
Deniable Encryption in aQuantumWorld
Andrea Coladangelo

UC Berkeley & Simons Institute for

the Theory of Computing

Berkeley, California, USA

Shafi Goldwasser

UC Berkeley & Simons Institute for

the Theory of Computing

Berkeley, California, USA

Umesh Vazirani

UC Berkeley & Simons Institute for

the Theory of Computing

Berkeley, California, USA

ABSTRACT
(Sender-)Deniable encryption provides a very strong privacy guar-

antee: a sender who is coerced by an attacker into “opening” their

ciphertext after-the-fact is able to generate “fake” local random

choices that are consistent with any plaintext of their choice. The

only known fully-efficient constructions of public-key deniable

encryption rely on indistinguishability obfuscation (iO) (which cur-

rently can only be based on sub-exponential hardness assumptions).

In this work, we study (sender-)deniable encryption in a setting

where the encryption procedure is a quantum algorithm, but the

ciphertext is classical. First, we propose a quantum analog of the

classical definition in this setting. We give a fully efficient construc-

tion satisfying this definition, assuming the quantum hardness of

the Learning with Errors (LWE) problem.

Second, we show that quantum computation unlocks a funda-

mentally stronger form of deniable encryption, whichwe call perfect

unexplainability. The primitive at the heart of unexplainability is a

quantum computation for which there is provably no efficient way,

such as exhibiting the “history of the computation," to establish

that the output was indeed the result of the computation. We give a

construction which is secure in the random oracle model, assuming

the quantum hardness of LWE. Crucially, this notion implies a form

of protection against coercion “before-the-fact”, a property that is

impossible to achieve classically.

CCS CONCEPTS
• Theory of computation→ Quantum complexity theory; Crypto-

graphic protocols.

KEYWORDS
quantum cryptography, deniable encryption

ACM Reference Format:
Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani. 2022. Deniable

Encryption in a Quantum World. In Proceedings of the 54th Annual ACM

SIGACT Symposium on Theory of Computing (STOC ’22), June 20–24, 2022,

Rome, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3519935.3520019

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3520019

1 INTRODUCTION
This work is motivated by the following overarching question:

do local quantum computations alone provide an advantage in

cryptography? In other words, is there any quantum advantage

in the setting where honest parties can perform local quantum

computations but are restricted to sending and storing classical

information?

While many examples of quantum advantage are known which

leverage quantum communication (or shared entanglement), e.g.

key distribution [6, 16] and oblivious transfer [4, 14], or that rely

on storing quantum information, e.g. quantum money [22], copy-

protection [1], and various other unclonable primitives [5, 10, 13],

quantum advantage that results purely from local quantum compu-

tations is essentially restricted to certifiable randomness [7].

Here, we study the notion of deniable encryption in the setting

where honest parties have access to a quantum computer, but no

quantum communication. Deniable encryption was introduced by

Canetti et al. [11]. In a deniable encryption scheme, honest parties

are able to generate a “fake” secret key (in the case of receiver

deniability) and “fake” randomness (in the case of sender deniability)

to claim that the public communication is consistent with any

plaintext of their choice. This allows them to preserve the privacy

of the true plaintext even if an adversary coerces them after-the-fact

into disclosing their private information.

We restrict our attention to non-interactive public-key schemes,

and we focus on sender-deniable encryption, namely the setting in

which we only protect the sender against coercion by an attacker.

A bit more formally, a public-key encryption scheme is sender-

deniable if there exists a “faking” algorithm that takes as input a pair

of messages𝑚0,𝑚1, an encryption 𝑐 = Enc(𝑚0, 𝑟), and the random-

ness 𝑟 used in the encryption, and outputs some “fake” randomness

𝑟 ′, which should look consistent with a genuine encryption of𝑚1.

More precisely, the view of an attacker who receives𝑚1, 𝑐 , and the

fake randomness 𝑟 ′, should be computationally indistinguishable

from the view of an attacker who receives𝑚1, along with a genuine

encryption of𝑚1, and the true randomness used.

In their original paper [11], Canetti et al. gave a construction

of a deniable encryption scheme where the real and fake views

are computationally indistinguishable up to inverse polynomial

distinguishing advantage - we will call the distinguishing advantage

the “faking probability”. More generally, they show that the size of

the ciphertext grows with the inverse of the faking probability.

In a breakthrough work [20], Sahai and Waters gave the first

construction with negligible faking probability and compact (i.e

polynomial-size) ciphertexts under the assumption that secure in-

distinguishability obfuscation (iO) exists. Recently, a breakthrough

of Jain, Lin and Sahai [18], showed how to construct iO from a few

concrete computational hardness assumptions. However, the latter

assumptions require sub-exponential hardness of the underlying

1378

https://doi.org/10.1145/3519935.3520019
https://doi.org/10.1145/3519935.3520019
https://doi.org/10.1145/3519935.3520019
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520019&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

problems. Moreover, the constructions from [18] are not quantum-

secure due to their use of bilinear maps. Other constructions that

are based on “LWE-like” assumptions [8, 15, 17, 21] also require

sub-exponential hardness for a fundamental reason: they rely on

compilers from weaker objects (like functional encryption) to iO,

which seem to inherently introduce sub-exponential hardness. Fi-

nally, a recent work [3] achieves deniable encryption with compact

ciphertexts and negligible faking probability based on polynomial-

time hardness of LWE. However, the running time of the encryption

algorithm is non-polynomial, growing with the inverse of the fak-

ing probability. In sum, no constructions of deniable encryption

from polynomial-time hardness assumptions achieve negligible fak-

ing probability and are fully efficient - namely, achieve compact

ciphertexts and polynomial-time encryption and decryption. Thus,

the following is an outstanding open question:

Can fully efficient deniable encryption be based on polynomial-time

hardness assumptions?

In this work, we provide an affirmative answer to this question in

the setting where encryption is a quantum algorithm, but the cipher-

text is classical. For simplicity, we will refer to this as the quantum

setting. Our constructions illustrate that quantum computation pro-

vides a fundamentally new kind of advantage for deniability: while

classical deniability can only handle coercion after-the-fact (i.e. the

attacker approaches the sender after she has sent her ciphertext),

quantum computation can also protect against coercion before-the-

fact (i.e. the attacker approaches the sender before she sends her

ciphertext).

1.1 Our Contributions
We propose two notions of deniability in the quantum setting,

namely quantum deniability and unexplainability, and we provide

a construction for each. In this section, we give an overview of

the two notions and the corresponding constructions. Our second

construction satisfies a strong form of unexplainability that we

call perfect unexplainability. The latter notion implies a form of

protection against coercion before-the-fact.

Quantum Deniability. Recall that the classical definition of de-

niability is centered around the notion of input randomness. Un-

fortunately, the latter is not well-defined for a quantum algorithm,

since randomness can be intrinsically the result of a measurement,

and depends on the basis in which the measurement is carried

out. Instead, the correct analog of randomness is the unmeasured

quantum state of the encryption algorithm.

Now, the strongest definition of quantum deniability that one

could imagine would require that revealing the final quantum state

of the encryption algorithm (right before measurement) to an at-

tacker does not compromise the secrecy of the plaintext. However,

this definition is clearly impossible to achieve, since one can rewind

the computation to recover the input state, and hence the plaintext.

Instead, in the case where the plaintext is a single bit, our definition

of quantum deniability allows the sender to measure a single qubit

of the final quantum state of the encryption algorithm (correspond-

ing to one bit of the ciphertext), and requires that revealing all

the other qubits to the attacker does not compromise the secrecy

of the plaintext. One might expect that such a definition is still

impossible to achieve. However, remarkably, there is a construction

that achieves it.

The setting is somewhat subtle, so let us be a little more precise.

The encryption of a single bit 𝑏 can be thought of as a pair (𝑧, aux),
where 𝑧 ∈ {0, 1} and aux ∈ {0, 1}𝑛 for some 𝑛 (recall that the

ciphertext is entirely classical). The recipient (who has the secret

key) can efficiently recover 𝑏 from 𝑧 using aux1, while an adversary

who only sees (𝑧, aux) has negligible advantage in guessing 𝑏. For

deniability, we require that if the sender’s quantum encryption

algorithm were to only measure the qubit register corresponding

to 𝑧, then the remaining final quantum state of the encryption

algorithm (which includes aux in superposition) still does not reveal
any non-negligible information about 𝑏 to the adversary. Note that,

in practice, encryption requires the honest sender to measure both 𝑧

and aux. The definition of quantum deniability is designed to show

that even if the sender were to preserve a coherent state over as

many qubits as possible – i.e. all but the single qubit corresponding

to 𝑧 – this still does not reveal any information about the plaintext

𝑏 to the attacker.

Theorem 1. There exists a deniable encryption scheme (in the

sense of the above definition), assuming the quantum hardness of

LWE.

The scheme thatmakes the theorem true is simple, and is inspired

by the use of trapdoor claw-free functions in [7, 19].

In essence, in our encryption scheme, the public key is a choice

of trapdoor claw-free function pair (𝑓𝑘,0, 𝑓𝑘,1). The encryption of

a single bit 𝑏 is a pair (𝑧, aux) where aux = (𝑑,𝑦) such that 𝑧 =

𝑏 ⊕ 𝑑 · (𝑥0 ⊕ 𝑥1), where 𝑥0, 𝑥1 are the pre-images of 𝑦. In other

words, the bit 𝑑 · (𝑥0 ⊕ 𝑥1) is used as a one-time pad. CPA security

then follows straightforwardly from the fact that 𝑑 · (𝑥0 ⊕ 𝑥1) is a
hardcore bit, i.e. that it is computationally hard to guess 𝑑 · (𝑥0 ⊕𝑥1)
for uniformly random 𝑑 and 𝑦.

To prove deniability, we establish that the final quantum state of

all registers conditioned on the classical outcome 𝑧 still does not

leak any information about 𝑏.

The intuition for why quantum information is well-suited for

deniable encryption is the following: the honest execution of the

quantum encryption algorithm does not have any input random-

ness, instead the algorithm must be precisely such that all registers

delicately interfere in the right way to result in a valid equation

(where the randomness in the equation comes from the final mea-

surement), leaving no other trace of the plaintext in the leftover

workspace.

We point out that the scheme that makes Theorem 1 true can

be instantiated with any 2-to-1 (noisy) trapdoor claw-free function

pair, satisfying the injective invariance property from [19], which

in turn can be constructed from the hardness of LWE.

Remark: One might wonder whether it is possible to formulate a

definition of quantum deniability more closely aligned with the

classical definition. There are two basic obstacles to this:

• Not only can quantum algorithms sample randomness by

making measurements, but they can also “cover their tracks”

1
In the scheme that we propose, 𝑧 is special in the sense that toggling it (and leaving

𝑎𝑢𝑥 unchanged) toggles the plaintext, while𝑎𝑢𝑥 plays the role of auxillary information

that specifies the mapping between 𝑧 and the plaintext.

1379

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

by repeatedly performing measurements in an incompati-

ble basis. As an example, consider a possibly more natural

definition of deniability in which the attacker is only re-

vealed the remaining quantum state after both 𝑧 and aux are
measured (i.e. whatever remains after the quantum encryp-

tion algorithm has produced the entire classical ciphertext).

Unfortunately, such a definition would be trivial to satisfy

by slightly modifying any classical encryption algorithm,

and running it on a quantum computer: one can simply pre-

scribe that the honest quantum encryption algorithm runs

the classical encryption algorithm, using a register to sample

the randomness, then measures this register in an incom-

patible basis, and finally appends the classical outcome of

this measurement to the ciphertext as part of aux (decryp-
tion then ignores this part of the ciphertext). What this has

accomplished is that the leftover quantum state is now es-

sentially garbage, and trivially does not reveal anything to

the attacker.

