
ar
X

iv
:2

20
3.

08
35

6v
2

 [
cs

.C
C

]
 1

4
A

pr
 2

02
2

Hardness for Triangle Problems under

Even More Believable Hypotheses:

Reductions from Real APSP, Real 3SUM, and OV

Timothy M. Chan*

UIUC

tmc@illinois.edu

Virginia Vassilevska Williams†

MIT

virgi@mit.edu

Yinzhan Xu‡

MIT

xyzhan@mit.edu

Abstract

The 3SUM hypothesis, the All-Pairs Shortest Paths (APSP) hypothesis and the Strong Exponential

Time Hypothesis are the three main hypotheses in the area of fine-grained complexity. So far, within

the area, the first two hypotheses have mainly been about integer inputs in the Word RAM model of

computation. The “Real APSP” and “Real 3SUM” hypotheses, which assert that the APSP and 3SUM

hypotheses hold for real-valued inputs in a reasonable version of the Real RAM model, are even more

believable than their integer counterparts.

Under the very believable hypothesis that at least one of the Integer 3SUM hypothesis, Integer APSP

hypothesis or SETH is true, Abboud, Vassilevska W. and Yu [STOC 2015] showed that a problem called

Triangle Collection requires n3−o(1) time on an n-node graph.

The main result of this paper is a nontrivial lower bound for a slight generalization of Triangle

Collection, called All-Color-Pairs Triangle Collection, under the even more believable hypothesis that

at least one of the Real 3SUM, the Real APSP, and the Orthogonal Vector (OV) hypotheses is true.

Combined with slight modifications of prior reductions from Triangle Collection, we obtain polynomial

conditional lower bounds for problems such as the (static) ST-Max Flow problem and dynamic versions

of Max Flow, Single-Source Reachability Count, and Counting Strongly Connected Components, now

under the new weaker hypothesis.

Our main result is built on the following two lines of reductions.

• Real APSP and Real 3SUM hardness for the All-Edges Sparse Triangle problem. Prior reductions

only worked from the integer variants of these problems.

• Real APSP and OV hardness for a variant of the Boolean Matrix Multiplication problem.

Along the way we show that Triangle Collection is equivalent to a simpler restricted version of the

problem, simplifying prior work. Our techniques also have other interesting implications, such as a

super-linear lower bound of Integer All-Numbers 3SUM based on the Real 3SUM hypothesis, and a

tight lower bound for a string matching problem based on the OV hypothesis.

*Supported by NSF Grant CCF-1814026.
†Supported by an NSF CAREER Award, NSF Grants CCF-1528078, CCF-1514339 and CCF-1909429, a BSF Grant

BSF:2012338, a Google Research Fellowship and a Sloan Research Fellowship.
‡Partially supported by NSF Grant CCF-1528078.

http://arxiv.org/abs/2203.08356v2

1 Introduction

Fine-grained complexity is an active area of study that gives a problem-centric approach to complexity.

Its major goal is to prove relationships and equivalences between problems whose best known running times

have not been improved in decades. Through a variety of techniques and sophisticated reductions many

problems from a huge variety of domains and with potentially vastly different running time complexities are

now known to be related via fine-grained reductions (see e.g. the survey [Vas18]).

As a consequence of the known reductions, the hardness of most of the studied problems in fine-grained

complexity can be based on the presumed hardness of three key problems: the 3SUM problem, the All-Pairs

Shortest Paths (APSP) problem and CNF-SAT. Their associated hardness hypotheses below are all defined

for the Word RAM model of computation with O(log n)-bit words:

• The (Integer) 3SUM hypothesis. There is no algorithm that can check whether a list of n integers

from ±[nc] for some constant c contains three integers that sum up to zero in O(n2−ε) time for ε > 0.1

• The (Integer) APSP hypothesis. There is no algorithm that can solve the APSP problem in an

n-node graph whose edge weights are from ±[nc] for some constant c in O(n3−ε) time for ε > 0.

• The Strong Exponential Time Hypothesis (SETH). For every ε > 0, there exists an integer k such

that k-SAT on n variables cannot be solved in O(2(1−ε)n) time. An equivalent formulation states that

there is no O(2(1−ε)n) time algorithm for CNF-SAT with n variables and O(n) clauses for any ε > 0.

All three hardness hypotheses were studied before Fine-Grained Complexity even got its name. The

complexity of 3SUM was first used as a basis for hardness in the computational geometry community by

Gajentaan and Overmars [GO95]. The complexity of APSP has been used as a basis of hardness in the

graph algorithms community at least since the early 2000s (e.g. [RZ11]). SETH was first studied in 1999

by Impagliazzo and Paturi [IP01], though the name “SETH” was first given later in [CIP13]. Together, the

three hypotheses have been very influential, giving very strong lower bounds for many problems.

The 3SUM hypothesis is now known to imply tight hardness results for many geometric problems (e.g.

[Eri99a, dBdGO97, SEO03, Eri99b, AHI+01, AEK05, AHP08, CEH07, BH01]), and also for some non-

algebraic problems (e.g. [Păt10, AVW14, LPV20, AV14, KPP16]); some convolution problems [LPV20,

Păt10] are known to be equivalent to 3SUM. The APSP hypothesis is known to imply tight hardness results

for many problems (e.g. [Păt10, AV14, BGMW20]), and many problems are also known to be fine-grained

equivalent to APSP ([VW18, AGV15]). SETH is now known to imply an enormous number of lower

bounds both for problems in exponential time (e.g. [CIP09, DW10, CKN18, LMS18]), and in polynomial

time (e.g. [AW15, Wil05, BRS+18] and many more); the hardness of a small number of problems is also

known to be equivalent to SETH [CDL+16]. See [Vas18] for more known implications.

There are no known direct relationships between the three hypotheses, and there is some evidence

(e.g. [CGI+16]) that reducing between them might be difficult. As we do not really know which, if any,

of these hypotheses actually hold, it is important to consider weaker hypotheses that still give meaningful

hardness results.

A natural hardness hypothesis considered by Abboud, Vassilevska W. and Yu [AVY18] is the following:

Hypothesis 1. At least one of SETH, the (Integer) 3SUM or the (Integer) APSP hypothesis is true.

1Throughout this paper, [N] denotes {0, 1, . . . , N − 1} and ±[N] denotes {−(N − 1), . . . , N − 1}.

1

Under Hypothesis 1, Abboud, Vassilevska W. and Yu proved polynomial lower bounds for a variant of

maximum flow and several problems in dynamic graph algorithms: dynamically maintaining the maximum

flow in a graph, the number of nodes reachable from a fixed source in a graph (#SSR), the number of

strongly connected components in a directed graph (#SCC), and more.

Dahlgaard [Dah16] showed that computing the diameter of an unweighted graph with n nodes and m
edges requires n1−o(1)√m time under Hypothesis 1. The reductions of both [AVY18] and [Dah16] utilized

a problem called Triangle-Collection, which we will abbreviate as Tri-Co.

In the Tri-Co problem, given a node-colored graph with n nodes, one is asked whether it is true that for

all triples of distinct colors (a, b, c), there exists a triangle whose nodes have these colors. A key step in the

above reductions proved in [AVY18] is the following tight hardness result for Tri-Co.

Theorem 1.1 ([AVY18]). Assuming Hypothesis 1, Tri-Co requires n3−o(1) time.

The main question that inspires this work is the following:

Is there a natural hypothesis that is weaker than Hypothesis 1 and implies similar hardness results?

As mentioned, recent conditional lower bound results based on APSP and 3SUM (especially since

Pătraşcu’s seminal paper [Păt10]) typically assumed the integer variants of these hypotheses. However,

algorithms for APSP and 3SUM are more often designed for the real-valued versions of the problems (this

includes not only the traditional cubic or quadratic time algorithms, but the celebrated, slightly subcubic

or subquadratic algorithms of Williams [Wil14] or Grønlund and Pettie [GP18], as we will review shortly).

This discrepancy between the literature on lower and upper bounds raises another intriguing question:

Do known conditional lower bounds derived from the integer versions of the APSP and 3SUM

hypotheses hold for the real versions of these hypotheses?

Our work will give a positive answer to this second question for a plethora of known conditional lower

bound results, and will hence provide an answer to the first question as well, since the real versions of the

hypotheses are weaker/more believable.

Remarks on models of computation. Within fine-grained complexity it is standard to work in the Word

RAM model of computation with O(log n)-bit words. As we will consider variants of APSP and 3SUM

with real-valued inputs, we will need to work in the Real RAM, a standard model in computational geometry.

The Real RAM (see e.g. Section 6 in the full version of [EvdHM20]) supports unit cost comparisons

and arithmetic operations (addition, subtraction, multiplication, division) on real numbers, unit cost cast-

ing integers into reals, in addition to the standard unit cost operations supported by an O(log n)-bit Word

RAM. No conversions from real numbers to integers are allowed, and randomization only happens by taking

random O(log n)-bit integers, not random reals.

Without further restrictions, the Real RAM can be unrealistically powerful. However, it is not difficult

to define a “reasonable” restricted Real RAM model for which our reductions still work, such that any

algorithm for real-valued inputs in such a model can be converted into an algorithm in the word RAM for

integer-valued inputs, running in roughly the same time. See Appendix A for a detailed discussion, and

several natural ways to define such a reasonable Real RAM model. Thus, the real versions of the hardness

hypotheses under such a model are indeed even more believable than the integer versions.

2

Real 3SUM hypothesis. Historically, the early papers on the 3SUM hypothesis from computational ge-

ometry were concerned with the real instead of the integer case.2

Let Real-3SUM refer to the version of 3SUM for real numbers (in contrast to Int-3SUM, which

refers to the integer version). In its original form, the Real 3SUM hypothesis stated that there is no

o(n2) time algorithm that solves Real-3SUM in the Real RAM model, and some evidence was pro-

vided by Erickson [Eri99a], who proved quadratic lower bounds for algorithms that are allowed to use

only restricted forms of real comparisons (testing the signs of linear functions involving just 3 input re-

als). Grønlund and Pettie refuted this hypothesis by giving an O(n2(log log n)2/3/(log n)2/3) time deter-

ministic algorithm and an O(n2(log log n)2/ log n) time randomized algorithm for Real-3SUM [GP18].

This was subsequently improved by Freund [Fre17], Gold and Sharir [GS17], and Chan [Cha20], reaching

an n2(log log n)O(1)/ log2 n deterministic running time. Grønlund and Pettie obtained their initial break-

through by first proving a truly subquadratic upper bound, near n3/2, on the linear-decision-tree complexity

of Real-3SUM (using comparisons of two sums of pairs of input reals). More recently, Kane, Lovett,

and Moran [KLM19] in another breakthrough improved the linear-decision-tree complexity upper bound to

Õ(n),3 although their approach has not yet led to improved algorithms. A truly subquadratic time algorithm

remains open.

The modern Real 3SUM hypothesis states that no O(n2−ε) time algorithm exists for Real-3SUM with

real-valued inputs, in a reasonable Real RAM model, for any ε > 0.

The integer version of 3SUM has gained more attention after a groundbreaking result by Pătraşcu [Păt10]

which showed that the Integer 3SUM hypothesis implies lower bounds for many dynamic problems that may

not even have numbers in their inputs. Notably, his reduction uses a hashing technique which doesn’t quite

apply to Real-3SUM. Thus, these hardness results and many subsequent results [KPP16, AV14] following

Pătraşcu’s paper were not known to be true under the Real 3SUM hypothesis. Thus, an intriguing question

is whether these problems are also hard under the Real 3SUM hypothesis.

Real-3SUM could conceivably be harder than Int-3SUM. Baran, Demaine and Pătraşcu gave an

n2(log log n)O(1)/ log2 n time algorithm for Int-3SUM as early as 2005 [BDP08]. However, Real-3SUM

did not have an algorithm with the same asymptotic running time (up to (log log n)O(1) factors) until

more than ten years later [Cha20]. Also, many techniques that are useful for Int-3SUM stop working

for Real-3SUM, for example, the hashing technique used by Baran, Demaine and Pătraşcu. Therefore, the

Real 3SUM hypothesis is arguably weaker than the Integer 3SUM hypothesis.

Real APSP hypothesis. Similarly, one could naturally consider the APSP problem where the edge weights

of the input graph are real numbers. In fact, historically, the APSP problem was first studied when the edge

weights are real numbers [Flo62]. Fredman [Fre76] gave the first slightly subcubic time algorithm for

Real-APSP, running in n3(log log n)O(1)/(log n)1/3 time. Fredman obtained his result by first proving a

truly subcubic upper bound, near n5/2, on the linear-decision-tree complexity of Real-APSP (using what

is now known as “Fredman’s trick” that later inspired Grønlund and Pettie’s work on Real-3SUM). After

a series of further improved poly-logarithmic speedups, Williams [Wil18] developed the current fastest

algorithm for Real-APSP, with running time n3/2Ω(
√
logn) (which was subsequently derandomized by

Chan and Williams [CW21]). A truly subcubic algorithm remains open.

The Real APSP hypothesis states that no O(n3−ε) time algorithm exists for Real-APSP in graphs with

real-valued weights for any ε > 0 in a reasonable Real RAM model.

Although the current upper bounds for Real-APSP and Int-APSP are the same, Int-APSP could con-

2Technically, the original paper by Gajentaan and Overmars [GO95] stated the 3SUM hypothesis for integer inputs, but they

assumed a Real RAM model of computation, as in most work in computational geometry.
3In this work, we use Õ to suppress poly-logarithmic factors.

3

ceivably be easier than Real-APSP. For example, in Williams’ APSP paper [Wil18], he described a “rel-

atively short argument” for an n3/2Ω(logδ n) algorithm in the integer case as a warm-up, which did not

immediately generalize to the real case (which required further ideas).

It is known [FM71] that Int-APSP (resp. Real-APSP) is equivalent to the seemingly simpler problem

Int-(min,+)-Product (resp. Real-(min,+)-Product), where one is given two n × n integer (resp. real)

matrices A,B, and is asked to compute an n × n matrix C where C[i, j] = mink∈[n](A[i, k] + B[k, j]).
Thus, (min,+)-Product has been the main focus of algorithms and reductions for APSP.

The Orthogonal Vectors (OV) hypothesis. In the OV problem, given a set of n Boolean vectors in d-

dimension for some d = ω(log n), one needs to determine if there are two vectors u, v such that
∨d

i=1(u[i]∧
v[i]) is false. The OV hypothesis (OVH) states that no O(n2−ε) time algorithm exists for OV for any ε > 0.

Williams [Wil05] showed that SETH implies OVH. In fact, a large fraction of the conditional lower bounds

based on SETH actually use the OV problem as an intermediate problem (see the survey [Vas18] for an

overview of problems that are hard under OVH and SETH).

In the k-OV problem we are given k sets of Boolean vectors of small dimension and are asked if there

exists a k-tuple of vectors, one from each set, that is orthogonal, i.e. there is no coordinate in which all k
vectors have 1s. Williams’ argument [Wil05] in fact implies a fine-grained reduction from CNF-SAT with

n variables and O(n) clauses to k-OV for any integer k ≥ 2, so that under SETH, k-OV requires nk−o(1)

time.

It is easy to reduce k-OV for any k > 2 to OV, however a reduction in the reverse direction has been

elusive. It is quite possible that, say 1000-OV has an O(n999.99) time algorithm, yet OV still requires n2−o(1)

time. Thus basing hardness on OV is arguably better than basing hardness on k-OV for k > 2, and basing

hardness on any fixed k-OV is better than basing hardness on SETH, as all one needs to do to refute SETH

is to refute the presumed hardness of k-OV for some k.

1.1 Our results

We begin by defining our new hypothesis and will then outline our reductions.

Combining OVH, the Real 3SUM hypothesis and the Real APSP hypothesis, we consider the following

very weak hypothesis.

Hypothesis 2. At least one of OVH, the Real 3SUM hypothesis or the Real APSP hypothesis is true.

1.1.1 Main result: hardness for Triangle Collection

It is unclear whether any of the Real 3SUM hypothesis, the Real APSP hypothesis, and the OV hypoth-

esis (let alone Hypothesis 2) implies nontrivial lower bounds for the Tri-Co problem. Abboud, Vassilevska

W. and Yu’s prior reductions [AVY18] from Int-3SUM and Int-APSP to Tri-Co used hashing tricks that

are not applicable to real inputs; furthermore, their reduction from CNF-SAT to Tri-Co does not go through

OV, but was from the stronger 3-OV problem.

The proof of Theorem 1.1 in [AVY18] uses an intermediate problem, Int-Exact-Tri, between Int-3SUM

/ Int-APSP and Tri-Co. In Int-Exact-Tri, one is given an n-node graph with edge weights in ±[nc] for

some constant c and one needs to determine whether the graph contains a triangle whose edge weights

sum up to zero. One can define Real-Exact-Tri analogously by replacing edge weights with real numbers.

The Integer (resp. Real) Exact-Triangle hypothesis states that no O(n3−ε) time algorithm for ε > 0 exists

for Int-Exact-Tri (resp. Real-Exact-Tri) in the Word RAM model (resp. a reasonable Real RAM model),

and it is well-known that the Integer 3SUM hypothesis and the Integer APSP hypothesis imply the Integer

Exact-Triangle hypothesis [VW13].

4

If one tries to mimic the approach of going through Int-Exact-Tri in the real case, one would first reduce

Real-APSP and Real-3SUM to Real-Exact-Tri, and then reduce Real-Exact-Tri to Tri-Co. However, it

was unclear whether Real-APSP reduces to Real-Exact-Tri, since the previous reduction for the integer

case relies on fixing the results bit by bit [VW13]. The tight reduction from Int-3SUM to Int-Exact-Tri also

doesn’t seem to apply since it relies on Pătraşcu’s hashing technique [Păt10]. (However, a previous non-tight

reduction from Int-3SUM to Int-Exact-Tri by Vassilevska W. and Williams [VW13] does generalize to a

reduction from Real-3SUM to Real-Exact-Tri; see Appendix B for more details.)

Secondly, even if one manages to reduce Real-APSP to Real-Exact-Tri, one still faces an obstacle

in reducing further to Tri-Co: the proof in [AVY18] relies on transforming the integer edge weights into

vectors of tiny integers, which isn’t possible if the edge weights are real numbers.

The reduction from SETH to Tri-Co in [AVY18] implicitly goes through the 3-OV problem. It is very

natural to relate 3-OV to Tri-Co, since 3-OV asks whether all triples of vectors are not orthogonal, and

Tri-Co asks whether all triples of colors have a triangle. It is then sufficient to embed 3-OV into Tri-Co so

that a triple of vectors are not orthogonal if and only if their corresponding colors have a triangle. However,

OV and Tri-Co are seemingly conceptually different (OV is about pairs, whereas Tri-Co is about triples) and

thus it is not quite clear whether one can reduce OV to Tri-Co.

We consider a natural generalization of the Tri-Co problem: ACP-Tri-Co (“ACP” stands for “All-Color-

Pairs”). The input of ACP-Tri-Co is the same as the input of Tri-Co, while ACP-Tri-Co requires the algo-

rithm to output for every pair of distinct colors (a, b), whether there exists a triangle with colors (a, b, c) for

every c different from a and b.
As our main result, we give a nontrivial fine-grained lower bound for ACP-Tri-Co based on the very

weak Hypothesis 2.

Theorem 1.2. Assuming Hypothesis 2, ACP-Tri-Co requires n2+δ−o(1) time for some δ > 0, in a reasonable

Real RAM model.

Our reductions prove the above theorem for δ = 0.25. Combining Theorem 1.2 with the reductions by

Abboud, Vassilevska W. and Yu [AVY18], we obtain the following corollary. In the following, the #SS-

Sub-Conn problem asks to maintain the number of nodes reachable from a fixed source in an undirected

graph under node updates, and the ST-Max-Flow problem asks to compute the maximum flow in a graph

for every pair of vertices (s, t) ∈ S × T for two given subsets of nodes S, T .

Corollary 1.3. Assuming Hypothesis 2, there exists a constant δ > 0 such that any fully dynamic algorithm

for #SSR, #SCC, #SS-Sub-Conn, and Max-Flow requires either amortized nδ−o(1) update or query

times, or n2+δ−o(1) preprocessing time.

Also, assuming Hypothesis 2, ST-Max-Flow on a network with n nodes and O(n) edges requires

n1+δ−o(1) time for some δ > 0, even when |S| = |T | = √
n.

We obtain Theorem 1.2 via two conceptually different webs of reductions, together with equivalence

results between variants of Triangle Collection.

1.1.2 Real APSP and Real 3SUM hardness via All-Edges Sparse Triangle

In the All-Edges Sparse Triangle problem, which we will abbreviate as AE-Sparse-Tri, one is given

a graph with m edges, and is asked whether each edge in the graph is in a triangle. This problem has an

O(m2ω/(ω+1)) time algorithm [AYZ97] where ω is the square matrix multiplication exponent. This running

time is O(m1.41) with the current bound ω < 2.373 [Vas12, Gal14, AV21], and Õ(m4/3) if ω = 2.

Pătraşcu [Păt10] showed that this problem requires m4/3−o(1) time assuming the integer 3SUM hypothe-

sis. Kopelowitz, Pettie, and Porat [KPP16] extended Pătraşcu’s result by showing conditional lower bounds

5

for the Set-Disjointness problem and the Set-Intersection problem, which generalize AE-Sparse-Tri.

Recently, Vassilevska W. and Xu [VX20] showed a reduction from Int-Exact-Tri to AE-Sparse-Tri. Com-

bined with the known reductions from Int-APSP and Int-3SUM to Int-Exact-Tri [VW13, VW18], we get

that AE-Sparse-Tri requires m4/3−o(1) time assuming either the Integer 3SUM hypothesis or the Integer

APSP hypothesis.

