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Abstract

The basic goal of survivable network design is to build cheap networks that guarantee the connectiv-

ity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain

[Combinatorica’01] provides a 2-approximation for a wide class of these problems. However nothing

better is known even for very basic special cases, raising the natural question whether any improved

approximation factor is possible at all.

In this paper we address one of the most basic problems in this family for which 2 is still the best-

known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted

graph (that w.l.o.g. we can assume to be a forest) and a collection of extra edges (links), compute a

minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several

better-than-2 approximation algorithms are known for the special case where the input graph is a tree,

a.k.a. the Tree Augmentation Problem (TAP), see e.g. [Grandoni, Kalaitzis, Zenklusen - STOC’18;

Cecchetto, Traub, Zenklusen - STOC’21] and references therein. Recently this was achieved also for

the weighted version of TAP [Traub, Zenklusen - FOCS’21], and for the k-connectivity generalization

of TAP [Byrka, Grandoni, Jabal-Ameli - STOC’20; Cecchetto, Traub, Zenklusen - STOC’21]. These

results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP.

In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingre-

dients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP

where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving,

however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-

than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of

implicit credits which might turn out to be helpful in future related work.
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200021 200731/1. The third author is supported by the Swiss National Science Foundation grant 200021 184622.
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1 Introduction

Real networks are prone to failures. The basic goal of survivable network design is to build “cheap” networks

that provide connectivity between given pairs of nodes despite the failure of a few edges or nodes (we will

next focus on edge faults). Most natural survivable network design problems are NP-hard, therefore it makes

sense to study them in terms of approximation algorithms. A celebrated result by Jain [Jai01] provides a

2-approximation for a very wide family of such (edge-connectivity) problems. However, nothing better

is known even for very basic special cases. Therefore a recent trend in the area is trying to breach the 2
approximation barrier for interesting special cases of survivable network design.

In this paper we focus on one of the most basic survivable network design problems for which the best-

known approximation factor is still 2, namely the Forest Augmentation Problem (FAP): given an undirected

unweighted graph (V, F ) and a collection of extra edges L ⊆
(

V
2

)

, called links, find a minimum cardinality

subset of links S ⊆ L such that (V, F ∪ S) is 2-edge-connected1 . Observe that one obtains an equivalent

problem by contracting each 2-edge-connected component of (V, F ) into a single node, hence leading to a

forest graph (motivating the name FAP). Therefore, we will assume in the following that (V, F ) is a forest.

FAP generalized two well-studied problems for which better-than-2 approximation algorithms are known,

namely the Tree Augmentation Problem (TAP) [Adj17, CTZ21, CN13, EFKN09, FGKS18, GKZ18, KKL04,

KN16, Nag03, Nut17, TZ22a, TZ22b] and the 2-Edge-Connected Spanning Subgraph problem (2-ECSS)

[CSS01, CT00, GG12, HVV19, KV94, SV14]. Therefore a natural question is whether also FAP admits

an approximation factor strictly below 2. Indeed, this is explicitly posed as an open problem, e.g., in

[CTZ21, CCDZ20, CDG+20]. This question was open even in the special case of FAP where the input

forest is a collection of disjoint paths, also known as the Path Augmentation Problem (PAP).

TAP is the special case of FAP where the forest consists of a single spanning tree. 2-ECSS is the problem

of computing a 2-edge-connected subgraph of an input graph G = (V,E) with the minimum number of

edges. Hence 2-ECSS can be interpreted as the special case of FAP where all trees in the forest are singleton

nodes (i.e. F = ∅). One can define a natural weighted generalization 2-WECSS of 2-ECSS with edge

weights, where the goal is to compute a 2-edge-connected subgraph of minimum total weight. Then FAP is

the special case of 2-WECSS with edge weights 0 (for e ∈ F ) and 1 (for e ∈ L). Therefore an improved

approximation for FAP is a first step in the direction of a similar result for 2-WECSS, a well-known open

problem in the area.

In this paper we breach the 2-approximation barrier for FAP, namely we obtain the following result.

Theorem 1. There is a polynomial-time deterministic 1.9973-approximation algorithm for FAP.

In Section 3 we provide an overview of the main ideas behind the above result.

1.1 Previous and Related Work

TAP (hence FAP) is known to be APX-hard [KKL04], thus in particular it does not admit a PTAS unless

P = NP . Several better-than-2 approximation algorithms are known for this problem [EFKN09, GKZ18,

KN16, Nag03], culminating with a 1.393 approximation by Cecchetto, Traub and Zenklusen [CTZ21].

Very recently the 2-approximation barrier was breached for the natural weighted version WTAP of

TAP (with link weights) by Traub and Zenklusen [TZ22a], who presented a 1.694 approximation (which

they improved to a (1.5 + ε)-approximation in [TZ22b]). This solved one of the main open (and simplest

weighted) problems in the area (preliminary results in this directions, among others, appeared in [Adj17,

CN13, FGKS18, GKZ18, Nut17]).

1We recall that a graph is k-edge connected if it remains connected even after removing an arbitrary subset of up to k−1 edges.

1



FAP and PAP belong to the family of connectivity augmentation problems, where the goal is to increase

the connectivity of an existing network by adding links. One important problem in this area is the k-

Connectivity Augmentation Problem (k-CAP): given a k-edge-connected graph G = (V,E) and a collection

of links L ⊆
(

V
2

)

, find a minimum cardinality subset of links S ⊆ L such that G′ = (V,E ∪ S) is (k + 1)-
edge-connected. Hence in particular TAP is the special case of k-CAP with k = 1. Known approximation-

preserving reductions [DKL76] show that k-CAP reduces to the case k = 2, a.k.a. the Cactus Augmentation

Problem (CacAP). After some preliminary results on special cases [GGAS19], a better-than-2 approximation

for CacAP was achieved recently by Byrka, Grandoni and Jabal-Ameli [BGJA20] via a (non-black-box)

reduction to the Steiner Tree problem [BGRS13] (see also [Nut21] for a black-box reduction to the same

problem). This was improved to 1.393 by Cecchetto et al. [CTZ21] with a completely different approach,

more similar in spirit to prior work on TAP.

Better-than-2 approximation algorithm are known for the Matching Augmentation Problem (MAP),i.e.,

the special case of FAP where the input forest is a matching [CCDZ20, CDG+20]. In more detail, Cheriyan,

Dippel, Grandoni, Khan and Narayan [CDG+20] present a 7/4 approximation for MAP. This was later

improved to 5/3 by Cheriyan, Cummings, Dippel and Zhu [CCDZ20]. Finding a better-than-2 approxi-

mation for FAP is mentioned in [CCDZ20, CDG+20] as one of the main motivations to study MAP. We

remark that this question was open even for the Path Augmentation Problem (PAP). The techniques in

[CCDZ20, CDG+20] do not seem to extend even to paths of length 2.

Khuller and Vishkin [KV94] found the first better-than-2 (namely a 3/2) approximation for 2-ECSS.

Cheriyan, Sebő and Szigeti [CSS01] improved the approximation factor to 17/12. The current best known

approximation factor for 2-ECSS is 4/3, and this can be achieved with two rather different approaches

[HVV19, SV14]. Hunkenschröder, Vempala and Vetta [HVV19] use a credit invariant (vaguely) similar to

the one used in this paper. Sebő and Vygen [SV14] instead exploit an ear decomposition of the input graph

with special properties. The natural generalization k-ECSS of 2-ECSS to k connectivity was studied, among

others, by [CT00, GG12].

2 Preliminaries

In this section we first introduce some notation (Section 2.1) and then recap some algorithms from previous

work that we will build on. Specifically, in Section 2.2 we explain the results on WTAP from [TZ22a] that

we will use in our algorithm, while in Section 2.3 we describe a well-known 2-approximation algorithm for

W2ECSS (and thus also for FAP). In what follows all algorithms will be deterministic and we will therefore

not mention this explicitly anymore.

2.1 Notation

We use standard graph notation. In particular, given a graph G = (V,E) and ∅ 6= R ( V , by δ(R) ⊆ E
we denote the edges with exactly one endpoint in R. If G is directed, then δ−(R) ⊆ E are the edges (or

arcs) entering R. For any F ⊆ E, we let δF (R) = δ(R) ∩ F and δ−F (R) = δ−(R)∩ F . For an edge weight

function w and F ⊆ E, w(F ) :=
∑

e∈F w(e).
Let (V, F,L) be a considered instance of FAP. W.l.o.g. we assume that (V, F ∪ L) is 2-edge-connected

(otherwise there is no feasible solution). By ncomp := |V | − |F | we denote the number of connected

components (or components for short) of the forest (in particular in a TAP instance ncomp = 1). By OPT ⊆
L we denote an optimal solution to this instance and by opt = |OPT| its size. Notice that opt ≥ ncomp.

We will call the elements of L links. By edges we will mean both links and edges of the input forest.

