�ing) consisting of:

1. for every superb 1 ≤ α ≤ ξ, the following edges:

(a) all edges of Aα with the following replacement:

• if bα← > 1, replace every arc (s, v) ∈ Aα with arcs (u, v) where u ranges over all tails of edges of

Cbα←−1 on paths Pi for i ∈ Dα
;

• if bα→ + λ ≤ `, replace every arc (v, t) ∈ Aα with arcs (v, u) where u ranges over all tails of

edges of Cbα→+λ on paths Pi for i ∈ Dα
;

(b) for every i ∈ [λ] \Dα
an arc from the tail of the edge of Cbα←−1 ∩E(Pi) (or s if bα← = 1) to the tail

of the edge of Cbα→+λ ∩ E(Pi) (or t if bα→ + λ > `);

2. for every good but not superb 1 ≤ α ≤ ξ, the following edges:

• for every i ∈ [λ], an edge from the tail of the edge of Cbα←−1 ∩ E(Pi) (or s if bα← ≤ 1) to the tail of

the edge of Cbα→+λ ∩ E(Pi) (or t if bα→ + λ > `).

3. for every 1 ≤ a ≤ ` for which there is no good α such that the block Bα = (bα← < . . . < bα→) satis�es

bα← ≤ a ≤ bα→ + 1:

• for every i ∈ [λ], an edge from the tail of the edge ofCa∩E(Pi) to the tail of the edge ofCa+1∩E(Pi)
(or t if a = `);

4. for every Γ-milestone a, for every ι ∈ J , for every i, j ∈ Lι−1Z \ LιZ , an edge from the tail of the edge of

Ca ∩ E(Pi) to the tail of the edge of Ca ∩ E(Pj).

Accompany the set A with a �ow P̂ of value

∑
ι∈J λ

ι
Z constructed as follows. Intuitively, for every ι ∈ [η],

we push λιZ units of �ow along the �ow paths Pi, i ∈ Lι−1Z \ LιZ . We go from s to t.

• For every superb 1 ≤ α ≤ ξ, denote ι := ι(α) and:

– push κα = κιZ units of �ow from Cmax(bα←−1,1) to Cmin(bα→+λ,`) using the �ow P̂α of value λιZ in

Gα+Aα (and arcs added in Point 1a), using the arcs added in Point 4 at milestones bα←−1 (if bα← > 1)

and bα→ + λ (if bα→ + λ ≤ `) to reshu�e the �ow between �ow paths Pi, i ∈ Lι−1Z \ LιZ in Cbα←−1
and Cbα→+λ, respectively;

– for every ι′ ∈ J \ {ι} push λι
′

Z units of �ow from Cmax(bα←−1,1) to Cmin(bα→+λ,`) using edges added

in Point 1b.

• For every good but not superb 1 ≤ α ≤ ξ, for every ι ∈ J push λιZ units of �ow along the corresponding

edges from Cmax(bα←−1,1) to Cmin(bα→+λ,`) added in Point 2.
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• For every 1 ≤ a ≤ ` that such that there is no good α with bα← − 1 ≤ a ≤ bα→ + λ, for every ι ∈ J push

λιZ units of �ow along the corresponding edges added for a and i ∈ Lι−1Z \ LιZ in Point 3.

Recall that we work under the assumption that all random guesses in this recursive call were correct for the

cut Z and, furthermore, for every ι ∈ J , the pair (Aαι , P̂αι) is compatible with Zαι in Gαι . (In the deterministic

se�ing, this is guaranteed for one of the choices of (iι)ι∈J .) �e following two observations show correctness of

the recursion above.

Claim 16. Let

Z ′ :=
⋃
ι∈J

coreGαι+Aαι (Z
αι).

�en Z ′ is an st-cut in G+A.

Proof. By contradiction, let Q be an st-path in G+A− Z ′.
For every ι ∈ J , if bαι→ + λ ≤ `, let Dι be the set of all tails of edges of Cbαι→+λ. Note that Dι forms a vertex

separator from s to t in G+A, that is, any path from s to t in G+A needs to contain a vertex of Dι.

Assume that for some ι ∈ J for which Dι is de�ned (i.e., bαι→ + λ ≤ `) the path Q contains a vertex v ∈ Dι

that is a tail of an edge of Cbαι→+λ on path Pi where i /∈ LιZ . Let ι, v, and i be such that v is the �rst such vertex

on Q. For brevity, denote α = αι.
As LιZ is downward-closed, Claim 5 implies that no vertex on Q before v (except for s) lies on a path Pi′ for

i′ ∈ LιZ . In particular, by the choice of v, there is no vertex of Dι before v on Q.