• The notion of a transcript of a computation is not well-

defined for a quantum algorithm, in the sense that observing

the computation at any step in general disturbs the compu-

tation.

It is somewhat fortunate that a stronger definition of quantum

deniability, which does not appeal to the inner workings of the

encryption algorithm, is achieved by a concrete scheme.

Unexplainable encryption. The second notion that we propose,

unexplainability, takes a different viewpoint on the concept of input

randomness: in the classical setting, input randomness is simply

a proxy for a “proof” that the ciphertext is a valid encryption of

a certain plaintext. The notion of unexplainability formalizes this

notion of a proof, and achieves a single definition that provides a

natural common view of deniability in the classical and quantum

setting.

In an unexplainable encryption scheme, it is simply impossible,

except with negligible probability, for an efficient sender to “prove”

after-the-fact that they encrypted a particular plaintext (thus an

attacker has simply no reason to bother coercing a sender into

opening their ciphertext in the first place). The crux in formaliz-

ing this definition is to formalize what it means for a sender to

“prove” that they encrypted a particular plaintext. We argue that

the appropriate notion of a proof is akin to that of an argument.

Definition 1 (Explainability (informal)). A public-key en-

cryption scheme is explainable if there exists an efficient verification

procedure Verify, taking as input a tuple of public key, ciphertext, mes-

sage, and alleged proof (pk, 𝑐,𝑚,𝑤), such that Verify(pk, 𝑐,𝑚,𝑤) = 0

if the triple (pk, 𝑐,𝑚) is inconsistent. Moreover, Verify should satisfy

the following:

• Completeness: there exists an efficient procedure that, on input

𝑚, pk, generates 𝑐,𝑤 such that Verify(pk, 𝑐,𝑚,𝑤) outputs 1

with high probability.

• Soundness: no efficient procedure, on input pk, 𝑚,𝑚′ with
𝑚 ≠ 𝑚′, can generate 𝑐,𝑤,𝑤 ′ such that Verify(pk, 𝑐,𝑚,𝑤)
and Verify(pk, 𝑐,𝑚′,𝑤 ′) both output 1, except with negligible

probability.

By contrapositive, a scheme is unexplainable if, for any such

Verify, one of completeness or soundness fails. Thus, the sense in

which a classical deniable scheme is unexplainable is that a sender

can never convincingly “prove” to an attacker that they encrypted

a particular plaintext (even if the sender wishes to do so honestly):

this is precisely because, by definition of deniability, it is always

possible for a sender to efficiently generate randomness consistent

with any plaintext of their choice. In other words, a classical de-

niable encryption scheme is unexplainable because the soundness

condition above fails when one takes Verify to be the procedure

that interprets 𝑤 as the randomness used in the encryption, and

simply checks that 𝑐 = Enc(pk,𝑚;𝑤).
The notion of unexplainability can be thought of as a rephrasing

of deniability from a different perspective. In fact, we show that

the appropriate variation on the definition of unexplainability is

equivalent to deniability (we refer the reader to the full version for

details). However, unlike deniability, the notion of unexplainability

has a very natural extension to the quantum setting, as it is not

centered around randomness, but rather, more abstractly, around

the notion of a proof: without modifications, the definition above

makes sense even in the quantum setting (where one may choose

to allow the “proof”𝑤 to be a quantum state).

Notice that for an encryption scheme with perfect decryption (i.e.

one in which there is a unique plaintext consistent with a given ci-

phertext), the notion of a proof described above coincides with that

of anNP (orQMA) proof: since we require thatVerify(pk, 𝑐,𝑚,𝑤) =
0 if the triple (pk, 𝑐,𝑚) is inconsistent, then Verify is precisely an

NP-relation (or QMA-relation) for the language

𝐿 = {𝑥 = (𝑚,𝑐, pk) : 𝑐 is a valid encryption of𝑚 under pk} .
The definition then has the additional requirement of complete-

ness, which asks that there is an efficient procedure that takes as

input pk,𝑚, and generates valid 𝑐,𝑤 .

Notice that, for encryption schemes with perfect decryption, un-

explainability is impossible to achieve classically. First notice, that

for a scheme with perfect decryption, the soundness condition in

Definition 1 is trivially satisfied. Thus, the scheme is unexplainable

if and only if for all Verify (as in Definition 1) the completeness

condition fails. However, the latter is contradicted by the following.

Consider the NP-relation Verify ((𝑚,𝑐, pk),𝑤) where the witness
is the randomness used to encrypt, i.e. Verify ((𝑚,𝑐, pk),𝑤) = 1 if

Enc(pk,𝑚;𝑤) = 𝑐 , and Verify ((𝑚,𝑐, pk),𝑤) = 0 otherwise. Then,

simply consider the efficient procedure which encrypts honestly,

and outputs the randomness as the witness.

In this work, we show the following.

Theorem 2 (Informal). There exists an unexplainable public-key

encryption scheme with perfect decryption, with security in the quan-

tum random oracle model (QROM), assuming the quantum hardness

of LWE.

The scheme that makes the theorem true is a variation on the

previous one, and is inspired by the follow-up work [9] to [7], which

makes use of a random oracle.

Again, the public key is a choice of trapdoor claw-free function

pair (𝑓𝑘,0, 𝑓𝑘,1). The encryption of a single bit 𝑏 is a triple (𝑧, 𝑑,𝑦)
such that 𝑧 = 𝑏 ⊕ 𝑑 · (𝑥0 ⊕ 𝑥1) ⊕ 𝐻 (𝑥0) ⊕ 𝐻 (𝑥1), where 𝑥0, 𝑥1 are

the pre-images of 𝑦. In other words, now the pad is the bit 𝑑 · (𝑥0 ⊕

1380

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

𝑥1) ⊕ 𝐻 (𝑥0) ⊕ 𝐻 (𝑥1). The need for a random oracle stems from

the need to obtain a more rigid characterization of the structure of

algorithms that produce valid encryptions (we discuss at the end

why obtaining a scheme from just LWE may be difficult).

We show that our scheme is unexplainable in the strongest sense:

it is simply impossible, except with negligible probability, for an

efficient quantum algorithm to produce both a valid encryption and

a proof of its validity. We emphasize that the latter guarantee holds

for any efficient quantum algorithm that attempts to produce both a

valid encryption and a proof, not just for algorithms that run honest

encryption. Using the terminology introduced earlier, we show that

for any verification procedure Verify such that Verify(pk, 𝑐,𝑚,𝑤) =
0 if the triple (pk, 𝑐,𝑚) is inconsistent, the completeness condition

fails. We call this perfect unexplainability.

Notice that perfect unexplainability is impossible to achieve

classically, since one can always take Verify to be the procedure

that interprets 𝑤 as the randomness in the encryption, and runs

encryption forward to check consistency.

We find this behaviour to be quite striking, beyond its implica-

tions for deniable encryption, andwe believe that it has the potential

to find applications in other settings.

As a first example, our encryption scheme provides protection

against coercion before-the-fact, in the following sense. In the clas-

sical world, a coercer who approaches a sender prior to sending an

encrypted message can dictate which randomness shall be used by

the sender when computing the encryption (and which plaintext

shall be encrypted). In this way, the coercer can, at a later stage,

check that the ciphertext submitted by the sender corresponds to

an encryption of the desired plaintext with the prescribed random-

ness. This holds true even if the public key (or some other public

information to be used in the encryption) is revealed after coercion.

This type of coercion is a major concern for electronic elections

with online encrypted votes. Our unexplainable encryption scheme

prevents coercion before-the-fact since the randomness cannot be

controlled, even by the sender themselves: it is instead the result

of a carefully chosen measurement. Thus, in a scenario where the

public key (or some other public information to be used in the

encryption) is revealed after the coercion stage, a before-the-fact

coercer would not be able to succeed. In particular, there is simply

no way for an attacker to prescribe to the sender how to encrypt

in a way that it can later verify, because this would immediately

violate perfect unexplainability: it would imply that there exists

some quantum algorithm that outputs ciphertexts and proofs of

their validity. We discuss coercion before-the-fact in more detail

in Section 5.2. As a further practical motivation, the fact that it is

not possible for a sender, even if they wanted to, to prove that their

ciphertext is a valid encryption of their plaintext provides a way to

protect against “vote-selling”.

Lastly, efficiently checkable proofs have been at the center of

the stage in complexity and cryptography in the past four decades:

proofs with a variety of surprising properties have been discov-

ered and have been the object of intense study (e.g. PCPs, zero-

knowledge, succinct). Our work provides a new perspective on the

notion of proofs in a quantum world by formalizing the notion

of “inability to prove”: this is captured by a computational prob-

lem that can be solved efficiently, but for which it is impossible to

concurrently provide an efficiently checkable proof of correctness.

Classically, the transcript of a computation serves as an efficiently

checkable proof that the output is correctly reported. At the heart of

the new property is the fact that quantum computations, in general,

lack the notion of a transcript or a “trajectory” of the computation.

In this work, we identify a computational problem for which it is

provably intractable to find a solution while concurrently extracting

any meaningful proof that the solution is correct. Using the termi-

nology introduced earlier, a proof is a witness to an appropriate NP

(or QMA)-relation Verify.
The analysis in our security proof uses Zhandry’s compressed

oracle technique [23], and relies on two novel technical contribu-

tions.

(i) The first key step in the security proof is establishing that a

strategy which produces valid encryptions must be close to

a strategy that queries the oracle at a uniform superposition

of the two pre-images (in a sense made more precise in the

main text). In a bit more detail, let 𝐻 : {0, 1}𝑛 → {0, 1} be
a uniformly random function, and let 𝑥0, 𝑥1 ∈ {0, 1}𝑛 . We

prove a technical lemma that characterizes the structure of

strategies that are successful at guessing 𝐻 (𝑥0) ⊕𝐻 (𝑥1). We

use this lemma to derive a corresponding “rigidity” theorem

for strategies that produce valid encryptions (equivalently,

valid “equations” in the terminology of [7]). This rigidity

theorem may find applications elsewhere, and may be of

independent interest.

(ii) The second technical contribution is an online extraction

argument which allows to extract a claw from any prover

that produces a valid equation and a proof of its validity,

with non-negligible probability. The extraction is online in

the sense that no rewinding is required.

We point out that the scheme that makes Theorem 5 true can

be instantiated with any 2-to-1 (noisy) trapdoor claw-free function

pair (the injective invariance property is not needed here). We also

remark that for both of our constructions (in Theorems 1 and 5) we

do not require an adaptive hardcore bit property.

One final remark is in order. Although a perfectly unexplainable

encryption scheme based solely on, say hardness of LWE with-

out the use of a random oracles is desirable, we point out that it

is unlikely that such a result can be achieved without any addi-

tional assumption. The reason is that it would imply a single-round

message-response proof of quantumness protocol [7]. The follow-

ing is the protocol:

• The verifier samples (pk, sk) as in the encryption scheme,

together with a message𝑚 (say uniformly at random). The

verifier sends pk and𝑚 to the prover.

• The prover returns an encryption 𝑐 of𝑚 under public key

pk.
• The verifier checks that 𝑐 decrypts to𝑚.

Since perfect unexplainability is impossible to achieve classically, it

must be that the encryption algorithm is quantum, and in particular

that it cannot be replaced by a classical algorithm (otherwise there

would be a way to “explain” by providing the input randomness).

Now, as originally pointed out in [9], a single-round proof of

quantumness immediately implies a separation of the sampling

classes BPP and BQP. Such a separation does not seem to be implied

1381

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

by the hardness of LWE, as the current state-of-the-art suggests that

LWE is equally intractable for classical and quantum computers.