2



2.2 Preliminaries on WTAP

Given a WTAP instance (V, F,L,w) and ℓ = {a, b} ∈ L, we let Pℓ be the (edge set of the) path in the tree

(V, F ) between endpoints a and b. We say that ℓ covers the edges of Pℓ. Then a feasible solution to WTAP

is a subset of links that covers all the edges. We say that ℓ′ ∈ L is a shadow of ℓ ∈ L if Pℓ′ ⊆ Pℓ. W.l.o.g.

we can assume that all the possible shadows of a link ℓ are present in the input. Indeed, if this is not the

case, we can add any missing shadow of ℓ with weight w(ℓ): any feasible solution for the new problem can

be converted into a feasible solution for the original problem and vice versa. For similar reasons, if ℓ′ is a

shadow of ℓ, we can assume that w(ℓ′) ≤ w(ℓ).
Our algorithm for FAP will make use of recent insights on WTAP from [TZ22a]. Thus, we briefly

summarize the statements from [TZ22a] which we will need. Consider a WTAP instance (V, F,L,w), that

we interpret as rooted at some node r. We define an up-link as a link where one endpoint in an ancestor of

the other endpoint in the tree (V, F ). The approximation algorithm for WTAP from [TZ22a], a so-called

relative greedy algorithm, first computes a 2-approximation U ⊆ L that contains only up-links; it is well-

known that this exists and is computable in polynomial time. Then the main insight from [TZ22a] is the

following lemma that allows for improving this 2-approximate solution U to a (1+ln(2)+ε)-approximation

APX (for any constant ε > 0).

Lemma 2 ([TZ22a]). 2 Let (V, F,L,w) be a WTAP instance rooted at some node r with optimal solution

OPT, and let U ⊆ L be a feasible solution consisting only of up-links. For any ε > 0, one can in polynomial

time construct a feasible WTAP solution APX with weight

w(APX) ≤

(

1 + ln

(

w(U)

w(OPT)

)

+ ε

)

· w(OPT).

We will apply the above lemma to up-link solutions obtained in a different way. While in general there

might not exist a better-than-2 approximation for WTAP that consists only of up-links, in some cases we

can obtain such very good up-link solutions, as we will explain in Section 3. In particular, we highlight

that we do not use the (1 + ln(2) + ε)-approximation algorithm for WTAP as a black-box, but crucially

use the properties of the relative greedy algorithm that allow for improving arbitrary up-link solutions, as

stated in Lemma 2. For this reason, we do not use the recent improvements on [TZ22a] that lead to a

(1.5 + ε)-approximation algorithm for WTAP [TZ22b].

2.3 A Simple 2-Approximation for 2-WECSS

We next sketch how to obtain a 2-approximation for a 2-WECSS instance (V,E,w) because we will need

this algorithm from [KV94] later. Let us replace each undirected edge e = {a, b} with two oppositely

directed arcs (a, b) and (b, a) with weight w(e). We call A this set of directed arcs and still use w(·) to

denote their weight. Moreover, we fix an arbitrary vertex r as the root. If we can find an arc set D ⊆ A
such that every set ∅ 6= R ⊆ V \ {r} has two entering arcs, then clearly the set of undirected edges

corresponding to D is a feasible solution to our 2-WECSS instance. We remark, that by Edmonds’ disjoint

branching theorem (see, e.g., Corollary 53.1c in [Sch03]), such arc sets D are precisely those that contain

two edge-disjoint spanning arborescences rooted at r.

Moreover, the cheapest such set D satisfies the following claim:

Lemma 3. Given a 2-WECSS instance (V,E,w) with optimal weight opt and the corresponding directed

arc set A, we have

min
{

w(D) : D ⊆ A, |D ∩ δ−(R)| ≥ 2 for all ∅ 6= R ⊆ V \ {r}
}

≤ 2 · opt.

2This lemma is not stated explicitly in this form in [TZ22a] and thus we provide a detailed explanation of how this statement

follows from [TZ22a] in the appendix.
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Proof. Indeed, by taking an optimal 2-WECSS solution and replacing every edge by the two corresponding

directed arcs we obtain a feasible set D ⊆ A.

A 2-approximation for 2-WECSS (and hence for FAP) is implied from the above discussion and the

following lemma.

Lemma 4. Given a directed graph (V,A) with nonnegative arc-weights w : A → R≥0 and a root vertex

r ∈ V we can find in polynomial time a minimum-weight set D ⊆ A such that

|D ∩ δ−(R)| ≥ 2 for all ∅ 6= R ⊆ V \ {r}.

Proof. By Edmonds’ disjoint branching theorem (Corollary 53.1c in [Sch03]), the desired sets D are pre-

cisely those sets that contain two disjoint spanning arborescences rooted at r. Hence, because the edge

weights are non-negative, we can find a minimum-weight set D ⊆ A as desired by computing a cheapest

edge set that is the union of two disjoint arborescences. This can be done in polynomial time; see Theo-

rem 53.10 in [Sch03].

3 Overview of Our Approach

Our main result (Theorem 1) follows by combining two different algorithms: the first one (Section 4) pro-

vides a good approximation for the case that opt is much larger than ncomp, and the second one (Section 5)

provides a good approximation for the complementary case. In particular, we prove the following.

Lemma 5. Let ε > 0 be a constant. Given an instance (V, F,L) of FAP, we can compute in polynomial time

a solution of size at most

ncomp +

(

1 + ln
(

2−
ncomp

opt

)

+ ε

)

· opt.

Lemma 6. Given an instance (V, F,L) of FAP, we can compute in polynomial time a solution of size at

most
7
4
· opt + 13

4
· (opt− ncomp) .

Lemma 5 yields an approximation ratio ranging from 2 to 1+ln 2+ε < 1.7 as the ratio
ncomp

opt
decreases

from 1 to 03. Hence, to improve on a 2 approximation, it is sufficient to have such an approximation for the

case that
ncomp

opt
is close to 1: this is achieved by the algorithm from Lemma 6. Theorem 1 follows easily.

Proof of Theorem 1. Consider the best solution among the ones returned by the algorithms from Lemmas 5

and 6. Let α ∈ [0, 1] be such that ncomp = α · opt. Then the approximation factor of this algorithm is at

most min{α+ 1 + ln(2− α), 7
4
+ 13

4
(1− α)}+ ε. The worst-case ratio is obtained by choosing α so that

the two terms in the minimum are equal, implying the claim. (This is the case for α ≈ 0.923925.)

We next sketch the basic ideas behind the above two lemmas.

3For ncomp = 1, our algorithm is indeed identical to the one in [TZ22a].
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3.1 Overview of the Algorithm for a Small Number of Connected Components

First, we explain how we obtain Lemma 5, which yields a good approximation ratio if the number ncomp of

connected components of the forest is much smaller than opt. In this case, it seems natural to consider the

simple reduction to TAP: complete the forest (V, F ) to a spanning tree by adding ncomp − 1 links and then

apply an approximation algorithm for TAP to obtain a 2-edge-connected graph. Using a ρ-approximation

algorithm for TAP this yields a FAP solution of size at most ncomp − 1 + ρ · opt. At the moment, the

best known approximation algorithm allows for choosing ρ = 1.393 [CTZ21]. While this yields a better-

than-2 approximation if ncomp is sufficiently smaller than opt, i.e., if ncomp ≤ (2 − ρ − δ)opt for some

constant δ > 0, this guarantee is not good enough for our purposes. In contrast, the statement of Lemma 5

is much stronger in the sense that it yields an improvement over the approximaton ratio of 2 as soon as

ncomp ≤ (1− δ)opt for any arbitrary constant δ > 0.

Thus, let us consider the following, slightly more involved reduction to TAP. Let S ⊆ L be a 2-

approximate solution for FAP. Then we can complete the forest (V, F ) to a spanning tree (V, T ) using only

edges from S. This way, we obtain a tree (V, T ) and a solution S \ T for the TAP problem of augmenting

(V, T ) to a 2-edge-connected graph. We observe that |T ∩S| = ncomp−1 and |S \T | = |S|−ncomp+1 ≤
2·opt−ncomp+1. In particular S\T can only be an optimal solution to the TAP instance if ncomp ≈ opt and

S is not already a better-than-2 approximation (in which case we are done). Because S is a 2-approximation

for our FAP instance, we would immediately obtain a better-than-2 approximation if we could improve the

TAP solution S \ T by just a little bit, similar as it is done in Lemma 2. Unfortunately, we cannot apply

Lemma 2 because S \ T will in general consist not only of up-links.

In order to address this issue, we use the 2-approximation algorithm from Section 2.3 not as a black-box,

but exploit that the computed solution S has stronger properties than just being a FAP solution that is not

too expensive. More precisely, we show that from the directed arc set D computed in the algorithm from

Section 2.3 we can obtain a spanning tree (V, T ) with F ⊆ T and a TAP solution consisting of at most

|S| − ncomp + 1 many up-links. Then, applying Lemma 2, completes the proof of Lemma 5. In order to

obtain the up-link solution from the directed arc set D, we use that directed links can in a certain sense be

interpreted as up-links, an observation first made in [CTZ21]. For details on how we prove Lemma 5, we

refer to Section 4.