If bα← ≤ 1, then the pre�x of Q until v is present in Gα +Aα − Zα, a contradiction to the assumption that

Aα is compatible with Zα. Otherwise, let D be the set of tails of edges of Cbα←−1 and observe that Q needs

to pass a vertex of D before v. Let w be the last such vertex and j ∈ [λ] be such that w is a tail of an edge of

Cbα←−1 ∩ E(Pj).

Assume �rst that j /∈ Lι−1Z . Since L0
Z = [λ] we have ι > 1. �e path Q visits an edge of C

b
αι−1
→ +λ

before

w; let v′ be the tail of the last such edge before w and assume this edge lies on path Pj′ . By the choice of v,

j′ ∈ Lι−1Z . However, the subpath of Q from v′ to w contradicts Claim 5. Hence, we have w ∈ Lι−1Z . Since Lι−1Z

is downward-closed, Claim 5 implies that i, j ∈ Lι−1Z \ LιZ = Dα
.

Consider now the subpath of Q from w to v. By the choice of w, this subpath does not contain any vertex

in the s-side of Cbαι←−1. We have already established that v is the �rst vertex on Q that is a tail of an edge of

Cbαι→+λ. We infer that the subpath of Q from w to v is contained in the t-side of Cbαι←−1 and in the s-side of

Cbαι→+λ except for the last edge. Hence, it projects to a path from s to t in Gα +Aα − Zα, a contradiction to the

assumption that Aα is compatible with Zα. We infer that such a vertex v does not exist.

As LηZ = ∅, this is only possible if η ∈ J and b
αη
→ + λ > `. For brevity, denote α = αη . Since ` > `big, we

have bα← > 1. Let D be the set of tails of edges of Cbα←−1 and observe that Q needs to pass a vertex of D. Let w
be the last such vertex and assume w is a tail of an edge of Cbα←−1 ∩ E(Pi) for some i ∈ [λ].

Assume �rst that i /∈ Lη−1Z . Similarly as before, this implies η > 1 and, by Claim 5, Q visits an edge of

C
b
αη−1
→ +λ

on a path Pj′ with j′ /∈ Lη−1Z . But then v and ι would have been de�ned, a contradiction. Hence,

i ∈ Lη−1Z . By the choice of w, the subpath of Q from w to t lies in the t-side of Cbα←−1 and hence it projects to

a path from s to t in Gα + Aα − Zα, a contradiction to the assumption that Aα is compatible with Zα. �is

�nishes the proof of the claim.

Claim 17. (A, P̂) is compatible with Z in G.

Proof. We �rst check if A is compatible with Z in G, that is, if no edge of A goes from the s-side of Z to the

t-side of Z .

For edges added in Point 1a, consider two cases. If Bα
is an actual block, it su�ces to recall Claim 14: a

vertex v ∈ V (Gα) is in the s-side of Zα if and only if it is in the s-side of Z in G and, furthermore for i ∈ Dα

the endpoints of the edge of E(Pi) ∩ Cbα←−1 are in the s-side of Z (if bα← > 1) and the endpoint of the edge of

E(Pi)∩Cbα→+λ (if bα→ + λ ≤ `) are in the t-side of Z . If Bα
is not an actual block, we observe that all vertices of

V (Gα) \ {s, t} lie either entirely in the s-side of Z or entirely in the t-side of Z due to the fact that we kept in

Gα only vertices reachable from s and from which one can reach t in Gα0 .

For edges added in Point 1b, we �rst observe that for every i ∈ [λ] \Dα
it holds that i ∈ Lbα←−1 if and only

if i ∈ Lbα→+λ: if Bα
is an actual block it follows from the assumption that Lbα←−1 = Lα−1 and Lbα→+λ = Lα

and otherwise we have Lbα←−1 = Lbα→+λ. Hence, as both bα← − 1 (if bα← > 1) and bα→ + λ (if bα→ + λ ≤ `) are

milestones, we have that any edge added in Point 1b lie on the same side of Z .
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For edges added in Point 2, note that we have Lbα←−1 = Lα−1 = Lα = Lb
α
→+λ

, so an edge added for i ∈ Lα
connects two vertices in the s-side of Z and for i /∈ Lα connects two vertices in the t-side of Z .