1.2 Related Work and Concepts
In the classical setting, receiver-deniable encryption has also been

studied. In the latter, an attacker coerces the receiver after-the-

fact into revealing their secret key. While non-interactive receiver-

deniable encryption is impossible classically, there exists a generic

transformation that compiles any sender-deniable encryption scheme

into a receiver-deniable one, at the cost of one additional message

[11]. While we do not formalize this explicitly, such a transforma-

tion also applies to the quantum setting.

In an interactive setting, one can also consider the notion of

bideniable encryption, i.e. an encryption scheme that is simulta-

neously sender and receiver-deniable. Classically, this setting has

been considered by Canetti, Park and Poburinnaya [12], who show

that bideniable encryption can be realized from iO. We leave it

as an open question to improve this result (i.e. realize bideniable

encryption from weaker assumptions) in the quantum setting using

classical communication.

Although we do not formalize this, we remark that, if one al-

lows for quantum communication, deniable encryption (including

bideniable) becomes immediate in the interactive setting (with

information-theoretic security!). The reason is that sender and re-

ceiver can share an information-theoretically secure key by running

a quantum key distribution protocol, and then use this key as a

one-time pad. If the attacker approaches the parties before the key

distribution protocol is completed, then the parties can trivially

deny since no information about the message has been revealed

yet. If the attacker approaches the parties after the key distribution

protocol is completed, then the key is information-theoretically

hidden from the attacker, and the parties can trivially find a key

that is consistent with any message of their choice.

2 TECHNICAL OVERVIEW
We introduced two notions of deniability in the quantum setting

alongwith two constructions. The first construction, which achieves

the notion of quantum deniability is relatively straightforward to ex-

plain in full detail, along with a proof of security, and this is carried

out in Section 4. The second construction, which achieves the no-

tion of unexplainability, and its proof of security are more involved.

In this section, we give an overview of the latter construction, and

the proof of security.

2.1 Notation
In this overview, we let {(𝑓𝑘,0, 𝑓𝑘,1)}𝑘 be a family of trapdoor claw-

free function pairs. We assume that 𝑓𝑘,0, 𝑓𝑘,1 are injective with

identical range, and that they map 𝑛-bit strings to𝑚-bit strings. In

our actual scheme, we will instead use noisy trapdoor claw-free

functions, since these can be constructed from LWE. However, this

distinction is immaterial for the purpose of this overview.

2.2 An Unexplainable Encryption Scheme
The construction is simple, and is inspired by the “proof of quan-

tumness” construction in [9]. To obtain an encryption scheme, the

idea is to use the “hardcore” bit in their construction as a one-time

pad.

In more detail, the public key in the encryption scheme is a

choice of trapdoor claw-free function 𝑘 , and the secret key is a

trapdoor 𝑡𝑘 .

• Encryption: To encrypt a bit𝑚, under public key 𝑘 , Compute

a triple (𝑧, 𝑑,𝑦), where 𝑑 ∈ {0, 1}𝑛 and 𝑦 ∈ Y, and 𝑧 =

𝑑 · (𝑥𝑦
0
⊕ 𝑥𝑦

1
) ⊕𝐻 (𝑥𝑦

0
) ⊕𝐻 (𝑥𝑦

1
). This can be done as follows:

– Create the uniform superposition over 𝑛 + 1 qubits∑︁
𝑏∈{0,1},𝑥 ∈{0,1}𝑛

|𝑏⟩ |𝑥⟩ .

Then, compute 𝑓𝑘,0 and 𝑓𝑘,1 in superposition, controlled

on the first qubit. The resulting state is∑︁
𝑏∈{0,1},𝑥 ∈𝑋

|𝑏⟩ |𝑥⟩ |𝑓𝑘,𝑏 (𝑥)⟩ .

– Measure the image register, and let 𝑦 be the outcome. As

a result, the state has collapsed to:

1

√
2

(|0⟩ |𝑥𝑦
0
⟩ + |1⟩ |𝑥𝑦

1
⟩) .

– Query the phase oracle for 𝐻 , to obtain:

1

√
2

((−1)𝐻 (𝑥0) |0⟩ |𝑥0⟩ + (−1)𝐻 (𝑥1) |1⟩ |𝑥1⟩) .

– Apply the Hadamard gate to all𝑛+1 registers, andmeasure.

Parse the measurement outcome as 𝑧 | |𝑑 where 𝑧 ∈ {0, 1}
and 𝑑 ∈ {0, 1}𝑛 .

The ciphertext is 𝑐 = (𝑚 ⊕ 𝑧, 𝑑,𝑦).
• Decryption: On input 𝑐 = (𝑧, 𝑑,𝑦), use the trapdoor 𝑡𝑘 to

compute the pre-images 𝑥
𝑦

0
, 𝑥

𝑦

1
. Output 𝑧 ⊕ 𝑑 · (𝑥𝑦

0
⊕ 𝑥𝑦

1
) ⊕

𝐻 (𝑥𝑦
0
) ⊕ 𝐻 (𝑥𝑦

1
).

The actual scheme will be a parallel repetition of this, i.e. the

plaintext𝑚 is encrypted many times using the single-shot scheme

described here. However, for the purpose of this overview, we will

just consider the single-shot scheme.

2.3 Security
It is straightforward to see that the scheme satisfies CPA security.

This essentially follows from a regular “hardcore bit” property,

satisfied by the trapdoor claw-free function family (more details in

Section 4.3) In this overview, we focus on outlining how the scheme

satisfies (a strong version of) unexplainability.

Our main result is that this scheme has the property that, al-

though it is possible to encrypt, it is not possible to simultaneously

produce both a valid encryption of a desired plaintext 𝑚 and a

“proof” or a “certificate”𝑤 that the ciphertext indeed is an encryp-

tion of𝑚. We refer to this as perfect unexplainability.

More precisely, we show that, for any efficient algorithm Verify
taking as input a tuple (pk, 𝑐,𝑚,𝑤), such thatVerify(pk, 𝑐,𝑚,𝑤) = 0

if the triple (pk, 𝑐,𝑚) is inconsistent, the following holds: for any
efficient algorithm 𝑃 , for any𝑚,

Pr[Verify(pk, 𝑐,𝑚,𝑤) = 1 : (𝑐,𝑤) ← 𝑃 (pk,𝑚)] = negl(𝑛) . (1)

Notice that perfect unexplainability is impossible to achieve with

a classical encryption scheme, because one can always have𝑤 play

the role of the randomness in the encryption, and have Verify be

1382

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

the algorithm that simply outputs 1 if Enc(pk,𝑚;𝑤) = 𝑐 , and 0

otherwise.

A consequence of this observation is that perfect unexplainabil-

ity is an even stronger property than a “proof of quantumness”: if an

encryption scheme is unexplainable, then it must be that producing

valid encryptions (with high enough probability) is something that

only a quantum computer can do (otherwise, there would exist a

classical algorithm Enc that encrypts successfully, and, just like
before, we can set Verify to be the procedure that interprets𝑤 as

randomness, runs Enc with this randomness, and checks consis-

tency with the ciphertext).

For simplicity, in the rest of this discussion, we will take the

plaintext to be𝑚 = 0, so that producing a valid ciphertext is equiv-

alent to producing a triple (𝑧, 𝑑,𝑦), such that 𝑧 = 𝑑 · (𝑥𝑦
0
⊕ 𝑥𝑦

1
) ⊕

𝐻 (𝑥𝑦
0
) ⊕ 𝐻 (𝑥𝑦

1
), which is referred to as a valid “equation” in [7, 9].

So, what is the intuition for why the property above holds for

our scheme? At a high level, the intuition is that in order to produce

a valid equation, one has to query the oracle on a superposition of

the two pre-images, and have the two branches interfere in just

the right way, so as to produce 𝑧, 𝑑 which satisfy the equation.

This delicate process of interference between the two branches

essentially requires that nothing is “left behind” in the workspace.

The difficulty with formalizing this intuition is that it assumes

a global view of the entire computation. Whereas unlike in the

classical setting, we cannot in general define the trajectory which

in this case corresponds to the sequence of oracle queries that led to

a particular configuration. To do so, we make use of Zhandry’s com-

pressed oracle technique, which leverages properties of uniformly

random oracles. It turns out that the cryptographic assumptions

interact very cleanly with the compressed oracle formalism. This

provides a way of carrying key quantities from our classical intu-

ition over into natural formalizations in the quantum context.

This reduction involves two broad steps:

(i) We establish a rigidity theorem which formalizes the intu-

ition that an algorithm 𝑃 which is successful at producing

valid equations must query the oracle on a superposition of

both pre-images, in a sense that we will make more precise

below. Concisely, we appeal to Zhandry’s compressed oracle

technique for “recording queries” [23], which formalizes the

idea that, when the oracle is uniformly random, there is a

meaningful way to record the queries made by the algorithm

efficiently, in a way that is well-defined and does not disrupt

the run of the algorithm. In a compressed oracle simulation,

the quantum state of the algorithm at any point is in a super-

position over databases of queried inputs. What we establish

is that, if 𝑃 produces a valid equation with high probability,

then the quantum state of 𝑃 right before measurement of

the equation must be close to a uniform superposition (with

the appropriate phase) of two branches: one on which the

first pre-image was queried, and one in which the second

was queried.

(ii) We leverage (i) to construct an algorithm that extracts a

claw. One crucial observation here is that, since Verify never

accepts an inconsistent tuple (pk, 𝑐,𝑚), then it must be the

case that whenever Verify accepts, itmust itself have queried

at a superposition of both pre-images, in the same sense as in

the rigidity theorem in point (i). At a high level, the extraction

algorithm will eventually be the following:

– Run 𝑃 , followed by a measurement to obtain 𝑧, 𝑑,𝑦, and an

appropriate measurement of the database register, hoping

to find a pre-image of 𝑦;

– Then, run Verify on the leftover state, and conditioned on

“accept”, measure the database register, hoping to find the

other pre-image of 𝑦.

It is not a priori clear that this leads to successfully recovering

a claw (in particular the measurement of the database right

after running 𝑃 , may disrupt things in a way that Verify no

longer accepts). What we show is that if, to begin with,Verify
accepts with high enough probability, then this extraction

strategy works.

In the rest of the section, we discuss the elements of the security

proof in a bit more detail.

2.3.1 Zhandry’s compressed oracle technique. In this subsection,

we give an exposition of Zhandry’s compressed oracle technique,

both because it is a building block in our proof of security, and also

to encourage its broader use. A reader who is familiar with the

technique should feel free to skip this subsection.

Let𝐻 : {0, 1}𝑛 → {0, 1} be a fixed function. For simplicity, in this

overview we restrict ourselves to considering boolean functions

(since this is also the relevant case for our scheme).

While classically it is always possible to record the queries of

the algorithm, in a way that is undetectable to the algorithm itself,

this is not possible in general in the quantum case. The issue arises

because the quantum algorithm can query in superposition. We

illustrate this with an example.

Consider an algorithm that prepares the state
1√
2

(|𝑥0⟩ + |𝑥1⟩) |𝑦⟩,
and then makes an oracle query to 𝐻 . The state after the query is:

1

√
2

|𝑥0⟩ |𝑦 ⊕ 𝐻 (𝑥0)⟩ +
1

√
2

|𝑥1⟩ |𝑦 ⊕ 𝐻 (𝑥1)⟩ (2)

Suppose we additionally “record” the query made, i.e. we copy

the queried input into a third register. Then the state becomes:

1

√
2

|𝑥0⟩ |𝑦 ⊕ 𝐻 (𝑥0)⟩ |𝑥0⟩ +
1

√
2

|𝑥1⟩ |𝑦 ⊕ 𝐻 (𝑥1)⟩ |𝑥1⟩ (3)

Now, suppose that 𝐻 (𝑥0) = 𝐻 (𝑥1), then it is easy to see that, in

the case where we didn’t record queries, the state of the first register

after the query is exactly
1√
2

(|𝑥0⟩ + |𝑥1⟩). On the other hand, if we

recorded the query, then the third register is now entangled with

the first, and as a result the state of the first register is no longer

1√
2

(|𝑥0⟩ + |𝑥1⟩) (it is instead a mixed state). Thus, recording queries

is not possible in general without disturbing the state of the oracle

algorithm.