3.2 Overview of the Algorithm for a Large Number of Connected Components

In view of Lemma 5, it makes sense to design approximation algorithms for the case that
ncomp

opt
is close to 1.

This motivates the following definition.

Definition 7. An algorithm for FAP is a (ρ,K)-approximation algorithm if it produces a solution of size at

most

ρ · opt +K · (opt− ncomp).

If we can find a (ρ,K)-approximation algorithm for some ρ < 2 and any arbitrary constant K ≥ 0, then

together with Lemma 5, this implies a better-than-2 approximation for FAP.

We will show how to obtain a (7
4
, 13

4
)-approximation algorithm for FAP, which is precisely the statement

of Lemma 6. To achieve this we exploit a relatively simple reduction to PAP. In order to simplify the notation,

we can further impose that the PAP instance has no isolated nodes, i.e., all connected components of the

forest (V, F ) are paths with length at least 1.

Lemma 8. Given a polynomial time (ρ,K)-approximation algorithm for PAP without isolated nodes for

some constants ρ ≥ 1 and K > 0, there is polynomial-time (ρ,K +2(ρ− 1))-approximation algorithm for

FAP.
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We prove Lemma 8 in the appendix (Section B). We conclude that in order to prove Lemma 6, it suffices

to show the following.

Lemma 9. There is a (7
4
, 7
4
)-approximation algorithm for PAP without isolated nodes.

In the rest of this section we sketch the proof of Lemma 9. The basic algorithm is analogous to known

algorithms for MAP [CCDZ20, CDG+20] and 2-ECSS [HVV19]. We start by building (in polynomial time)

an infeasible partial solution S. Then we gradually modify S by adding (and sometimes removing) links

until we obtain a feasible solution.

In [CCDZ20, CDG+20, HVV19] the initial solution is a 2-edge-cover4 with the minimum number of

links. The number of links in such a 2-edge-cover provides a lower bound on opt. A cheapest 2-edge cover

can be obtained by first computing a maximum cardinality matching (in L) on the leaves of the forest (V, F )
and then adding an arbitrary incident link for every unmatched leaf. Instead of using a cheapest 2-edge-

cover as a starting solution, we use such a maximum matching M ⊆ L between the leaves of the input

paths, but we exclude links that match the two endpoints of a single path in (V, F ) (bad links). Intuitively,

using such links is bad because they do not help to connect different connected components of the forest.

For this reason, also the optimal solution can use these bad links only if opt > ncomp, which we exploit to

show that if many leaves remain unmatched, opt must be much larger than ncomp. (See Lemma 14 for the

precise statement.) Working with the matching M rather than a 2-edge-cover is useful because it allows us

to exclude bad links (which we could not do in a 2-edge-cover), but also because it simplifies the later parts

of the proof.5

In order to upper bound the size of the final solution we use a credit assignment scheme similarly to

[CCDZ20, CDG+20, HVV19]. The basic idea is to assign (nonnegative fractional) credits to certain parts

of the current graph H = (V, F ∪ S) (like links, nodes, components, 2-edge connected components etc.).

Let credits(H) be the total number of credits assigned to H . We show that the initial graph H = (V, F ∪S)
with S = M , and every intermediate graph H = (V, F ∪ S) satisfies the following invariant:

Invariant 1.

credits(H) + |S| ≤ 7
4
opt + 7

4
(opt− ncomp) .

At the end of our algorithm, S is a feasible solution and thus Lemma 9 follows immediately because

credits(H) ≥ 0.

Our credit assignment scheme however critically deviates from prior work in the following sense: typ-

ically a credit invariant is explicit meaning that, given H , one can compute in polynomial time the credits

assigned to each part of H . We rather use an implicit credit invariant where part of the credits are assigned

based on properties of the (unknown) optimal solution OPT. Our algorithm is able to work despite the lack

of knowledge about the precise number of credits available. In prior related work the role of implicit credits

is played by complicated preprocessing steps and more complex credit invariants and case analysis. We

believe that implicit credits can be used to simplify and/or strengthen related results in the literature, and

might be useful to address generalizations and variants of FAP in future work.

Similar to prior work on MAP [CCDZ20, CDG+20], our algorithm consists of two phases, called bridge-

covering and gluing. At the end of the bridge-covering phase, every connected component of H = (V, F∪S)
will be 2-edge-connected. In other words, H is bridgeless, i.e., none of its edges is a bridge6. During the

gluing phase, we maintain the property that H is bridgeless and at the end of the gluing phase H will be

2-edge-connected. While this high-level structure is similar to prior work, we also introduce new concepts

4We recall that a 2-edge cover of a graph is a subgraph where each node has degree at least 2.
5Alternatively, we could have worked with a weighted version of the 2-edge-cover where we make bad links more expensive,

but working with the matching is overall simpler.
6A bridge is an edge whose removal would increase the number of connected components.
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in this part, making the algorithm simpler and avoiding some issues that were in prior work addressed by

rather complicated preprocessing steps.

For the bridge covering step we introduce the new concept of alternating trails, which we define in Sec-

tion 5.4. Using this concept, our algorithm for bridge covering can be simply stated as repeatedly doing the

following until H is bridgeless. Consider the graph resulting from H by contracting each 2-edge-connected

component. This graph is a forest and its edges are precisely the bridges of H . Pick an arbitrary leaf of

this forest, find an alternating trail that starts at this leaf and ‘covers as many bridges as possible’. Then

augment H along this trail. For a precise description of the algorithm and definitions of alternating trails

and augmentation we refer to Section 5.4. Note that it is crucial that when augmenting along alternating

trails we do not only add links to S in the bridge covering step, but also remove some links. Indeed, this

is necessary to obtain a better-than-2 approximation even when
ncomp

opt
is arbitrarily close to 1 as shown in

Figure 1.

Figure 1: Example showing that even for ncomp ≈ opt we cannot ensure |S| ≤ ρ · opt in the bridge covering step for

any ρ < 2 if we never remove any links from S. Solid edges are links from L, dashed edges are edges of the forest

F . The red links are a possible matching M chosen in the initialization step of our algorithm. The blue links are an

optimal solution OPT. If the red matching M is chosen, we need to add all but two links from OPT to S in order to

obtain a graph (V, F ∪ S) in which all connected components are 2-edge-connected. For a large enough number of

vertices, i.e., making the path to the right long enough, this shows that we cannot obtain a better-than-2 approximation

without removing some links in the bridge covering step.

The final part of our algorithm is the gluing step in which we maintain a bridgeless graph H and trans-

form it into a 2-edge-connected graph. Our algorithm will repeatedly find a cycle Q in the graph resulting

from (V, F ∪ L) by contracting each 2-edge-connected component of H and add the links from Q to our

current partial solution S (and thus to H = (V, F ∪S)). However, by adding only links and never removing

any link in the gluing step it is impossible to obtain a better-than-2 approximation, even for opt = ncomp, as

shown in Figure 2. Therefore, in some cases where we need this to achieve the desired approximation ratio,

our algorithm will exploit what we call a good cycle (defined in Section 5.5) that allows us to add some links

to S, but also to remove some links from S which become redundant.

Finally, we remark that we designed our approximation algorithm for PAP favouring simplicity over a

(slightly) better approximation factor.

4 An Algorithm for Forests with Few Connected Components

In this section we prove Lemma 5, making use of Lemma 2. First of all, we consider the 2-WECSS instance

(V, F ∪ L,w) corresponding to the input instance of FAP and we fix an arbitrary root r ∈ V . Moreover,

as in Section 2.3, we again denote by A the arc set that, for every (undirected) edge in F ∪ L, contains the

two corresponding directed arcs. By Lemma 4, we can find a minimum-weight set D ⊆ A of directed arcs

7



Figure 2: Example showing that we cannot obtain a better-than-2 approximation if we never remove any links in

the gluing step. Solid edges are links from L, dashed edges are edges of the forest F . The red links are a possible

matching M chosen in the initialization step of our algorithm. If this matching is chosen, all connected components

of (V, F ∪M) are 2-edge-connected and hence the bridge covering step does nothing. In order to obtain any feasible

solution, we need to include all but two of the edges from the optimal solution, which is shown in blue. For a large

enough number of vertices, this shows that we cannot obtain a better-than-2 approximation without removing some

links in the gluing step and this holds even if ncomp = opt. .

that enters every set ∅ 6= R ⊆ V \ {r} at least twice. W.l.o.g. we can assume that D contains all the arcs

corresponding to F (since they have weight zero).