For edges added in Point 3, note that any such a is untouched and hence for every i ∈ [λ], the entire subpath

of Pi from the edge of Ca to the edge of Ca+1 (or t if a = `) lies in the same side of Z . Hence, again for any edge

added in Point 3, both its endpoints are in the same side of Z .

Finally, for edges added in Point 4, the claim follows from the fact that every Γ-milestone a is a milestone,

and hence a is untouched and La ∈ {L0
Z , . . . , L

η
Z}. �us, both endpoints of an edge added in Point 4 lies in the

same side of Z .

�is concludes the proof that A is compatible with Z in G. In particular, Z is a star st-cut in G+A.

Claim 16 asserts that |Z ′| is an st-cut in G+A of cardinality |P̂|. Hence, P̂ is an st-max�ow in G+A and

Z ′ is an st-mincut in G+A. As Z ′ ⊆ Z , we have that Z is a star st-cut and Z ′ = coreG+A(Z).

It remains to check that P̂ is a witnessing �ow for Z in G+A. Note that the only edges of P̂ that are not in

A are edges inside subinstances Gα from recursive calls for superb α. If Bα
is an actual block, then P̂ does not

use any edge of Z \ Z ′ in Gα as P̂α is a witnessing �ow for Zα in Gα +Aα. If Bα
is not an actual block, there

is no edge of Z in Gα. �is �nishes the proof of the claim.

3.6 Probability analysis

Here we focus on the randomized se�ing only.

Fix a star st-cut Z of |Z| ≤ k. We want to lower bound the probability that the recursive algorithm �nds a

pair (A, P̂) compatible with Z . We say that the algorithm is correct at some random step if it correctly guesses

the properties of Z .

In the preprocessing phase, the algorithm either directly returns a desired pair (without any random choice),

recurses on an instance with smaller value of 2k − λ (being correct with probability Ω(k−1), or recurses on an

instance with the same value of k and λ and, being properly boundaried (with probability Ω(1)).

In the base case |E(H)| = |V (H)|, we either return a correct outcome or recurse on an instance with larger

λ (making correct choices with probability Ω(λ−1) = Ω(k−1)).

In the case of ` ≤ `big, the algorithm makes correct guesses about sets B← and B→ with probability at least

2−O(k log k)
. If λG+A0

(s, t) > λG(s, t) at this point, the algorithm recurses on an instance with smaller value of

2k − λ. If a vertex of V (C) is in the s-side of Z , where C is the st-mincut of G+A0 closest to t, the algorithm

makes correct guesses with probability Ω(k−1) and again recurses on an instance with a smaller value of 2k − λ.

If V (C) is contained in the t-side of Z , the algorithm guess so with probability Ω(1) and recurses on an instance

with the same k and λ, but smaller |E(H)|. Note that |E(H)| can decrease (while keeping k and λ the same) less

than k2 times.

In the case of ` > `big, recall the algorithm makes correct guesses with probability 2−O(k log k)
. Recall also

that the algorithm returns a correct output if it makes correct guesses and the following holds: in every Γ-block

Bα
that is an actual block and α is superb, the returned pair (Aα, P̂α) from the recursive call is compatible with

Zα in Gα. By Claim 13, there is either one such recursive call (if Lι−1Z \ LιZ = [λ] for some 1 ≤ ι ≤ η) with the

same k, λ, H , but falling into case ` ≤ `big, or a number of such calls with strictly smaller values 2kα − |Pα|
summing up to at most 2k − |P|.

Hence, the depth of the recursion isO(k3), as 2k−λ can decrease only 2k times and, between these decreases,

|E(H)| can decrease less than k2 times. Furthermore, in the entire recursion tree we care only about being

correct on O(k3) recursive calls, as even if in the last case there are multiple subcalls (Gα,Pα) with Zα 6= ∅, the

values of 2kα − |Pα| for these calls sum up to at most 2k − |P|. At each recursive call, we make correct guesses

with probability 2−O(k log k)
. Hence, the overall success probability is 2−O(k4 log k)

, as desired.

3.7 Branching analysis

Here we focus on the deterministic se�ing only.

We want to upper bound the number of elements output by the algorithm. In the preprocessing phase, the

algorithm either directly returns, or branches into O(k) instance with smaller value of 2k − λ and a single

instance with the same value of k and λ and, being properly boundaried.