Does this mean that all hope of recording queries is lost in the

quantum setting? It turns out, perhaps surprisingly, that there is a

way to record queries when 𝐻 is a uniformly random oracle.

When thinking of an algorithm that queries a uniformly random

oracle, it is useful to purify the quantum state of the algorithm via

an oracle register (which keeps track of the function that is being

queried). An oracle query is then a unitary that acts in the following

way on a standard basis element of the query register (where we

1383

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

omit writing normalizing constants):

|𝑥⟩ |𝑦⟩
∑︁
𝐻

|𝐻 ⟩ ↦→
∑︁
𝐻

|𝑥⟩ |𝑦 ⊕ 𝐻 (𝑥)⟩ |𝐻 ⟩ .

It is well-known that, up to applying a Hadamard gate on the 𝑦

register before and after a query, this oracle is equivalent to a “phase

oracle”, which acts in the following way:

|𝑥⟩ |𝑦⟩
∑︁
𝐻

|𝐻 ⟩ ↦→
∑︁
𝐻

(−1)𝑦 ·𝐻 (𝑥) |𝑥⟩ |𝑦⟩ |𝐻 ⟩ (4)

Now, to get a better sense of what is happening with each query,

let’s be more concrete about how we represent 𝐻 using the qubits

in the oracle register.

A natural way to represent 𝐻 is to use 2
𝑛
qubits, with each

qubit representing the output of the oracle at one input, where

we take the inputs to be ordered lexicographically. In other words,

if |𝐻 ⟩ = |𝑡⟩, where 𝑡 ∈ {0, 1}2𝑛 , then this means that 𝐻 (𝑥𝑖) = 𝑡𝑖 ,

where 𝑥𝑖 is the 𝑖-th 𝑛-bit string in lexicographic order. Using this

representation, notice that

1

√
2
𝑛

∑︁
𝐻

|𝐻 ⟩ = |+⟩⊗2
𝑛

.

Now, notice that we can write the RHS of (4) as

|𝑥⟩ |𝑦⟩
∑︁
𝐻

(−1)𝑦 ·𝐻 (𝑥) |𝐻 ⟩ ,

i.e. we can equivalently think of the phase in a phase oracle query

as being applied to the oracle register.

Thus, when a phase oracle query is made on a standard basis

vector of the query register |𝑥⟩ |𝑦⟩, all that happens is:∑︁
𝐻

|𝐻 ⟩ ↦→
∑︁
𝐻

(−1)𝑦 ·𝐻 (𝑥) |𝐻 ⟩ .

Notice that, using the representation for 𝐻 that we chose above,

the latter transformation is:

• When 𝑦 = 0, |+⟩⊗2
𝑛 ↦→ |+⟩⊗2

𝑛

.

• When 𝑦 = 1, |+⟩⊗2
𝑛 ↦→ |+⟩ · · · |+⟩𝑖−1

|−⟩𝑖 |+⟩𝑖+1 · · · |+⟩ ,
where 𝑖 is such that 𝑥 is the 𝑖-th string in lexicographic

order.

In words, the query does not have any effect when 𝑦 = 0, and the

query flips the appropriate |+⟩ to a |−⟩ when 𝑦 = 1. Then, when we

query on a general state

∑
𝑥,𝑦 𝛼𝑥𝑦 |𝑥⟩ |𝑦⟩, the state after the query

can be written as: ∑︁
𝑥,𝑦

𝛼𝑥𝑦 |𝑥⟩ |𝑦⟩ |𝐷𝑥𝑦⟩ ,

where 𝐷𝑥𝑦 is the all |+⟩ state, except for a |−⟩ corresponding to 𝑥
if 𝑦 = 1.

The crucial observation now is that all of these branches are

orthogonal, and thus it makes sense to talk about "the branch on

which a particular query was made": the state of the oracle register

reveals exactly the query that has been made on that branch. More

generally, after 𝑞 queries, the state will be in a superposition of

branches on which at most 𝑞 of the |+⟩’s have been flipped to |−⟩’s.
These locations correspond exactly to the queries that have been

made.

Moreover, the good news is that there is a way to keep track of

the recorded queries efficiently: one does not need to store all of the

(exponentially many) |+⟩’s, but it suffices to keep track only of the

locations that have flipped to |−⟩ (which is at most 𝑞). If we know

that the oracle algorithm makes at most 𝑞 queries, then we need

merely 𝑛 · 𝑞 qubits to store the points that have been queried. We

will refer to the set of queried points as the database. Formally, there

is a well-defined isometry that maps a state on 2
𝑛
qubits where

𝑞 of them are in the |−⟩ state, and the rest are |+⟩, to a state on

𝑛 · 𝑞 qubits, which stores the 𝑞 points corresponding to the |−⟩’s in
lexicographic order.

Let 𝐷 denote an empty database of queried points. Then a query

to a uniformly random oracle can be thought of as acting in the

following way:{
|𝑥⟩ |𝑦⟩ |𝐷⟩ ↦→ |𝑥⟩ |𝑦⟩ |𝐷⟩ , if 𝑦 = 0

|𝑥⟩ |𝑦⟩ |𝐷⟩ ↦→ |𝑥⟩ |𝑦⟩ |𝐷 ∪ {𝑥}⟩ , if 𝑦 = 1 .

Such a way of implementing a uniformly random oracle is re-

ferred to as a compressed phase oracle simulation [23]. Formally, the

fact that the original and the compressed oracle simulations are

identical from the point of view of the oracle algorithm (which does

not have access to the oracle register) is because at any point in

the execution of the algorithm, the states in the two simulations

are both purifications of the same mixed state on the algorithm’s

registers.

We point out that there are two properties of a uniformly random

oracle that make a compressed oracle simulation possible:

• The query outputs at each point are independently distributed,

which means that the state of the oracle register is always a

product state across all of the 2
𝑛
qubits.

• Each query output is uniformly distributed. This is important

because in general 𝛼 |0⟩+𝛽 |1⟩ ̸⊥ 𝛼 |0⟩−𝛽 |1⟩ unless |𝛼 | = |𝛽 |.
Notice that the above compressed oracle simulation does not

explicitly keep track of the value of the function at the queried

points (i.e. a database is just a set of queried points). In the following

slight variation on the compressed oracle simulation, also from [23],

a database is instead a set of pairs (𝑥,𝑤) representing a queried

point and the value of the function at that point. This variation will

be more useful for our analysis.

Here 𝐷 is a database of pairs (𝑥, 𝑣), which is initially empty. A

query acts as follows on a standard basis element |𝑥⟩ |𝑦⟩ |𝐷⟩:
• If 𝑦 = 0, do nothing.

• If𝑦 = 1, check if𝐷 contains a pair of the form (𝑥, 𝑣) for some

𝑣 .

– If it does not, add (𝑥, |−⟩) to the database, where by this

we formally mean: 𝐷 ↦→ ∑
𝑣 (−1)𝑣 |𝐷 ∪ (𝑥, 𝑣)⟩

– If it does, apply the unitary that removes (𝑥, |−⟩) from the

database.

One way to understand this compressed simulation is that our

database representation only keeps track of pairs (𝑥, |−⟩) (corre-
sponding to the queried points), and it does not keep track of the

other unqueried points, which in a fully explicit simulation would

correspond to |+⟩’s. One can think of the outputs at the unqueried

points as being “compressed” in this succinct representation.

It is easy to see that the map above can be extended to a well-

defined unitary. In the rest of this overview, we will take this to be

our compressed phase oracle. For an oracle algorithm 𝐴, we will

denote by 𝐴CPhO
the algorithm 𝐴 run with a compressed phase

oracle.

1384

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

2.3.2 The structure of strategies that produce valid equations. Let 𝑃
be an efficient prover, which takes as input a choice 𝑘 of claw-free

function pair, and outputs an equation (𝑧, 𝑑,𝑦). Suppose 𝑃 outputs

a valid equation, i.e. 𝑧 = 𝑑 · (𝑥𝑦
0
⊕ 𝑥𝑦

1
) ⊕𝐻 (𝑥𝑦

0
) ⊕𝐻 (𝑥𝑦

1
), with high

probability. Suppose we run a compressed phase oracle simulation

𝑃CPhO. We argue that the state of 𝑃CPhO right before measurement,

conditioned on output (𝑧, 𝑑,𝑦), must be such that:

• Almost all the weight is on databases containing exactly one

of the two pre-images of 𝑦.

• Up to a phase, the weights on databases containing 𝑥
𝑦

0
and

𝑥
𝑦

1
are approximately symmetrical.

In this subsection, we provide some intuition as to why this is true.

In general, we can write the state of 𝑃CPhO right before mea-

surement of the output as:∑︁
𝑧,𝑑,𝑦,𝑤,𝐷

𝛼𝑧,𝑑,𝑦,𝑤,𝐷 |𝑧⟩ |𝑑⟩ |𝑦⟩ |𝑤⟩ |𝐷⟩ ,

for some 𝛼𝑧,𝑑,𝑦,𝑤,𝐷 , where the 𝑧, 𝑑,𝑦 registers correspond to the

output equation, the𝑤 register is a work register (which includes

the query registers), and the𝐷 register is the database register. Here

𝐷 is a database of pairs (𝑥, 𝑣).
This expression can be simplified in a couple of ways. First, up to

negligible weight, no database can contain both pre-images, since

otherwise this would yield an efficient algorithm to extract a claw.

Hence, we can write the state as a superposition over 𝑧, 𝑑,𝑦 and

over databases that either: do not contain any pre-image 𝑦, they

contain only 𝑥
𝑦

0
, or they contain only 𝑥

𝑦

1
:∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,0 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁
𝑣0

(−1)𝑣0 |𝐷 ∪ (𝑥𝑦
0
, 𝑣0)⟩

+
∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,1 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁
𝑣1

(−1)𝑣1 |𝐷 ∪ (𝑥𝑦
1
, 𝑣1)⟩

+
∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛽𝑧,𝑑,𝑦,𝑤,𝐷 |𝑧, 𝑑,𝑦,𝑤⟩ |𝐷⟩ (5)

for some 𝛼𝑧,𝑑,𝑦,𝑤,𝐷,𝑏 , 𝛽𝑧,𝑑,𝑦,𝑤,𝐷 , where we have made the notation

a little more compact. Recall that the reason for the presence of the

phases (−1)𝑣0
and (−1)𝑣1

is that, by definition of the compressed

oracle simulation, the output at each queried point in the database

is in a |−⟩ state.
Second, we expect intuitively that 𝑃 should not be able to pro-

duce valid equations if it does not query any pre-image at all. Thus,

we expect that if 𝑃 produces a valid equation with high probability,

then there should be only a small weight on the third branch in

expression (5), i.e. the 𝛽𝑧,𝑑,𝑦,𝑤,𝐷 coefficients should be small. In

our security proof, we formalize this intuition, and we show that

any weight on the third branch contributes precisely 1/2 to the

probability of producing a valid equation, i.e. any weight on the

third branch amounts to guessing an equation uniformly at random.

Note that it is not a priori clear that this is true, and a more delicate

analysis is required to establish that, when calculating the probabil-

ity of outputting a valid equation, there is no interference between

the branches that do not contain any pre-image, and the ones that

contain one. We refer the reader to the full proof in Section 6 for

more details.