Next, we construct a WTAP instance together with an up-link solution, to which we will later apply

Lemma 2. Let S be the set of links corresponding to directed edges in D. Here, we define S to contain only

a single copy of a link {u, v} even if D contains both (u, v) and (v, u). The lemma below shows that F ∪S
contains a cheap spanning tree, which will be the input tree of the WTAP instance we construct.

Lemma 10. The graph (V, F ∪ S) contains a spanning tree (V, F ∪ Stree) with |Stree| = ncomp − 1.

Proof. First, we observe that (V,D) contains a spanning arborescence. This follows from the fact that every

nonempty set of vertices that does not contain r has an entering arc in D and thus every vertex is reachable

from r in (V,D). Thus, (V, F ∪ S) is connected. Because (V, F ) is a forest, there exists a spanning

tree containing all edges from F . This spanning tree has weight (i.e. number of links) |V | − 1 − |F | =
ncomp − 1.

Let (V, F ∪Stree) be a spanning tree as in Lemma 10 and let Stap := S \Stree. Moreover, let Dtree ⊆ D
and Dtap ⊆ D be the arcs in D whose underlying undirected edges are contained in F ∪ Stree and Stap,

respectively.

Because the choice of D implies that F ∪ Stree ∪ Stap is 2-edge-connected, Stap is a feasible solution

for the WTAP instance with tree (V, F ∪ Stree). Moreover, we obtain the following even stronger property,

the proof of which is inspired by an observation from [CTZ21].

Lemma 11. Consider the WTAP instance with tree G = (V, F ∪Stree) and link set consisting of all shadows

of links in Stap. Then one can find in polynomial time, a feasible solution for this instance that consists only

of up-links and has weight (i.e., number of links) at most |Stap|.

Proof. We call a cut, a 1-cut of the spanning tree G, if it contains only a single edge of G. Recall that we

can view WTAP as the problem of covering the 1-cuts of G by links. First, we show that for every 1-cut

δ(R) with ∅ 6= R ⊆ V \ {r}, there is a directed arc in Dtap that enters R. To prove this, we first observe

that D contains at least two arcs entering R. One of these arcs might be an arc (a, b) ∈ Dtree corresponding

to the unique edge {a, b} ∈ (F ∪ Stree) ∩ δ(R). However, because δ(R) is a 1-cut of the tree G, the other

arc in D that enters R must be an element of Dtap = D \Dtree.

To construct the desired up-link solution, we replace every directed link (a, b) ∈ Dtap by the up-link

{c, b}, where c is the lowest common ancestor of a and b in the tree G (with respect to the root r). See

Figure 3. Note that {c, b} is a shadow of the link {a, b}.

Now consider any 1-cut δ(R) with R ⊆ V \ {r}. We observe that if the directed link (a, b) enters R,

then also the up-link {c, b} covers this 1-cut, i.e., {c, a} ∈ δ(R). Indeed, because δ(R) is a 1-cut of G and
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Figure 3: Illustration of the proof of Lemma 11. The spanning tree Stree is shown in black. In red, there is a directed

link (a, b) and the corresponding up-link {c, b}. The cuts δ(R) with ∅ 6= R ⊆ V \ {r} that contain precisely one edge

of the tree Stree and fulfill (a, b) ∈ δ−(R), are shown in light blue. For each such cut, we have {b, c} ∈ δ(R).

R does not contain the root, the fact that b ∈ R and a /∈ R implies that the lowest common ancestor c of a
and b is not contained in R.

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Lemma 4, we can compute the sets D and S in polynomial time. Then by Lemma 10,

we can compute a spanning tree (V, F ∪ Stree) in (V, F ∪ S) of weight ncomp − 1.

Clearly, the set OPT \ Stree is a feasible TAP solution to this instance with at most opt many links. In

particular, the optimal solution value of the TAP instance ((V, F ∪ Stree), L \ Stree) is at most the optimal

solution value opt for the original FAP instance. Moreover, by Lemma 11, we can construct an up-link

solution for this instance with at most |Stap| many links. Using Lemma 3, we get

|Stap| = |S| − |Stree| = |S| − ncomp + 1 ≤ |D| − ncomp + 1 ≤ 2 · opt− ncomp + 1,

and hence applying the algorithm from Lemma 2 yields a TAP solution with at most

(

1 + ln
(

2−
ncomp − 1

opt

)

+ ε

)

· opt

many links. The union of these links and the ncomp − 1 links in Stree is the desired FAP solution. The claim

follows by observing that replacing ncomp − 1 by ncomp only weakens the overall bound.

5 Algorithm for Forests with Many Connected Components

In this section we prove Lemma 6. From the discussion in Section 3, this reduces to proving Lemma 9, i.e.,

to providing a (7
4
, 7
4
)-approximation algorithm for PAP without isolated nodes. Therefore, in what follows

we will assume that every connected component of (V, F ) is a path of length at least 1.

5.1 Overview of Our Algorithm

Let us start with a brief recap of how our algorithm and its analysis work on a high level. In our algorithm

we maintain a partial solution S ⊆ L, which is not necessarily a feasible solution. In the analysis, we
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maintain in addition a fractional set of (nonnegative) credits, which are distributed over the current graph

H = (V, F ∪S). Credits will be assigned to some of the vertices, edges, connected components, and 2-edge-

connected components. Throughout the algorithm we maintain the invariant that the number |S| of links in

our partial solution plus the total number of credits credits(H) of H is at most 7
4
opt+ 7

4
(opt− ncomp). At

the end of the algorithm, S will be a feasible solution, i.e., H = (V, F ∪S) will be 2-edge-connected. Then

our invariant (and the fact that credits are nonnegative) implies |S| ≤ 7
4
opt + 7

4
· (opt− ncomp).

Our algorithm consists of three steps. First, we use a matching algorithm to compute an initial partial

solution S. The goal of the second step, called bridge covering, is to ensure that every connected component

of H := (V, F ∪ S) is 2-edge-connected. We describe this step in Section 5.4. Finally, in the third step,

called gluing, we ensure that H becomes 2-edge-connected (see Section 5.5). Algorithm 1 describes our

overall algorithm for PAP without isolated nodes.

Algorithm 1 Algorithm for PAP without isolated nodes

1. Initialization:

Let M ⊆ L be a maximum cardinality matching on the leaves of (V, F ) that contains no bad link, i.e.,

no link with both endpoints in the same path in (V, F ).
Initialize S := M .

2. Bridge covering:

As long as H = (V, F ∪ S) has a connected component that is not 2-edge-connected, iterate the

following:

• Let C be a connected component of H that is not 2-edge-connected and let x be a leaf of the

tree TC (arising from the contraction of each 2-edge-connected component of C).

• Let z be the vertex of the tree TC that has maximum distance from x (in TC) among all vertices

that are reachable from x by an alternating trail (as defined in Section 5.4).

• Augment S along an alternating x-z trail (as defined in Section 5.4).

3. Gluing:

As long as H = (V, F ∪ S) is not 2-edge-connected, iterate the following:

• If there is a good cycle Q, then glue H along Q (definitions in Section 5.5).

• Otherwise take an arbitrary cycle Q in the graph GH (arising from the contraction of the 2-edge-

connected components of H) and add the links of Q to S.

4. Return S.

5.2 Credit Scheme and Invariants

In this section we show how we distribute credits and describe the invariants that we maintain during our

algorithm. We emphasize that we will use credits only in the analysis of our algorithm. Therefore, the

distribution of credits can depend on a fixed (but unknown) optimal solution OPT.

To define our credit scheme, we need the notion of simple components.

Definition 12 (simple components). A connected component of H = (V, F ∪ S) is called simple if it is a

cycle that contains exactly 2 links.

Simple components will play a special role in the gluing step because they are the components that
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prevent us from only adding links (and never removing links) in the gluing step. We remark that in particular

in the example in Figure 2 all connected components of H = (V, F ∪M) are simple.

Let us now define the credit invariants. Consider any point of the algorithm, where we have a current

partial solution S ⊆ L and define the current subgraph to be H := (V, F ∪ S). Recall that by assumption,

the graph H has no isolated vertices. We call a 2-edge-connected component of H nontrivial if it contains at

least two vertices. The 2EC-blocks of a connected component of H are its inclusionwise maximal 2-edge-

connected subgraphs that are nontrivial.

Definition 13 (lonely vertex). If a vertex v ∈ V does not belong to any nontrivial 2-edge-connected com-

ponent of H , we call v a lonely vertex (of H).

For H = (V, F ∪ S), we assign credits according to the following rules, where we set ε := 1
4
.

(A) Vertices receive the following credits.

(A1) Every leaf of H , i.e., every vertex v with |δF∪S(v)| = 1, receives 1 credit.

(A2) A vertex v of H , receives 1
2
(|δOPT∪F (v)| − 2) additional credits if it is a lonely vertex or it

belongs to a simple component.

(B) Every bridge ℓ ∈ S, i.e., every link ℓ ∈ S that is not part of a 2-edge-connected component of H ,

receives 1− ε credits.