In the base case |E(H)| = |V (H)|, we insert one element into A in one branch and furthermore branch into

λ ≤ k instances with larger λ.
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In the case of ` ≤ `big, the algorithm branches into 2O(k log k)
choices for the sets B← and B→. In some

branches λG+A0
(s, t) > λG(s, t) or an edge of the sought cut Z is found and the algorithm recurses on an

instance with smaller value of 2k − λ. In one branch, the algorithm recurses on an instance with the same values

of k and λ, but smaller number of edges of H . �en, the algorithm branches in the s-/t-assignment of the vertices

of V (C). In all but one branches where a vertex of V (C) is in the s-side of Z , where C is the st-mincut ofG+A0

closest to t, the algorithm again recurses on an instance with a smaller value of 2k − λ. In the �nal branch when

V (C) is contained in the t-side of Z , the algorithm recurses on an instance with the same k and λ, but smaller

|E(H)|. Note that |E(H)| can decrease (while keeping k and λ the same) less than k2 times.

In the case of ` > `big, recall the algorithm takes 2O(k log k) · O(log2 n) branches and, furthermore, iterates

over all choices of (iι)ι∈J where 1 ≤ iι ≤ Nι for every ι ∈ J . By Claim 13, we have either |J | = 1 and the

recursive calls for excellent indices α has the same k, λ, H , but falling into case ` ≤ `big, or |J | > 2 and∑
ι∈J

2kιZ − |Lι−1Z \ LιZ | ≤ 2k − λ. (2)

Note that kα = kιZ and λα = |Dα| = |Lι−1Z \ LιZ | for excellent α with ι(α) = ι.
Hence, the depth of the recursion is h = O(k3), as 2k − λ can decrease only 2k times and, between these

decreases, |E(H)| can decrease less than k2 times. Consequently, by standard bo�om-up induction using (2), the

set A returned at depth d of the recursion has size bounded by 2O((2k−λ)(h−d) log k) · log2(h−d) n. �e desired

bound on the running time and the �nal size of the returned family A follows.

4 Applications

4.1 Weighted Bundled Cut with pairwise linked deletable edges

Recall that an instance of Bundled Cut consists of a directed multigraph G, vertices s, t ∈ V (G), a nonnegative

integer k, and a family B of pairwise disjoint subsets of E(G). An element B ∈ B is called a bundle. An edge

that is part of a bundle is so�, otherwise it is crisp. A cut in a Bundled Cut instance I = (G, s, t, k,B) is an

st-cut Z that does not contain any crisp edge, that is, Z ⊆
⋃
B. A cut Z touches a bundle B ∈ B if Z ∩B 6= ∅.

�e cost of a cut Z is the number of bundles it touches. A cut Z is a solution if its cost is at most k. �e Bundled

Cut problem asks if there exists a solution to the input instance.

An instance of Weighted Bundled Cut consists of a Bundled Cut instance I = (G, s, t, k,B) and

additionally a weight function ω : B → Z+ and an integerW ∈ Z+. �e weight of a cut Z in I is the total weight

of all bundles it touches. A solution Z to I is a solution to the Weighted Bundled Cut instance (I, ω,W ) if

additionally the weight of Z is at most W . �e Weighted Bundled Cut problem asks if there is a solution to

the input instance. Note that any Bundled Cut instance can be treated as a Weighted Bundled Cut instance

by se�ing ω uniformly equal 1 and W = k.

An edge e ∈ E(G) is deletable if it is so� and there is no parallel arc to e that is crisp, and undeletable

otherwise. An instance (G, s, t, k,B) of Bundled Cut has pairwise linked deletable edges if for every B ∈ B and

every two deletable edges e1, e2 ∈ B, there exists a path in G from an endpoint of e1 to an endpoint of e2 that

uses only edges of B and undeletable edges.

In this subsection we prove the following theorem.

�eorem 4.1. Weighted Bundled Cut, restricted to instances with pairwise linked deletable edges, can be solved

in time 2O(k4d4 log(kd))nO(1)
, where d is the maximum number of deletable edges in a single bundle.

Proof. We can restrict ourselves to search for cuts Z that contain only deletable edges and |Z| ≤ kd. We invoke

the deterministic version of the directed �ow-augmentation for (G, s, t, kd). By iterating over the resulting sets

A, we can end up with an instance where Z is actually an st-mincut. �us, by somehow abusing the notation,

we assume that Z is already an st-mincut in I . Let P̂ = {P1, P2, . . . , Pλ} be any maximum �ow in G for

λ = |Z| ≤ kd.

Note that any st-mincut Z contains exactly one deletable edge on every path Pi. Let fi be the unique edge of

E(Pi) ∩ Z for a �xed hypothethical solution Z . We perform the following branching and color coding steps.