These reductions fail under the Real APSP hypothesis or the Real 3SUM hypothesis. Pătraşcu’s and

Kopelowitz, Pettie, and Porat’s reductions rely heavily on hashing, which does not seem to apply for

Real-3SUM. Vassilevska W. and Xu’s reduction uses Int-Exact-Tri as an intermediate problem. As dis-

cussed earlier, it is unclear how to reduce Real-APSP to Real-Exact-Tri. Even if such a reduction is

possible, one still needs to replace a hashing trick used by Vassilevska W. and Xu with some other technique

that works for real numbers.

We overcome these difficulties by designing conceptually very different reductions from before. On a

very high level, instead of hashing, we use techniques inspired by “Fredman’s trick” [Fre76]. Using our new

techniques, we obtain the following theorem. The resulting reduction also appears simpler than previous

reductions, partly because we don’t need to design and analyze any hash functions. For example, the entire

proof of our reduction from Real-APSP to AE-Sparse-Tri fits in under two pages, and is included at the

end of the introduction in Section 1.2. The reader is invited to browse through Vassilevska W. and Xu’s

longer, more complicated proof [VX20] for a comparison.

Theorem 1.4. AE-Sparse-Tri on a graph with m edges requires

• m4/3−o(1) time assuming the Real APSP hypothesis;

• m5/4−o(1) time assuming the Real Exact-Triangle hypothesis;

• m6/5−o(1) time assuming the Real 3SUM hypothesis.

Theorem 1.4 immediately implies Real APSP and Real 3SUM hardness for a large list of problems that

were shown to be Integer APSP and Integer 3SUM hard via AE-Sparse-Tri, such as dynamic reachability,

dynamic shortest paths and Pagh’s problem [Păt10, AV14].

We obtain higher conditional lower bounds if we consider the counting version of AE-Sparse-Tri,

#AE-Sparse-Tri, where one is given a graph with m edges, and is asked to output the number of trian-

gles each edge is in. Note that the O(m2ω/(ω+1)) time algorithm by Alon, Yuster, and Zwick [AYZ97] still

works for #AE-Sparse-Tri. Therefore, the following theorem is tight if ω = 2.

Theorem 1.5. #AE-Sparse-Tri on a graph with m edges requires m4/3−o(1) time if at least one of the Real

APSP hypothesis, the Real Exact-Triangle hypothesis or the Real 3SUM hypothesis is true.

We actually obtain slightly stronger results than Theorem 1.4: we can reduce each of Real-APSP,

Real-Exact-Tri and Real-3SUM to some number of instances of AE-Sparse-Tri. Consequently, we obtain

Real APSP and Real 3SUM hardness for a problem called the AE-Mono-Tri (i.e. All-Edges Monochro-

matic Triangles, defined in Section 2), by combining a known reduction by Lincoln, Polak, and Vassilevska

W. [LPV20] from multiple instances of AE-Sparse-Tri to AE-Mono-Tri.

Finally, we will reduce AE-Mono-Tri to ACP-Tri-Co, thus proving the Real APSP and Real 3SUM

hardness in Theorem 1.2.

6

1.1.3 Real APSP and OV hardness via Colorful Boolean Matrix Multiplication

As a key problem in our second line of reductions, we define a natural generalization of the Boolean

Matrix Multiplication problem, Colorful-BMM. In the Colorful-BMM problem, we are given an n × n
Boolean matrix A and an n × n Boolean matrix B and a mapping color : [n] → Γ. For each i ∈ [n] and

j ∈ [n], we want to decide whether {color (k) : A[i, k] ∧ B[k, j], k ∈ [n]} = Γ. In other words, for every

pair of i, j, we want to determine whether the witnesses cover all the colors.

We show that Real-APSP can be reduced to the Colorful-BMM problem. Our reduction uses an idea

from Williams’ algorithm for Real-APSP [Wil18]: to compute the Min-Plus product of two real matrices,

it suffices to compute several logical ANDs of ORs. We then show that these logical operations can be natu-

rally reduced to Colorful-BMM. Since OV also has a similar formulation of logical ANDs of ORs [AWY14],

we similarly reduce OV to Colorful-BMM. We obtain the following theorem using this idea.

Theorem 1.6. Colorful-BMM between two n× n matrices requires

• n2.25−o(1) time assuming the Real APSP hypothesis;

• n3−o(1) time assuming OVH.

We also obtain Real-APSP and OV hardness for several natural matrix product problems, such as

(distinct,=)-Product and (distinct,+)-Product (see Section 9 for their definitions).

We will then reduce Colorful-BMM to ACP-Tri-Co, as detailed in the following.

1.1.4 Equivalence between variants of Triangle Collection

We also show some equivalence results between variants of Tri-Co. These equivalences will be useful

when we further reduce the previous two lines of reductions to ACP-Tri-Co to finish the proof of Theo-

rem 1.2.

Triangle-Collection* (Tri-Co* for short) as defined by [AVY18] is a “restricted” version of Tri-Co

whose definition has two parameters t and p along with other details about the structure of the input graphs.

All previous reductions from Tri-Co [AVY18, Dah16] are actually from the Tri-Co* problem with small

parameters t, p ≤ no(1) (or t, p ≤ nε for every ε > 0).

We consider a conceptually much simpler variant of Tri-Co, which we call Tri-Colight. The input and

output of Tri-Colight are the same as those of Tri-Co; however, we use a parameter which denotes an upper

bound for the number of nodes that can share the same color (“light” means that the colors are light, i.e.

have few vertices each).

We show the following equivalence between Tri-Co* and Tri-Colight.

Theorem 1.7. (ACP-) Tri-Colight with parameter no(1) and (ACP-) Tri-Co* with t, p ≤ no(1) are equivalent

up to no(1) factors.

Therefore, in order to reduce problems to Tri-Co* and thus to other problems known to be reducible

from Tri-Co*, it suffices to reduce them to the much cleaner problem Tri-Colight.

We obtain our main result, Theorem 1.2, by combining our previous reductions with Theorem 1.7.

First, we obtain Real-APSP and Real-3SUM hardness of ACP-Tri-Co* by reducing AE-Mono-Tri to

ACP-Tri-Colight.

Second, the Colorful-BMM problem easily reduces to the ACP-Tri-Co problem, establishing the OV

hardness of ACP-Tri-Co and yielding another route of reduction from the Real-APSP problem. However,

Colorful-BMM doesn’t seem to reduce to the more restricted problem ACP-Tri-Co*. By unrolling our

reduction from OV to ACP-Tri-Co, we show that OV actually reduces to the original Tri-Co* problem.

7

Theorem 1.8. Tri-Colight with parameter no(1) (and thus Tri-Co* with parameters no(1) and Tri-Co) requires

n3−o(1) time assuming OVH.

Using Theorem 1.7 we are also able to prove the following surprising result:

Theorem 1.9. If Tri-Co* with parameters t, p ≤ nε for some ε > 0 has a truly subcubic time algorithm,

then so does Tri-Co.

Theorem 1.9 establishes a subcubic equivalence between Tri-Co and Tri-Co* with parameters nε, and in

fact implies that all the known hardness results so far that were proven from Tri-Co* also hold from Tri-Co

itself.

1.1.5 Other Reductions

Using our reductions and techniques, we also obtain the following list of interesting applications.

A hard colorful version of AE-Sparse-Triangle. We give a tight conditional lower bound under Hy-

pothesis 2 for the parameterized time complexity of a natural variant of AE-Sparse-Tri. Specifically, in

the AE-Colorful-Sparse-Tri problem, we are given a graph G = (V,E) with m edges and a mapping

color : V → Γ. For each edge uv, we want to decide whether {color (w) : uwv is a triangle} = Γ. When

the degeneracy of the graph is mα, we can clearly solve the problem in Õ(m1+α) time by enumerating all

triangles in the graph [CN85]. We show that, under Hypothesis 2, for any constant 0 < α ≤ 1/5, no algo-

rithm can solve AE-Colorful-Sparse-Tri in a graph with m edges and degeneracy O(mα) in Õ(m1+α−ε)
time for ε > 0.

Real-to-integer reductions. It is an intriguing question whether we can base the hardness of a problem

with integer inputs on the hardness of the same problem but with real inputs. For instance, it would be ex-

tremely interesting if one could show that the Real 3SUM hypothesis implies the Integer 3SUM hypothesis.

We partially answer this question by showing two conditional lower bounds of this nature.

First, if Int-All-Nums-3SUM (a variant of Integer 3SUM where one needs to output whether each input

number is in a 3SUM solution) can be solved in Õ(n6/5−ε) time for ε > 0, then Real-All-Nums-3SUM

can be solved in truly subquadratic time, falsifying the Real 3SUM hypothesis.

Second, if Int-AE-Exact-Tri (the “All-Edges” variant of Int-Exact-Tri) can be solved in Õ(n7/3−ε) time

for ε > 0, then Real-AE-Exact-Tri can be solved in truly subcubic time. We also show variants of this

result such as an analogous result for the counting versions of these problems.

An application to string matching. In the pattern-to-text Hamming distance problem, we are given a text

string T = t1 · · · tN and a pattern string P = p1 · · · pM in Σ∗ with M ≤ N , and we want to compute

for every i = 0, . . . , N − M , the Hamming distance between P and ti+1 · · · ti+M , which is defined as

M − |{j : pj = ti+j}|. The current best algorithm in terms of N runs in Õ(N3/2) time [Abr87] while

unfortunately there isn’t a matching conditional lower bound under standard hypotheses (though there is

an unpublished non-matching Nω/2−o(1) time conditional lower bound based on the presumed hardness of

Boolean Matrix Multiplication that has been attributed to Indyk, see e.g. [GU18]).

We consider a similar string matching problem which we call pattern-to-text distinct Hamming simi-

larity. The input to pattern-to-text distinct Hamming similarity is the same as the input to pattern-to-text

Hamming distance, but for each i = 0, . . . , N − M , we need to output |{pj : pj = ti+j}| instead. The

Õ(N3/2) time algorithm for pattern-to-text Hamming distance can be easily adapted to an Õ(N3/2) time

algorithm for pattern-to-text distinct Hamming similarity. Using our reduction from OV to Colorful-BMM,

we show a matching N3/2−o(1) lower bound for pattern-to-text distinct Hamming similarity based on OVH.

8

Real APSP hardness of Set-Disjointness and Set-Intersection. Set-Disjointness and Set-Intersection

are two generalized versions of AE-Sparse-Tri (see Section 2 for their formal definitions). Kopelowitz, Pet-

tie, and Porat [KPP16] showed Integer 3SUM hardness of these two problems, and used them as intermediate

steps for showing 3SUM hardness of many graph problems, such as Triangle Enumeration and Maximum

Cardinality Matching. Later, Vassilevska W. and Xu [VX20] showed reductions from Int-Exact-Tri to

these two problems, and thus obtained Integer APSP hardness for Set-Disjointness and Set-Intersection.

By generalizing the techniques used in our reduction from Real-APSP to AE-Sparse-Tri, we obtain Real

APSP hardness for Set-Disjointness and Set-Intersection. Therefore, all the hardness results shown by

Kopelowitz, Pettie, and Porat [KPP16] now also have Real APSP hardness.

1.2 An Illustration of Our Techniques: Reduction from Real-APSP to AE-Sparse-Tri

In this subsection, we include our complete reduction from Real-APSP to AE-Sparse-Tri to exemplify

how our techniques are different from, and simpler than, the previous hashing techniques [VX20].

Our main new insight is simple: we observe that Fredman’s beautiful method for Real-APSP [Fre76],

which yielded an Õ(n5/2)-depth decision tree but not a truly subcubic time algorithm, can actually be

converted to an efficient algorithm when given an oracle to AE-Sparse-Tri, if we combine the method with

a standard randomized search trick and an interesting use of “dyadic intervals” (essentially corresponding

to a one-dimensional “range tree” [dBCvKO08]).

We first recall the well-known fact [FM71] that Real-APSP is equivalent to computing the (min,+)-
product of two n× n real-valued matrices A and B, defined as the matrix C with C[i, j] = mink(A[i, k] +
B[k, j]). This problem in turn reduces to O(n/d) instances of computing the (min,+)-product of an n× d
matrix and d× n matrix.

We define the following intermediate problem, which we show is equivalent to the original problem by

a random sampling trick:

Problem 1.10 (Real-(min,+)-Product-Variant). We are given an n × d real matrix A and a d × n real

matrix B, where d ≤ n. For each i, j ∈ [n], we are also given an index kij ∈ [d].
For each i, j ∈ [n], we want to find an index k′ij ∈ [d] (if it exists) satisfying

A[i, k′ij] +B[k′ij, j] < A[i, kij] +B[kij , j]. (1)

Lemma 1.11. Real-(min,+)-Product of an n × d real matrix A and a d × n real matrix B reduces to

Õ(1) calls of an oracle for Real-(min,+)-Product-Variant using Las Vegas randomization.

Proof. We compute the (min,+)-product of A and B as follows: take a random subset R ⊆ [d] of size d/2.

For each i, j ∈ [n], first compute

k
(R)
ij = argmin

k∈R
(A[i, k] +B[k, j]).

This can be done recursively by (min,+)-multiplying an n× (d/2) and a (d/2) × n matrix.

Next, initialize kij = k
(R)
ij . Invoke the oracle for Real-(min,+)-Product-Variant to find some k′ij

satisfying (1) for each i, j ∈ [n]. If k′ij exists, reset kij = k′ij . Now, repeat. When k′ij is nonexistent for all

i, j ∈ [n], we can stop, since we would have kij = argmink∈[d](A[i, k] +B[k, j]) for all i, j ∈ [n].
To bound the number of iterations, observe that for each i, j ∈ [n], the number of indices k′ ∈ [d]

satisfying A[i, k′] + B[k′, j] < A[i, k
(R)
ij] + B[k

(R)
ij , j] is O(log n) w.h.p.4 (since in a set of d values, at

4“w.h.p.” is short for “with high probability”, i.e., with probability 1−O(1/nc) for an arbitrarily large constant c.

9

most O(log n) values are smaller than the minimum of a random subset of size d/2 w.h.p.). Thus, O(log n)
iterations suffice w.h.p.

As the recursion has O(log d) depth, the total number of oracle calls is O(log d log n) w.h.p. �

We now present our main reduction from Real-(min,+)-Product-Variant to AE-Sparse-Tri, which is

inspired by “Fredman’s trick” [Fre76]—namely, the obvious but crucial observation that a′ + b′ < a+ b is

equivalent to a′ − a < b− b′.

Lemma 1.12. Real-(min,+)-Product-Variant reduces to O(d) instances of AE-Sparse-Tri on graphs

with Õ(n2/d+ dn) edges.

Proof. To solve Real-(min,+)-Product-Variant, we first sort the following list of O(d2n) elements in

O(d2n log n) time:

L = {A[i, k′]−A[i, k] : i ∈ [n], k, k′ ∈ [d]} ∪ {B[k, j]−B[k′, j] : j ∈ [n], k, k′ ∈ [d]}.

Fix k ∈ [d]. Let Pk = {(i, j) ∈ [n]2 : kij = k}. Divide Pk into
⌈

|Pk|
n2/d

⌉

subsets of size O(n2/d). Fix

one such subset P ⊆ Pk. We solve AE-Sparse-Tri on the following tripartite graph Gk,P :

0. The left nodes are {x[i] : i ∈ [n]}, the middle nodes are {y[k′, I] : k′ ∈ [d], I is a dyadic interval},

and the right nodes are {z[j] : j ∈ [n]}. Here, a dyadic interval refers to an interval of the form

[2st, 2s(t + 1)) ⊂ [0, 4d2n) for nonnegative integers s and t (here, 4d2n − 1 is an upper bound for

the smallest power of 2 that is larger than or equal to 2d2n). We don’t explicitly enumerate all these

nodes, but generate a node when we need to add an edge to it.

1. For each (i, j) ∈ P , create an edge x[i] z[j].

2. For each i ∈ [n], k′ ∈ [d], and each dyadic interval I , create an edge x[i] y[k′, I] if the rank of

A[i, k′]−A[i, k] in L is in the left half of I .

3. For each j ∈ [n], k′ ∈ [d], and each dyadic interval I , create an edge y[k′, I] z[j] if the rank of

B[k, j] −B[k′, j] in L is in the right half of I .

Step 1 creates O(n2/d) edges. Steps 2–3 create O(dn log n) edges, since any fixed value lies in

O(log n) dyadic intervals. Thus, the graph Gk,P has Õ(n2/d + dn) edges. The total number of graphs

is
∑

k∈[d]

⌈

|Pk|
n2/d

⌉

= O(d).

For any given (i, j) ∈ [n]2, take k = kij and P to be the subset of Pk containing (i, j). Finding a

k′ with A[i, k′] + B[k′, j] < A[i, kij] + B[kij , j] is equivalent to finding a k′ with A[i, k′] − A[i, k] <
B[k, j] − B[k′, j], which is equivalent to finding a triangle x[i] y[k′, I] z[j] in the graph Gk,P . Here, we

are using the following fact: for any two numbers a, b ∈ [2d2n], we have a < b iff there is a (unique)

dyadic interval I such that a lies on the left half of I and b lies on the right half of I . Thus, the answers to

Real-(min,+)-Product-Variant can be deduced from the answers to the AE-Sparse-Tri instances. Note

that we have assumed an equivalent version of the AE-Sparse-Tri problem with “witnesses”, i.e., that

outputs a triangle through each edge whenever such a triangle exists [DKPV20]. �

A near m4/3 lower bound for AE-Sparse-Tri immediately follows, assuming the Real-APSP hypoth-

esis; this matches known upper bounds if ω = 2. The new proof not only strengthens the previous proof by

Vassilevska W. and Xu [VX20], which reduces from integer APSP, but it is also simpler (not requiring more

complicated hashing arguments).

10

Theorem 1.13. If AE-Sparse-Tri could be solved in Õ(m4/3−ε) time, then Real-APSP could be solved in

Õ(n3−3ε/2) time using Las Vegas randomization.

Proof. By combining the above two lemmas, if AE-Sparse-Tri could be solved in T (m) time, then the

(min,+)-product of an n × d and a d × n real matrix could be computed in Õ(d · T (n2/d + dn)) time.

The (min,+)-product of two n × n real matrices, and thus Real-APSP, reduce to n/d instances of such

rectangular products and could then be computed in Õ(n · T (n2/d+ dn)) time. By choosing d =
√
n, the

time bound becomes Õ(n · T (n3/2)) = Õ(n3−3ε/2) if T (m) = Õ(m4/3−ε). �

Our reduction from Real-3SUM to AE-Sparse-Tri (see Section 3.3) is based on a similar insight: we

observe that Grønlund and Pettie’s elegant method (based on Fredman’s work), which yielded an Õ(n3/2)-
depth decision tree for Real-3SUM, can also be converted to an efficient algorithm when given an or-

acle to AE-Sparse-Tri. Since Grønlund and Pettie’s method is a bit cleverer, this reduction is techni-

cally more challenging (though it is still comparable in simplicity with Pătraşcu’s original reduction from

Int-3SUM [Păt10]), and because of these extra complications, the resulting conditional bounds are not tight.

Nevertheless, it is remarkable that nontrivial conditional lower bounds can be obtained at all, and that we

do get tight bounds for a certain range of degeneracy values, and tight bounds for reductions to the counting

variant of AE-Sparse-Tri, when ω = 2. (For applications to some of the dynamic graph problems, the

earlier polynomial lower bounds weren’t tight anyways.)

Our reduction from Real-APSP to Colorful-BMM (see Section 6) is even simpler (under one page

long), and is inspired by ideas from Williams’ Real-APSP algorithm [Wil14], also based on Fredman’s

trick. Our reduction from OV to Colorful-BMM is more straightforward, but we view the main innovation

here to be the introduction of the Colorful-BMM problem itself, which we hope will find further appli-

cations. Sometimes, the key to conditional lower bound proofs lies in formulating the right intermediate

subproblems. Our combined reduction from OV to ACP-Tri-Co via Colorful-BMM is essentially as simple

as Abboud, Vassilevska W. and Yu’s original reduction from 3-OV to Tri-Co [AVY18], but adds more un-

derstanding of the Tri-Co and related problems as it reveals that a weaker hypothesis is sufficient to yield

conditional lower bounds for all the dynamic graph problems in Corollary 1.3.

1.3 Paper Organization

In Section 2, we define necessary notations. In Section 3, we show hardness of AE-Sparse-Tri under

the Real 3SUM, Real APSP and the Real Exact-Triangle hypotheses. In Section 4, we show hardness of

#AE-Sparse-Tri under the Real 3SUM and the Real Exact-Triangle hypotheses. From the results in Sec-

tions 3–4, we show hardness of AE-Mono-Tri (and its counting version) under the Real 3SUM, Real APSP

and the Real Exact-Triangle hypotheses in Section 5. In Section 6, we show hardness of Colorful-BMM

based on the Real APSP and the OV hypotheses. We prove our main theorem in Section 7, by showing

equivalence between variants of Tri-Co problems and reducing problems in Section 3 and Section 6 to vari-

ants of Tri-Co. Finally, in Sections 8–9, we describe further applications of our techniques and results.

Figure 1 depicts the main reductions in the paper, and Table 1 summarizes our main lower bound results.

2 Preliminaries

In this section, we give definitions and abbreviations of terminologies and problems we will consider

throughout the paper. We group related definitions together for easier navigation.