(C) Every connected component of H that contains at least one bridge receives 1 credit. Every connected

component of H that is 2-edge-connected receives 2− 2ε credit if it simple and 2 credits otherwise.

(D) Every 2EC-block of a connected component that contains bridges receives 1 credit.

We remark that the credits assigned according to (A1) and (A2) add up. We also observe that the credits

assigned according to (A2) depend on the (unknown) optimal solution OPT. These implicit credits are

needed in order to be able to compare to opt because using only a lower bound on opt that is based on the

number of unmatched leaves in M7 is not sufficient to achieve any finite approximation guarantee, as one

can see from the example in Figure 4.

Figure 4: Example showing that a lower bound based on the number of unmatched leaves in the initial matching M
(which would be empty in this example) does not lead to a strong enough lower bound, which is why we introduce

implicit credits. The dashed edges are edges of the forest F , while blue edges are links in OPT. Then, indeed, the

number of unmatched leaves of the forest is 2 (and thus constant), but opt can be unbounded (by increasing the size

of the above example in the obvious way).

We use credits(H) to denote the total number of credits of H := (V, F ∪ S) according to the above

rules (A) – (D). To prove that our algorithm fulfills the desired approximation guarantee, we prove that we

maintain Invariant 1, which in terms of ε can be restated as

credits(H) + |S| ≤ (2− ε) · opt + (1 + 3ε) · (opt− ncomp) .

7We will give such a bound in Lemma 14.
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To this end, we will first show that Invariant 1 is fulfilled for the initial choice of S = M . Then we

provide a procedure that maintains this invariant and at the end of which H is 2-edge-connected. In order to

show that the invariant is maintained, we will show that the total credits(H) + |S| never increases.

Besides Invariant 1, we will also maintain the following invariant.

Invariant 2. Every lonely vertex of H has degree at most 2 in H .

5.3 Invariants after the Initialization

Let M ⊆ L be a maximum cardinality matching on the leaves of (V, F ) that contains no link with both

endpoints in the same path (we call such links bad). Our initial solution is S = M and we let H =
(V, F ∪ M)). We next show that H fulfills Invariants 1 and 2. To this aim, we first relate the number of

unmatched leaves of (V, F ), which is the number of leaves of the initial graph H = (V, F ∪M), to the size

opt of an optimal solution.

Lemma 14. The number 2ncomp − 2|M | of unmatched leaves, i.e., the number of leaves of (V, F ) that do

not have an incident edge in M , is at most 4 · (opt− ncomp).

Proof. Let OPT ⊆ L be an optimal solution and let MOPT ⊆ OPT be a maximal matching in OPT that

contains no bad links. Then |M | ≥ |MOPT| and thus it suffices to show that at most 4 · (opt−ncomp) leaves

of the forest (V, F ) have no incident edge in the matching MOPT.

First, we observe that every connected component of the forest (V, F ) has at least two edges incident to

it that have their other endpoint in a different connected component. Because bad links have both endpoints

in the same connected component of the forest, this implies

opt ≥ ncomp + optbad, (1)

where optbad denotes the number of bad links in OPT. Let Vleaf ⊆ V denote the set of leaves of the forest

(V, F ). Because every connected component of this forest is a path, we have

2 · ncomp =
∣

∣Vleaf

∣

∣ = 2 · |MOPT|+
∣

∣

{

v ∈ Vleaf : MOPT ∩ δ(v) = ∅
}∣

∣.

Using the maximality of MOPT and the fact that every leaf of (V, F ) is the endpoint of a link in OPT, this

implies

opt ≥ |MOPT|+
∣

∣

{

v ∈ Vleaf : MOPT ∩ δ(v) = ∅
}
∣

∣− optbad

= ncomp +
1
2
·
∣

∣

{

v ∈ Vleaf : MOPT ∩ δ(v) = ∅
}∣

∣− optbad.
(2)

Adding up (1) and (2), we obtain

2 · (opt− ncomp) ≥
1
2
·
∣

∣

{

v ∈ Vleaf : MOPT ∩ δ(v) = ∅
}
∣

∣.

We now show that H = (V, F ∪M)) fulfills Invariants 1 and 2.

Lemma 15. H = (V, F ∪M) satisfies Invariants 1 and 2.

Proof. Invariant 2 follows from the fact that all vertices have degree at most 2 in F and this property is

maintained by adding a matching on the leaves of (V, F ).
Consider next Invariant 1. First, we observe that every connected component of H is either a path or a

cycle. Moreover, because M contains no bad links, every cycle in H contains at least two links from M .

Let us now give upper bounds on credits(H).
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• The number of credits due to (A1) is the number of leaves of H , i.e., 2ncomp − 2|M |. Therefore, we

can upper bound this number of credits by

2ncomp − 2|M |
Lem.14

≤
(

1− ε
2

)

·
(

2 · ncomp − 2|M |
)

+ ε
2
·
(

4 · (opt− ncomp)
)

= (2− ε) · (ncomp − |M |) + 2ε · (opt− ncomp).

• The number of credits according to (A2) is at most

1
2

∑

v∈V

(

|δOPT∪F (v)| − 2) = opt + |F | − |V | = opt− ncomp.

• The number of credits according to (B) is

(1− ε) · |{ℓ ∈ M : ℓ is a bridge of H}|.

• Let us now consider credit rule (C). The number of connected components of H that contain bridges

is 1
2

times the number of leaves of H , because each such connected component is a path. Thus, by

Lemma 14, the connected components of H that contain bridges have at most

2 · (opt− ncomp)

credits in total. Recall that every connected component that is 2-edge-connected is a cycle and con-

tains at least two links from M . If it contains exactly two links from M it is simple. Thus, because

3 · (1−ε) ≥ 2, the number of credits of a connected component that is 2-edge-connected can be upper

bounded by (1−ε) times the number of links it contains (from M ). Because these links are no bridges

we can upper bound the total number of credits of connected components that are 2-edge-connected

by

(1− ε) ·
(

|M | − |{ℓ ∈ M : ℓ is a bridge of H}|
)

• Finally, because every connected component of H is either a cycle or a path, there are no 2EC-blocks

in connected components containing bridges. Thus, there are no credits due to (D).

Summing up, we get

credits(H) ≤ (2− ε) · (ncomp − |M |) + (3 + 2ε) · (opt− ncomp) + (1− ε) · |M |.

Thus, S = M implies

credits(H) + |S| ≤ (2− ε) · (ncomp − |M |) + (3 + 2ε) · (opt− ncomp) + (2− ε) · |M |

= (2− ε) · opt + (1 + 3ε) · (opt− ncomp).

5.4 Bridge Covering using Alternating Trails

In this section we describe and analyze the bridge covering procedure. We use it to augment S in such a

way that after the bridge covering step every connected component of H = (V, F ∪S) is 2-edge-connected.

In the following we assume that H has at least one bridge and describe an augmentation procedure that

decreases the number of bridges of H by at least 1. We can then iteratively apply this procedure until every

connected component of H = (V, F ∪ S) is 2-edge-connected.
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Let C be a connected component of H that is not 2-edge-connected. We aim at “covering” at least

one bridge of the component C . To this end we might use paths “going through” different connected

components, but it is irrelevant for us what “happens inside these components”. Thus, it is useful to consider

the graph where these components are contracted. Moreover, we will not add or remove any links inside

2EC-blocks of C and thus we will also contract them.

Let GC and HC be the (multi-)graphs obtained from (V, F ∪ L) and H , respectively, by contracting

every connected component except for C and contracting every 2EC-block of C . Then HC is the union of

a tree TC with at least one edge (resulting from C by contracting its 2EC-blocks) and singletons (resulting

from the contraction of connected components distinct from C). In the following we identify the edges/links

in (V, F ∪ L) and the corresponding edges/links in GC .

We will aim at “covering as many edges/bridges of the tree TC as possible” by an alternating trail

starting in x. See Figure 5 for an example.

We use the following definitions. A trail is a walk that uses every edge at most once. A path is a walk

that visits every vertex at most once.

Definition 16. (alternating trail) Let z be a vertex of TC that is distinct from x. We denote the x-z path in

TC by P xz and the links in S ∩ P xz by ℓ1, . . . , ℓl in the order they appear on the path P xz (starting from

the link closest to x). We denote the endpoints of the link ℓi by ui and vi, where ui is the endpoint closer to

x in the path P xz .

An alternating x-z-trail is a trail P ⊆ L in GC that has the following properties:

• P starts in x.

• P ends in the vertex z 6= x in TC .

• P consists alternatingly of

– a path for which all interior vertices are not contained in the tree TC , and

– a link ℓi = {ui, vi} for some i ∈ {1, . . . , l}, where P visits vi before ui.

• P visits every vertex outside of TC at most once.

• The links in P ∩P x are visited in an order of increasing distance from x, i.e., for i < j with ℓi, ℓj ∈ P ,

the link ℓi appears before ℓj on P .