So, suppose now for simplicity that 𝑃 produces a valid equation

with probability 1, then, from what we have discussed, up to neg-

ligible weight, the state just before measurement of the output is

in a superposition of branches that contain exactly one of the two

pre-images:∑︁
𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,0 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁

𝑣0∈{0,1}
(−1)𝑣0 |𝐷 ∪ (𝑥𝑦

0
, 𝑣0)⟩

+
∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,1 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁

𝑣1∈{0,1}
(−1)𝑣1 |𝐷 ∪ (𝑥𝑦

1
, 𝑣1)⟩ (6)

Finally, wewish to argue that the coefficients on the two branches

are uniform, i.e. |𝛼𝑧,𝑑,𝑦,𝑤,𝐷,0 | = |𝛼𝑧,𝑑,𝑦,𝑤,𝐷,1 | for all 𝑧, 𝑑,𝑦,𝑤, 𝐷 . For
this, we again appeal to the fact that 𝑃 produces a valid equation

with probability 1.

What does this probability correspond to in terms of expression

(6)? In order to calculate this probability, we need to first decompress

the database at both pre-images. What we mean by decompressing

at 𝑥 is the following:

• If the database already contains 𝑥 , then do nothing.

• If the database does not contain 𝑥 , then add (𝑥, |+⟩) to it.

The reason why this makes sense is the following. Recall that

points that are not present in the compressed database correspond

to |+⟩’s in the fully explicit “uncompressed” database. Since the

condition for a valid equation depends on the value at both pre-

images, we need to keep track of these values, and uncompress at

the two pre-images in order to talk about the probability of a valid

equation.

The state after decompressing at 𝑥
𝑦

0
and 𝑥

𝑦

1
is:∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,0 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁
𝑣0,𝑣1

(−1)𝑣0 |𝐷 ∪ (𝑥𝑦
0
, 𝑣0) ∪ (𝑥𝑦

1
, 𝑣1)⟩

+
∑︁

𝑧,𝑑,𝑦,𝑤

𝐷∌𝑥
𝑦

0
,𝑥

𝑦

1

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,1 |𝑧, 𝑑,𝑦,𝑤⟩
∑︁
𝑣0,𝑣1

(−1)𝑣1 |𝐷 ∪ (𝑥𝑦
0
, 𝑣0) ∪ (𝑥𝑦

1
, 𝑣1)⟩

(7)

Now, by the equivalence of the regular and compressed oracle

simulations, we have that the probability that 𝑃 outputs a valid

equation is equal to:

Pr[𝑧 = 𝑑 · (𝑥𝑦
0
⊕ 𝑥𝑦

1
) ⊕ 𝑣0 ⊕ 𝑣1]

In order for this probability to be close to 1, it must be that, for

any 𝑧, 𝑑,𝑦,𝑤, 𝐷 , the amplitudes of the two branches 𝛼𝑧,𝑑,𝑦,𝑤,𝐷,0 and

𝛼𝑧,𝑑,𝑦,𝑤,𝐷,1 interfere precisely constructively when 𝑧 = 𝑑 · (𝑥𝑦
0
⊕

𝑥
𝑦

1
) ⊕ 𝑣0 ⊕ 𝑣1 and interfere destructively otherwise. Hence, they

have to be equal up to an appropriate phase.

2.3.3 Extracting a claw. We now provide some intuition about how

the structure that we derived in the previous subsection can be

leveraged to extract a claw.

Throughout this subsection, let 𝑃 be such that, on input a choice

of trapdoor claw-free function pair 𝑘 , it simultaneously produces

valid equations and proofs which are accepted with high probability,

1385

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

i.e. it outputs (𝑧, 𝑑,𝑦,𝑤) such that Verify(𝑘, 𝑧, 𝑑,𝑦,𝑤) = 1 with high

probability. For concreteness we take this probability to be 9/10 in

this overview.

The first key observation is that, because by definition Verify
never accepts an invalid equation (or except with negligible prob-

ability), then it must be the case that whenever Verify accepts, it

must itself have queried at a superposition of both pre-images in

the following more precise sense.

For a choice of claw-free functions 𝑘 , denote by Verify𝑘 the

algorithm Verify where we fix the choice of claw-free functions to

be 𝑘 . Let 𝐴 be any efficient oracle algorithm that, on input a choice

of claw-free functions, outputs tuples (𝑧, 𝑑,𝑦,𝑤). Suppose we run a

compressed oracle simulation of 𝐴, followed by Verify, i.e. we run
(Verify𝑘 ◦ 𝐴(𝑘))CPhO. Let the state right before measurement of

Verify’s output be:

𝛼 |0⟩ |𝜙0⟩ + 𝛽 |1⟩ |𝜙1⟩ ,
where the first qubit is the output qubit of Verify, and |𝜙0⟩, |𝜙1⟩
are some states on the remaining registers (including the database

register). Then, except with negligible probability over the choice of

𝑘 , the following holds: if 𝛽 is non-negligible, then |𝜙1⟩ has weight
only on databases containing either 𝑥

𝑦

0
or 𝑥

𝑦

1
, and moreover, the

weights for each pre-image are approximately equal. Such struc-

ture on the action of Verify follows from a similar argument as in

the previous subsection, combined with the fact that Verify never

accepts an invalid equation.

Even with this observation in hand, it is not a priori clear how

we can extract a claw: ideally, we would like to say that, because

of the observation above, if we were to run (Verify𝑘 ◦ 𝑃 (𝑘))CPhO
twice and measure the database register, there would be a noticeable

chance of obtaining distinct pre-images of some 𝑦. However, the

issue is that if we run the computation twice, nothing guarantees

that we will obtain the same 𝑦 both times. In fact, if one thinks

about the honest strategy for producing valid equations, each 𝑦 has

only an exponentially small probability of being the outcome.

To overcome this issue, the key observation is that, if 𝑃 is suc-

cessful with high enough probability, then there is a way to extract

a claw with noticeable probability in a single run! The extraction

algorithm is the following:

(i) Run 𝑃CPhO (𝑘), and measure the output registers to obtain

𝑧, 𝑑,𝑦. Moreover, check if the database register at this point

contains a pre-image of 𝑦. If so, measure it. Denote this by

𝑥
𝑦

𝑏
.

(ii) Run VerifyCPhO
𝑘

on the leftover state from the previous step,

and measure the output register. Conditioned on “accept”,

measure the database register. If the database contains 𝑥
𝑦

¯𝑏
,

output the claw (𝑥𝑦
0
, 𝑥

𝑦

1
).

The idea behind this algorithm is that, thanks to the first obser-

vation, the state conditioned on obtaining “accept” in step (ii) has

weight only on databases containing either 𝑥
𝑦

0
or 𝑥

𝑦

1
, and moreover,

the weights for each pre-image are approximately equal. This im-

plies that, conditioned on observing “accept” in step (ii), the final

measurement of the algorithm is guaranteed to produce one of the

two pre-images approximately uniformly at random.

Now, notice that the algorithm already has a constant probability

of obtaining one of the two pre-images in step (i) (assuming 𝑃

succeeds with probability
9

10
). To see this, notice that if this weren’t

the case, then 𝑃 would be producing valid equations at most with

probability close to
1

2
(since this is the probability of producing

a valid equation when the database register does not contain any

of the two pre-images), and therefore the probability that Verify
accepts 𝑃 ’s output would also be at most close to

1

2
(instead of being

9

10
). Thus, what is left to show is that the probability of obtaining

“accept” in step (ii) conditioned on finding a pre-image in step (i) is

still noticeable.

It is not a priori clear that this is the case. However, what we

show is that if, to begin with, Verify accepts 𝑃 ’s output with high

enough probability (in fact any probability non-negligibly higher

than 1/2), then this extraction strategy works.

We remark that for our actual construction, we will want that,

for any efficient 𝑃 , the probability of simultaneously producing a

valid equation and a proof is negligible (not just smaller than
1

2
+

negligible). Thus, our encryption schemewill be a parallel repetition

of the single-shot encryption scheme described in this overview,

i.e. the encryption of a single bit will consist of many single-shot

encryptions of that bit.

3 PRELIMINARIES
3.1 Notation
We use the acronyms PPT and QPT for probabilistic polynomial

time and quantum polynomial time respectively.

For a classical probabilistic algorithm A, we write A(𝑥 ; 𝑟) to
denote running A on input 𝑥 , with input randomness 𝑟 .

For a finite set 𝑆 , we use 𝑥 ← 𝑆 to denote uniform sampling

of 𝑥 from the set 𝑆 . We denote [𝑛] = {1, 2, · · · , 𝑛}. We denote by

Bool(𝑛) the set of functions from 𝑛 bits to 1.

3.2 Deniable Encryption
We recall the classical notion of sender-deniable encryption.

Definition 2. A public-key encryption scheme (Gen, Enc,Dec)
is said to be deniable if there exists a PPT algorithm Fake such that,

for any messages𝑚0,𝑚1:

(pk, Enc(pk,𝑚1; 𝑟),𝑚1, 𝑟) ≈𝑐 (pk, Enc(pk,𝑚0; 𝑟),𝑚1, 𝑟
′)

where 𝑟 is uniformly random, pk is sampled according to Gen, and
𝑟 ′ ← Fake(pk, 𝑐,𝑚0,𝑚1, 𝑟).

3.3 Noisy Trapdoor Claw-Free Functions
In this section we introduce the notion of noisy trapdoor claw-

free functions (NTCFs). This section is taken almost verbatim from

[9]. Let X,Y be finite sets and K a set of keys. For each 𝑘 ∈ 𝐾
there should exist two (efficiently computable) injective functions

𝑓𝑘,0, 𝑓𝑘,1 that map X to Y, together with a trapdoor 𝑡𝑘 that allows

efficient inversion from (𝑏,𝑦) ∈ {0, 1} × Y to 𝑓 −1

𝑘,𝑏
(𝑦) ∈ X ∪ { ⊥ }.

For security, we require that for a randomly chosen key 𝑘 , no

polynomial time adversary can efficiently compute 𝑥0, 𝑥1 ∈ X such

that 𝑓𝑘,0 (𝑥0) = 𝑓𝑘,1 (𝑥1) (such a pair (𝑥0, 𝑥1) is called a claw).

Unfortunately, we do not know how to construct such ‘clean’

trapdoor claw-free functions. Hence, as in the previous works [7, 9,

19], we will use ‘noisy’ version of the above notion. For each 𝑘 ∈ K ,

1386

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

there exist two functions 𝑓𝑘,0, 𝑓𝑘,1 that map X to a distribution over

Y.
Definition 3 (NTCF family). Let _ be a security parameter. Let

X and Y be finite sets. Let KF be a finite set of keys. A family of

functions

F =
{
𝑓𝑘,𝑏 : X → DY

}
𝑘∈KF ,𝑏∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following

conditions hold:

(1) Efficient Function Generation. There exists an efficient

probabilistic algorithm GenF which generates a key 𝑘 ∈ KF
together with a trapdoor 𝑡𝑘 :

(𝑘, 𝑡𝑘) ← GenF (1_) .
(2) Trapdoor Injective Pair.
(a) Trapdoor: There exists an efficient deterministic algorithm

InvF such that with overwhelming probability over the

choice of (𝑘, 𝑡𝑘) ← GenF (1_), the following holds:

for all 𝑏 ∈ {0, 1}, 𝑥 ∈ X and 𝑦 ∈ Supp(𝑓𝑘,𝑏 (𝑥)), InvF (𝑡𝑘 , 𝑏,𝑦) = 𝑥 .
(b) Injective pair: For all keys 𝑘 ∈ KF , there exists a perfect

matching R𝑘 ⊆ X × X such that 𝑓𝑘,0 (𝑥0) = 𝑓𝑘,1 (𝑥1) if and
only if (𝑥0, 𝑥1) ∈ R𝑘 .

(3) Efficient Range Superposition. For all keys 𝑘 ∈ KF and

𝑏 ∈ {0, 1} there exists a function 𝑓 ′
𝑘,𝑏

: X → DY such that

the following hold.