Some problems require to output whether each edge in a given graph is in some triangle with certain

property. We use the prefix AE- (short for “All-Edges-”) to denote that we need to output a Boolean value

11

Real-3SUMReal-APSPOV

(multi-instance) AE-Sparse-Tri

AE-Mono-Tri

Colorful-BMM

ACP-Tri-Co*

ACP-Tri-Co

Tri-Co*

Tri-Co

Thm. 3.11Thm. 1.13

[LPV20]

Thm. 7.4
trivial

Thm. 7.2

+ Thm. 7.3

trivial

Thm. 6.4 Thm. 6.2

Lem. 7.5

Cor. 7.6

trivial

trivial

Thm. 7.2

+ Thm. 7.3

Figure 1: The main reductions in this paper. The solid arrows represent usual fine-grained reductions.

The two dashed arrows represent sub-cubic reductions that only hold when Tri-Co* and ACP-Tri-Co* have

parameters nε for ε > 0.

for each edge indicating whether each edge is in such a triangle. For these problems, we can instead use the

prefix #AE- to indicate that we need to count the number of such triangles involving each edge.

2.1 Fine-Grained Reductions

We use the notion of fine-grained reduction [VW18, Vas18] which is as follows. Let A and B be

problems, and let a(n) and b(n) be running time functions where n is the input size or a suitable measure

related to the input size such as the number of nodes in a graph.

We say that A is (a, b)-fine-grained reducible to B if for every ε > 0 there is a δ > 0 and an O(a(n)1−δ)
time algorithm that solves size (or size measure) n instances of A making calls to an oracle for problem

B, so that the sizes (or size measures) of the instances of B in the oracle calls are n1, n2, . . . , nk and
∑k

i=1(b(ni))
1−ε ≤ a(n)1−δ.

If A is (a, b)-fine-grained reducible to B, and if there is an O(b(n)1−ε) time algorithm for B for some

ε > 0, then there is also an O(a(n)1−δ) time algorithm for some δ > 0.

All the reductions in the paper will be fine-grained, and hence we will often omit “fine-grained” when

we say reduction.

2.2 Hard Problems

In this section, we define the problems that we will consider as our hardness sources. In case a problem

P has numbers in the input, we will define the generic version of problem P and use Int-P to denote the

version where the input numbers are integers from ±[nc] for some sufficiently large constant c, and use

12

Problems Lower Bounds Hypotheses References

AE-Sparse-Tri

m4/3−o(1) † Int-3SUM [Păt10]

m4/3−o(1) † Int-APSP, Int-Exact-Tri [VX20]

m6/5−o(1) Real-3SUM Thm. 3.11

m5/4−o(1) Real-Exact-Tri Thm. 3.6

m4/3−o(1) † Real-APSP Thm. 1.13

#AE-Sparse-Tri
m4/3−o(1) † Real-3SUM Thm. 4.8

m4/3−o(1) † Real-Exact-Tri Thm. 4.4

AE-Mono-Tri

n5/2−o(1) † Int-3SUM [LPV20]

n5/2−o(1) † Int-APSP [VX20]

n9/4−o(1) Real-3SUM Thm. 5.6

n7/3−o(1) Real-Exact-Tri Thm. 5.4

n5/2−o(1) † Real-APSP Thm. 5.2

#AE-Mono-Tri
n5/2−o(1) † Real-Exact-Tri Thm. 5.3

n5/2−o(1) † Real-3SUM Thm. 5.5

Colorful-BMM
n9/4−o(1) Real-APSP Thm. 6.2

n3−o(1) ‡ OV Thm. 6.4

Tri-Co n3−o(1) ‡ Int-APSP, Int-3SUM, SETH [AVY18]

ACP-Tri-Co

n9/4−o(1) Real-3SUM Thm. 5.6 + Thm. 7.4 + Thm. 7.2

n5/2−o(1) Real-APSP Thm. 5.2 + Thm. 7.4 + Thm. 7.2

n3−o(1) ‡ OV Cor. 7.6

Int-All-Nums-3SUM n6/5−o(1) Real-3SUM Cor. 8.2

Int-AE-Exact-Tri n7/3−o(1) Real-AE-Exact-Tri Cor. 8.4

pattern-to-text distinct

Hamming similarity
n3/2−o(1) ‡ OV Thm. 8.7

Table 1: Summary of some of our results and previous results. Ignoring no(1) factors, entries marked †
match known upper bounds assuming ω = 2; entries marked ‡ match known upper bounds without the

assumption.

Real-P to denote the version where the input numbers are reals.

Problem 2.1 (3SUM). Given three sets A,B,C of numbers of size n, determine whether there exist 3
numbers a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0.

Problem 2.2 (All-Nums-3SUM). Given three sets A,B,C of numbers of size n, for each c ∈ C , determine

whether there exist a ∈ A, b ∈ B such that a+ b+ c = 0.

It is known that Int-3SUM (resp. Real-3SUM) and Int-All-Nums-3SUM (resp. Real-All-Nums-3SUM)

are subquadratically equivalent [VW18]. Note that a “one-set” version of 3SUM (instead of the above

“three-sets” version) has also been used in the literature, but they are known to be equivalent. Often, it is

more convenient to consider the version of the problem where the third set is negated, in which case we are

seeking a triple (a, b, c) with a+ b = c.

Problem 2.3 (APSP). Given an n-node directed graph whose edge weights are given as numbers and which

has no negative cycles, compute the shortest path distances from u to v for every pair of nodes u and v in

the graph.

Problem 2.4 ((min,+)-Product). Given an n× d matrix A and a d× n matrix B whose entries are given

as numbers, compute an n× n matrix C such that C[i, j] = mink∈[d](A[i, k] +B[k, j]).

13

Problem 2.5 (AE-Negative-Triangle (AE-Neg-Tri)). Given an n-node graph whose edge weights are given

as numbers, for each edge determine whether there is a triangle containing that edge whose edge weights

sum up to negative.

It is known [FM71, VW18] that Real-APSP, Real-AE-Neg-Tri and Real-(min,+)-Product between

n×n real-valued matrices are all subcubically equivalent; similarly, Int-APSP, Int-AE-Negative-Triangle,

and Int-(min,+)-Product between n× n integer-valued matrices are all subcubically equivalent as well.

Problem 2.6 (AE-Exact-Triangle (AE-Exact-Tri)). Given an n-node graph whose edge weights are given

as numbers, for each edge determine whether there is a triangle containing that edge whose edge weights

sum up to zero.

It is known that the Integer 3SUM and the Integer APSP hypotheses imply that Int-AE-Exact-Tri re-

quires n3−o(1) time [VW13]. However, such tight reductions aren’t known for their real variants. However,

we can adapt one previous non-tight reduction from Int-3SUM to Int-AE-Exact-Tri [VW13] to the real case,

which implies Real-AE-Exact-Tri requires n2.5−o(1) time assuming the Real 3SUM hypothesis (see more

details in Appendix B).

Problem 2.7 (OV). Given a set of n Boolean vectors in f dimensions, determine whether the set contains

two vectors that are orthogonal.

2.3 Triangle Collection and Variants

We define a tripartite version of Triangle-Collection, which is slightly different from the original def-

inition of Abbound, Vassilevska W. and Yu [AVY18]. In Section 7 we will show these two definitions are

equivalent.

For brevity, we will give short names for Triangle-Collection and Triangle-Collection*, Tri-Co and

Tri-Co* respectively. Similar abbreviations will also be given for the All-Color-Pairs versions.

Problem 2.8 (Triangle-Collection (Tri-Co)). Given a tripartite graph G = (V,E) on partitions A,B,C
such that the colors of the nodes in A are from a set KA, the colors of the nodes in B are from a set KB and

the colors of the nodes in C are from a set KC , where KA ∩ KB ∩ KC = ∅, and one needs to determine

whether for all triples of colors a ∈ KA, b ∈ KB , c ∈ KC there exists some triangle x, y, z ∈ V such that

color (x) = a, color (y) = b, color (z) = c.

Problem 2.9 (ACP-Triangle-Collection (ACP-Tri-Co)). Given the input to a Tri-Co instance, one needs

to determine for every a ∈ KA, b ∈ KB , whether for all c ∈ KC there exists some triangle x, y, z ∈ V such

that color (x) = a, color (y) = b, color (z) = c.

All other variants of Tri-Co will have the same output as Tri-Co, so they also naturally have an All-

Color-Pairs (ACP) variant. We will only define their normal versions for conciseness.

Problem 2.10 (Triangle-Collection* (Tri-Co*)). An instance of Tri-Co* is a restricted instance of Tri-Co.

For parameters p and t it is a node-colored graph G which is a disjoint union of graphs G1, . . . , Gt. G (and

hence all the Gis) is tripartite on partitions A,B,C . The aforementioned value p is an upper bound on the

number of nodes of any particular color in any Gi.

The node colors are from [3]× [n]. For every t, the nodes of Gt are:

• Nodes in A of the form (a, t) of color (1, a). Note that this means that each Gt has nodes of distinct

colors in A.

14

• Nodes in B of the form (b, t, j) of color (2, b), where j ≤ p. For each (a, t) ∈ A and every color

(2, b), there is at most one node (b, t, j) in B that (a, t) has an edge to.

• Nodes in C of the form (c, t, j) of color (3, c) for j ≤ p. For each (a, t) ∈ A and every color (3, c),
there is at most one node (c, t, j) in C that (a, t) has an edge to.

The last two bullets mean that in each Gt all the neighbors of a node in A have distinct colors. There is no

restriction on the edges between nodes in B and C (beyond that the graphs Gi are disjoint).

An algorithm for Tri-Co* needs to output whether for all triples (a, b, c), there is a triangle with node

colors (1, a), (2, b), (3, c).

Here is an even simpler version of Tri-Co* that we will call Triangle-Collection** (Tri-Co** for short).

Problem 2.11 (Triangle-Collection** (Tri-Co**)). An instance of Tri-Co** is a restricted instance of Tri-Co.

For an integer parameter t, it is a disjoint union of graphs G1, . . . , Gt, each of which contains at most one

node of every color.

Clearly, Tri-Co** is a special case of Tri-Co*. We now define a third version of Tri-Co , Tri-Colight, that

has Tri-Co* as a special case. The “light” part of the name stands for “Light Colors”, meaning that each

colors has few nodes.

Problem 2.12 (Tri-Colight). An instance of Tri-Colight is a restricted instance of Tri-Co. For an integer

parameter p, it is a graph that has at most p nodes of any fixed color.

2.4 Other Problems

Problem 2.13 (AE-Sparse-Triangle (AE-Sparse-Tri)). Given a graph with m edges, for each edge deter-

mine whether it is in a triangle.

Problem 2.14 (AE-Monochromatic-Triangle (AE-Mono-Tri)). Given a graph on n nodes where each edge

has a color, for each edge determine whether it is in a triangle whose three edges share the same color.

In some of our reductions, it is convenient to assume that in AE-Sparse-Tri, for each edge where the

answer is yes, a witness (a triangle through the edge) must also be provided. This version is equivalent (up

to poly-logarithmic factors) by standard random sampling techniques for witness finding [AGMN92, Sei95]

(e.g., see the proof of Lemma 4.2), which requires only Las Vegas randomization. The same is true for

AE-Mono-Tri as well.

Problem 2.15 (Set-Disjointness). Given a universe U , a collection of sets F ⊆ 2U , and q queries of the

form (F1, F2) ∈ F × F , an algorithm needs to compute whether F1 ∩ F2 = ∅ for every query.

Problem 2.16 (Set-Intersection). Given a universe U , a collection of sets F ⊆ 2U , and q queries of the

form (F1, F2) ∈ F × F , an algorithm needs to output T elements in the q intersections F1 ∩ F2 for a

parameter T (an element in multiple intersections is counted multiple times).

Problem 2.17 (Colorful Boolean Matrix Multiplication (Colorful-BMM)). Given an n×n Boolean matrix

A and an n × n Boolean matrix B and a mapping color : [n] → Γ, for each i ∈ [n] and j ∈ [n], decide

whether {color (k) : A[i, k] ∧B[k, j], k ∈ [n]} = Γ.

Problem 2.18 (AE-Colorful-Sparse-Triangle (AE-Colorful-Sparse-Tri)). Given a graph G = (V,E)
with m edges and a mapping color : V → Γ. For each edge uv, we want to decide whether {color (w) :
uwv is a triangle} = Γ.

15

3 Hardness of All-Edges Sparse Triangle

In this section, we show conditional lower bounds of AE-Sparse-Tri based on the conjectured hardness

of Real-APSP, Real-Exact-Tri, or Real-3SUM.

3.1 Real-APSP → AE-Sparse-Tri

Recall that we proved Theorem 1.13 in Section 1.2:

Theorem 1.13. If AE-Sparse-Tri could be solved in Õ(m4/3−ε) time, then Real-APSP could be solved in

Õ(n3−3ε/2) time using Las Vegas randomization.

More generally, we can obtain a near mD conditional lower bound in terms of the degeneracy D, if

D ≪ m1/3, which again matches known upper bounds (in fact, regardless of the value of ω).

Theorem 3.1. If AE-Sparse-Tri for graphs with m edges and degeneracy Õ(mα) could be solved in

Õ(m1+α−ε) time for some constant α ≤ 1/3, then Real-APSP could be solved in Õ(n3−2ε/(1+α)) time

using Las Vegas randomization.

Proof. First, observe that the graph Gk,P in Lemma 1.12’s proof can be modified to have degeneracy Õ(d):
Whenever a left node x has ∆x > d neighbors among the right nodes, we split x into

⌈

∆x
d

⌉

copies, where

each copy is linked to up to d neighbors among the right nodes. Each copy is also linked to all of the original

O(d log n) neighbors among the middle nodes. The number of left nodes increases to
∑

x

⌈

∆x
d

⌉

, and so the

number of edges increases by Õ(d
∑

x

⌈

∆x
d

⌉

) = Õ(
∑

x∆x + dn) = Õ(n2/d + dn). Now, each left node

has Õ(d) neighbors among the middle and right nodes. Each right node has Õ(d) neighbors among the

middle nodes. It follows that the degeneracy of the modified graph is Õ(d).
To prove the theorem, choose d so that d = (n2/d)α, i.e., d = n2α/(1+α). Since α ≤ 1/3, we have d ≤√

n and so dn ≤ n2/d. If AE-Sparse-Tri with m edges and degeneracy D could be solved in T (m,D) time,

then Real-APSP could be solved in time Õ(n · T (n2/d, d)) = Õ(n3−2ε/(1+α)) if T (m) = Õ(m1+α−ε).
�

3.2 Real-Exact-Tri → AE-Sparse-Tri

Next, we adapt our proof to reduce from Real-Exact-Tri. As a matrix problem, Real-Exact-Tri (or

Real-AE-Exact-Tri) reduces to the following (after negating the third matrix): given three n × n real ma-

trices A,B,C , decide for each i, j ∈ [n] whether there exists k ∈ [n] with C[i, j] = A[i, k] + B[k, j]. We

will solve a slightly stronger problem of finding the predecessor and successor of C[i, j] among {A[i, k] +
B[k, j] : k ∈ [n]}. Here, if C[i, j] is in this set, we will deviate from convention and define the predecessor

of C[i, j] to be itself. The following is a version of the problem for rectangular matrices:

Problem 3.2 (Real-Exact-Tri-Variant1). We are given an n× d real matrix A, a d× n real matrix B, and

an n× n matrix C , where d ≤ n.

For each i, j ∈ [n], we want to find the predecessor and the successor among {A[i, k] + B[k, j] : k ∈
[d]}.

Again, we introduce an intermediate problem, which the original problem reduces to:

Problem 3.3 (Real-Exact-Tri-Variant2). We are given an n × d real matrix A and a d× n real matrix B,

where d ≤ n. For each i, j ∈ [n], we are also given two indices k−ij , k
+
ij ∈ [d].

For each i, j ∈ [n], we want to find an index k′ij ∈ [d] (if it exists) satisfying

A[i, k−ij] +B[k−ij , j] < A[i, k′ij] +B[k′ij, j] < A[i, k+ij] +B[k+ij , j]. (2)

16

Lemma 3.4. Real-Exact-Tri-Variant1 reduces to Õ(1) calls to an oracle for Real-Exact-Tri-Variant2
using Las Vegas randomization.

Proof. We solve Real-Exact-Tri-Variant1 as follows: Take a random subset R ⊆ [d] of size d/2. For each

i, j ∈ [n], first compute indices k
−(R)
ij , k

+(R)
ij ∈ [d] such that A[i, k

−(R)
ij] + B[k

−(R)
ij , j] and A[i, k

+(R)
ij] +

B[k
+(R)
ij , j] are the predecessor and successor (respectively) of the value C[i, j] among the elements in

{A[i, k] +B[k, j] : k ∈ R}. This computation can be done recursively.

Next, initialize k−ij = k
−(R)
ij and k+ij = k

+(R)
ij . Invoke the oracle for Real-Exact-Tri-Variant2 to find

some k′ij satisfying (2) for each i, j ∈ [n]. If k′ij exists and A[i, k′ij] +B[k′ij, j] ≤ C[i, j], reset k−ij = k′ij . If

k′ij exists and A[i, k′ij] + B[k′ij , j] > C[i, j], reset k+ij = k′ij . Now, repeat. When k′ij is nonexistent for all

i, j ∈ [n], we can stop, since we would know that k−ij and k+ij are the indices defining the predecessor and

successor of C[i, j] in {A[i, k] +B[k, j] : k ∈ [d]} for all i, j ∈ [n].
To bound the number of iterations, observe that for each i, j ∈ [n], the number of indices k′ ∈ [d]

satisfying A[i, k
−(R)
ij] + B[k

−(R)
ij , j] < A[i, k′] + B[k′, j] < A[i, k

+(R)
ij] + B[k

+(R)
ij , j] is O(log n) w.h.p.

(since in a set of d values, there are at most O(log n) values between two consecutive elements in a random

subset of size d/2 w.h.p.). Thus, O(log n) iterations suffice w.h.p.

As the recursion has O(log d) depth, the total number of oracle calls is O(log d log n) w.h.p. �

We now present our main reduction from Real-Exact-Tri-Variant2 to AE-Sparse-Tri, which is similar

to our earlier reduction. The details look a bit more involved, because of the need to work with pairs of

indices (k−, k+) instead of a single index k. This also causes some loss of efficiency. Nevertheless, it

can still lead to a tight conditional lower bound for AE-Sparse-Tri in the case when the degeneracy is

sufficiently small (≪ m1/4).

Lemma 3.5. Real-Exact-Tri-Variant2 reduces to O(d2) instances of AE-Sparse-Tri on n-node graphs

with Õ(n2/d2 + dn) edges and degeneracy Õ(d).

Proof. To solve Problem 3.3, first sort the following list of O(d2n) elements in O(d2n log n) time:

L = {A[i, k′]−A[i, k] : i ∈ [n], k, k′ ∈ [d]} ∪ {B[k, j]−B[k′, j] : j ∈ [n], k, k′ ∈ [d]}.

Fix k−, k+ ∈ [d]. Let Pk−,k+ = {(i, j) ∈ [n]2 : (k−ij , k
+
ij) = (k−, k+)}. Divide Pk−,k+ into

⌈ |Pk−,k+ |
n2/d2

⌉

subsets of size O(n2/d2). Fix one such subset P ⊆ Pk−,k+ . We solve AE-Sparse-Tri on the following

tripartite graph Gk−,k+,P :

0. The left nodes are {x[i] : i ∈ [n]}, the middle nodes are {y[k, I−, I+] : k ∈ [d], I− and I+ are

dyadic intervals}, and the right nodes are {z[j] : j ∈ [n]}.

1. For each (i, j) ∈ P , create an edge x[i] z[j].

2. For each i ∈ [n], k′ ∈ [d], and dyadic intervals I− and I+, create an edge x[i] y[k′, I−, I+] if the rank

of A[i, k−]−A[i, k′] in L is in the left half of I− and the rank of A[i, k′]−A[i, k+] in L is in the left

half of I+.

3. For each j ∈ [n], k′ ∈ [d], and dyadic intervals I− and I+, create an edge y[k′, I−, I+] z[j] if the

rank of B[k′, j] − B[k−, j] in L is in the right half of I− and the rank of B[k+, j] − B[k′, j] in L is

in the right half of I+.

17

Step 1 creates O(n2/d2) edges. Steps 2–3 create O(dn log2 n) edges, since any fixed value lies in

O(log n) dyadic intervals. Thus, the graph Gk−,k+,P has Õ(n2/d2+dn) edges. The total number of graphs

is
∑d2

k=1

⌈ |Pk−,k+ |
n2/d2

⌉

= O(d2).

For any given (i, j) ∈ [n]2, take (k−, k+) = (k−ij , k
+
ij) and P to be the subset of Pk−,k+ containing

(i, j). Finding a k′ with A[i, k−ij] + B[k−ij , j] < A[i, k′] + B[k′, j] < A[i, k+ij] + B[k+ij , j] is equivalent to

finding a k′ with A[i, k−] − A[i, k′] < B[k′, j] − B[k−, j] and A[i, k′] − A[i, k+] < B[k+, j] − B[k′, j],
which is equivalent to finding a triangle x[i] y[k′, I−, I+] z[j] in the graph Gk−,k+,P . Thus, the answers to

Real-Exact-Tri-Variant2 can be deduced from the answers to the AE-Sparse-Tri instances.

Finally, to ensure that each graph Gk−,k+,P has degeneracy Õ(d), we modify the graph by splitting

nodes in the same way as in the proof of Theorem 3.1. The number of edges increases by Õ(d
∑

x

⌈

∆x
d

⌉

) =

Õ(
∑

x∆x + dn) = Õ(n2/d2 + dn). �

Theorem 3.6. If AE-Sparse-Tri could be solved in Õ(m5/4−ε) time, then Real-Exact-Tri (and in fact,

Real-AE-Exact-Tri) could be solved in Õ(n3−4ε/3) time using Las Vegas randomization.