Note that the last link of an alternating x-z trail P is always a link in L\P xz . We will find an alternating

trail P that start in x and ends in a vertex z of P x, where z is as far away from x (in TC) as possible. Then

we will augment S along the alternating trail P . See Figure 6 for an example.

Definition 17 (augmenting along an alternating trail). If we augment the current partial solution S ⊆ L of

links by an alternating x-z trail P , this means that we replace S by S△P . In other words, we remove the

links in P ∩ S = P ∩ P xz from S and add the links in P \ S = P \ P xz to S.

Lemma 18. Given a leaf x and an arbitrary vertex z 6= x in the tree TC , we can in polynomial time either

find an alternating x-z trail or decide that no such trail exists.

Proof. As in Definition 16, we denote the x-z path in TC by P xz and the links in S ∩ P xz by ℓ1, . . . , ℓl
in the order they appear on the path P xz . Also, we again denote the endpoints of the link ℓi by ui and vi,
where ui is the endpoint closer to x in the path P xz. We construct a directed auxiliary graph with vertex set

{x, ℓ1, . . . , ℓl, z} and arcs

• (ℓi, ℓj) if i < j and there exists an ui-vj path in GC for which all interior vertices are not contained

in TC ;

14



(a)

x z
ℓ1 ℓ2 ℓ3 ℓ4

u1 v1 u2 v2 u3 v3 = u4 v4

(b)

x z
ℓ1 ℓ2 ℓ3 ℓ4

u1 v1 u2 v2 u3 v3 = u4 v4

Figure 5: Picture (a) shows the graph GC with a leaf x of TC and a vertex z in TC . Picture (b) shows an alternating

x-z trail (bold edges). Solid edges are links from L, dashed edges are edges of the forest F . Links in S ∩P xz are red;

edges in P \ P xz are shown in blue.

• (x, ℓi) if there exists an x-vi path in GC for which all interior vertices are not contained in TC ;

• (ℓi, z) if there exists an ui-z path in GC for which all interior vertices are not contained in TC .

Then, by the definition of alternating trails, every alternating x-z trail corresponds to a directed x-z path

in this auxiliary graph. In particular, if an alternating x-z trail exist, z is reachable from x in the directed

auxiliary graph. To find such an alternating trail, we compute a shortest x-z path P in the auxiliary graph

(where shortest path means one with the minimum number of arcs).

We construct P from P by replacing every arc (ℓi, ℓj) of P by a ui-vj path whose internal vertices are

not contained in TC , and similarly replacing arcs (x, ℓi) and (ℓi, z) by x-vi and ui-z paths, respectiviely. We

claim that P is an alternating x-z trail. To this end, we need to show that paths corresponding to different

arcs of P are vertex disjoint, i.e., they have no common interior vertex. This follows from the fact that P is

a shortest x-z path as one can see as follows.

Suppose there are arcs (ℓi, ℓj) and (ℓp, ℓq) in P , appearing without loss of generality in this order on

P , where the ui-vj path and the up-vq path corresponding to these arcs are not vertex disjoint. This would

imply that vq is reachable from ui by a path whose internal vertices are not part of TC . Hence, the auxiliary

graph contains an arc (ℓi, ℓq). This is a contradiction to P being a shortest x-z path because we could use

the arc (ℓi, ℓq) to shortcut it. A similar argument leads to a contradiction also if one (or both) of the arcs are

of the form (x, ℓi) or (ℓi, z).

The next lemma shows that when we augment S long an alternating x-z trail P , we merge all vertices

and 2EC-blocks visited by P xz into a single 2-edge-connected component, which also contains at least one
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x z

Figure 6: The result of the augmentation along the alternating trail from Figure 5 (in the graphGC , i.e., before undoing

contractions of 2EC-blocks and connected components of H).

vertex from each of the connected components of H that correspond to the vertices of P outside TC .

Lemma 19. P△P xz is the edge set of a cycle in GC containing all vertices visited by P or P xz.

Proof. First, we show that all vertices visited by P or P xz have even degree in P△P xz . Indeed, because

all such vertices have even degree in the disjoint union of the two x-z trails P and P xz , they also have

even degree in the symmetric difference P△P xz. (Here we use that P△P xz arises from the disjoint union

by removing pairs of parallel edges.) Moreover, no vertex has degree larger than 2 in P△P xz because

whenever an interior vertex of P xz is visited by P , the trail P uses a link ℓi ∈ P ∩ P xz that is incident to

this vertex. We conclude that all vertices visited by P or P xz have degree 0 or 2 in P ∩ P xz. Hence, it

remains to show that all these vertices are connected in P ∩ P xz .

To see this, we first observe that every vertex visited by P but not by P xz is connected to some vertex

visited by P xz in P \ P xz ⊆ P△P xz (by the definition of an alternating trail). Hence it suffices to shows

that every vertex v on P xz , except for x, is connected to another vertex v′ on P xz that is closer to x (on

P xz). This is indeed the case because either v = vj for some j ∈ {1, . . . , l} with ℓi ∈ P , in which case a

path in P \P xz that precedes v in P connects v to a vertex v′ = ui with i < j, or the edge {v′, v} preceding

v on the path P xz (viewed as a path starting at x) is contained in P△P xz.

The next lemma will be crucial to prove that Invariant 1 is maintained when augmenting along P .

Informally speaking, we use it to show that credits(H) decreases sufficiently (to pay for the increase of |S|)
for one of the following reasons:

• our alternating trail reaches a leaf of TC , in which case the required number of credits in H decreases

due to either (A1) or (D);

• a vertex of degree at least 3 in TC gets merged into another 2-edge-connected component; this vertex

must correspond to a 2EC-block by Invariant 2; thus it had 1 credit (by (D)) before it was merged;

• we merge bridges in D∩P xz or lonely vertices on P xz into a nontrivial 2-edge-connected component,

leading to a decrease of the credits in H required by (B) and (A2).

We remark that the statement of the below lemma is nontrivial only for q ∈ {0, 1}. Moreover, we highlight

that the vertex set W of the path P xz can contain both original vertices from V and vertices arising from the

contraction of a 2EC-block of C .

Lemma 20. Let z be a vertex that is furthest away from x in TC among all vertices reachable from x by an

alternating trail. Let P xz be the x-z path in TC and let W be the vertex set of P xz. Then at least one of the

following holds:
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• z is a leaf of TC;

• W \ {x} contains a vertex with degree at least 3 in TC;

• we have
∑

w∈W\{x}

(

|δF∪OPT(v)| − 2
)

≥ 2− q

where q is the number of links ℓ ∈ P xz ∩ S.

Proof. Suppose that z is not a leaf of TC and W \ {x} contains only vertices of degree at most 2 in TC .

Then, because W is the vertex set of the x-z path in TC , all vertices in W \ {x} have degree exactly 2 in

TC . See Figure 7. Let W denote the set of vertices of TC that are not contained in W , i.e., that are not

visited by P xz . We observe that all vertices in W have a larger distance from x in TC than z. Here, we used

that x is a leaf of TC and all vertices on the x-z path P xz in TC , which has vertex set W , have degree 2 in

TC .

x
z

W

Figure 7: Illustration of TC in the proof of Lemma 20.

Because (V,OPT ∪ F ) is 2-edge-connected, it contains two edge-disjoint paths P1, P2 from x to W .

Each of these paths visits at least one vertex in W \ {x} due to the following. Let i ∈ {1, 2} and let u be

the first vertex on Pi that is distinct from x and contained in TC ; this vertex exists because the last vertex of

Pi is an element of W . Then the subpath of Pi from x to u is an alternating trail. By the choice of z, this

implies u ∈ W .

For q ≥ 2, the statement of the lemma is trivial and thus it suffices to distinguish the following two

cases.

Case 1: q = 0

One of the edge-disjoint paths P1, P2, say P1, does not contain the unique edge incident to x in P xz.

Let u1 be the first vertex in W visited by P1 and let v1, v2 be the last vertices in W visited by P1, P2,

respectively. See Figure 8.

Then the edge e0 by which P1 enters u1 is not contained in P xz; here we used that P1 does not contain

the unique edge incident to x in P xz. Moreover, because P1 and P2 end in W , for each i ∈ {1, 2} the vertex

vi ∈ W is not the endpoint of Pi and thus there is an edge ei ∈ Pi by which Pi leaves vi. By the definition

of vi, this edge is not contained in P xz. Using that q = 0 implies P xz ⊆ F , we conclude

∑

v∈W\{x}

(

|δF∪OPT(v)| − 2
)

≥ 3 +
∑

v∈W\{x}

(

|δPxz(v)| − 2
)

≥ 2 = 2− q.

Case 2: q = 1

17



x
z

v1v2

u1

W
P1

P2

Figure 8: Example of Case 1. Dashed edges are part of the forest F , while solid edges are links, i.e., elements of L.

Dotted edges can be any edges in F ∪ L.