(a) For all (𝑥0, 𝑥1) ∈ R𝑘 and𝑦 ∈ Supp(𝑓 ′𝑘,𝑏 (𝑥𝑏)), InvF (𝑡𝑘 , 𝑏,𝑦) =
𝑥𝑏 and InvF (𝑡𝑘 , 𝑏 ⊕ 1, 𝑦) = 𝑥𝑏⊕1

.

(b) There exists an efficient deterministic procedure ChkF that,

on input 𝑘 , 𝑏 ∈ {0, 1}, 𝑥 ∈ X and 𝑦 ∈ Y, returns 1 if

𝑦 ∈ Supp(𝑓 ′
𝑘,𝑏
(𝑥)) and 0 otherwise. Note that ChkF is not

provided the trapdoor 𝑡𝑘 .

(c) For every 𝑘 and 𝑏 ∈ {0, 1},
E𝑥←X

[
𝐻2 (𝑓𝑘,𝑏 (𝑥), 𝑓 ′𝑘,𝑏 (𝑥))

]
≤ ` (_) .

for some negligible function `. Here 𝐻2
is the Hellinger

distance. Moreover, there exists an efficient procedure SampF
that on input 𝑘 and 𝑏 ∈ {0, 1} prepares the state

1√︁
|X|

∑︁
𝑥 ∈X,𝑦∈Y

√︃
(𝑓 ′
𝑘,𝑏
(𝑥)) (𝑦) |𝑥⟩ |𝑦⟩ . (8)

(4) Claw-Free Property. For any PPT adversaryA, there exists a

negligible function negl(·) such that the following holds:

Pr[(𝑥0, 𝑥1) ∈ R𝑘 : (𝑘, 𝑡𝑘) ← GenF (1_), (𝑥0, 𝑥1) ← A(𝑘)] ≤ negl(_)
In our security analysis, we will make use of the following addi-

tional concepts from [19], which we recall informally here (we refer

to [19] or the full version of this paper for the details). A trapdoor

injective function family

G =
{
𝑔𝑘,𝑏 : X → DY

}
𝑏∈{0,1},𝑘∈KG

satisfies the properties of “efficient function generation” and “effi-

cient range superposition”. However, crucially, 𝑔𝑘,0 and 𝑔𝑘,1 have

disjoint range. Moreover, an NTCF family F (as in Definition 3)

satisfies the injective-invariance property, if there exists a trapdoor

injective function family G such that functions sampled from F
and G are computationally indistinguishable.

Lemma 1 ([7], [19]). Assuming the quantum hardness of LWE,

there exists an injective invariant NTCF family.

4 QUANTUM DENIABILITY
4.1 Definition
We assumewithout loss of generality that the (quantum) encryption

algorithm Enc consists of an efficiently implementable isometry Ẽnc
from registerM, consisting of𝑚(_) qubits, to register N, consisting
of 𝑛(_) qubits, followed by a standard basis measurement of the

output ciphertext register C (consisting of a subset of the qubits in

N.

Definition 4 (Quantum Deniability). Let 𝑙 : N→ N be poly-

nomially bounded. A public-key encryption scheme (Gen, Enc,Dec)
is 𝑙-deniable if the following holds. There exists a QPT algorithm

Fake, and a sub-register R of C consisting of 𝑙 (_) qubits, such that

the following holds for any𝑚0,𝑚1:(
pk,𝑚1, (MeasR ⊗ IC\R ⊗ FakeN\C) Ẽnc(pk,𝑚0)

)
(9)

≈𝑐
(
pk,𝑚1, (MeasR ⊗ IN\R) Ẽnc(pk,𝑚1)

)
where MeasR is the quantum channel that corresponds to a standard

basis measurement of register R, and pk is sampled according to Gen.

To keep the definition general, we included a faking algorithm

Fake which is allowed to act on the leftover quantum state of the

encryption algorithm. This more naturally parallels the classical

definition of deniability. However, we will see that our scheme

satisfies an even stronger notion of deniability, whereby the leftover

state does not need any additional processing (before it gets handed

to the attacker) i.e. Fake can be taken to be the identity.

4.2 Construction
We describe encryption of a single bit. This can, of course, be ex-

tended in parallel to encryptions of any number of bits.

LetX,Y,K be finite sets. LetF =
{
𝑓𝑘,𝑏 : X → DY

}
𝑘∈K,𝑏∈{0,1}

be a family of noisy trapdoor claw-free functions (which exists as-

suming the quantum hardness of LWE [7]). Let 𝑓 ′
𝑘,𝑏

: X → Y
be functions satisfying the efficient range superposition property of

Definition 3. For 𝑥 ∈ X, denote by BitDecomp(𝑥) its bit decompo-

sition.

Construction 1.

• Gen(1_) → (pk, sk):
– Run (𝑘, 𝑡𝑘) ← GenF (1_). Output (pk, sk) = (𝑘, 𝑡𝑘).
• Enc(𝑚, pk) → 𝑐 :

– On input 𝑚 ∈ {0, 1}, and pk = 𝑘 , run SampF (𝑘, ·) on a

uniform superposition of 𝑏’s, to obtain the state

1√︁
|X|

∑︁
𝑏∈{0,1},𝑥 ∈𝑋

√︃
𝑓 ′
𝑘,𝑏
(𝑥) (𝑦) |𝑏⟩ |𝑥⟩ |𝑦⟩ ,

where we assume that 𝑥 and 𝑦 are represented by their bit

decomposition. We assume without loss of generality that

SampF that any auxiliary register is returned to the |0⟩ state.
2

2
Since the output of SampF on the output registers is a pure state, one can always have

SampF coherently “uncompute” on all registers except does containing the output.

1387

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

– Measure the image register, and let 𝑦 be the outcome. As a

result, the state has collapsed to:

1

√
2

(|0⟩ |𝑥0⟩ + |1⟩ |𝑥1⟩) ,

where 𝑥0, 𝑥1 ∈ X are the unique elements such that 𝑦 is in

the support of 𝑓 ′
𝑘,𝑏
(𝑥𝑏).

– Let 𝑛 be the length of BitDecomp(𝑥0). Apply a Hadamard

gate to all of the remaining registers, and measure. Parse

the measurement outcome as 𝑧 | |𝑑 where 𝑧 ∈ {0, 1} and
𝑑 ∈ {0, 1}𝑛 .

– Output 𝑐 = (𝑧, 𝑑,𝑦).
• Dec(𝑐, 𝑡𝑘) →𝑚:

– Let 𝑐 = (𝑧′, 𝑑, 𝑦). For𝑏 ∈ {0, 1}, run InvF (𝑡𝑘 , 𝑏,𝑦) to obtain
pre-images 𝑥0 and 𝑥1.

– Output𝑚 = 𝑧′ ⊕ 𝑑 · (BitDecomp(𝑥0) ⊕ BitDecomp(𝑥1)).
• Fake(𝑚′, aux): Given as input𝑚′ (the desired plaintext to be
claimed), and a quantum state aux (the leftover workspace after
encryption), output (𝑚′, aux), i.e. output the leftover workspace
unchanged.

Theorem 3. Assuming the quantum hardness of LWE, the scheme

of construction 1 is CPA-secure and 1-deniable (as in Definition 4).

Correctness of the encryption scheme is straightforward to verify.

Hence, we focus on security in the next section.

4.3 Security
From now on, for ease of notation, when referring to the bit-

decomposition of 𝑥 , we simply write 𝑥 instead BitDecomp(𝑥) when
the context is clear. We denote by 𝑥

𝑦

0
and 𝑥

𝑦

1
the two pre-images of

𝑦.

CPA security. CPA security follows straightforwardly from the

following “hardcore bit” property satisfied by F , which says that

any quantum polynomial-time adversary A has negligible advan-

tage in the following game between a challenger and A:

• The challenger samples𝑘 , and runs SampF (𝑘, ·) on a uniform
superposition of 𝑏’s to obtain the state

1√︁
|X|

∑︁
𝑏∈{0,1},𝑥 ∈𝑋

√︃
𝑓 ′
𝑘,𝑏
(𝑥) (𝑦) |𝑏⟩ |𝑥⟩ |𝑦⟩ ,

• Measures the last register to get 𝑦.

• Then, applies a Hadamard gate on the first two registers to

get 𝑧, 𝑑 such that 𝑧 = 𝑑 · (𝑥0 ⊕ 𝑥1), where 𝑥0 and 𝑥1 are the

pre-images of 𝑦. Sends 𝑦,𝑑 to A.

• A returns 𝑧′.

A wins if 𝑧 = 𝑧′.
To see that this “hardcore bit” property holds, suppose for a con-

tradiction that there was a quantum polynomial time A breaking

this property. Then the following algorithmA ′ recovers a claw. We

use the notation A(𝑦,𝑑) to denote the output of A on input 𝑦,𝑑 .

• On input 𝑘 , run SampF (𝑘, ·) on a uniform superposition of

𝑏’s to obtain the state

1√︁
|X|

∑︁
𝑏∈{0,1},𝑥 ∈𝑋

√︃
𝑓 ′
𝑘,𝑏
(𝑥) (𝑦) |𝑏⟩ |𝑥⟩ |𝑦⟩ ,

• Measure the last two registers to obtain 𝑥,𝑦 where 𝑦 ∈
Supp(𝑓 ′

𝑘,𝑏
(𝑥)) for some 𝑏 ∈ {0, 1}.

• Run the “quantum Goldreich-Levin” extraction algorithm

using A(𝑦, ·) as an oracle [2]. Recall that the “quantum

Goldreich-Levin” extraction algorithm makes a single query

to A(𝑦, ·). Let 𝑠 be the output of this extraction algorithm.

• Output (𝑥, 𝑥 ⊕ 𝑠) as the claw.
Since A(𝑦,𝑑) guesses 𝑑 · (𝑥0 ⊕ 𝑥1) with non-negligible advan-

tage, the “quantum Goldreich-Levin” extraction algorithm outputs

𝑠 = 𝑥0 ⊕ 𝑥1 with non-negligible probability, which results in A ′
outputting a claw with non-negligible probability.

Note that the reduction works even if A is non-uniform with

quantum advice, since A ′ makes a single query to A, so there is

no issue with rewinding.

With this hardcore bit property in hand, CPA security is immedi-

ate: notice that the distribution (pk, Enc(pk, 0)) is simply (𝑘, 𝑧, 𝑑,𝑦),
such that 𝑧 = 𝑑 · (𝑥𝑦

0
⊕𝑥𝑦

1
), where 𝑘,𝑑, 𝑧,𝑦 are sampled exactly from

the distribution of the hardcore bit property. On the other hand, the

distribution (pk, Enc(pk, 1)) is (𝑘, 𝑧, 𝑑,𝑦), such that 𝑧 ≠ 𝑑 · (𝑥𝑦
0
⊕𝑥𝑦

1
),

where 𝑘, 𝑧, 𝑑,𝑦 have the same distribution as before, except that 𝑧

is flipped. Clearly, distinguishing the two distributions is precisely

equivalent to guessing the value of 𝑑 · (𝑥𝑦
0
⊕ 𝑥𝑦

1
), which is the

hardcore bit game above.

Deniability. We will now show that Construction 1 satisfies deni-

ability, according to Definition 4. In particular, wewill show that, for

Construction 1, one can take the algorithm Fake to be the identity.