More generally, if AE-Sparse-Tri with m edges and degeneracy Õ(mα) could be solved in Õ(m1+α−ε)
time for some constant α ≤ 1/4, then Real-Exact-Tri (and in fact, Real-AE-Exact-Tri) could be solved in

Õ(n3−2ε/(1+2α)) time using Las Vegas randomization.

Proof. By combining the above two lemmas, if AE-Sparse-Tri with m edges and degeneracy D could be

solved in T (m,D) time, then Problem 3.2 could be solved in Õ(d2·T (n2/d2+dn, d)) time. Real-Exact-Tri

(in fact, Real-AE-Exact-Tri) reduces to O(n/d) instances of Real-Exact-Tri-Variant1 and could then be

solved in Õ(dn · T (n2/d2 + dn, d)) time. Choose d so that d = (n2/d2)α, i.e., d = n2α/(1+2α). Since

α ≤ 1/4, we have d ≤ n1/3 and so dn ≤ n2/d2. The time bound becomes Õ(dn · T (n2/d2, d)) =
Õ(n3−2ε/(1+2α)) if T (m,mα) = Õ(m1+α−ε). �

3.3 Real-3SUM → AE-Sparse-Tri

We next adapt our proof to reduce from Real-3SUM. We will more generally consider an asymmetric

version of Real-3SUM with three sets A, B, and C of sizes n, n, and n̂ respectively with n̂ ≤ n (the

standard version has n̂ = n). Sort A and B and divide the sorted lists of A and B into sublists A1, . . . , An/d

and B1, . . . , Bn/d of size d, for a given parameter d ≤ n. Let A[i, k] denote the k-th element of Ai for

each i ∈ [n/d] and k ∈ [d], and B[j, ℓ] denote the ℓ-th element of Bj for each j ∈ [n/d] and ℓ ∈ [d].
We will consider a slightly stronger problem: for each c ∈ C , find the predecessor and successor of c
among A + B. (If c is in this set, we will deviate from convention and define the predecessor of c to be

itself.) By a known observation (which was used in Grønlund and Pettie’s Real-3SUM algorithm [GP18]

and in subsequent algorithms [Cha20]), for each c ∈ C , it suffices to search for c in Ai + Bj for O(n/d)
pairs (i, j) (since these (i, j) pairs form a “staircase” in the [n/d] × [n/d] grid). Thus, Real-3SUM (or

Real-All-Nums-3SUM) reduces to the following problem (which was explicitly formulated, for example,

in Chan’s paper on Real-3SUM [Cha20]):

Problem 3.7 (Real-3SUM-Variant1). We are given an (n/d) × dA real matrix A and an (n/d) × dB
real matrix B with dA, dB ≤ d. For each i, j ∈ [n/d], we are also given a set Cij of real numbers with
∑

i,j |Cij | = O(n̂n/d).
For each i, j ∈ [n/d] and each c ∈ Cij , we want to find the predecessor and successor of the value c

among the elements in {A[i, k] +B[j, ℓ] : k ∈ [dA], ℓ ∈ [dB]}.

We again introduce an intermediate problem, which the original problem reduces to via random sam-

pling:

18

Problem 3.8 (Real-3SUM-Variant2). We are given an (n/d)×d real matrix A and an (n/d)×d real matrix

B. For each i, j ∈ [n/d], we are also given a set Qij ⊆ [d]4 of quadruples with
∑

i,j |Qij | = O(n̂n/d).

For each i, j ∈ [n/d] and each q = (k−, ℓ−, k+, ℓ+) ∈ Qij , we want to find indices k′ijq, ℓ
′
ijq ∈ [d] (if

they exist) satisfying

A[i, k−] +B[j, ℓ−] < A[i, k′ijq] +B[j, ℓ′ijq] < A[i, k+] +B[j, ℓ+]. (3)

Lemma 3.9. Real-3SUM-Variant1 reduces to Õ(1) calls to an oracle for Real-3SUM-Variant2 using Las

Vegas randomization.

Proof. We solve Real-3SUM-Variant1 as follows: Take a random subset R ⊆ [dA] of size dA/2. For each

i, j ∈ [n/d] and each c ∈ Cij , first compute indices k
−(R)
ijc , ℓ

−(R)
ijc , k

+(R)
ijc , ℓ

+(R)
ijc ∈ [d] such that A[i, k

−(R)
ijc]+

B[j, ℓ
−(R)
ijc] and A[i, k

+(R)
ijc] + B[j, ℓ

+(R)
ijc] are the predecessor and successor (respectively) of the value c

among the elements in {A[i, k] +B[j, ℓ] : k ∈ R, ℓ ∈ [dB]}. This computation can be done recursively.

Next, initialize (k−ijc, ℓ
−
ijc) = (k

−(R)
ijc , ℓ

−(R)
ijc) and (k+ijc, ℓ

+
ijc) = (k

+(R)
ijc , ℓ

+(R)
ijc). Invoke the oracle for

Real-3SUM-Variant2 to find some (k′ijc, ℓ
′
ijc) ∈ [dA]× [dB] satisfying (3) for each i, j ∈ [n] and c ∈ Cij .

If (k′ijc, ℓ
′
ijc) exists and A[i, k′ijc] + B[j, ℓ′ijc] ≤ c, find the index ℓ ∈ [dB] such that A[i, k′ijc] + B[j, ℓ]

is the predecessor of the value c among the elements in {A[i, k′ijc] + B[j, ℓ] : ℓ ∈ [dB]}. This index can

be found in O(log d) time by binary search, assuming that each row of B has been sorted (which requires

only O(n log n) preprocessing time). Reset (k−ijc, ℓ
−
ijc) = (k′ijc, ℓ). If (k′ijc, ℓ

′
ijc) exists and A[i, k′ijc] +

B[j, ℓ′ijc] > c, we proceed similarly, replacing “predecessor” with “successor” and − superscripts with +.

Now, repeat. When (k′ijc, ℓ
′
ijc) is nonexistent for all i, j ∈ [n], we can stop.

To bound the number of iterations, observe that for each i, j ∈ [n] and each c ∈ Cij , the number of

indices k′ ∈ [dA] such that the predecessor of c among {A[i, k′] + B[j, ℓ] : ℓ ∈ [dB]} is greater than

A[i, k
−(R)
ijc] + B[ℓ, k

−(R)
ijc] is O(log n) w.h.p (since in a set of dA values, there are at most O(log n) values

greater than the maximum of a random subset of size dA/2). A similar statement, replacing “predecessor”

with “successor”, − superscripts with +, and “greater” with “less”, holds. Thus, O(log n) iterations suffice

w.h.p.

As the recursion has O(log dA) depth, the total number of oracle calls is O(log d log n) w.h.p., and the

extra cost of the binary searches is O((n̂n/d) log2 d log n), which is negligible. �

We now present our main reduction from Real-3SUM-Variant2 to AE-Sparse-Tri, which is inspired

by Grønlund and Pettie’s work [GP18] and is also based on Fredman’s trick. Although we now need to work

with even more indices, the basic idea is similar to our earlier reductions. The extra complications cause

further loss of efficiency (but we still obtain a tight conditional lower bound for AE-Sparse-Tri, albeit for a

more restricted range of degeneracy ≪ m1/5). The whole proof is still simple (comparable to the original

reductions from Int-3SUM by Pătraşcu [Păt10] or Kopelowitz, Pettie and Porat [KPP16], but completely

bypassing hashing arguments).

Lemma 3.10. Real-3SUM-Variant2 reduces to one instance of AE-Sparse-Tri on a graph with Õ(n̂n/d+
d2n) edges and degeneracy Õ(d).

Proof. To solve Real-3SUM-Variant2, first sort the following list of O(dn) elements in O(dn log n) time:

L = {A[i, k′]−A[i, k] : i ∈ [n/d], k, k′ ∈ [d]} ∪ {B[j, ℓ] −B[j, ℓ′] : j ∈ [n/d], ℓ, ℓ′ ∈ [d]}.

We solve AE-Sparse-Tri on the following tripartite graph G:

19

0. The left nodes are {x[i, k−, k+] : i ∈ [n/d], k−, k+ ∈ [d]}, the middle nodes are {y[I−, I+] :
I− and I+ are dyadic intervals}, and the right nodes are {z[j, ℓ−, ℓ+] : j ∈ [n/d], ℓ−, ℓ+ ∈ [d]}.

1. For each i, j ∈ [n/d] and (k−, ℓ−, k+, ℓ+) ∈ Qij , create an edge x[i, k−, k+] z[j, ℓ−, ℓ+].

2. For each i ∈ [n/d], k−, k+, k′ ∈ [d], and dyadic intervals I− and I+, create an edge x[i, k−, k+] y[I−, I+]
if the rank of A[i, k−] − A[i, k′] in L is in the left half of I− and the rank of A[i, k′]− A[i, k+] in L
is in the left half of I+.

3. For each j ∈ [n/d], ℓ−, ℓ+, ℓ′ ∈ [d], and dyadic intervals I− and I+, create an edge y[I−, I+] z[j, ℓ−, ℓ+]
if the rank of B[j, ℓ′]−B[j, ℓ−] in L is in the right half of I− and the rank of B[j, ℓ+]−B[j, ℓ′] in L
is in the right half of I+.

Step 1 creates
∑

i,j |Qij | = O(n̂n/d) edges. Steps 2–3 create O((n/d)d3 log2 n) edges, since any fixed

value lies in O(log n) dyadic intervals. Thus, the graph G has Õ(n̂n/d+ d2n) edges.

For any given (i, j) ∈ [n]2 and (k−, ℓ−, k+, ℓ+) ∈ Qij , finding a (k′, ℓ′) with A[i, k−] + B[j, ℓ−] <
A[i, k′] + B[j, ℓ′] < A[i, k+] + B[j, ℓ+] is equivalent to finding a (k′, ℓ′) with A[i, k−] − A[i, k′] <
B[j, ℓ′] − B[j, ℓ−] and A[i, k′] − A[i, k+] < B[j, ℓ+] − B[j, ℓ′], which is equivalent to finding a trian-

gle x[i, k−, k+] y[I−, I+] z[j, ℓ−, ℓ+] in the graph G. Thus, the answers to Real-3SUM-Variant2 can be

deduced from the answers to the AE-Sparse-Tri instances.

Finally, to ensure that the graph G has degeneracy Õ(d), we modify the graph by splitting nodes

in the same way as in the last paragraph of Theorem 3.1’s proof. The number of edges increases by

Õ(d
∑

x

⌈

∆x
d

⌉

) = Õ(
∑

x∆x + (n/d)d2 · d) = Õ(n̂n/d+ d2n). �

Theorem 3.11. If AE-Sparse-Tri with m edges could be solved in Õ(m6/5−ε) time, then Real-3SUM (and

in fact, Real-All-Nums-3SUM) could be solved in Õ(n2−5ε/3) time using Las Vegas randomization.

More generally, if AE-Sparse-Tri with m edges and degeneracy Õ(mα) could be solved in Õ(m1+α−ε)
time for some constant α ≤ β/(3 + 2β), then Real-3SUM for three sets of sizes n, n, and n̂ = nβ (β ≤ 1)
could be solved in Õ(n1+β−ε(1+β)/(1+α)) time using Las Vegas randomization.

Proof. By combining the above two lemmas, if AE-Sparse-Tri could be solved in T (m,D) time, then

Real-3SUM-Variant1 could be solved in Õ(T (n̂n/d + d2n, d)) time. Real-3SUM (more generally,

Real-All-Nums-3SUM) reduces to an instance of Real-3SUM-Variant1, with n̂ = nβ. (For the origi-

nal symmetric version of Real-3SUM, β = 1.) Choose d so that d = (n1+β/d)α, i.e., d = n(1+β)α/(1+α).

Since α ≤ β/(2+3β), we have d ≤ nβ/3 and so d2n ≤ n1+β/d. The time bound becomes Õ(T (n1+β/d, d)) =
Õ(n1+β−ε(1+β)/(1+α)) if T (m,mα) = Õ(m1+α−ε). �

4 Hardness of All-Edges Sparse Triangle Counting

For the counting variant of AE-Sparse-Tri, we show that our reductions from Real-Exact-Tri and

Real-3SUM can be made more efficient, yielding near m4/3 conditional lower bounds to match the reduc-

tion from Real-APSP. Note that the O(m2ω/(ω+1)) time algorithm by Alon, Yuster and Zwick [AYZ97]

still works for #AE-Sparse-Tri, so these lower bounds are tight assuming ω = 2.

4.1 Real-Exact-Tri → #AE-Sparse-Tri

To adapt the Real-Exact-Tri → AE-Sparse-Tri proof from Section 3.2, we introduce a counting version

of the intermediate problem, which the original problem reduces to:

20

Problem 4.1 (Real-Exact-Tri-Variant3). We are given an n × d real matrix A and a d× n real matrix B,

where d ≤ n. For each i, j ∈ [n], we are also given an index kij ∈ [d].
For each i, j ∈ [n], we want to count the number of indices k′ ∈ [d] satisfying

A[i, k′] +B[k′, j] < A[i, kij] +B[kij , j]. (4)

(Note that we can solve the analogous problem with > by negation of all matrix entries, and thus with ≤ as

well.)

Lemma 4.2. Real-Exact-Tri-Variant2 reduces to Õ(1) calls to an oracle for Real-Exact-Tri-Variant3
using Las Vegas randomization.

Proof. First consider a weaker decision version of Real-Exact-Tri-Variant2 where we just want to decide

the existence of k′ij for each i, j ∈ [n]. This can be solved by calling the oracle for Real-Exact-Tri-Variant3

twice, first with kij set to k+ij , then with kij set to k−ij (the latter with ≤ instead of <). For each i, j, the

answer is yes iff the two counts are different.

Next, we reduce Real-Exact-Tri-Variant2 to the decision version, by standard random sampling tech-

niques for witness finding [AGMN92, Sei95], which we briefly sketch: If we know that k′ij is unique, for

each t ∈ [log d], we can determine the t-th bit of k′ij by solving the decision problem after restricting k′ij
to lie in the subset {k ∈ [d] : the t-th bit of k is 1}. To ensure uniqueness, we restrict k′ij to lie in O(log n)
random subsets of [d] of size 2s for each s ∈ [log d]; then k′ij would be unique w.h.p. in one of the subsets.

The overall number of calls to the oracle for Real-Exact-Tri-Variant3 is polylogarithmic. (Note that the

above requires only Las Vegas randomization, since fo each i, j, we know definitively whether k′ij exists,

and if so, we can repeat until success, since we can easily verify whether a given k′ij works.) �

The advantage of Real-Exact-Tri-Variant3 is that we are back to working with single indices instead of

pairs of indices, so we recover the same result as the reduction from Real-APSP:

Lemma 4.3. Real-Exact-Tri-Variant3 reduces to O(d) instances of #AE-Sparse-Tri on graphs with Õ(n2/d+
dn) edges and degeneracy Õ(d).

Proof. We can reuse the same construction of the graphs Gk,P from the proof of Lemma 1.12. (The degen-

eracy bound follows as in the proof of Theorem 3.1.)

For any given (i, j) ∈ [n]2, take k = kij and P to be the subset of Pk containing (i, j). Counting the

number of indices k′ with A[i, k′] + B[k′, j] < A[i, kij] + B[kij, j] is equivalent to counting the number

of indices k′ with A[i, k′] − A[i, k] < B[k, j] − B[k′, j], which is equivalent to counting the number of

triangles of the form x[i] y[k′, I] z[j] in the graph Gk,P . �

Theorem 4.4. If #AE-Sparse-Tri could be solved in Õ(m4/3−ε) time, then Real-Exact-Tri (and in fact,

Real-#AE-Exact-Tri or Real-#AE-Neg-Tri) could be solved in Õ(n3−3ε/2) time using Las Vegas random-

ization.

More generally, if #AE-Sparse-Tri for graphs with m edges and degeneracy Õ(mα) could be solved

in Õ(m1+α−ε) time for some constant α ≤ 1/3, then Real-Exact-Tri (and in fact, Real-#AE-Exact-Tri or

Real-#AE-Neg-Tri) could be solved in Õ(n3−2ε/(1+α)) time using Las Vegas randomization.

Proof. By combining Lemma 3.4 and the above two lemmas, if AE-Sparse-Tri with m edges and de-

generacy D could be solved in T (m,D) time, then Real-Exact-Tri-Variant1 could be solved in Õ(d ·
T (n2/d+dn, d)) time. Real-Exact-Tri reduces to O(n/d) instances of Real-Exact-Tri-Variant1 (note that

21

Real-#AE-Exact-Tri and Real-#AE-Neg-Tri also reduce to O(n/d) instances of Real-Exact-Tri-Variant1
and Real-Exact-Tri-Variant3), and could then be solved in Õ(n · T (n2/d+ dn, d)) time. Choose d so that

d = (n2/d)α, i.e., d = n2α/(1+α). Since α ≤ 1/3, we have d ≤ √
n and so dn ≤ n2/d. The time bound

becomes Õ(n · T (n2/d, d)) = Õ(n3−2ε/(1+α)) if T (m,mα) = Õ(m1+α−ε). �

4.2 Real-3SUM → #AE-Sparse-Tri

We similarly adapt the proof for Real-3SUM from Section 3.3, by introducing a counting version of the

intermediate problem:

Problem 4.5 (Real-3SUM-Variant3). We are given an (n/d) × d real matrix A and an (n/d) × d real

matrix B. For each i, j ∈ [n/d], we are also given a set Qij ⊆ [d]2 of pairs with
∑

i,j |Qij | = O(n̂n/d).

For each i, j ∈ [n/d] and each q = (k, ℓ) ∈ Qij , we want to count the number of (k′, ℓ′) ∈ [d]2

satisfying

A[i, k′] +B[j, ℓ′] < A[i, k] +B[j, ℓ]. (5)

Lemma 4.6. Real-3SUM-Variant2 reduces to Õ(1) calls to an oracle for Real-3SUM-Variant3 using Las

Vegas randomization.

Proof. First consider a weaker decision version of Real-3SUM-Variant2 where we just want to decide the

existence of (k′ijq, ℓ
′
ijq) for each i, j ∈ [n] and each q ∈ Qij . This can be solved by calling the oracle for

Real-3SUM-Variant3 twice, first with Qij replaced by {(k+, ℓ+) : (k−, ℓ−, k+, ℓ+) ∈ Qij}, then with Qij

replaced by {(k−, ℓ−) : (k−, ℓ−, k+, ℓ+) ∈ Qij} (the latter with ≤ instead of <). For each i, j and q ∈ Qij ,

the answer is yes iff the corresponding two counts are different.

Next, we reduce Real-3SUM-Variant2 to the decision version, by standard techniques for witness find-

ing [AGMN92, Sei95], as we have already sketched in Lemma 4.2’s proof: If we know that k′ijq is unique,

for each t ∈ [log d], we can determine the t-th bit of k′ijq by solving the decision problem after restricting

k′ijq to lie in the subset {k ∈ [d] : the t-th bit of k is 1}. Knowing k′ijq, we can find a corresponding ℓ′ijq
in O(log d) time by binary search, assuming that each row of B is sorted (which requires only O(n log n)
preprocessing time). To ensure uniqueness, we restrict k′ijq to lie in O(log n) random subsets of [d] of size

2s for each s ∈ [log d]; then k′ij would be unique w.h.p. in one of the subsets.

The overall number of calls to the oracle for Real-3SUM-Variant3 is polylogarithmic. �

The graph construction from Lemma 3.10 can now be simplified, since we are working with fewer

indices:

Lemma 4.7. Real-3SUM-Variant3 reduces to one instance of #AE-Sparse-Tri on a graph with Õ(n̂n/d+
dn) edges and degeneracy Õ(d).

Proof. To solve Real-3SUM-Variant3, first sort the following list of O(dn) elements in O(dn log n) time:

L = {A[i, k′]−A[i, k] : i ∈ [n/d], k, k′ ∈ [d]} ∪ {B[j, ℓ] −B[j, ℓ′] : j ∈ [n/d], ℓ, ℓ′ ∈ [d]}.

We solve #AE-Sparse-Tri on the following tripartite graph G:

0. The left nodes are {x[i, k] : i ∈ [n/d], k ∈ [d]}, the middle nodes are {y[I] : I is a dyadic interval},

and the right nodes are {z[j, ℓ] : j ∈ [n/d], ℓ ∈ [d]}.

1. For each i, j ∈ [n/d] and (k, ℓ) ∈ Qij , create an edge x[i, k] z[j, ℓ].

22

2. For each i ∈ [n/d], k, k′ ∈ [d], and each dyadic interval I , create an edge x[i, k] y[I] if the rank of

A[i, k′]−A[i, k] in L is in the left half of I .

3. For each j ∈ [n/d], ℓ, ℓ′ ∈ [d], and each dyadic interval I , create an edge y[I] z[j, ℓ] if the rank of

B[j, ℓ]−B[j, ℓ′] in L is in the right half of I .

Step 1 creates
∑

i,j |Qij | = O(n̂n/d) edges. Steps 2–3 create O((n/d)d2 log n) edges, since any fixed

value lies in O(log n) dyadic intervals. Thus, the graph G has Õ(n̂n/d+ dn) edges.