Let {u, v} be the unique link in P xz ∩ S, where without loss of generality u is closer to x in P xz . We

assume |δF∪OPT(v
′)| = 2 for all v′ ∈ W and derive a contradiction. Because P xz \ {u, v} ⊆ F , this

assumption implies that if a path Pi (with i ∈ {1, 2}) visits the vertex u, then the x-u subpath of P xz is

contained in Pi. Similarly, if a path Pi (with i ∈ {1, 2}) visits v, then the v-z subpath of P xz is contained

in Pi. Moreover, the assumption also implies that every vertex w ∈ W \ {x, z} is visited by at most one of

the paths P1, P2. Combining these observations with the fact that each of the paths P1, P2 visits at least one

vertex in W , we obtain the following. One of the paths P1, P2, say P1 starts with the x-u subpath of P xz

and then visits no further vertices in W \ {z}; the other path, P2, contains the v-z subpath of P xz and does

not visit any vertex in W \ {x} before v. See Figure 9.

x
z

u

v
w1

W
P2

P1

Figure 9: Example illustrating the proof of Case 2. Dashed edges are part of the forest F , while solid edges are links,

i.e., elements of L. Dotted edges can be any edges in F ∪ L.

If the x-v subpath of P2 visits a vertex w ∈ W , then this contradicts the choice of z (because if we

choose w to be the first vertex on P2 that is contained in W , the x-w subpath of P2 would be an alternating

trail).

Let w1 be the first vertex on P1 that is contained in W . (Such a vertex exists because P1 ends in W .)

Next, we show that there exists an alternating x-w1 trail, leading to a contradiction. If the x-v subpath of P2

and the u-w1 subpath of P1 are not vertex disjoint, then there exists a x-w1 path that does not contain any

vertex of TC as an interior vertex; this path is an alternating x-w1 trail. Otherwise, we obtain an alternating

x-w1 trail by concatenating the x-v subpath of P2, the link {v, u}, and the u-w1 subpath of P1.

By Lemma 19, every vertex whose degree increases in the augmentation step becomes part of a 2EC-
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block and is not lonely. Thus, Invariant 2 is maintained. We now show that also Invariant 1 is maintained.

Lemma 21. Let z be the vertex that is furthest away from x in TC among all vertices reachable from x by

an alternating trail and let P be an alternating x-z trail. When augmenting along P , the number of bridges

in H reduces by at least 1. Moreover, credits(H) + |S| does not increase.

Proof. By Lemma 19, when augmenting along P , we do not create any new bridges and all of the edges on

the path P xz become part of a 2-edge-connected component. This implies that the number of bridges of H
decreases by at least 1.

Let k denote the number of links in P ∩P xz . When augmenting along P , the cardinality of S increases

by exactly |P |−2k. Moreover, the number of connected components of H decreases by exactly |P |−1−2k.

We distinguish two cases.

Case 1: After the augmentation along P , the connected component containing x contains at least one bridge.

Each of the |P | − 2k connected components that get merged when augmenting along P (including the

component C) had at least 1 credit before the augmentation by (C). The connected component resulting from

the augmentation has 1 credit and thus the number of credits due to (C) decreases by at least |P | − 1− 2k.

Therefore, it remains to show that the number of credits due to (A), (B), and (D) reduces by at least 1 when

augmenting along P .

By Lemma 19, when augmenting along P , all vertices of the path P xz become part of the same 2EC-

block B and we do not create any new bridges in H . The block B has exactly 1 credit by (D). The credits

of all vertices and blocks that are not contained in B remain unchanged. Moreover, the credits of links in

S \ P xz do not change. Vertices and links in B have no credits anymore after the augmentation. Hence, it

suffices to show that the total number of credits on vertices, bridges, and 2EC-blocks in P xz was at least 2
before the augmentation.

Before the augmentation, x was a leaf of TC and thus it was either a leaf of H or it resulted from the

contraction of a 2EC-block. In both cases it had at least 1 credit by (A1) and (D).

Let W denote the vertex set of P xz. If W \ {x} contains a vertex that arose from the contraction of a

2EC-block, this block had 1 credit before the augmentation by (D). Otherwise, all vertices in W \ {x} are

lonely and hence they have degree at most 2 by Invariant 2. If z is a leaf of TC it has 1 credit by (A1) before

the augmentation. Otherwise, Lemma 20 implies that before the augmentation the total number of credits

on bridges in P xz (due to (B)) plus the total number of credits on W \ {x} (due to (A2)) was at least 1.

(Here, we used that all links in P xz were bridges before the augmentation and that 1− ε ≥ 1
2
.)

Case 2: After the augmentation along P , the connected component containing x is 2-edge-connected.

The connected component C had 1 credit before the augmentation. After the augmentation, the con-

nected component containing x has at most 2 credits. The number of all other types of credits does not

increase. Moreover, because the connected component containing x is 2-edge-connected after the augmen-

tation, both x and z must be leaves of the tree TC . Thus, x and z were either leaves of H or (contracted)

2EC-blocks of H . This implies that the total number of credits according to (A1) and (D) decreases by at

least 2.

5.5 Gluing

In this section we describe and analyze the gluing phase. For the purpose of gluing, we consider auxiliary

graphs that are obtained from the graph (V, F ∪L) by contracting some connected components of the current

H = (V, F ∪S), similarly to the bridge covering phase. We will merge several connected components of H
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by finding an affordable cycle in one of the auxiliary graphs. We begin by defining these auxiliary graphs,

and our main tools, namely good cycles.

Recall that a graph G is called bridgeless if it does not contain any bridge (i.e. cut-edge). Let F ∪ S
be a bridgeless 2-edge-cover of (V, F ∪ L) and H = (V, F ∪ S). Throughout the gluing phase F ∪ S will

remain bridgeless and thus the connected components and the 2-edge-connected components of H coincide.

Hence, we will sometimes refer to these as the components of H . We let GH be the (multi-)graph obtained

from (V, F ∪ L) after contracting each component of H into a single vertex. Notice that the edges of GH

correspond to a subset of the links of the original graph.

For a simple component C , we let GH|C be the (multi-)graph obtained from (V, F ∪L) after contracting

each connected components of H except for C into a single vertex. Then the edges of GH|C correspond to

a subset of the links of the original graph plus the two paths P1 ⊆ F and P2 ⊆ F in the simple component

C . Note that GH and GH|C are not necessarily simple graphs and might have parallel edges. With a slight

abuse of notation we identify the edges in GH and GH|C with the edges in (V, F ∪ L).

Definition 22 (good cycle). A good cycle of H in (V, F ∪ L) that affects a simple component C is a cycle

in GH|C that contains all the edges of the two paths P1 and P2 of C in F and has at least one more vertex.

See Figure 10. In the gluing phase, we will repeatedly merge components of H by gluing either along a

cycle in GH or along a good cycle in GH|C (for some simple component C). Next, we define these gluing

operations.

Definition 23. Gluing H along a cycle Q of GH is the process of adding the links of Q to H .

Gluing H = (V, F ∪ S) along a good cycle Q affecting a simple component C is the process of first

removing the two links of C from S and then adding the links of Q to S.

Notice that it is possible that one link ℓ belonging to both C and Q is first removed and then added

back. However this cannot happen for both links in the simple component C simultaneously. See Figure 10.

We also remark that in order to obtain a better-than-2 approximation it is not sufficient to use only gluing

operations that glue H along cycles in GH as the example from Figure 2 shows.

v1

u1

v2

u2

P1 P2

(a) a simple component

v1

u1

v2

u2

(b) a good cycle

v1

u1

v2

u2

(c) another good cycle

Figure 10: This figure shows a simple component C (a), and two different good cycles affecting C (shown in blue in

(b) and (c)). Solid edges are links and dashed edges are edges of the forest (V, F ). Filled vertices show elements of the

original vertex set V , while other vertices resulted from the contraction of a component of H . Notice that when gluing

along the good cycle depicted in (b), the link {u1, u2} will remain in S. (Strictly speaking, according to Definition 23,

we first remove it, but then add it again.) When gluing H along the good cycle depicted in (c), both links {v1, v2} and

{u1, u2} will be removed from S.

Lemma 24. Given a bridgeless 2-edge-cover F ∪S of (V, F ∪L), there exists a polynomial time algorithm

that computes a good cycle of H = (V, F ∪ S) in (V, F ∪ L) or verifies that no such good cycle exists.
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Proof. Fix a simple component C of H . We show that there exists a polynomial time algorithm that com-

putes a good cycles of H in (V, F ∪ L) that affects C or verifies that no such good cycle exist. The claim

follows by applying this algorithm to each simple component of H .