First, branch by guessing the number κ ≤ k of bundles violated by Z; let B1, B2, . . . , Bκ be the violated

bundles. For every 1 ≤ i ≤ λ we guess the index α(i) ∈ [κ] such that fi lies in Bα(i); this gives 2O(k log(kd))

subcases. For every B ∈ B, we guess γ(B) ∈ [κ], aiming at γ(Bj) = j for 1 ≤ j ≤ κ. Using �eorem 2.3, this

22



s t

P1

P2

P3

Figure 2: �e crucial �ltering step in the proof of �eorem 4.1 in the special case of 3-Chain SAT problem where

the bundles are paths consisting of at most three edges. �e algorithm already guessed that there is a violated

bundle that has its �rst edge on P1 and its last edge on P2. �e green candidate bundle cannot be the one violated

by the solution, as the violet candidate provides a bypass from a vertex on P1 before the green bundle to a vertex

on P2 a�er the green bundle.

can be done by branching into 2O(k log k) · O(log n) cases. For every B ∈ B and every 1 ≤ i ≤ λ such that

α(i) = γ(B), we guess a deletable edge e(B, i) ∈ B, aiming at fi = e(Bα(i), i). Again using �eorem 2.3, this

can be done by branching into 2O(k2d log(kd)) · O(log n) cases. For every B ∈ B, we make every edge of B that

is not an edge e(B, i) for some i ∈ [λ] undeletable (i.e., we add a crisp copy if there is none).

We make a sanity check: we expect that every edge e(B, i) actually lies on the path Pi and is a deletable

edge; otherwise we delete the bundle B (making all its edges crisp).

Finally, we make the following guessing step. For every 1 ≤ j ≤ κ and every two distinct 1 ≤ i1, i2 ≤ λ such

that α(i1) = α(i2) = j, we guess the relation between fi1 and fi2 in the bundle Bj according to the de�nition

of having pairwise linked deletable arcs. �at is, note that one of the following holds:

1. fi1 or fi2 has a tail in s;

2. fi1 or fi2 has a head in t;

3. there is a path from an endpoint of fi1 to an endpoint of fi2 that does not use arcs of other bundles;

4. there is a path from an endpoint of fi2 to an endpoint of fi1 that does not use arcs of other bundles.

We guess the �rst case that applies and, additionally, if one of the �rst two cases applies, we guess which of

the four subcases applies (whether fi1 or fi2 and whether tail in s or head in t). �is guessing step results in is

2O(kλ2) = 2O(k3d2)
subcases.

We delete all bundles from B that do not comply with the guess above. Note that for every 1 ≤ j ≤ κ for

which one of the two �rst options is guessed, at most one bundle B with γ(B) = j remains, as there is at most

one deletable arc with tail in s (head in t) on a single �ow path.

We now make the following (crucial) �ltering step. Iterate over all 1 ≤ j ≤ κ and indices 1 ≤ i1, i2 ≤ λ such

that α(i1) = α(i2) = j and i1 6= i2. Consider two bundles B,B′ with γ(B) = γ(B′) = j such that e(B, i1) is

before e(B′, i1) on Pi1 but e(B, i2) is a�er e(B′, i2) on Pi2 . If the guessed relation for (j, i1, i2) is of the third

type, then it cannot hold that B′ = Bj , as otherwise the said connection for the bundle B, together with a path

from s to e(B, i1) along Pi1 and a path from e(B, i2) to t along Pi2 form an st-path avoiding Z (see Figure 2).

�us, we can delete B′ from B. Symmetrically, if the guessed relation for (j, i1, i2) is of the fourth type, then it

cannot hold that B = Bj , so we can delete B from B.

Once we perform the above �ltering step exhaustively, for every 1 ≤ j ≤ κ the bundles B with γ(B) = j
can be enumerated as Bj,1, . . . , Bj,nj such that for every 1 ≤ ξ < ζ ≤ nj and for every i ∈ [λ], if α(i) = j, then

e(Bj,ξ, i) is before e(Bj,ζ , i) on Pi. Let aZj be such that Bj = Bj,aZj .

Note that at this point the deletable edges are exactly the edges e(B, i) for some i ∈ [λ] and B ∈ B. If all

guesses are successful, Z is still a solution and all edges of Z are deletable.