For any given (i, j) ∈ [n]2 and (k, ℓ) ∈ Qij , counting the number of (k′, ℓ′) with A[i, k′] + B[j, ℓ′] <
A[i, k] + B[j, ℓ] is equivalent to counting the number of (k′, ℓ′) with A[i, k′]−A[i, k] < B[j, ℓ] −B[j, ℓ′],
which is equivalent to counting the number of triangles of the form x[i, k] y[I] z[j, ℓ] in the graph G. Thus,

the answers to Real-3SUM-Variant3 can be deduced from the answers to the #AE-Sparse-Tri instances.

The degeneracy bound follows as before. �

Theorem 4.8. If #AE-Sparse-Tri could be solved in Õ(m4/3−ε) time, then Real-3SUM (and in fact,

Real-All-Nums-3SUM) could be solved in Õ(n2−3ε/2) time using Las Vegas randomization.

More generally, if #AE-Sparse-Tri with m edges and degeneracy Õ(mα) could be solved in Õ(m1+α−ε)
time for some constant α ≤ 1/3, then Real-3SUM (and in fact, Real-All-Nums-3SUM) could be solved

in Õ(n2−2ε/(1+α)) time using Las Vegas randomization.

Proof. By combining Lemma 3.9 and the above two lemmas, if #AE-Sparse-Tri with m edges and degener-

acy D could be solved in T (m,D) time, then Real-3SUM-Variant1 could be solved in Õ(T (n̂n/d+dn, d))
time. Real-3SUM (in fact, Real-All-Nums-3SUM) reduces to an instance of Real-3SUM-Variant1 with

n̂ = n. Choose d so that d = (n2/d)α, i.e., d = n2α/(1+α). Since α ≤ 1/3, we have d ≤ √
n and so

dn ≤ n2/d. The time bound becomes Õ(T (n2/d, d)) = Õ(n2−2ε/(1+α)) if T (m,mα) = Õ(m1+α−ε). �

5 Hardness of All-Edges Monochromatic Triangle

All the reductions to AE-Sparse-Tri (or #AE-Sparse-Tri) in Sections 3–4 also imply reductions to

AE-Mono-Tri (or #AE-Mono-Tri). This is because of a result by Lincoln, Polak and Vassilevska W. [LPV20]

which reduces multiple instances of AE-Sparse-Tri to AE-Mono-Tri (the idea is to simply overlay the

multiple input graphs into one edge-colored graph, after randomly permuting the nodes of each input graph):

Lemma 5.1. Any n2/m instances of AE-Sparse-Tri (resp. #AE-Sparse-Tri) on graphs with n nodes and

m edges reduce to Õ(1) instances of AE-Mono-Tri (resp. #AE-Mono-Tri) on graphs with n nodes (and

Õ(n2/m) colors) using Las Vegas randomization.

5.1 Real-APSP → AE-Mono-Tri

For example, we can combine our Real-APSP→AE-Sparse-Tri reduction (Section 3.1) with Lemma 5.1

to obtain the following theorem. The near n5/2 conditional lower bound below for AE-Mono-Tri matches

known upper bounds [VWY06] if ω = 2; the second bound in terms of the number of colors is also tight if

ω = 2.

Theorem 5.2. If AE-Mono-Tri could be solved in Õ(n5/2−3ε/2) time, then Real-APSP could be solved in

Õ(n3−ε) time using Las Vegas randomization.

More generally, if AE-Mono-Tri with Õ(nα) colors could be solved in Õ(n2+α−ε) time for some con-

stant α ≤ (1− ε)/2, then Real-APSP could be solved in Õ(n3−ε) time using Las Vegas randomization.

23

Proof. The graph Gk,P from Lemma 1.12’s proof may have a large number of middle nodes. We first

observe that all O(d) graphs can be modified to have Õ(n + d2nε) nodes, after spending O(dn2−ε) time,

by using a “high vs. low degree” trick: For each middle node y of degree at most n1−ε/d, we enumerate all

its neighbors x among the left nodes and all its neighbors z among the right nodes, and for each such pair

xz that is an edge, we record that its answer for AE-Sparse-Tri is yes. We can then remove all such y’s.

All this takes O((dn log n) · (n1−ε/d)) = Õ(n2−ε) time per graph Gk,P . The remaining middle nodes have

degree at least n1−ε/d, and so the number of middle nodes is O(dn logn
n1−ε/d

) = Õ(d2nε).

Now, as in Theorem 1.13’s proof, Real-APSP reduces to Õ(1) rounds of O(n) instances of AE-Sparse-Tri

on graphs with Õ(n2/d+dn) edges and Õ(n+d2nε) nodes, where the reduction runs in O((n/d)·dn2−ε) =
O(n3−ε) time. Choose d = nα. Since α ≤ (1 − ε)/2, we have dn ≤ n2/d and d2nε ≤ n, so these

graphs have Õ(n2/d) edges and Õ(n) nodes. By Lemma 5.1, these Õ(n) AE-Sparse-Tri instances re-

duce to Õ(n/d) = Õ(n1−α) AE-Mono-Tri instances on graphs with Õ(n) nodes and Õ(d) = Õ(nα)
colors. Thus, #AE-Mono-Tri has an Õ(n2+α−ε) time algorithm with Õ(nα) colors, then Real-APSP has

an Õ(n1−α · n2+α−ε) = Õ(n3−ε) time algorithm. �

5.2 Real-Exact-Tri → AE-Mono-Tri (and #AE-Mono-Tri)

We can similarly combine our Real-Exact-Tri → #AE-Sparse-Tri reduction (Section 4.1) with Lemma 5.1

(the proof is basically the same):

Theorem 5.3. If #AE-Mono-Tri could be solved in Õ(n5/2−3ε/2) time, then Real-Exact-Tri (and in fact,

Real-#AE-Exact-Tri) could be solved in Õ(n3−ε) time using Las Vegas randomization.

More generally, if #AE-Mono-Tri with Õ(nα) colors could be solved in Õ(n2+α−ε) time for some

constant α ≤ (1−ε)/2, then Real-Exact-Tri (and in fact, Real-#AE-Exact-Tri) could be solved in Õ(n3−ε)
time using Las Vegas randomization.

We can also adapt the Real-Exact-Tri → AE-Sparse-Tri reduction:

Theorem 5.4. If AE-Mono-Tri could be solved in Õ(n7/3−4ε/3) time, then Real-Exact-Tri could be solved

in Õ(n3−ε) time using Las Vegas randomization.

More generally, if AE-Mono-Tri with Õ(n2α) colors could be solved in Õ(n2+α−ε) time for some con-

stant α ≤ (1− ε)/3, then Real-Exact-Tri could be solved in Õ(n3−ε) time using Las Vegas randomization.

Proof. The proof is similar. We first observe that the O(d2) graphs from Lemma 3.5 can be modified to

have Õ(n+ d3nε) nodes after spending O(dn2−ε) time via the “high vs. low degree” trick, by handling the

middle nodes with degree at most n1−ε/d2 by brute-force.

Now Real-Exact-Tri reduces to Õ(nd) instances of AE-Sparse-Tri on graphs with Õ(n2/d2 + dn)
edges and Õ(n + d3nε) nodes, where the reduction runs in O(n3−ε) time. Choose d = nα. Since

α ≤ (1 − ε)/3, we have dn ≤ n2/d2 and d3nε ≤ n, so these graphs have Õ(n2/d2) edges and Õ(n)
nodes. By Lemma 5.1, these Õ(nd) AE-Sparse-Tri instances reduce to Õ(n/d) = Õ(n1−α) AE-Mono-Tri

instances on graphs with Õ(n) nodes and Õ(n2α) colors. If there exists an Õ(n2+α−ε) time algorithm for

AE-Mono-Tri with Õ(n2α) colors, then there exists an Õ(n/d · n2+α−ε) = Õ(n3−ε) time algorithm for

AE-Mono-Tri. �

5.3 Real-3SUM → AE-Mono-Tri (and #AE-Mono-Tri)

We can also combine our Real-3SUM → #AE-Sparse-Tri reduction (Section 4.2) with Lemma 5.1:

24

Theorem 5.5. If #AE-Mono-Tri could be solved in Õ(n5/2−15ε/8) time, then Real-3SUM could be solved

in Õ(n2−ε) time using Las Vegas randomization.

More generally, if #AE-Mono-Tri with Õ(nα) colors could be solved in Õ(n2+α− 2+α
2

ε) time for some

constant α ≤ 1−ε
2+ε/2 , then Real-3SUM could be solved in Õ(n2−ε) time using Las Vegas randomization.

Proof. We first observe that the graph G from Lemma 4.7 (ignoring the node-splitting step to lower degen-

eracy) can be modified to have Õ(n+d2nδ) nodes, after spending O(n2−δ) time for any δ > 0. This follows

from the same “high vs. low degree” trick from the proof of Theorem 5.2. We set δ = 2+α
2 ε in the rest of

the proof. This way, α ≤ (1− δ)/2 since α ≤ 1−ε
2+ε/2 .

Real-3SUM (with n̂ = n) thus reduces to Õ(1) instances of #AE-Sparse-Tri on graphs with Õ(n2/d+
dn) edges and Õ(n+d2nδ) nodes, plus Õ(n2−δ) work. By choosing d = nα ≤ n(1−δ)/2, these graphs have

Õ(n2−α) edges and Õ(n) nodes.

However, in order to apply Lemma 5.1, we need a sufficient number of independent instances. We

use the well known fact (see e.g. [BDP08, KPP16, Păt10, LVWW16]) that a Real-3SUM instance of size

n reduces to O((n/r)2) independent Real-3SUM instances each of size r. This way, we obtain Õ(1)
rounds of O((n/r)2) independent #AE-Sparse-Tri instances each with Õ(r2−α) edges and Õ(r) nodes

after Õ((n/r)2 · r2−δ) = Õ(n2/rδ) work. By choosing r = n2/(2+α), the amount of extra work be-

comes Õ(n2/rδ) = Õ(n2−ε), and each round has O(n2α/(2+α)) independent #AE-Sparse-Tri instances

each with Õ(n(4−2α)/(2+α)) edges and Õ(n2/(2+α)) nodes. By Lemma 5.1, this reduces to Õ(1) in-

stances of #AE-Mono-Tri on graphs with Õ(n2/(2+α)) nodes and O(n2α/(2+α)) colors. If #AE-Mono-Tri

with Nα colors could be solved in T (N) = Õ(N2+α− 2+α
2

ε) time, the time bound for Real-3SUM is

Õ(T (n2/(2+α))) = Õ(n2−ε).
We obtain the first claim in the theorem statement by setting α = 1−ε

2+ε/2 , and use 2 + α − 2+α
2 ε ≥

5/2 − 15ε/8 for ε > 0. �

Theorem 5.6. If AE-Mono-Tri could be solved in Õ(n9/4−45ε/32) time, then Real-3SUM could be solved

in Õ(n2−ε) time using Las Vegas randomization.

More generally, if AE-Mono-Tri with Õ(n3α/(1+α)) colors could be solved in Õ(n2+ α
1+α

− 2+3α
2+2α

ε) time

for some constant α ≤ 1−ε
3+3ε/2 , then Real-3SUM could be solved in Õ(n2−ε) time using Las Vegas ran-

domization.

Proof. We first observe that the graph G from Lemma 3.10 (ignoring the node-splitting step to lower de-

generacy) can be modified to have Õ(nd + d4nδ) nodes, after spending O(n2−δ) time for any δ > 0. This

follows from the same “high vs. low degree” trick. In the rest of the proof, we will set δ = 2+3α
2 ε. It is

straightforwards to verify α ≤ (1− δ)/3 when α ≤ 1−ε
3+3ε/2 .

Thus, Real-3SUM (with n̂ = n) thus reduces to Õ(1) instances of AE-Sparse-Tri on graphs with

Õ(n2/d + d2n) edges and Õ(nd + d4nδ) nodes, plus Õ(n2−δ) work. By choosing d = nα ≤ n(1−δ)/3,

these graphs have Õ(n2−α) edges and Õ(n1+α) nodes.

We again use the well known fact that a Real-3SUM instance of size n reduces to O((n/r)2) inde-

pendent Real-3SUM instances each of size r. This way, we obtain Õ(1) rounds of O((n/r)2) indepen-

dent AE-Sparse-Tri instances each with Õ(r2−α) edges and Õ(r1+α) nodes after Õ((n/r)2 · r2−δ) =
Õ(n2/rδ) work. We choose r = n2/(2+3α), so the amount of extra work becomes Õ(n2−ε), and each

round has O(n6α/(2+3α)) independent AE-Sparse-Tri instances each with Õ(n(4−2α)/(2+3α)) edges and

Õ(n(2+2α)/(2+3α)) nodes. By Lemma 5.1, this reduces to Õ(1) instances of AE-Mono-Tri on graphs with

Õ(n(2+2α)/(2+3α)) nodes and O(n6α/(2+3α)) colors. If AE-Mono-Tri with N nodes and N3α/(1+α) col-

25

ors could be solved in T (N) = Õ(N2+ α
1+α

− 2+3α
2+2α

ε) time, the running time bound for Real-3SUM is

Õ(T (n(2+2α)/(2+3α))) = Õ(n2−ε).
To get the first claim in the theorem, we set α = 1−ε

3+3ε/2 and use 2 + α
1+α − 2+3α

2+2αε ≥ 9/4− 45ε/32 for

ε > 0. �

6 Hardness of Colorful BMM

In this section, we show that Real-APSP and OV can be reduced to Colorful-BMM.

6.1 Real-APSP → Colorful-BMM

We first present our reduction from Real-APSP to Colorful-BMM, which is simple and is inspired by

Williams’s Real-APSP algorithm [Wil18] (and its derandomization by Chan and Williams [CW21]) using

ANDs of ORs.

Lemma 6.1. Real-(min,+)-Product of an n × d real matrix A and a d× n real matrix B reduces to one

instance of Colorful-BMM for an n× Õ(d4nε) and an Õ(d4nε)× n Boolean matrix with O(d) colors (and

Õ(d2n) nonzero input entries), after spending Õ(dn2−ε) time.

Proof. For simplicity, we assume that A[i, k]+B[k, j] 6= A[i, k′]+B[k′, j] for all i, j ∈ [n] and k, k′ ∈ [d].
This can be ensured, for example, by adding kδ to A[i, k] for an infinitesimally small δ > 0. Note that we

don’t need to explicitly store A[i, k]+ kδ. Instead, we can store a number a+ bδ as a pair of numbers (a, b).
Every time we need to compare two numbers (a1, b1) and (a2, b2), we first compare a1 and a2 and only

compare b1 and b2 if a1 = a2. This implementation only incurs a constant factor overhead.

Fix t ∈ [log d]. We will describe how to compute the t-th bit of kij = argmink∈[d](A[i, k] + B[k, j]).
Let Kt = {k ∈ [d] : the t-th bit of k is 1}. Note that the t-th bit of kij is 1 iff

∧

k∈[d]−Kt

∨

k′∈Kt

[

A[i, k′]+B[k′, j] < A[i, k]+B[k, j]
]

=
∧

k∈[d]−Kt

∨

k′∈Kt

[

A[i, k′]−A[i, k] < B[k, j]−B[k′, j]
]

.

Thus, the answers can be determined by solving Colorful-BMM on the following matrices A and B and

color mapping to [d]−Kt:

1. For each i ∈ [n], k ∈ [d]−Kt, k
′ ∈ Kt, and each dyadic interval I , let A[i, (k, k′, I)] = 1 iff the rank

of A[i, k′]−A[i, k] lies in the left half of the dyadic interval I .

2. For each j ∈ [n], k ∈ [d] − Kt, k
′ ∈ Kt, and each dyadic interval I , let B[(k, k′, I), j] = 1 iff the

rank of B[k, j]−B[k′, j] lies in the right half of the dyadic interval I .

3. Define color ((k, k′, I)) = k.

However, the inner dimension (i.e., the number of columns of A or rows of B) is large. We lower the

inner dimension by using the “high vs. low degree” trick: Label a triple (k, k′, I) “high” if the number of

indices i for which A[i, (k, k′, I)] = 1 exceeds n1−ε/d2; otherwise, label it “low”. For each low triple

(k, k′, I), we enumerate all (i, j) for which A[i, (k, k′, I)] = 1 and B[(k, k′, I), j] = 1, and mark these

pairs (i, j) as “bad”. There are O((d2n log n) · n1−ε/d2) = Õ(n2−ε) bad pairs, and for each bad pair (i, j),
we can compute its corresponding entry of the (min,+)-product in O(d) time by brute force. This takes

Õ(dn2−ε) time. For the remaining good pairs (i, j), it suffices to keep only the high triples, and the number

of high triples is O(d
2n logn
n1−ε/d2) = Õ(d4nε). So, in the remaining Colorful-BMM instance, A and B have

dimensions Õ(n)× Õ(d4nε) and Õ(d4nε)× Õ(n). �

26

Theorem 6.2. If Colorful-BMM for two n×n Boolean matrices could be solved in Õ(n9/4−5ε/4) time, then

Real-APSP could be solved in Õ(n3−ε) time.

More generally, if Colorful-BMM for two n×n Boolean matrices with O(nα) colors could be solved in

Õ(n2+α−ε) time for some constant α ≤ (1− ε)/4, then Real-APSP could be solved in Õ(n3−ε) time.

Proof. The (min,+)-product of two n× n real matrices, and thus Real-APSP, reduces to n/d rectangular

(min,+)-products between n× d matrices and d × n matrices. Choose d = nα. Since α ≤ (1− ε)/4, we

have d4nε ≤ n. Then the theorem is immediately implied by Lemma 6.1. �

6.2 OV → Colorful-BMM

We can similarly reduce OV to Colorful-BMM, since the former also reduces to computing expressions

involving ANDs of ORs (as exploited in Abboud, Williams, and Yu’s OV algorithm [AWY14]). In fact, the

reduction from OV is even simpler, and more efficient, than the reduction from Real-APSP.

Lemma 6.3. One instance of OV for n Boolean vectors in f dimensions reduces in O(ndf) time to one

instance of Colorful-BMM for an (n/d) × (d2f) and a (d2f) × (n/d) Boolean matrix with d2 colors for

any given d ≤ n.

Proof. Divide the input set A and B into groups A1, . . . , An/d and B1, . . . , Bn/d of d Boolean vectors each.

Let A[i, k, s] be the s-th bit of the k-th vector in Ai and let B[j, ℓ, s] be the s-th bit of the ℓ-th vector in Bj .

For each i, j ∈ [n/d], there are no orthogonal pairs of vectors in Ai ×Bj iff

∧

k,ℓ∈[d]

∨

s∈[f]
(A[i, k, s] ∧B[j, ℓ, s]).

Thus, the answer can be determined by solving Colorful-BMM on the following matrices A and B:

1. For each i ∈ [n/d], k, ℓ ∈ [d], and s ∈ [f], let A[i, (k, ℓ, s))] = A[i, k, s].

2. For each j ∈ [n/d], k, ℓ ∈ [d], and s ∈ [f], let B[(k, ℓ, s), j] = B[j, ℓ, s].

3. Define color ((k, ℓ, s)) = (k, ℓ).

The inner dimension (i.e., the number of triples (k, ℓ, s)) is d2f . �

Theorem 6.4. If Colorful-BMM for two N ×N Boolean matrices could be solved in Õ(N3−ε) time, then

OV for n Boolean vectors in f dimensions could be solved in Õ(fO(1)n2−2ε/3) time.

More generally, if Colorful-BMM for two N ×N Boolean matrices with Nα colors could be solved in

Õ(N2+α−ε) time for some constant α ≤ 1, then OV for n Boolean vectors in f dimensions could be solved

in Õ(fO(1)n2−2ε/(2+α)) time.

Proof. Choose d so that d2 = (n/d)α, i.e., d = nα/(2+α). Since α ≤ 1, we have d ≤ n1/3 and so d2 ≤ n/d.

Thus, if there is an Õ(N2+α−ε) time algorithm for Colorful-BMM with O(Nα) colors, we can solve OV in

Õ((fO(1)n/d)2+α−ε) = Õ(fO(1)n2−2ε/(2+α)) time. �

27

Tri-Co

Tri-Co* Tri-Co**

Tri-Colight

Thm. 7.2

Thm. 7.3

Figure 2: The reductions for variants of Tri-Co. All unlabeled arrows follow from problem definitions. The

reduction from Tri-Colight to Tri-Co** has a poly(p) loss if the parameter is p. The dashed arrow represents

a sub-cubic reduction that only holds when Tri-Colight has parameter nε for ε > 0. All reductions also hold

for the All-Color-Pair variants.

7 Triangle Collection and Triangle-Collection*

We first show reductions between variants of Triangle-Collection in this section. Their relationships

are depicted in Figure 2.

The original version of Triangle-Collection (Tri-Co) as defined in [AVY18] is as follows: given a

graph G = (V,E) with node colors color : V 7→ [K], determine whether for all triples of distinct colors

a, b, c ∈ K there exists some triangle x, y, z ∈ V such that color (x) = a, color (y) = b, color (z) = c.
We first give a simple proof that the original Tri-Co is equivalent to the tripartite version of the problem,

whose definition we recall here:

Problem 2.8 (Triangle-Collection (Tri-Co)). Given a tripartite graph G = (V,E) on partitions A,B,C
such that the colors of the nodes in A are from a set KA, the colors of the nodes in B are from a set KB and

the colors of the nodes in C are from a set KC , where KA ∩ KB ∩ KC = ∅, and one needs to determine

whether for all triples of colors a ∈ KA, b ∈ KB , c ∈ KC there exists some triangle x, y, z ∈ V such that

color (x) = a, color (y) = b, color (z) = c.

Let us call this tripartite-Tri-Co for now. The goal of the lemma below is to show that Tri-Co is equivalent

to its tripartite version. After the lemma, when we talk about Tri-Co we will mean tripartite-Tri-Co.