Using the notation of Definition 4, the output of the encryption

algorithm Enc, before measurement of the output, is a state on

register N, a sub-register of which, C, is eventually measured to

produce the classical ciphertext. Notice that for Enc as defined in

Construction 1, all qubits in N \ C are eventually returned to the

state |0⟩. Thus, in order to prove 1-deniability, all that is left to show

is that there is a subset R, of size 1, of the qubits of C, such that for

any𝑚0,𝑚1 ∈ {0, 1},(
pk,𝑚1,MeasR ⊗ 𝐼C\R

(
[Ẽnc(𝑚0)]C

))
≈𝑐

(
pk,𝑚1,MeasR ⊗ 𝐼C\R

(
[Ẽnc(𝑚1)]C

))
, (10)

where recall that Ẽnc denotes Enc excluding the final measure-

ment, and we are denoting by [Ẽnc(𝑚)]C the restriction of the

state Ẽnc(𝑚) to the register C.
We take R to be the qubit corresponding to the first bit of the

ciphertext. Then, up to replacing 𝑓𝑘,𝑏 with 𝑓 ′
𝑘,𝑏

(which affects the

distribution at most negligibly - see Lemma 2.0.1 in [9] relating

Hellinger distance to trace distance), conditioned on the outcome

of the measurement being 𝑧, the LHS and the RHS of (10) are

respectively,

©«𝑘,𝑚1, 𝑧 ,
∑︁

𝑥,𝑑,𝑦 :𝑑 · (𝑥𝑦

0
⊕𝑥𝑦

1
)=𝑧⊕𝑚0

√︃
(𝑓𝑘,0 (𝑥)) (𝑦) |𝑑⟩ |𝑦⟩

ª®®¬
and ©«𝑘,𝑚1, 𝑧 ,

∑︁
𝑥,𝑑,𝑦 :𝑑 · (𝑥𝑦

0
⊕𝑥𝑦

1
)=𝑧⊕𝑚1

√︃
(𝑓𝑘,0 (𝑥)) (𝑦) |𝑑⟩ |𝑦⟩

ª®®¬
1388

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

where 𝑥
𝑦

0
and 𝑥

𝑦

1
denote the pre-images of 𝑦 (and we omit writing

BitDecompwhen it is clear from the context). Then, it is easy to see

that the two distributions are computationally indistinguishable if

and only if:

©«𝑘 ,
∑︁

𝑥,𝑑,𝑦 :𝑑 · (𝑥𝑦

0
⊕𝑥𝑦

1
)=0

√︃
(𝑓𝑘,0 (𝑥)) (𝑦) |𝑑⟩ |𝑦⟩

ª®®¬ (11)

≈𝑐
©«𝑘 ,

∑︁
𝑑,𝑦 :𝑑 · (𝑥𝑦

0
⊕𝑥𝑦

1
)=1

√︃
(𝑓𝑘,0 (𝑥)) (𝑦) |𝑑⟩ |𝑦⟩

ª®®¬ , (12)

where we omit normalization constants.

To argue that these two states are indistinguishable, we appeal

to the injective invariance property. Recall that by the latter, there

exists a trapdoor injective family

G =
{
𝑔𝑘,𝑏 : X → DY

}
𝑘∈KG ,𝑏∈{0,1}

such that

(i) ChkF = ChkG and SampF = SampG .
(ii) It is computationally hard to distinguish whether 𝑘 ← GenF

or 𝑘 ← GenG .

Now, suppose for a contradiction that there was a distinguisher

𝐷 for the two (families of) states in (12). Then, there exists a distin-

guisher 𝐷 ′ that breaks property (ii) of injective invariance:

• 𝐷 ′ receives 𝑘 as input.

• 𝐷 ′ runs Ẽnc(pk, 0) with pk = 𝑘 , and then measures the

first qubit. Let 𝑧 be the outcome. (note that this step is well-

defined since SampF = SampG).
• 𝐷 ′ gives 𝑘 and the leftover state to 𝐷 , which returns a guess

𝑧′. If 𝑧′ = 𝑧 (i.e. the distinguisher for the two states suc-

ceeded), 𝐷 ′ guesses that 𝑘 was sampled from GenF . Other-
wise, it guesses that it was sampled from GenG .

The reason why 𝐷 ′ has non-negligible advantage is the following.
In the case that 𝑘 ← GenF , the leftover states conditioned on 𝑧 = 0

and 𝑧 = 1 are (up to the negligible error incurred by replacing 𝑓 ′
𝑘,𝑏

with 𝑓𝑘,𝑏) those on the LHS and the RHS of (12) respectively. On

the other hand, when 𝑘 ← GenG , it is easy to see that the state

that results from applying Ẽnc(pk, 0) and measuring the first qubit

is independent of the outcome 𝑧. In particular, the leftover state is

simply ∑︁
𝑥,𝑑,𝑦

∑︁
𝑏∈{0,1}

√︃
(𝑔𝑘,𝑏 (𝑥)) (𝑦) |𝑑⟩ |𝑦⟩ .

So the probability that 𝐷 guesses 𝑧 correctly is exactly
1

2
.

We refer the reader to the full version of the paper for the details

of the proof.

5 UNEXPLAINABLE ENCRYPTION
In this section, we formally introduce the notions of unexplain-

able encryption, and perfectly unexplainable encryption. In 5.2, we

discuss the notion of coercion before-the-fact in more detail, and

its relationship to perfect unexplainability. We refer to the full

version of the paper for a discussion of the relationship between

unexplainable encryption and the standard definition of deniable

encryption.

5.1 Definition
In the following definition, Explain takes as input a public key pk, a
message𝑚, and outputs a ciphertext 𝑐 and a witness𝑤 ; Verify takes
as input a public key pk, a ciphertext 𝑐 , a message𝑚, a witness𝑤 ,

and outputs a bit; FakeExplain takes as input a public key pk, a pair
of messages𝑚,𝑚′, and outputs a ciphertext 𝑐 , and two witnesses

𝑤,𝑤 ′. In the rest of the section, we use the notation Pr

pk
to mean

that the probability is over sampling a pk from the the generation

algorithmGen(1_) (where the security parameter _ is omitted from

the notation).

Definition 5 (Unexplainable Encryption). We say that a

public-key encryption scheme (Gen, Enc,Dec) is unexplainable if

the following holds. Let Verify and Explain be any (non-uniform)

QPT algorithms such that, for all pk, 𝑐,𝑚,𝑤 , Verify(pk, 𝑐,𝑚,𝑤) = 0,

except with exponentially small probability, if 𝑐 is not in the support

of the distribution of Enc(pk,𝑚).
Suppose Verify, Explain satisfy the following completeness condi-

tion: there exists a non-negligible function 𝛾 , such that, for any𝑚, for

all _,

Pr

pk
[Verify(pk, 𝑐,𝑚,𝑤) = 1 : (𝑐,𝑤) ← Explain(pk,𝑚)] ≥ 𝛾 (_) .

Then, there exist a polynomial-time algorithm FakeExplain and a

non-negligible function negl, such that, for any distinct messages

𝑚,𝑚′, for all _:��� Pr

pk
[Verify (pk, 𝑐,𝑚,𝑤) = 1 : 𝑐,𝑤 ← Explain(pk,𝑚)]

− Pr

pk
[Verify

(
pk, 𝑐,𝑚′,𝑤 ′

)
= 1 : 𝑐,𝑤 ← Explain(pk,𝑚),

𝑤 ′ ← FakeExplain(pk,𝑚,𝑚′, 𝑐,𝑤)]
���

= negl(_) (13)

We believe that this definition naturally captures the ideal of

privacy desired in a deniable setting. Moreover, since this definition

does not explicitly refer to input randomness, it applies naturally

to the setting of a quantum encryption algorithm (with classical

ciphertexts).𝑤 and𝑤 ′ can also be taken to be (possibly entangled)

quantum states.

The following is a special case of unexplainable encryption. In

words, an encryption scheme is perfectly unexplainable if there does

not exist any pair of efficient algorithms Verify and Explain (where

Verify(pk, 𝑐,𝑚,𝑤) = 0, except with exponentially small probability,

if 𝑐 is not in the range of Enc(pk,𝑚)), for which the completeness

condition holds.

Definition 6 (PerfectlyUnexplainable Encryption). Apublic-

key encryption scheme (Gen, Enc,Dec) is said to be perfectly un-

explainable if the following holds. Let Explain and Verify be any

(non-uniform) pair of QPT algorithms such that, for all pk, 𝑐,𝑚,𝑤 ,
Verify(pk, 𝑐,𝑚,𝑤) = 0, except with exponentially small probability,

if 𝑐 is not in the support of the distribution of Enc(pk,𝑚). Then, for
any𝑚, there exists a negligible function negl, such that for any _,

Pr

pk
[Verify(pk, 𝑐,𝑚,𝑤) = 1 : (𝑐,𝑤) ← Explain(pk,𝑚)] = negl(_) .

(14)

1389

Deniable Encryption in aQuantum World STOC ’22, June 20–24, 2022, Rome, Italy

At first glance, perfect unexplainability seems unattainable. In

fact, it is clear that a classical encryption scheme cannot be perfectly

unexplainable: one can always take Explain to be the algorithm

that encrypts honestly and outputs the ciphertext together with

the randomness used (i.e. the witness is the randomness), and take

Verify to be the algorithm that runs encryption forward and checks

consistency. In contrast, the quantum encryption scheme that we

will describe in Section 6 will be perfectly unexplainable.

5.2 Coercion Before-the-Fact
While protecting against coercion before-the-fact is very desirable

in practice, to the best of our knowledge, a corresponding notion

has not been previously formalized (most likely due to the fact that

protecting against coercion before-the-fact is impossible to achieve

classically in the plain model). Here, we propose a formal definition,

and we observe that this is essentially equivalent to the notion of

perfect unexplainability from Definition 6.

In a coercion before-the-fact scenario, an attacker, who has in

mind a message𝑚, wishes to prescribe to the sender how she should

encrypt later in a way that:

• The resulting ciphertext decrypts to𝑚 with overwhelming

probability.

• There is an efficient procedure for the attacker to verify that

the sender’s ciphertext (which the attacker obtains by inter-

cepting) will decrypt to𝑚 with overwhelming probability.

First, notice that there is no hope of protecting against coercion

before-the-fact in a model where the attacker can approach the

sender before she sends her ciphertext, and knows all of the infor-

mation that will be available to the sender at the time of encryption

(e.g. the public key). In fact, in such a model, the attacker can sim-

ply generate a genuine encryption 𝑐 of the desired message𝑚, and

prescribe that the sender’s ciphertext later be exactly 𝑐 . So, instead

we consider the scenario where the public key is not known to the

attacker at the time when he approaches the sender. Such a model

captures an online election where citizens are required to encrypt

their votes before sending them to the government using a public

key encryption scheme, and the public key is announced publicly

only on election day. The attacker is allowed to approach the sender

any time before election day, i.e. any time before the public key is

announced (more generally, one can consider a model where some

additional information - not necessarily the public key - is revealed

to the sender just before she encrypts).

We first formally define the notion of a coercion before-the-

fact attack. An encryption scheme then protects against coercion

before-the-fact if no such attack exists.

Definition 7 (Coercion before-the-fact attack). Let

(Gen, Enc,Dec) be a public-key encryption scheme with classical ci-

phertexts (whereDec is a classical deterministic algorithm). A coercion

before-the-fact attack is a pair (Enc′,Verify) where:
• Enc′(pk,𝑚) → 𝑐 is a non-uniform QPT algorithm

• Verify(𝑐,𝑚) → accept/reject is a non-uniform QPT algo-

rithm

They satisfy:

• (Completeness of verification) For any𝑚, _,

Pr[Verify(Enc′(pk,𝑚),𝑚) = accept : (sk, pk) ← Gen(1_)] = 1 .

• (Soundness of verification) There exists 𝐶 > 0, such that the

following holds for all 𝑐,𝑚, _:

Pr[Dec(sk, 𝑐) ≠𝑚 ∧ Verify(pk, 𝑐,𝑚) = accept :

(sk, pk) ← Gen(1_)] ≤ 2
−_𝐶 .3

Definition 8. We say that an encryption scheme protects against

coercion before-the-fact if no coercion before-the-fact attacks exists.