We now construct an auxiliary weighted directed graph H as follows. Start with H consisting of two vertices

s and t. For every 1 ≤ j ≤ κ, add a path PHj from s to t with nj edges; denote the a-th edge as ej,a and set its

weight as ω(ej,a) = ω(Bj,a). Furthermore, for every 1 ≤ i1, i2 ≤ λ, denote j1 = α(i1), j2 = α(i2), for every

1 ≤ a1 ≤ nj1 and 1 ≤ a2 ≤ nj2 , for every endpoint u1 of e(Bj1,a1 , i1), for every endpoint u2 of e(Bj2,a2 , i2), if

G contains a path from u1 to u2 consisting only of crisp edges, then add to H an edge of weight +∞ from the

corresponding endpoint of ej1,a1 (i.e., tail if and only if u1 is a tail of e(Bj1,a1 , i1)) to the corresponding endpoint

of ej2,a2 (i.e., tail if and only if u2 is a tail of e(Bj2,a2 , i2)).

Observe that Z ′ := {ej,aZj | 1 ≤ j ≤ κ} is an st-cut in H . Indeed, if H would contain an arc (v, u) with v

before ej,aZj and u a�er ej′,aZ
j′

for some j, j′ ∈ [κ], then this arc was added to H because of some path between

23



s t

G1s11 t11

G2s22 t22

G3s33 t33

G4s44 t44

G5s55 t55

Figure 3: �e construction used in Lemma 4.2. �e copies of a single edge of G, marked in red, form a single

bundle.

the corresponding endpoints in G and such a path would lead from the s-side to t-side of Z . Also, in the other

direction, observe that if Y ′ = {ej,aj | 1 ≤ j ≤ κ} is an st-mincut in H , then

Y =
{
e(Bα(i),aα(i)

, i) | i ∈ [λ]
}

is a solution to I of the same weight.

Hence, it su�ces to �nd in H an st-cut of cardinality κ and minimum possible weight. Since κ ≤ λH(s, t),

this can be done in polynomial time by a reduction to the task of �nding an st-cut of minimum capacity: we set

the capacity of an edge e as ω(e) + 1 +
∑
f∈E(H) ω(f).

�is �nishes the proof of �eorem 4.1.

4.2 Weighted Directed Feedback Vertex Set

First, by standard reductions between the edge-deletion versions and vertex-deletion versions, for Corollary 1.7

we can actually solve the edge-deletion version. Weighted Directed Feedback Arc Set (Weighted DFAS). By

standard approach, Weighted DFAS can be solved using a subroutine for Weighted Skew Multicut. Here,

we are given a directed graph G, a tuple (si, ti)
b
i=1 of terminal pairs, a weight function ω : E(G) → Z+, and

integers k,W . �e goal is to �nd a set Z ⊆ E(G) of cardinality at most k, weight at most W , and such that there

is no path from si to tj in G− Z for any 1 ≤ i ≤ j ≤ b. We observe the following reduction.

Lemma 4.2. Given a Weighted Skew Multicut instance I = (G, (si, ti)
b
i=1, ω, k,W ), one can in polynomial

time construct an equivalent Weighted Bundled Cut instance I ′ = (G′,B, ω, k,W ) with the same k and W ,

where each bundle has at most b deletable edges and the instance has pairwise linked deletable edges.

Proof. To construct the graph G′, we start with b disjoint copies G1, . . . , Gb of the graph G. By vi, ei, etc.,

we denote the copy of vertex v or edge e in the copy Gi. We set Be = {ei | i ∈ [b]} for e ∈ E(G) and

B = {Be | e ∈ E(G)}, that is, all b copies of one edge of G form a bundle. We set weights of bundles as

ω′(Be) = ω(e). �ere will be no more bundles, so all arcs introduced later to G′ are crisp.

For every 1 ≤ i < j ≤ b and v ∈ V (G), we add to G′ an arc (vi, vj). Note that these arcs make the instance

satisfy the pairwise linked deletable edges property. Furthermore, we add to G′ vertices s and t and arcs (s, sii)
and (tii, t) for every i ∈ [b]. �is �nishes the description of the instance I ′ = (G′,B, ω′, k,W ). See Figure 3 for

an illustration.

It is straightforward to observe that if Z is a solution to the instance I , then

⋃
e∈Z Be is a solution to I ′

of the same weight and touching |Z| bundles. In the other direction, note that if Z ′ is a solution to I ′ then

Z = {e ∈ E(G) | Z ′ ∩Be 6= ∅} is a solution to I .

We deduce the following.

�eorem 4.3. Weighted DFAS and Weighted DFVS can be solved in time 2O(k8 log k)nO(1)
, that is, are FPT when

parameterized by k.
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