Lemma 7.1. The Original Tri-Co (resp. ACP-Tri-Co) and tripartite-Tri-Co (resp. tripartite-ACP-Tri-Co)

are equivalent.

Proof. Suppose we are given an instance G = (V,E) with colors color : V 7→ K for a set K , of Tri-Co,

and we want to know if for all triples of distinct colors there is a triangle of that color triple. We will add to

G the following tripartite graph. For every color k ∈ K , add three nodes k, k′, k′′, and add the edge (k′, k′′).
For every pair of colors k, ℓ ∈ K , add edges (k, ℓ′), (k, ℓ′′). This new part of the graph has the property that

every triple of colors, at least two of which are the same, has a triangle of that triple. The new part does not

add any new triangles for distinct color triples. Let’s call the new graph G∗.

Now we can assume that in our given graph G∗ = (V ∗, E∗) with colors color : V ∗ 7→ K , we want to

solve the problem of whether every color triple (not necessarily distinct) contains a triangle.

28

We now create an instance G′ of tripartite-Tri-Co by simply creating three copies of V ∗, V1, V2, V2 where

Vi = {vi | v ∈ V ∗}. We create three sets of disjoint color sets K1,K2,K3 where Ki = {(k, i) | k ∈ K},

so that if for v ∈ V ∗, color (v) = k, then in G′, for each i = 1, 2, 3, color (vi) = (k, i). For every edge

(u, v) ∈ E∗ we add edges (ui, vj) for all i 6= j, i, j ∈ [3].
Then for a triple of colors (a, 1) ∈ K1, (b, 2) ∈ K2, (c, 3) ∈ K3, there is a triangle x1 ∈ V1, y2 ∈

V2, z3 ∈ V3 with those colors iff color triple a, b, c ∈ K has a triangle x, y, z in G∗. Thus solving tripartite-

Tri-Co in G′ solves (non-distinct color triple) Tri-Co in G∗, and hence Tri-Co in G.

Now let us reduce tripartite-Tri-Co to Tri-Co. Given an instance G = (V,E) of tripartite-Tri-Co with

partitions A,B,C and colors color : A 7→ KA, color : B 7→ KB , color : C 7→ KC , we only need to make

sure that every triple of distinct colors that has at least one pair of colors in KA or in KB or in KC contains

a triangle. A way to do this was already shown in [AVY18]. There are several way to do this. For instance,

for each choice X ∈ {A,B,C}, add a node kX for every color k ∈ (KA ∪KB ∪KC) \KX and add edges

between all pairs of nodes kX and ℓX . This adds three cliques, and ensures that for every triple of distinct

colors that are not from KA×KB ×KC , there is a triangle. At the same time, this does not change whether

some triple of distinct colors from KA ×KB ×KC has a triple or not.

The equivalence between ACP-Tri-Co and tripartite-ACP-Tri-Co follows from the same reductions. �

In light of the above equivalence, from now on when we refer to Tri-Co, we will mean its tripartite

version, as defined above.

Recall the definition of Tri-Co* defined by Abboud, Vassilevska W. and Yu [AVY18].

Problem 2.10 (Triangle-Collection* (Tri-Co*)). An instance of Tri-Co* is a restricted instance of Tri-Co.

For parameters p and t it is a node-colored graph G which is a disjoint union of graphs G1, . . . , Gt. G (and

hence all the Gis) is tripartite on partitions A,B,C . The aforementioned value p is an upper bound on the

number of nodes of any particular color in any Gi.

The node colors are from [3]× [n]. For every t, the nodes of Gt are:

• Nodes in A of the form (a, t) of color (1, a). Note that this means that each Gt has nodes of distinct

colors in A.

• Nodes in B of the form (b, t, j) of color (2, b), where j ≤ p. For each (a, t) ∈ A and every color

(2, b), there is at most one node (b, t, j) in B that (a, t) has an edge to.

• Nodes in C of the form (c, t, j) of color (3, c) for j ≤ p. For each (a, t) ∈ A and every color (3, c),
there is at most one node (c, t, j) in C that (a, t) has an edge to.

The last two bullets mean that in each Gt all the neighbors of a node in A have distinct colors. There is no

restriction on the edges between nodes in B and C (beyond that the graphs Gi are disjoint).

An algorithm for Tri-Co* needs to output whether for all triples (a, b, c), there is a triangle with node

colors (1, a), (2, b), (3, c).

Also recall the definitions of the variants Tri-Co** and Tri-Colight.

Problem 2.11 (Triangle-Collection** (Tri-Co**)). An instance of Tri-Co** is a restricted instance of Tri-Co.

For an integer parameter t, it is a disjoint union of graphs G1, . . . , Gt, each of which contains at most one

node of every color.

Problem 2.12 (Tri-Colight). An instance of Tri-Colight is a restricted instance of Tri-Co. For an integer

parameter p, it is a graph that has at most p nodes of any fixed color.

29

We now show that Tri-Co*, Tri-Co** and Tri-Colight are equivalent up to no(1) factors when their pa-

rameters are no(1). It suffices to show that Tri-Colight reduces to Tri-Co**, as Tri-Co** is a special case of

Tri-Colight, and the original problem Tri-Co* is sandwiched between them.

Theorem 7.2. An instance of Tri-Colight (resp. ACP-Tri-Colight) with parameter p and n colors (and hence

≤ np nodes) can be reduced in O(n2p3) time to an instance of Tri-Co** (resp. ACP-Tri-Co**) on O(np3)
nodes and n colors, and parameter t = p3.

Proof. Given an instance G of Tri-Colight with parameter p, recall by the definition of Tri-Co G has partitions

A,B,C and the colors of A,B,C are disjoint. Let’s call the nodes (v, i) where v is a color and i ≤ p,

meaning the ith node of color v.

Let’s create an instance G′ of Tri-Co** with parameter p3 as follows. For every node (a, i) of A create

p2 copies (a, i, j, k) for all j, k ∈ [p]. Similarly, for every node (b, j) of B create p2 copies (b, i, j, k) for all

i, k ∈ [p], and for every node (c, k) of C create p2 copies (c, i, j, k) for all i, j ∈ [p].
G′ will be a disjoint union of p3 graphs: one for each choice of a triple i, j, k ∈ [p].
For fixed i, j, k ∈ [p], add an edge between each node (a, i, j, k) in A and each node (b, i, j, k) in B

whenever (a, i) and (b, j) had an edge in G. Similarly, add an edge between each node (a, i, j, k) in A and

each node (c, i, j, k) in C whenever (a, i) and (c, k) had an edge in G. Finally, add an edge between each

node (b, i, j, k) in B and each node (c, i, j, k) in C whenever (b, j) and (c, k) had an edge in G.

Notice that for any triple of colors a, b, c, there is a triangle (a, i, j, k), (b, i, j, k), (c, i, j, k) for some

(i, j, k) if and only if for some (i, j, k) (a, i), (b, j), (c, k) was a triangle in G.

Thus, G′ is a YES instance of Tri-Co if and only if G is a YES instance of Tri-Co. The number of colors

is the same, and the parameter is now p3.

The reduction from ACP-Tri-Colight to ACP-Tri-Co** is essentially the same. �

Now we show that Tri-Co reduces in truly subcubic time to Tri-Colight with parameter nε for any constant

ε > 0. Thus, Tri-Co* with parameters nε is subcubically equivalent to Tri-Co.

Theorem 7.3. For any ε > 0, an instance of Tri-Co (resp. ACP-Tri-Co*) on n nodes can be reduced to an in-

stance of Tri-Colight (resp. ACP-Tri-Colight) on at most n nodes and parameter nε in time n3−min{ε,0.3}+o(1).

Proof. Let G be a given instance of Tri-Co on n nodes.

Let’s look at the number of nodes that are colored c for each c; we will call this the frequency of the

color. Consider every color c with frequency at least nε. The number of such colors is at most ≤ n1−ε.

For each such color c, let np be the number of nodes of color c. Create two matrices A and B. A is

n×np and A[v, i] is 1 if node v has an edge to the ith node of color c. Similarly, B is np×n and B[i, v] = 1
if node v has an edge to the ith node of color c. Multiply A by B, and for every pairs of nodes u, v connected

by an edge, increment a counter for the color triple color(u), c, color(v). Thus in nω(1,p,1)+o(1) time we get

all color triples that include c and have a triangle, where ω(1, p, 1) is the rectangular matrix multiplication

exponent for multiplying an n× np matrix with an np × n matrix.

Thus, in maxε≤p≤1 n
ω(1,p,1)+1−p+o(1) time we can handle all colors with frequency at least nε. Note

that ω(1, p, 1) ≤ ω(1, ε, 1) + (p − ε) since we can first split a pair of an n × np matrix and an np × n
matrix to pieces of size n×nε and nε×n each, and aggregate the results together. Therefore, we can bound

the running time as maxε≤p≤1 n
ω(1,p,1)+1−p ≤ maxε≤p≤1 n

ω(1,ε,1)+(p−ε)+1−p = nω(1,ε,1)+1−ε. If ε < 0.3,

then ω(1, ε, 1) = 2 as shown in [LU18], so the reduction runs in n3−ε+o(1) time; if ε ≥ 0.3, then we use

ω(1, ε, 1) + 1− ε ≤ ω(1, 0.3, 1) + 1− 0.3 = 2.7, so the reduction runs in n2.7+o(1) time.

30

What remains are the color triples that have all their colors with frequency less than nε. We take the

subgraph of G consisting only of nodes with infrequent colors. This is an instance of Tri-Colight with

parameter nε.

Thus if Tri-Colight with parameter nε can be solved in O(n3−δ) time for some δ > 0, then we can solve

Tri-Co in time O(n3−min{ε,0.3}+o(1) + n3−δ).
The reduction between the All-Color-Pairs versions is essentially the same. �

Recall our main theorem is the following.

Theorem 1.2. Assuming Hypothesis 2, ACP-Tri-Co requires n2+δ−o(1) time for some δ > 0, in a reasonable

Real RAM model.

In Section 7.1, we show a reduction from AE-Mono-Tri to ACP-Tri-Co*. Combined with the reduction

from Real-APSP to AE-Mono-Tri from Theorem 5.2 and the reduction from Real-3SUM to AE-Mono-Tri

from Theorem 5.5, we obtain the Real-APSP and Real-3SUM hardness in the main theorem. In Sec-

tion 7.2, we show a reduction from Colorful-BMM to ACP-Tri-Co*. By combining with the reduction from

OV to Colorful-BMM and unrolling the whole reduction, we in fact obtain a reduction from OV to Tri-Co*.

This shows the OV hardness of the main theorem, and thus will conclude the proof of the main theorem.

7.1 From All-Edges Monochromatic Triangle to All-Color-Pairs Triangle Collection

Here we show that the AE-Mono-Tri problem can be reduced to the ACP-Tri-Co* problem. By our

results above, it suffices to reduce AE-Mono-Tri to ACP-Tri-Colight with parameter no(1).

Recall that in AE-Mono-Tri we are given an n node graph G = (V,E) with colors color : E 7→
[n2] on the edges and we want to know for every edge (u, v) ∈ E if there exists a w ∈ V so that

(u, v), (v,w), (w, u) ∈ E (i.e. they form a triangle) and color (u, v) = color (v,w) = color (w, u).

Theorem 7.4. An n node instance of AE-Mono-Tri can be reduced in O(n2 log n) time to an O(n log n)-
node instance of ACP-Tri-Colight with parameter O(log n).

Proof. Let G = (V,E) be the instance of AE-Mono-Tri with edge colors color : E 7→ [n2]. Without loss

of generality, G is tripartite with node parts A,B,C .

We will build an instance of ACP-Tri-Colight H . For every t ∈ [2 log n] we will create a graph Gt and

H will be the disjoint union of these O(log n) graphs.

For a fixed t ∈ [2 log n], the nodes of Gt are as follows. Gt will be a tripartite graph on parts A′, B′, C ′.
For every node z ∈ C of G, we add a node z to Gt; z has color z (we associate the nodes of G with the

integers [n]). These nodes will be in part C ′. For every node v ∈ A ∪ B of G we create two copies of v
in Gt: v0 and v1, both having color v. If v was in A, v0, v1 are in the partition A′, and if v was in B, then

v0, v1 are in partition B′.
For every pair of nodes of G, v ∈ A ∪B and z ∈ C , if the tth bit of the color color (v, z) is b, then add

an edge between vb and z. For every pair of nodes of G, v ∈ A and v′ ∈ B, add an edge between vp and v′p′
for all choices of p and p′ s.t. p 6= p′. In addition, add an edge between between vb and v′b if the tth bit of

the color color (v, v′) is not b.
Notice that for every z ∈ C, v ∈ A, v′ ∈ B (which are now a triple of colors), Gt does not have a

triangle of these colors iff the tth bit of the colors of (z, v), (z, v′), (v, v′) in G match. Thus, there are no

triangles colored z, v, v′ in H = ∪tGt if and only if the colors of (z, v), (z, v′), (v, v′) in G match for all

choices of t, and hence if and only if the colors are exactly the same.

By construction, the number of nodes of each color is at most O(log n). Thus we have reduced

AE-Mono-Tri to an O(n log n)-node instance of ACP-Tri-Colight.

31

�

7.2 Colorful-BMM → ACP-Tri-Co and OV → Tri-Co*

We first give a simple reduction from Colorful-BMM to ACP-Tri-Co.

Lemma 7.5. Any instance of Colorful-BMM on n×n matrices can be reduced in O(n2) time to an instance

of ACP-Tri-Co on n nodes.

If the maximum number of k of any given color in the Colorful-BMM instance is no(1), then Colorful-BMM

also reduces to ACP-Tri-Co* with parameter no(1).

Proof. Let A and B be two n × n matrices that constitute an instance of Colorful-BMM. Let color :
[n] → [K] be the color function of the columns of A and rows of B. Note that without loss of generality

K ≤ O(n).
We will create an instance G of ACP-Tri-Co with O(n) colors.

For every color k ∈ [K] and every t ∈ [n] such that color (t) = k, create a node k2,t of color k.

For every i ∈ [n], create a node i1 of color i1 and a node i3 of color i3, and add an edge between i1 and

j3 for all i, j ∈ [n].
For every pair i ∈ [n], t ∈ [n] with color (t) = k, add an edge (i1, k2,t) if A[i, t] = 1 and add an edge

(i3, k2,t) if B[t, i] = 1.

Notice that for a fixed triple i ∈ [n], j ∈ [n], k ∈ [K], there is a triangle with colors i1, k, j3 if and only

if there is some t ∈ [n], A[i, t] ·B[t, j] = 1.

ACP-Tri-Co asks for every pair of colors i1, j3 to compute whether there is some k with no triangles

of color triple i1, j3, k, conversely, whether for all colors k there is a triangle with color triple i1, j3, k, i.e.

whether for all i, j, k there is some t of color k such that A[i, t] · B[t, j] = 1.

We get an instance of ACP-Tri-Co with O(n) nodes and O(n) colors.

Now suppose that the number of k in any given color of the Colorful-BMM instance is at most T ≤
no(1). In this case, the number of nodes of each color in the above reduction is at most no(1), so we

actually get an instance of ACP-Tri-Colight with parameter no(1). By our reduction from ACP-Tri-Colight

with parameter no(1) to ACP-Tri-Co*, we get an instance of ACP-Tri-Co* with n1+o(1) nodes and O(n)
colors. �

We get as a corollary a reduction from OV to Tri-Co* (not only to ACP-Tri-Co).

Corollary 7.6. For any 1 ≤ d ≤ n, OV for n Boolean vectors in f dimensions reduces in O(n2/d2 + ndf)
time to an instance of Tri-Colight on O(nf/d + d2) nodes with parameter f . Thus if OV requires n2−o(1)

time for f = no(1), then Tri-Colight on N nodes with parameter No(1) requires N3−o(1) time, then so does

Tri-Co* with parameter no(1).

Proof. Consider the reduction from Lemma 6.3 from OV to Colorful-BMM. For any d ≤ n, it partitioned

the input sets of vectors A and B into groups {Ai}i∈[n/d] and {Bi}i∈[n/d] of d vectors each, letting A[i, j, s]
be the sth bit of the kth vector of Ai and B[j, ℓ, s] be the sth bit of the ℓth vector of Bj .

It then created an n × d2f matrix A with A[i, (k, ℓ, s))] = A[i, k, s] and an d2f × n matrix B with

B[(k, ℓ, s), j] = B[j, ℓ, s]. The color of (k, ℓ, s) was (k, ℓ). The number of columns of A of each color is

thus at most f .

We can then apply our reduction from Colorful-BMM to ACP-Tri-Colight from the proof of Lemma 7.5

to show that OV reduces to ACP-Tri-Colight.

However, notice that in the above reduction from OV to Colorful-BMM, there are no pairs of orthog-

onal vectors iff for all i, j ∈ [n/d] and k, ℓ ∈ [d], there exists some s ∈ [f] such that A[i, (k, ℓ, s))] =

32

B[(k, ℓ, s), j] = 1. When we create the ACP-Tri-Colight instance from the Colorful-BMM instance in our

reduction, it suffices to figure out whether for all triples of colors there is some triangle, which is exactly the

Tri-Colight problem. �

8 Other Reductions

8.1 Hardness of AE-Colorful-Sparse-Tri

Theorem 8.1. If AE-Colorful-Sparse-Tri with m edges and degeneracy O(mα) could be solved in Õ(m1+α−ε)
time for some constant α ≤ 1/2, then OV for n Boolean vectors in f dimensions could be solved in

Õ(fO(1)n2−2ε/(2−α)) time.

Proof. By Lemma 6.3, OV reduces to O(n/d3) instances of Colorful-BMM for an (n/d) × (d2f) and an

(d2f)×d2 Boolean matrix, if d ≤ n1/3. Each such instance reduces to an instance of AE-Colorful-Sparse-Tri,

by mapping the two given matrices into a tripartite graph (the first matrix maps to edges between the left and

middle parts, the second matrix maps to edges between the middle and right parts, and we have a complete

bipartite graph between the left and right parts). Clearly, this tripartite graph has O((n/d)d2f) = O(dnf)
edges and degeneracy O(d2f).

Choose d so that d2 = (dn)α, i.e., d = nα/(2−α). Since α ≤ 1/2, we have d ≤ n1/3. The time bound

for OV is Õ((n/d3) · (fO(1)dn)1+α−ε) = Õ(fO(1)n2−2ε/(2−α)). �

Since AE-Colorful-Sparse-Tri generalizes AE-Sparse-Tri (which corresponds to the case with just 1

color), we can combine with Theorems 3.1, 3.11, and 8.1 to conclude that the AE-Colorful-Sparse-Tri

problem with m edges and degeneracy D has a lower bound near mD for D ≪ m1/5 if any one of the

Real APSP, Real 3SUM, or OV hypothesis is true. Since one can enumerate all triangles in a graph with

m edges and degeneracy D in O(mD) time [CN85] and thus solve AE-Colorful-Sparse-Tri, we have thus

obtained a tight conditional lower bound (up to no(1) factor) for this problem under Hypothesis 2, at least

for a restricted range of D.

8.2 Real-to-Integer Reductions

Since AE-Sparse-Tri with m edges can be reduced back to Int-All-Nums-3SUM on m integers [JV16],

Theorem 3.11 immediately implies:

Corollary 8.2. If Int-All-Nums-3SUM could be solved in Õ(n6/5−ε) time, then Real-All-Nums-3SUM

could be solved in Õ(n2−5ε/3) time with Las Vegas randomization.

Although the above bound is weak, such real-to-integer reductions may have other implications. For ex-

ample, it is known that for Int-All-Nums-3SUM reduces to Int-All-Nums-Convolution-3SUM5 [Păt10,

KPP16, CH20], without increasing the running time except by polylogarithmic or sublogarithmic fac-

tors, using Las Vegas randomization (these reductions were stated for the original non-“All” versions).

By the above corollary, if Real-All-Nums-Convolution-3SUM could be solved in O(n6/5−ε) time, then

Real-All-Nums-3SUM could be solved in subquadratic time. Despite the weakness of the bound, this is

interesting, since the question of whether Real-3SUM could be reduced to Real-Convolution-3SUM has

been raised in previous papers [KPP16, CH20].

5In Convolution-3SUM, we are given three arrays A,B,C of n numbers, and want to decide the existence of indices i and j
with C[i] = A[j] + B[i− j]. In the “All-Nums” version, we want to decide, for each i, the existence of an index j satisfying the

same equation.

33

One application is conditional lower bounds for the jumbled indexing problem under the Real 3SUM hy-

pothesis. Amir, Chan, Lewenstein, and Lewenstein [ACLL14] proved lower bounds for the problem under

the Integer 3SUM hypothesis. By combining their reduction from Int-All-Nums-3SUM to jumbled index-

ing and our reduction from Real-All-Nums-3SUM to Int-All-Nums-3SUM, one can prove that assuming

the Real 3SUM hypothesis, no data structure for jumbled indexing can simultaneously have O(n1+ασ)
preprocessing time and O(nβσ) query time for some constants ασ, βσ > 0 when the alphabet size σ is a

sufficiently large constant. Though our bound is weaker than [ACLL14]’s original bound, it is based on a

more believable hypothesis.

We can obtain similar real-to-integer reductions for Exact-Triangle, by combining our previous re-

duction from Real-AE-Exact-Tri to AE-Mono-Tri, and the following reduction from AE-Mono-Tri to

Int-AE-Exact-Tri:

Lemma 8.3. AE-Mono-Tri with nα colors reduces to Int-AE-Exact-Tri for integer edge weights in ±[nα+o(1)].