It is straightforward to see that a perfectly unexplainable en-

cryption scheme protects against coercion before-the-fact. This is

because a coercion before-the-fact attack gives a way to encrypt in

a way that can be later verified.

Theorem 4. A perfectly unexplainable encryption scheme protects

against coercion before-the-fact.

Proof. Let (Gen, Enc,Dec) be a perfectly unexplainable encryp-
tion scheme (satisfying the non-uniform version of Definition 6).

Suppose for a contradiction that a coercion before-the-fact attack

(Enc′,Verify) existed.
Define Verify′ to be the non-uniform algorithm that on input

pk, 𝑐,𝑚,𝑤 , runs Verify(pk, 𝑐,𝑚) and ignores𝑤 . Let Explain be the

non-uniform algorithm that, on input pk,𝑚, runs 𝑐 ← Enc′(pk,𝑚),
and outputs 𝑐,𝑤∗, for some fixed 𝑤∗. By the completeness and

soundness of the coercion before-the-fact attack, it follows that the

pair (Explain,Verify′) contradicts perfect unexplainability. □

Definition 7 only considers attacks where Enc′ and Verify are

non-uniform with classical advice. More generally, one could also

consider attacks where Enc′ and Verify have quantum advice. In

particular, this advice could be in the form of an entangled state

over two registers corresponding to the advice of Enc′ and Verify
respectively. This captures the scenario where an attacker coerces

the sender before-the-fact by giving to the sender half of some

entangled state, and prescribing what the encryption operation

should be, i.e. Enc′. The verification of the sender’s intercepted

ciphertext then makes use of the other half of the entangled state.

It is not difficult to see that a slightly more general version of the

definition of perfect unexplainability, where Explain and Verify
are allowed to be non-uniform with entangled quantum advice,

implies this more general notion of protection against coercion

before-the-fact. Our constructions satisfies such a notion of perfect

unexplainability assuming the quantum hardness of LWE against

QPT algorithms with polynomial quantum advice. Our security

proof (contained in the full version) goes through unchanged (since

our extraction algorithm does not involve any rewinding).

6 A PERFECTLY UNEXPLAINABLE
ENCRYPTION SCHEME

In this section, we describe a public-key encryption scheme that is

perfectly unexplainable (as in Definition 6).

6.1 Construction
Let X,Y,K be finite sets. Let F =

{
𝑓𝑘,𝑏 : X → DY

}
𝑘∈K,𝑏∈{0,1}

be a family of noisy trapdoor claw-free functions (which exists

assuming LWE [7]). Let 𝑓 ′
𝑘,𝑏

: X → Y be functions satisfying the

efficient range superposition property of Definition 3.

1390

STOC ’22, June 20–24, 2022, Rome, Italy Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

The scheme that we describe in this section is a parallel repeated

version of the scheme described in the technical overview (Section

2.3.1). Here, by parallel repetition we mean that the same plaintext

𝑚 is encrypted 𝐿 times (with the same public key), where 𝐿 is

polynomial in the security parameter. Without parallel repetition,

we are only able to show that the LHS of Equation (14) is upper

bounded by
1

2
+ negl. With parallel repetition, we will be able to

improve this to negl.

Construction 2. Parameters: 𝐿 = poly(_).
• Gen(1_) → (pk, sk):
– Run (𝑘, 𝑡𝑘) ← GenF (1_). Output (pk, sk) = (𝑘, 𝑡𝑘).
• Enc(𝑚, pk) → 𝑐 :

– For 𝑖 ∈ [𝐿], do the following:
∗ On input𝑚 ∈ {0, 1}, and pk = 𝑘 , run SampF (𝑘, ·) on a

uniform superposition of 𝑏’s, to obtain the state

1√︁
|X|

∑︁
𝑏∈{0,1},𝑥 ∈𝑋

√︃
𝑓 ′
𝑘,𝑏
(𝑥) (𝑦) |𝑏⟩ |𝑥⟩ |𝑦⟩ ,

where we assume that 𝑥 and 𝑦 are represented by their

bit decomposition. We assume without loss of generality

that SampF that any auxiliary register is returned to the

|0⟩ state. 4
∗ Measure the image register, and let 𝑦𝑖 ∈ Y be the out-

come. As a result, the state has collapsed to:
1√
2

(|0⟩ |𝑥0⟩ +
|1⟩ |𝑥1⟩) , where 𝑥0, 𝑥1 ∈ X are the unique elements such

that 𝑦𝑖 is in the support of 𝑓 ′
𝑘,𝑏
(𝑥𝑏).

∗ Query the phase oracle for 𝐻 , to obtain:

1

√
2

(−1)𝐻 (BitDecomp(𝑥0)) |0⟩ |𝑥0⟩

+ 1

√
2

(−1)𝐻 (BitDecomp(𝑥1)) |1⟩ |𝑥1⟩ .

∗ Let𝑛 be the length of BitDecomp(𝑥0). Apply a Hadamard

gate to all of the remaining registers, and measure. Parse

the measurement outcome as 𝑧𝑖 | |𝑑𝑖 where 𝑧𝑖 ∈ {0, 1} and
𝑑𝑖 ∈ {0, 1}𝑛 . Let 𝑧′𝑖 := 𝑧𝑖 ⊕𝑚.

– Let 𝑧′ := 𝑧′
1
. . . 𝑧′

𝐿
, 𝑑 := 𝑑1 . . . 𝑑𝐿 , 𝑦 = 𝑦1 . . . 𝑦𝐿 . Output

𝑐 = (𝑧′, 𝑑,𝑦).
• Dec(𝑐, 𝑡𝑘) →𝑚:

– Let 𝑐 = (𝑧′, 𝑑, 𝑦). Parse 𝑧′ as 𝑧′ = 𝑧′
1
. . . 𝑧′

𝐿
. Similarly for 𝑑

and 𝑦.

– For 𝑖 ∈ [𝐿]:
∗ For 𝑏 ∈ {0, 1}, run InvF (𝑡𝑘 , 𝑏,𝑦𝑖) to obtain pre-images

𝑥
𝑦𝑖
0

and 𝑥
𝑦𝑖
1
.

∗ Let𝑚𝑖 = 𝑧
′
𝑖
⊕ 𝑑𝑖 ·(BitDecomp(𝑥𝑦𝑖

0
)⊕BitDecomp(𝑥𝑦𝑖

1
))⊕

𝐻 (BitDecomp(𝑥𝑦𝑖
0
)) ⊕ 𝐻 (BitDecomp(𝑥𝑦𝑖

1
)).

– If𝑚1 = . . . =𝑚𝐿 , output𝑚1, otherwise output ⊥.

Theorem 5. The scheme of Construction 2 is a CPA-secure perfectly

unexplainable encryption scheme in the quantum random oracle

model (QROM), assuming the quantum hardness of LWE.

We refer to the technical overview for a high-level picture of the

proof, and to the full version of the paper for all the details.

4
Since the output of SampF on the output registers is a pure state, one can always have

SampF coherently “uncompute” on all registers except does containing the output.

ACKNOWLEDGMENTS
This work was carried out while A.C. was a Quantum Postdoc-

toral Fellow at the Simons Institute for the Theory of Computing

supported by NSF QLCI Grant No. 2016245. S.G. is supported by

DARPA under agreement No. HR00112020023. U.V is supported by

Vannevar Bush faculty fellowship N00014-17-1-3025, MURI Grant

FA9550-18-1-0161, and NSF QLCI Grant No. 2016245.

REFERENCES
[1] Scott Aaronson. 2009. Quantum copy-protection and quantum money. In 2009

24th Annual IEEE Conference on Computational Complexity. IEEE, 229–242.

[2] Mark Adcock and Richard Cleve. 2002. A quantum Goldreich-Levin theorem

with cryptographic applications. In Annual Symposium on Theoretical Aspects of

Computer Science. Springer, 323–334.

[3] Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel. 2021. Deniable Fully

Homomorphic Encryption from Learning with Errors. In Annual International

Cryptology Conference. Springer, 641–670.

[4] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. 2021.

One-way functions imply secure computation in a quantum world. In Annual

International Cryptology Conference. Springer, 467–496.

[5] Shalev Ben-David and Or Sattath. 2016. Quantum tokens for digital signatures.

arXiv preprint arXiv:1609.09047 (2016).

[6] Charles H Bennett and Gilles Brassard. 1984. Quantum cryptography. In Proc.

IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India.

175–179.

[7] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas

Vidick. 2018. A cryptographic test of quantumness and certifiable randomness

from a single quantum device. In 2018 IEEE 59th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 320–331.

[8] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. 2020. Candi-

date iO from homomorphic encryption schemes. (2020).

[9] Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick. 2020.

Simpler Proofs of Quantumness. In 15th Conference on the Theory of Quantum

Computation, Communication and Cryptography.

[10] Anne Broadbent and Sébastien Lord. 2020. Uncloneable Quantum Encryption

via Oracles. In 15th Conference on the Theory of Quantum Computation, Commu-

nication and Cryptography.

[11] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. 1997. Deniable

encryption. In Annual International Cryptology Conference. Springer, 90–104.

[12] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. 2020. Fully deniable interactive

encryption. In Annual International Cryptology Conference. Springer, 807–835.

[13] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. 2021. Hidden

cosets and applications to unclonable cryptography. In Annual International

Cryptology Conference. Springer, 556–584.

[14] Claude Crépeau and Joe Kilian. 1988. Achieving oblivious transfer using weak-

ened security assumptions. In [Proceedings 1988] 29th Annual Symposium on

Foundations of Computer Science. IEEE Computer Society, 42–52.

[15] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel

Wichs. 2021. Succinct LWE Sampling, Random Polynomials, and Obfuscation.

Cryptology ePrint Archive (2021).

[16] Artur K Ekert. 1992. Quantum Cryptography and Bell’s Theorem. In Quantum

Measurements in Optics. Springer, 413–418.

[17] Romain Gay and Rafael Pass. 2021. Indistinguishability obfuscation from circular

security. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of

Computing. 736–749.

[18] Aayush Jain, Huijia Lin, and Amit Sahai. 2021. Indistinguishability obfuscation

from well-founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing. 60–73.

[19] Urmila Mahadev. 2018. Classical verification of quantum computations. In 2018

IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,

259–267.

[20] Amit Sahai and Brent Waters. 2014. How to use indistinguishability obfuscation:

deniable encryption, and more. In Proceedings of the forty-sixth annual ACM

symposium on Theory of computing. 475–484.

[21] Hoeteck Wee and Daniel Wichs. 2021. Candidate obfuscation via oblivious LWE

sampling. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, 127–156.

[22] Stephen Wiesner. 1983. Conjugate Coding. SIGACT News 15, 1 (Jan. 1983), 78–88.

https://doi.org/10.1145/1008908.1008920

[23] Mark Zhandry. 2019. How to Record Quantum Queries, and Applications to

Quantum Indifferentiability. In Advances in Cryptology – CRYPTO 2019, Alexan-

dra Boldyreva and Daniele Micciancio (Eds.). Springer International Publishing,

Cham, 239–268.

1391

https://doi.org/10.1145/1008908.1008920

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work and Concepts

	2 Technical Overview
	2.1 Notation
	2.2 An Unexplainable Encryption Scheme
	2.3 Security

	3 Preliminaries
	3.1 Notation
	3.2 Deniable Encryption
	3.3 Noisy Trapdoor Claw-Free Functions

	4 Quantum Deniability
	4.1 Definition
	4.2 Construction
	4.3 Security

	5 Unexplainable Encryption
	5.1 Definition
	5.2 Coercion Before-the-Fact

	6 A Perfectly Unexplainable Encryption Scheme
	6.1 Construction

	Acknowledgments
	References