Proof. To produce the reduction, we use a result from additive combinatorics about Salem-Spencer set. A

Salem-Spencer set is a set of numbers that do not contain any 3-term arithmetic progressions. In other

words, if a set S is a Salem-Spencer set, then for any a, b, c ∈ S, a + c = 2b if and only if a = b = c. It is

known that [N] contains a large Salem-Spencer set.

Fact. [Beh46] There exists a subset of [N] that is a Salem-Spencer set of size N/eO(
√
logN) ≥

N1−o(1). Furthermore, we can find such a set efficiently, in Õ(N) time.

First, we find a Salem-Spencer set S of size nα in [nα+o(1)]. Then we find an arbitrary injective mapping

f from the set of colors to elements in set S. Say f(x) maps the color x to a number in S. Without loss of

generality, we assume the AE-Mono-Tri instance on graph G with nα colors is tripartite on partitions I, J,K.

For every edge e between I and K or between J and K with color x, we replace its color with an integer

f(x); for every edge e between I and J with color x, we replace its color with −2f(x). For any triangle

in G with edge colors x1, x2, x3, it becomes a zero triangle if and only if f(x1) + f(x2) − 2f(x3) = 0.

Since S is a Salem-Spencer set, it is equivalent to f(x1) = f(x2) = f(x3). Since f is injective, it is further

equivalent to x1 = x2 = x3. Thus, a zero triangle in the new graph corresponds to a monochromatic triangle

in the original graph. The other direction is more straightforward. Therefore, by running Int-AE-Exact-Tri

on the new graph, we can solve the original AE-Mono-Tri instance. �

Since in Section 5 we showed super-quadratic lower bounds of AE-Mono-Tri based on the Real APSP

hypothesis, the Real Exact-Triangle hypothesis or the Real 3SUM hypothesis, Theorem 5.4 implies super-

quadratic lower bound of Int-AE-Exact-Tri based on any of the three hypotheses. In particular, we obtain

the following corollary:

Corollary 8.4. If Int-AE-Exact-Tri for integers in ±[n2α] could be solved in Õ(n2+α−ε) time for some

constant α ≤ (1− ε)/3, then Real-AE-Exact-Tri could be solved in n3−ε+o(1) time.

A similar proof, together with Theorem 5.3, also implies the following (note that Int-#AE-Exact-Tri

easily reduces to two instances of Int-#AE-Neg-Tri by subtracting counts).

Corollary 8.5. If Int-#AE-Exact-Tri (or Int-#AE-Neg-Tri) for integers in ±[nα] could be solved in Õ(n2+α−ε)
time for some constant α ≤ (1 − ε)/2, then Real-#AE-Exact-Tri (or Real-#AE-Neg-Tri) could be solved

in n3−ε+o(1) time.

34

Note that Real-#AE-Exact-Tri (and Real-#AE-Neg-Tri) for integer edge weights in ±[nα] can be

solved in n2+α+o(1) time if ω = 2, by matrix multiplication on Õ(nα)-bit numbers. Thus, the above result

interestingly says that any improved algorithm for the small integer weight case would lead to an improved

algorithm for the general real case (if ω = 2).

We remark that using Lemma 8.3, it is possible to obtain another route of reduction from AE-Mono-Tri

to ACP-Tri-Co*. First, we use Lemma 8.3 to reduce AE-Mono-Tri to Int-AE-Exact-Tri, then adapt the

reduction by Abboud, Vassilevska W. and Yu [AVY18] from Int-Exact-Tri to Tri-Co* to get a reduction

from Int-AE-Exact-Tri to ACP-Tri-Co*. However, our proof of Theorem 7.4 is simpler and only introduces

Õ(1) overhead in contrast to the no(1) overhead introduced by this reduction.

8.3 An Application to String Matching

Given two strings a1 · · · an and b1 · · · bn in Σ∗, define their Hamming similarity to be |{i : ai = bi}|
(i.e., it is n minus their Hamming distance). Define their distinct Hamming similarity to be |{ai : ai = bi}|.
In other words, instead of counting the number of positions that matches, we count the number of distinct

alphabet symbols c ∈ Σ that are matched (where there exists i with ai = bi = c).
We consider the following problem: given a text string T = t1 · · · tN and a pattern string P = p1 · · · pM

in Σ∗ with M ≤ N , compute the distinct Hamming similarity between P and ti+1 · · · ti+M for every

i = 0, . . . , N − M . Call this the pattern-to-text distinct Hamming similarity problem. The correspond-

ing problem for standard Hamming similarity/distance is well-studied, for which the current best algo-

rithms [Abr87, FP74] have running time Õ(N3/2) in terms of N , and Õ(|Σ|N) in terms of N and |Σ|, but

unfortunately matching lower bounds are currently not known under the standard conjectures.6 The known

algorithms easily generalize to solve the pattern-to-text distinct Hamming similarity problem. Using our OV

→ Colorful-BMM reduction, we are able to prove nearly matching lower bounds for the distinct version of

pattern-to-text Hamming similarity under the OV hypothesis.

Lemma 8.6. Colorful-BMM for an n× df Boolean matrix A and a df ×n Boolean matrix B with colors in

[d], such that there are f indices with each color, reduces to the pattern-to-text distinct Hamming similarity

problem for two strings with length O(n2f) and alphabet size O(d), assuming that d ≤ n.

Proof. First we move the columns of A and the rows of B so that the color of each index k is k mod n, if

k mod n is in [d]. This can be accomplished by taking each ℓ ∈ [d], and mapping the smallest index with

color ℓ to index ℓ, the second smallest index with color ℓ to index n+ ℓ, the third to 2n+ ℓ, etc. All unused

indices are colored “!”, with the corresponding empty columns of A and rows of B set to false. The inner

dimension (the number of columns of A or the rows of B) is now increased to nf .

Our transformation of the matrix problem to a string problem is a variant of a known reduction from

Boolean matrix multiplication to the standard pattern-to-text Hamming distance problem, attributed to Indyk

(see e.g. [GU18]).

For the i-th row of A, we define a corresponding string Ti = a′i,1a
′
i,2 · · · a′i,nf with a′i,k = color (k) if

A[i, k] is true, and a′i,k = $ otherwise. Here, $ is a new extra symbol.

For the j-th column of B, we similarly define a corresponding string Pj = b′1,jb
′
2,j · · · b′nf,j with b′k,j =

color (k) if B[k, j] is true, and b′k,j = # otherwise. Here, # is another new extra symbol.

6A conditional lower bound near N3/2 for “combinatorial algorithms” was actually known, under the hypothesis that Boolean

matrix multiplication requires near cubic time for combinatorial algorithms, by a reduction attributed to Indyk (see e.g. [GU18])

(which we will actually adapt in our own reduction later). However, known algorithms use Fast Fourier Transform (FFT), and

there is no precise definition of combinatorial algorithms, especially if one wants to include FFT but forbid Strassen-like matrix

multiplication methods. For general non-combinatorial algorithms, Indyk’s lower bound was only around Nω/2.

35

We define the text string T = $n(nf+1)T1T2 · · ·Tn$
n(nf+1), and the pattern string P = P1#P2# · · ·#Pn,

and solve the pattern-to-text distinct Hamming similarity problem on these two strings of length O(n2f),
with alphabet [d] ∪ {!,#, $}.

To determine the (i, j)-th output entry for Colorful-BMM, consider the shift of the pattern string P so

that Pj is aligned with Ti. Fix ℓ ∈ [d]. All occurrences of the symbol ℓ in T are at indices congruent to ℓ
(mod n). In the shifted copy of P , all occurrences of ℓ in Pj are also at indices congruent to t (mod n),
but the occurrences of ℓ in Pj±1 are at indices congruent to (ℓ ± 1) (mod n) (because of the separator #
between Pj and Pj±1), and more generally, the occurrences of t in Pj±s are at indices congruent to ℓ ± s
(mod n) for each s. Thus, the only common occurrences of ℓ in T and the shifted P are in the Pj portion of

P , and a common occurrence exists iff there exists k ∈ [nf] with color (k) = ℓ such that A[i, k]∧B[k, j]. It

follows that the (i, j)-th output entry for Colorful-BMM is yes iff the distinct Hamming similarity between

T and the shifted P is d (i.e., only the 3 extra symbols !,#, $ are not matched). �

Theorem 8.7. If the pattern-to-text distinct Hamming similarity problem for two strings with length O(N)
could be solved in O(N3/2−ε) time, then OV for n Boolean vectors in f dimensions could be solved in

O(fO(1)n2−4ε/3) time.

More generally, if the pattern-to-text distinct Hamming similarity problem for two strings with length

O(N) and alphabet size O(Nα) could be solved in O(N1+α−ε) time for some constant α ≤ 1/2, then OV

for n Boolean vectors in f dimensions could be solved in O(fO(1)n2−2ε/(1+α)) time.

Proof. Note that in the reduction from Lemma 6.3, the number of indices per color is indeed bounded

by f . By the above lemma, it follows that if the pattern-to-text distinct Hamming similarity problem

with string length N and alphabet size σ could be solved in T (N,σ) time, then the time bound for OV

is O(T ((n/d)2f, d2)), assuming that d2 ≤ n/d.

Choose d so that d2 = (n/d)2α, i.e., d = nα/(1+α). Since α ≤ 1/2, we have d ≤ n1/3, and so d2 ≤ n/d.

The time bound becomes O(T ((n/d)2f, d2)) = O(fO(1)n2−2ε/(1+α)) if T (N,Nα) = O(N1+α−ε). �

8.4 Hardness of Set-Disjointness and Set-Intersection from Real-APSP

In this section, we show tight hardness of Set-Disjointness and Set-Intersection based on the Real

APSP hypothesis.

Recall that in the Set-Disjointness problem, one is given a universe U , a collection of sets F ⊆ 2U , and

q queries of the form (F1, F2) ∈ F × F asking whether F1 ∩ F2 = ∅. Tight hardness of Set-Disjointness

was first shown by Kopelowitz, Pettie and Porat [KPP16] based on the Integer 3SUM hypothesis. It was

later strengthened by Vassilevska W. and Xu [VX20] to be based on the Integer Exact-Triangle hypothesis.

Now we prove the same conditional lower bound, but based on the Real APSP hypothesis.

Theorem 8.8. For any constant 0 < γ < 1, no algorithm for Set-Disjointness where |U | = O(N2−2γ),
|F| = O(N), each set of F has size O(N1−γ), and q = O(N1+γ) can run in O(N2−ǫ) time for ǫ > 0,

under the Real APSP hypothesis.

Proof. It is almost an immediate corollary of Lemma 1.12. Suppose an O(N2−ǫ) time algorithm for

Set-Disjointness exists. We apply the previous reduction in Lemma 1.11 and Lemma 1.12 with n = N and

d = N1−γ to get Õ(d) instances of AE-Sparse-Tri. By the Real APSP hypothesis, each instance requires

n2−o(1) time. By a close inspection of that reduction, the number of left and right nodes is Θ(n), the number

of edges between the left and right nodes is O(n2/d), and each left and right node has d neighbors in the

middle part. For each middle node whose degree is at most n1−δ/d for some δ > 0, we can enumerate all

pairs of its neighbors can then ignore the node afterwards. Thus, we can bound the number of middle nodes

36

by O(nδd2) by paying O(n2−δ) time. We can split the instance to nδ instances so that the number of middle

nodes is O(d2) in each instance. Let F be the union of the left and right nodes, U be the set of middle

nodes, and add the edges between these accordingly. Clearly, this is a valid input to the Set-Disjointness

problem, and thus we can solve each instance in O(n2−ǫ) time, and all the nδ instances in O(n2−ǫ+δ) time.

Thus, now we have an O(n2−ǫ+δ + n2−δ) time algorithm for the AE-Sparse-Tri instance, which is

O(n2−ǫ/2) by setting δ = ǫ/2. This contradicts with the Real APSP hypothesis. �

We also show lower bound for the Set-Intersection problem based on the Real APSP hypothesis,

matching the previous lower bound from the Integer Exact Triangle hypothesis. Recall that the input of

Set-Intersection is the same as the input of Set-Disjointness : a universe U , a collection of sets F ⊆ 2U ,

and q queries. Instead of outputting whether each pair of sets intersect, the Set-Intersection problem asks

the algorithm to output a certain number of elements in the q intersections. Intuitively, the Set-Intersection

problem asks to list a certain number of triangles in a certain type of tripartite graph.

Theorem 8.9. For any constant 0 < γ < 1 and δ ≥ 0, no algorithm for Set-Disjointness where |U | =
O(N1+δ−γ), |F| = O(

√
N1+δ+γ), each set of F has size O(N1−γ), q = O(N1+γ), and the algorithm is

required to output O(N2−δ) elements from the intersections, can run in O(N2−ǫ) time for ǫ > 0, under the

the Real APSP hypothesis.

Proof. If δ > 2, then the input size is already
√
N1+δ+γ ·N1−γ ≥ N2, and the lower bound is trivially true.

Thus, we may assume δ ≤ 2.

The key intuition in the proof is to generalize Lemma 1.11 and Lemma 1.12. In the proof of Lemma 1.11,

we take the random subset R ⊆ [d] of size d/2. Suppose we keep each element with probability 1/t for

some 1 ≤ t ≤ d instead, the R has size Õ(d/t) w.h.p., and so does the number of distinct k
(R)
i,j . Thus

we reduce each instance of Real-(min,+)-Product between an n × d real matrix and a d × n real matrix

to O(d/t) instances of some triangle problems, but in each instance of the triangle problem we need to

enumerate Õ(t) triangles per edge since the number of k that beats k
(R)
i,j is Õ(t) w.h.p.

On the other hand, suppose we keep each element in [d] with probability 1 − 1/t. Then for each pair

of (i, j), the probability that the best k in [d] \ R beats the best k in [d] is only O(1/t), so we only need to

enumerate fewer triangles.

In the following, we will formalize the above intuitions.

Claim 8.10. For any 2 ≤ t ≤ d, Real-(min,+)-Product of an n× d real matrix A and a d×n real matrix

B (randomly) reduces to Õ(d/t) instances of Set-Intersection where |F| = n, each set of F has size d,

q = Õ(n2t/d) and the number of elements to output is Õ(n2t2/d).

Proof. We sample a random subset R ⊆ [d] by keeping each element with probability 1/t. Then we

compute kRi,j = argmink∈R(A[i, k] + B[k, j]) recursively. Similar to the proof of Lemma 1.12, let Pk =

{(i, j) ∈ [n2] : kij = k} for each k ∈ R, and we subdivide each Pk to subsets of sizes O(n2t/d). W.h.p.,

|R| = Õ(d/t), and the number of such subsets is Õ(d/t).
For each subset P , we create a triangle (listing) instance in the same way as Lemma 1.12. Note that the

number of edges between the left and right part is |P | = O(n2t/d) and the number of middle neighbors

of every left and right node is d. The difference is that, for each (i, j) ∈ P , we expect to see Õ(t) distinct

k ∈ [d] such that Ai,k + Bk,j < Ai,kRi,j
+ BkRi,j ,j

, i.e., the number of triangles involving edge (x[i], z[j]) is

Õ(t) with high probability. Thus, we need to output Õ(t) triangles per edge in order to find the optimal k.

In total, we need to output Õ(n2t2/d) triangles.

37

It is then straightforward to reduce the triangle listing instances to Set-Intersection with the required

parameters. �

Note that the guarantees of Claim 8.10 does not involve the size of the universe U . However, similar as

before, we can overcome it via the “high vs. low degree” trick.

Given N, γ, δ, we can use Claim 8.10 by setting n = N
δ+γ+1

2 , d = N1−γ and t = N1−δ−γ . We can

check that Claim 8.10 gives the correct values of |F|, sizes of each set, q, and the number of triangles to

enumerate. The lower bound implied by Claim 8.10 is n2−o(1)d/(d/t) = N2−o(1). Note that we need

2 ≤ t ≤ d, so it works for all ranges of γ, δ where δ + γ ≤ 1.

The following claim handles the remaining cases.

Claim 8.11. For any 2 ≤ t ≤ n2/d, Real-(min,+)-Product of an n × d real matrix A and a d × n real

matrix B (randomly) reduces to Õ(dt) instances of Set-Intersection where |F| = n, each set of F has size

d/t, q = Õ(n2/d) and the number of elements to output is Õ(n2/td).

Proof. We sample a random subset R ⊆ [d] by keeping each element with probability 1 − 1/t. Then

we compute kRi,j = argmink∈R(A[i, k] + B[k, j]) recursively. Notably, the depth of the recursion is

log1/(1−1/t) n = Õ(t), so there will be an additional Õ(t) factor on number of instances.

Then similar to the proof of Lemma 1.12, let Pk = {(i, j) ∈ [n2] : kij = k} for each k ∈ R, and we

subdivide each Pk to subsets of sizes O(n2/d). The number of such subsets is Õ(d). Since the depth of the

recursion is Õ(t), the total number of instances is Õ(dt).
For each subset P , we create a triangle (listing) instance in the same way as Lemma 1.12. One difference

is that, for each i or j, we only need to connect it to the middle nodes corresponding to some k′ ∈ [d] \ R,

which has size Õ(d/t) with high probability.

The other difference requires some analysis. For some pair (i, j) ∈ [n] × [n], we consider the number

of times its kRi,j gets improved over the whole algorithm. For each iteration, suppose the current middle set

is R, and we are sampling R′ ⊆ R by adding each element to R′ with probability 1 − 1/t. Therefore, the

probability that kRi,j 6∈ R′ is 1/t. It means that the best k for the pair (i, j) is updated in the iteration for R

with probability 1/t. Since there are Õ(t) iterations, the number of times kRi,j gets improved is Õ(1) w.h.p.

by Chernoff bound, and each time it gets improved there are at most Õ(1) distinct of k ∈ R \ R′ that can

improve over kR
′

i,j w.h.p. Because of this, the number of triangles that are required to be outputted over the

whole course of the algorithm is only Õ(n2) with high probability.

If some instance contains more than Õ(n2/td) triangles, we can split the instance to several instances

so that we only need Õ(n2/td) triangles from each instance. One way to do this split is to order pairs in P
arbitrarily and use binary search to find the maximum prefix P ′ ⊆ P such that the instance corresponding

to P ′ only has Õ(n2/td) triangles, and then remove P ′ from P and continue.

It is then straightforward to reduce the triangle listing instances to Set-Intersection. �

Similar as before, we can bound the size of U via the “high vs. low degree” trick.

Given N, γ, δ, we can use Claim 8.11 by setting n = N
δ+γ+1

2 , d = N δ and t = N δ+γ−1. We can check

Claim 8.11 gives the correct values of |F|, size of each set, q, and the number of triangles to enumerate. The

lower bound implied by Claim 8.11 is n2−o(1)d/(td) = N2−o(1). Note that we need 2 ≤ t and td ≤ n2, so

it works for all ranges of γ, δ where δ + γ ≥ 1 and δ ≤ 2. �

38

9 Miscellaneous Remarks

The Colorful-BMM problem we have introduced has several natural variants. For example, given n× n
Boolean matrices A and B and a mapping color : [n] → Γ, for each i, j ∈ [n], we may want to find the most

frequent element in the multiset {color (k) : A[i, k] ∧ B[k, j], k ∈ [n]}. Call this problem Mode-BMM.

It is not difficult to adapt the proofs in Section 6 to obtain similar reductions from Real-APSP or OV to

Mode-BMM.

Colorful-BMM and Mode-BMM are related to some new variants of equality matrix products. Following

the naming convention from [VX20], one could define the following products of two n×n integer matrices

A and B, which to our knowledge have not been studied before:

• (distinct,=)-Product: for each i, j ∈ [n], compute the number of distinct elements in {A[i, k] :
A[i, k] = B[k, j], k ∈ [n]};

• (mode,=)-Product: for each i, j ∈ [n], find the most frequent element in the multiset {A[i, k] :
A[i, k] = B[k, j], k ∈ [n]}.

It is easy to see that (distinct,=)-Product and (mode,=)-Product can be reduced from Colorful-BMM

and Mode-BMM respectively (by setting A′[i, k] = color (k) if A[i, k] is true, and A′[i, k] = $ otherwise,

and B′[k, j] = color (k) if B[k, j] is true, and B′[k, j] = # otherwise, for two new symbols $ and #). In

particular, we immediately obtain near cubic lower bounds for these problems under OVH, by Theorem 6.4.

One can similarly consider the (distinct,+)-Product problem (computing the number of distinct elements

in {A[i, k] +B[k, j] : k ∈ [n]}). In the case when the matrix entries are integers bounded by nα, all these

products can be computed in Õ(n2+α+o(1)) time if ω = 2, and we have nearly matching lower bounds for

all α ≤ 1 under OVH, by Theorem 6.4.

It is possible to obtain conditional lower bounds based on the conjectured hardness of Real-(2k + 1)SUM

for constant k > 1, which is believed to require nk+1−o(1) time (the problem is to find 2k+1 input numbers

summing to 0). For example, since Real-(2k + 1)SUM is known to be reducible to an asymmetric instance

of Real-3SUM for three sets of sizes nk, nk, and n, Theorem 3.11 with β = 1/k immediately implies:

Corollary 9.1. For any fixed k, if AE-Sparse-Tri with m edges and degeneracy mα could be solved

in Õ(m1+α−ε) time for some constant α ≤ 1/(3k + 2), then Real-(2k + 1)SUM could be solved in

Õ(nk+1−ε(k+1)/(1+α)) time using Las Vegas randomization.

[BCI+19] have extended Grønlund and Pettie’s 3SUM decision-tree result [GP18] to certain algebraic

generalizations of 3SUM (given sets A, B, and C of real numbers, does there exist a triple (a, b, c) ∈
A×B×C such that f(a, b) = c for a fixed bivariate polynomial f of constant degree). It seems possible to

adapt our proof to obtain a reduction from such algebraic versions of 3SUM to AE-Sparse-Tri (by replacing

dyadic intervals with more advanced geometric range searching techniques), although the bounds would be

worse.

References

[Abr87] Karl Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, De-

cember 1987.

[ACLL14] Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness

of jumbled indexing. In Proc. 41st International Colloquium on Automata, Languages, and

39

Programming (ICALP), volume 8572 of Lecture Notes in Computer Science, pages 114–125.

Springer, 2014.

[AEK05] Daniel Archambault, William Evans, and David Kirkpatrick. Computing the set of all the

distant horizons of a terrain. Int. J. Comput. Geometry Appl., 15:547–564, 12 2005.

[AGMN92] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for Boolean matrix multi-

plication and for shortest paths. In Proc. 33rd IEEE Symposium on Foundations of Computer

Science (FOCS), pages 417–426, 1992.

[AGV15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences

between graph centrality problems, APSP and diameter. In Proc. 2015 Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1681–1697, 2015.

[AHI+01] Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong

Ma, Belén Palop, and Vera Sacristán. Smallest color-spanning objects. In Proc. 9th Annual

European Symposium on Algorithms (ESA), pages 278–289, 2001.

[AHP08] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM

J. Comput., 38(3):899–921, 2008.

[AV14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th IEEE Symposium on Foundations of Computer

Science (FOCS), pages 434–443, 2014.

[AV21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proc. 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

522–539, 2021.

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster

alignment of sequences. In Proc. 41st International Colloquium on Automata, Languages,

and Programming (ICALP), Part I, volume 8572 of Lecture Notes in Computer Science, pages

39–51. Springer, 2014.

[AVY18] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and

basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):1098–1122,

2018. Preliminary version in STOC 2015.

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and Hamming nearest neighbors.

In Proc. 56th IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–

150, 2015.

[AWY14] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial

method to algorithm design. In Proc. 26th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 218–230, 2014.

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algo-

rithmica, 17(3):209–223, 1997.

40

[BCI+19] Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam

Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete & Computational Ge-

ometry, 61(4):698–734, 2019.

[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM. Al-

gorithmica, 50(4):584–596, 2008. Preliminary version in WADS 2005.

[Beh46] Felix A. Behrend. On sets of integers which contain no three terms in arithmetical progres-

sion. Proc. Nat. Acad. Sci., 32(12):331–332, 1946.

[Ben83] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th

ACM Symposium on Theory of Computing (STOC), pages 80–86, 1983.

[BGMW20] Karl Bringmann, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance

cannot be computed in strongly subcubic time (unless APSP can). ACM Trans. Algorithms,

16(4):48:1–48:22, 2020.

[BH01] Gill Barequet and Sariel Har-Peled. Polygon containment and translational min-Hausdorff-

distance between segment sets are 3SUM-hard. Int. J. Comput. Geom. Appl., 11(4):465–474,

2001. Preliminary version in SODA 1999.

[BRS+18] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.

Towards tight approximation bounds for graph diameter and eccentricities. In Proc. 50th

ACM Symposium on Theory of Computing (STOC), pages 267–280, 2018.

[CDL+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio

Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard

as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.

[CEH07] Otfried Cheong, Alon Efrat, and Sariel Har-Peled. Finding a guard that sees most and a shop

that sells most. Discret. Comput. Geom., 37(4):545–563, 2007. Preliminary version in SODA

2004.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,

and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis

and consequences for non-reducibility. In Proc. ACM Conference on Innovations in Theoret-

ical Computer Science (ITCS), pages 261–270, 2016.

[CH20] Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM. In Proc. SIAM

Symposium on Simplicity in Algorithms (SOSA), pages 1–7, 2020.

[Cha20] Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-convolution,

and some geometric 3SUM-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.

Preliminary version in SODA 2018.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability

of small depth circuits. In Proc. 4th International Workshop on Parameterized and Exact

Computation (IWPEC), pages 75–85. Springer, 2009.

41

[CIP13] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. On the exact complexity of

evaluating quantified k-CNF. Algorithmica, 65(4):817–827, 2013. Preliminary version in

IPEC 2010.

[CKN18] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of

perfect matchings. J. ACM, 65(3), mar 2018.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.

Comput., 14(1):210–223, 1985.

[CW21] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and

more: Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–

2:14, 2021. Preliminary version in SODA 2016.

[Dah16] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to

diameter. In Proc. 43rd International Colloquium on Automata, Languages, and Program-

ming (ICALP), volume 55 of LIPIcs, pages 48:1–48:14, 2016.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

[dBdGO97] Mark de Berg, Marko M. de Groot, and Mark H. Overmars. Perfect binary space partitions.

Computational Geometry, 7(1):81–91, 1997.

[DKPV20] Lech Duraj, Krzysztof Kleiner, Adam Polak, and Virginia Vassilevska Williams. Equiva-

lences between triangle and range query problems. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 30–47. SIAM, 2020.

[DW10] Evgeny Dantsin and Alexander Wolpert. On moderately exponential time for SAT. In Proc.

13th International Conference on Theory and Applications of Satisfiability Testing (SAT),

pages 313–325. Springer, 2010.

[Eri99a] Jeff Erickson. Lower bounds for linear satisfiability problems. Chic. J. Theor. Comput. Sci.,

1999(8), 1999. Preliminary version in SODA 1995.

[Eri99b] Jeff Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J.

Comput., 28(4):1198–1214, 1999.

[EvdHM20] Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. Smoothing the gap between np and

er. In Proc. 61st IEEE Symposium on Foundations of Computer Science, pages 1022–1033.

IEEE, 2020. Full version available at http://arxiv.org/abs/1912.02278.

[Flo62] Robert W. Floyd. Algorithm 97: shortest path. Commun. ACM, 5(6):345, 1962.

[FM71] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive closure.

In Proc. 12th Annual Symposium on Switching and Automata Theory, pages 129–131. IEEE,

1971.

[FP74] Michael J. Fischer and Michael S. Paterson. String matching and other products. In Complex-

ity of Computation, RM Karp (editor), SIAM-AMS Proceedings, volume 7, pages 113–125,

1974.

42

http://arxiv.org/abs/1912.02278

[Fre76] Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J.

Comput., 5(1):83–89, 1976.

[Fre17] Ari Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440–458, 2017.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. International

Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–303, 2014.

[GO95] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational

geometry. Computational Geometry, 5(3):165–185, 1995.

[GP18] Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,

65(4):22:1–22:25, 2018. Preliminary version in FOCS 2014.

[GS17] Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy.

In Proc. 25th European Symposium on Algorithms (ESA), volume 87 of LIPIcs, pages 42:1–

42:13, 2017.

[GU18] Paweł Gawrychowski and Przemysław Uznański. Towards unified approximate pattern

matching for hamming and L1 distance. In Proc. 45th International Colloquium on Au-

tomata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages 62:1–62:13,

2018.

[HS74] Juris Hartmanis and Janos Simon. On the power of multiplication in random access machines.

In Proc. 15th Annual Symposium on Switching and Automata Theory, pages 13–23. IEEE

Computer Society, 1974.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.

Sci., 62(2):367–375, 2001. Preliminary version in CoCo 1999.

[JV16] Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–

343, 2016.

[KLM19] Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for k-

SUM and related problems. J. ACM, 66(3):16:1–16:18, 2019. Preliminary version in STOC

2018.

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.

In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1272–1287,

2016.

[KS99] Simon Kahan and Jack Snoeyink. On the bit complexity of minimum link paths: Su-

perquadratic algorithms for problem solvable in linear time. Comput. Geom., 12(1-2):33–44,

1999.

[LMS18] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of

bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2), apr 2018.

[LPV20] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic triangles,

intermediate matrix products, and convolutions. In Proc. 11th Innovations in Theoretical

Computer Science Conference (ITCS), volume 151 of LIPIcs, pages 53:1–53:18, 2020.

43

[LU18] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using pow-

ers of the Coppersmith-Winograd tensor. In Proc. 29th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1029–1046, 2018.

[LVWW16] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.

Deterministic time-space trade-offs for k-SUM. In Proc. 43rd International Colloquium on

Automata, Languages, and Programming (ICALP), volume 55 of LIPIcs, pages 58:1–58:14,

2016.

[Păt10] Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd

ACM Symposium on Theory of Computing (STOC), pages 603–610, 2010.

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–

401, 2011. Preliminary version in ESA 2004.

[Sch79] Arnold Schönhage. On the power of random access machines. In Proc. 6th Colloquium on

Automata, Languages and Programming (ICALP), volume 71 of Lecture Notes in Computer

Science, pages 520–529. Springer, 1979.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Com-

put. Syst. Sci., 51(3):400–403, 1995.

[SEO03] Michael Soss, Jeff Erickson, and Mark Overmars. Preprocessing chains for fast dihedral

rotations is hard or even impossible. Computational Geometry, 26(3):235–246, 2003.

[Vas12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In

Proc. 44th ACM Symposium on Theory of Computing (STOC), pages 887–898, 2012.

[Vas18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018.

[VW13] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting

weighted subgraphs. SIAM J. Comput., 42(3):831–854, 2013. Preliminary version in STOC

2009.

[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,

matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. Preliminary version in

FOCS 2010.

[VWY06] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the smallest H-subgraph

in real weighted graphs and related problems. In Proc. 33rd International Colloquium on

Automata, Languages and Programming (ICALP), Part I, volume 4051 of Lecture Notes in

Computer Science, pages 262–273, 2006.

[VX20] Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing and

APSP. In Proc. 61st IEEE Symposium on Foundations of Computer Science (FOCS), pages

786–797, 2020.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. Preliminary version in ICALP 2004.

44

[Wil14] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys,

editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June

03, 2014, pages 664–673. ACM, 2014.

[Wil18] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,

47(5):1965–1985, 2018. Preliminary version in STOC 2014.

[Yuv76] Gideon Yuval. An algorithm for finding all shortest paths using n2.81 infinite-precision mul-

tiplications. Inf. Process. Lett., 4(6):155–156, 1976.

A Model of Computation

Within fine-grained complexity it is standard to work in the Word RAM model of computation with

O(log n)-bit words. We will consider variants of APSP and 3SUM in which the numbers are reals, as

opposed to integers. To handle real numbers, the usual model of computation is a version of the Real RAM

(see e.g. Section 6 in the full version of [EvdHM20]) which supports unit cost comparisons and arith-

metic operations (addition, subtraction, multiplication, division) on real numbers, unit cost casting integers

into reals, in addition to the standard unit cost operations supported by an O(log n)-bit Word RAM. No

conversions from real numbers to integers are allowed, and randomization only happens by taking random

O(log n)-bit integers, not random reals.

It is known [HS74] that unit cost multiplication makes RAM machines very powerful. For fine-grained

complexity purposes when exact polynomial running times matter, even additions of real numbers can give

the Real RAM a lot of power over the standard Word RAM7.

However, it is not difficult to formulate “reasonable” restricted versions of the Real RAM which would

not make it more powerful (i.e., it can still be simulated efficiently on the Word RAM when the input

numbers are O(log n)-bit integers). In all the restricted versions of the Real RAM, we only restrict the set

of unit cost operations available between real numbers, while keeping the Word RAM part of the model and

the interplay between reals and integers the same as the original Real RAM. We describe several specific

options below.

“Reasonable” Real RAM models. We start by defining two of the weakest (i.e., most restrictive) models,

under which all our reductions hold. We emphasize that from the perspective of conditional lower bounds,

reductions that work in weaker models are better (they automatically work in stronger models), and hy-

potheses based on weaker models are more believable. Thus, these two simplest models are sufficient for

the purposes of this paper.

(A) Real RAM with 4-linear comparisons. In this model, the only operations allowed on the input real

numbers are comparisons of the form a+ b < c or a+ b < a′+ b′ where a, b, a′, b′, c are input values.

All of our reductions from Real-3SUM, Real-Exact-Tri, and Real-(min,+)-Product clearly work

in this restricted model. All known algorithms for these problems also work in this model, and so does

Fredman’s and Grønlund and Pettie’s decision tree upper bound [Fre76, GP18] (which holds in the 4-

linear decision trees). An exception is Kane, Lovett, and Moran’s decision tree upper bound [KLM19],

which requires a relaxation to 6-linear comparisons.

7For instance, using O(n) additions one can create n-bit numbers at a cost of O(n) and then arithmetic operations between

these n-bit numbers also take unit times, giving the Real RAM a polynomial advantage over the Word RAM.

45

(A′) Real RAM with 4-linear comparisons and restricted additions. For Real-APSP, the model needs

slight strengthening, since additions are needed to compute path lengths. We allow registers storing

intermediate real numbers. We may add two register values, and perform comparisons of the form

a + b < a′ + b′ where a, b, a′, b′ are register values. However, we require that at any time, the value

of a register is equal to the length of some path.

Note that register values cannot be exponentially large because of this requirement (in particular, we

cannot repeatedly double a number by adding it to itself).

While the above models are sufficient for our purposes, we mention two stronger models that are pop-

ularly used from the algorithm designers’ perspectives, though they may not have been explicitly stated in

previous works:

(B) Real RAM with low-degree predicates. In this model, the only type of operation allowed on the input

real numbers is testing the sign of a constant-degree polynomial, with constant number of arguments

and constant integer coefficients, evaluated at a constant number of the input values. (Clearly, (B)

extends (A), with degree 1.)

This version of the Real RAM model is usually sufficient for algorithms in computational geometry

(e.g., for convex hulls, Voronoi diagrams, or line segment intersections). It is reminiscent of the stan-

dard algebraic decision tree model [Ben83]. For example, in 2D, testing whether three points are in

clockwise order reduces to testing the sign of a degree-2 polynomial, and testing whether a point is in

the circle through three given points reduces to testing the sign of a degree-4 polynomial [dBCvKO08].

(B′) Real RAM with low-degree computation. In a still stronger model, we allow registers storing interme-

diate real numbers, support additions, subtractions, and multiplications on these registers, and allow

comparisons of two register values. However, we require that at any time, the value of a register

is equal to the evaluation of a constant-degree polynomial with n arguments and constant integer

coefficients, evaluated at the n input values. (Clearly, (B′) extends (A′), with degree 1.)

Note that when the input numbers are O(log n)-bit integers, intermediate numbers remain O(log n)-
bit integers because of this requirement; thus, computation can be simulated efficiently in the Word

RAM. We can further relax the model by allowing the degree to be no(1) and coefficients to be

bounded by 2n
o(1)

, and computation can still be simulated in the Word RAM with an no(1)-factor

slow-down.

Though rarer, there are some examples of Real RAM algorithms in the computational geometry literature

that do not fit in the above stronger models (e.g., for computing minimum-link paths in polygons [KS99]),

because intermediate numbers are generated iteratively from earlier numbers in a manner that forms a tree

of large depth. However, such algorithms are generally recognized as impractical due to precision issues.

How an unrestricted Real RAM may be unreasonable. An unrestricted Real RAM that supports arith-

metic operations and the floor function is known to have the ability to solve PSPACE-hard problems in

polynomial time [Sch79]. It could also alter the fine-grained complexity of problems in P. For example, in

this model, it is possible to solve AE-Sparse-Tri in near-linear time (exercise left to the reader), and thus

solve Real-APSP in truly subcubic time and Real-3SUM in truly subquadratic time by our reductions.

Though not as well known, an unrestricted Real RAM without the floor function can still do unusual

things. For example, it is possible to detect one triangle in a sparse graph in near-linear time, or solve

46

Int-APSP (but not necessarily Real-APSP) in O(nω+o(1)) time (similar to [Yuv76], but with a small mod-

ification to avoid the floor function). It is not clear if the Real APSP or 3SUM hypothesis could still be true

in this model, but because of the unusualness of the model, we are not willing to bet on it.

Implications to the large integer setting. Even to readers who are not interested in problems with real-

valued inputs in the Real RAM Model, our techniques are still useful for versions of the problems for

large integer input in the standard Word RAM. Our reductions hold in the 4-linear comparison model with

restricted additions, and the cost of each 4-linear comparison and restricted addition is almost linear in the

number of bits in the input integers. For example, the proof of Theorem 1.13 implies that for any fixed δ > 0,

if AE-Sparse-Tri could be solved in Õ(m4/3−ε) time, then Int-APSP for O(n1/2−δ)-bit integers could be

solved in truly subcubic time (since our reduction uses Õ(n5/2) comparisons and restricted additions, each

now costing Õ(n1/2−δ)). The previous reduction from Int-APSP [VX20] can only handle no(1)-bit integers.

The hypothesis that Int-APSP does not have truly subcubic algorithm for O(n1/2−δ)-bit integers is more

believable than the original Int-APSP hypothesis for O(log n)-bit integers.

For Int-3SUM, one can use hashing to map large integers to O(log n)-bit integers with randomiza-

tion, and so the result here would not be new. But our techniques work for certain inequality variants of

Int-3SUM, for which hashing is not directly applicable.

B Real-3SUM → Real-Exact-Tri

Theorem B.1. Real-Exact-Tri requires n2.5−o(1) time assuming the Real 3SUM hypothesis.

Proof. Given a Real-3SUM instance, we first sort all the numbers, then split the sorted list into g buckets

B1, . . . , Bg of size n/g each for some g to be determined later. Let bi be the first element in bucket Bi.

Then all elements in Bi are in the interval [bi, bi+1].
Let’s call a triple of buckets Bi, Bj , Bk valid if bi + bj + bk ≤ 0 ≤ bi+1 + bj+1 + bk+1. It was shown

that number of valid triples is O(g2) (see e.g. [VW13]), and we can find those triples in O(g2) time.

If some pair of buckets Bi, Bj has at least nε buckets Bk so that Bi, Bj , Bk is a valid triple, then we

go through each pair of elements in Bi ∪ Bj and check if the negative of their sum is in the list. The time

for this over all such bucket pairs is asymptotically at most Õ((g2/nε)(n/g)2) = Õ(n2−ε), which is truly

subquadratic.

The rest of the reduction follows from [VW13], but we include the full proof for completeness.

Now for the remaining Bi, Bj pairs, the number of Bk that make a valid triple is at most nε. We then

create an Real-Exact-Tri instance for every q ∈ [nε] and p in [n/g] with three part of nodes.

The first part represents buckets Bi, the second part represents buckets Bk, and the third part represents

pairs (s, t) ∈ [n/g]× [n/g].
Between Bi and Bi, we add an edge with weight equal to the p-th number in the q-th bucket Bk that

forms a valid triple with Bi, Bj . Between Bi and (s, t), we add an edge with weight equal to the s-th number

in bucket Bi. Between Bj and (s, t), we add an edge with weight equal to the t-th number in bucket Bj .

Clearly, one of the Real-Exact-Tri instance has an exact triangle if and only if the remaining triples

have a solution to the Real-3SUM instance, since the set of triangles in these Real-Exact-Tri instances

corresponds to all triples if numbers that could potentially sum up to 0.

The number of nodes is O(g+(n/g)2), and if we set g = n2/3 we get nε+1/3 instances of Real-Exact-Tri

with n2/3 nodes each. Suppose there exists an O(n2.5−δ) for δ > 0 time algorithm for Real-Exact-Tri, then

we can solve Real-3SUM in Õ(n2−ε + nε+1/3(n2/3)2.5−δ) time, which is Õ(n2−δ/2) if we set ε = δ/2,

violating the Real 3SUM hypothesis. �

47

	1 Introduction
	1.1 Our results
	1.1.1 Main result: hardness for Triangle Collection
	1.1.2 Real APSP and Real 3SUM hardness via All-Edges Sparse Triangle
	1.1.3 Real APSP and OV hardness via Colorful Boolean Matrix Multiplication
	1.1.4 Equivalence between variants of Triangle Collection
	1.1.5 Other Reductions

	1.2 An Illustration of Our Techniques: Reduction from Real-APSP to AE-Sparse-Tri
	1.3 Paper Organization

	2 Preliminaries
	2.1 Fine-Grained Reductions
	2.2 Hard Problems
	2.3 Triangle Collection and Variants
	2.4 Other Problems

	3 Hardness of All-Edges Sparse Triangle
	3.1 Real-APSP rightarrow AE-Sparse-Tri
	3.2 Real-Exact-Tri rightarrow AE-Sparse-Tri
	3.3 Real-3SUM rightarrow AE-Sparse-Tri

	4 Hardness of All-Edges Sparse Triangle Counting
	4.1 Real-Exact-Tri rightarrow #AE-Sparse-Tri
	4.2 Real-3SUM rightarrow #AE-Sparse-Tri

	5 Hardness of All-Edges Monochromatic Triangle
	5.1 Real-APSP rightarrow AE-Mono-Tri
	5.2 Real-Exact-Tri rightarrow AE-Mono-Tri (and #AE-Mono-Tri)
	5.3 Real-3SUM rightarrow AE-Mono-Tri (and #AE-Mono-Tri)

	6 Hardness of Colorful BMM
	6.1 Real-APSP rightarrow Colorful-BMM
	6.2 OV rightarrow Colorful-BMM

	7 Triangle Collection and Triangle-Collection*
	7.1 From All-Edges Monochromatic Triangle to All-Color-Pairs Triangle Collection
	7.2 Colorful-BMM rightarrow ACP-Tri-Co and OV rightarrow Tri-Co*

	8 Other Reductions
	8.1 Hardness of AE-Colorful-Sparse-Tri
	8.2 Real-to-Integer Reductions
	8.3 An Application to String Matching
	8.4 Hardness of Set-Disjointness and Set-Intersection from Real-APSP

	9 Miscellaneous Remarks
	A Model of Computation
	B Real-3SUM rightarrow Real-Exact-Tri