Let P1 and P2 be the paths of C that belong to F and let u1 and v1 be the endpoints of P1 and u2
and v2 be the endpoints of P2 such that {u1, u2} ∈ S and {v1, v2} ∈ S are the unique links of the simple

component C . See Figure 10. We call a path in GH|C a good path if one of its endpoints is u1 or v1, the

other endpoint is u2 or v2, and all its internal vertices do not belong to C , i.e., they are vertices that arose

from the contraction of components of H . Every good cycle affecting C is the union of P1, P2 and two

vertex disjoint good paths. More precisely, if there exists a good cycle affecting C then

(a) there exists a good v1-v2 path or a good u1-u2 path of length at least two, or

(b) there exist a good v1-u2 path and a good u1-v2 path such that at least one of these paths has length at

least two.

We give a polynomial time algorithm that finds a good cycles whenever (a) of (b) holds. First we observe

that for vertices a ∈ {u1, v1} and b ∈ {u2, v2} we can in polynomial time find a good a-b path or decide

that such a path does not exist (by searching for an a-b path in the graph arising from GH|C by removing all

vertices of C (and their incident edges) except for the vertices a and b). We can also find a good a-b path of

length at least two or decide that no such path exists by looking for a good a-b path in the graph where we

remove the link {a, b} (if it exists).

Our algorithm first checks if a good v1-v2 path Pv of length at least two exists. If this is the case, we

obtain a good cycle by taking the union of P1, Pv, P2, and the link {u1, u2}. We proceed analogously if a

good u1-u2 path of length at least two exists. Thus, we find a good cycle if (a) holds. Otherwise, we check

if there exists a good v1-u2 path P ′
1 and a good v2-u1 path P ′

2. If possible, we choose the good paths P ′
1 and

P ′
2 such that they have length at least two. If (b) holds, both P ′

1 and P ′
2 exist and at least one of them has

length at least two. The paths P ′
1 and P ′

2 must be vertex-disjoint as otherwise their union contains a good

v1-v2 path of length at least two, in which case (a) holds. Then the union of P1, P ′
1, P2 and P ′

2 is a good

cycle.

Next we show that if we can glue H along a good cycle, our credit invariant (Invariant 1) is maintained.

We also observe that the number of components of H decreases strictly.

Lemma 25. Given a bridgeless 2-edge-cover F ∪S of (V, F ∪L) and a good cycle Q of H = (V, F ∪S) in

(V, F ∪ L), let H ′ = (V, F ∪ S′) be the graph obtained by gluing H along Q. Then F ∪ S′ is a bridgeless

2 edge-cover of (V, F ∪ L) such that credits(H) + |S| ≥ credits(H ′) + |S′| and H ′ has fewer connected

components than H .

Proof. Let C be the simple component of H that is affected by Q and let C1, ..., Ck be the other connected

components of H such that their corresponding vertex in GH|C belongs to Q.

Clearly H ′ is also a bridgeless 2-edge-cover. Furthermore, the vertices of C and the vertices of C1, . . . , Ck ,

form a single connected component C ′ in H ′. Observe that we have removed 2 links and added k+2 links,

therefore |S′| − |S| = k. By the credit rule (C), we need 2 credits for the new component C ′ (which is

not simple since it contains at least 3 links). We can compensate this with the credits of the components

C , C1, . . . , Ck of H , which are at least (k + 1)(2 − 2ε) ≥ k + 2 (since ε = 1
4

and k ≥ 1). Thus,

credits(H)− credits(H ′) ≥ k and therefore credits(H) + |S| − credits(H ′)− |S′| ≥ k − k = 0.

Finally, we observe that the connected components of H not touched by Q are not modified, hence their

credits do not change.

It remains to consider the case where there is no good cycle. In order to prove the credit invariant, we

first show that in this case every simple component contains a vertex with an implicit credit due to (A2).

Such vertices will be called rich.
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Definition 26 (rich vertex). We say that a vertex v ∈ V is rich if |δOPT∪F (v)| ≥ 3 and it belongs to a

simple connected component of H .

Lemma 27. Let C be a simple component of H = (V, F ∪ S) and suppose C 6= H . If there is no good

cycle affecting C , then C contains a rich vertex.

Proof. Let P1 ⊆ F and P2 ⊆ F be the paths of F in C , such that v1, u1 are the endpoints of P1, v2 and u2
are the endpoints of P2, and {v1, v2}, {u1, u2} ∈ S are the two links contained in C .

Assume that the claim does not hold, i.e., C does not have any rich vertex. Then in (V, F ∪ OPT) the

degree of each vertex of C is exactly 2. Therefore, the internal vertices of P1 and P2 are not incident to any

edge of OPT and each of their endpoints u1, u2, v1, and v2 is incident to exactly one edge of OPT.

Now consider the graph GH|C . Since (V, F ∪ OPT) is 2-edge-connected, there must exist two edge-

disjoint paths P ′
1 and P ′

2 from the vertices of P1 to the vertices of P2 in GH|C that only contain links of

OPT. Observe that, since by assumption C has no rich vertex, the set of endpoints of P ′
1 and P ′

2 is exactly

{u1, u2, v1, v2} and none of the internal vertices of P ′
1 and P ′

2 belongs to C .

By a case analysis similar to the one in the proof of Lemma 24, the only possibility for P ′
1 ∪ P ′

2 not

to induce a good cycle affecting C is that P ′
1 ∪ P ′

2 is a matching of size 2 between the endpoints of P1

and the endpoints of P2. However OPT must contain two links between the vertex set V (C) of C and its

complement V \ V (C) (since C 6= H and (V, F ∪ OPT) is 2-edge-connected). Hence, in this case some

endpoint of P1 or of P2 must be rich, a contradiction.

Finally, we complete the analysis of the gluing phase by showing that the credit invariant (Invariant 1)

is maintained and the runtime is polynomial.

Lemma 28. Given a bridgeless 2-edge-cover H of (V, F ∪ L), the gluing phase of Algorithm 1 yields a

2-edge-connected spanning subgraph H∗ = (V, F ∪ S∗) of (V, F ∪ L) such that |S| + credits(H) ≥
|S∗|+ credits(H∗) in polynomial time.

Proof. For this purpose, we show that if H is not already 2-edge-connected, then in every iteration of the

gluing phase, we obtain in polynomial time a bridgeless subgraph H ′ = (V, F ∪ S′) of (V, F ∪ L) from

H = (V, F ∪ S) such that |S|+ credits(H) ≥ |S′|+ credits(H ′) and H ′ has fewer connected component

than H . This implies that the number of iterations is linear in |V |.
First observe that if H has a good cycle, then using Lemmas 24 and 25 we are done. Therefore we can

assume that no good cycle of H exists in (V, F ∪L). Then, by Lemma 27 every simple component of H has

at least one rich vertex, which has at least 1
2

credits by (A2). Thus, every component of H is either simple

with at least one rich vertex or is non-simple. In particular the credits of each simple component C plus the

credits of its rich vertices add up to at least (2− 2ε) + 1
2
= 2.

It remains to show that gluing H = (V, F ∪S) along an arbitrary cycle Q = (W,L′) in GH (such a cycle

must exist because (V, F∪L) is 2-edge-connected) does not increase credits(H)+|S|. Let H ′ = (V, F∪S′)
be the resulting graph, where S′ = S∪L′ and C ′ is the new connected component formed during the gluing.

Notice that C ′ is not simple since it contains strictly more than two links. Observe that |S′| − |S| = |L′|,
and we need 2 credits for C ′ (due to the credit rule (C)). From the above discussion each of the |L′| many

connected component of H involved in Q can contribute with at least 2 credits. Thus,

|S|+ credits(H)− |S′| − credits(H ′) ≥ −|L′|+ 2 · |L′| − 2 ≥ 0.
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A Details on WTAP: Proof of Lemma 2

Proof of Lemma 2. As observed in [CN13], we may assume that the sets Pℓ with ℓ ∈ U are pairwise disjoint.

(This can be achieved by replacing some of the links in U by shadows; see e.g., Lemma 2.1 in [TZ22b].)

Then we proceed as in [TZ22a], but start with our given up-link solution U instead of the initial up-link

solution chosen in [TZ22a]. More precisely, we perform steps 2–4 of Algorithm 1 in [TZ22a]. The analysis

is the same as in [TZ22a]. Indeed, the proof of Theorem 6 from [TZ22a] shows that the returned solution

APX has weight at most

w(OPT) + ε · w(OPT) + ln

(

w(U) − ε · w(OPT)

w(OPT)

)

· w(OPT)

≤

(

1 + ln

(

w(U)

w(OPT)

)

+ ε

)

· w(OPT).
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B From FAP to PAP

In this section we prove Lemma 8. This is a straightforward consequence of the following two lemmas.

Lemma 29. Given a polynomial-time (ρ,K)-approximation for FAP for the case where there is no isolated

node in the input forest (V, F ), there is a polynomial-time (ρ,K)-approximation for FAP (in the general

case).

Proof. We consider the following approximation-preserving reduction. Given an instance IA of FAP con-

taining some isolated nodes, we construct an instance IB of FAP without isolated nodes as follows. Initially

IB = IA. Then, for each isolated node v, we perform the following steps.

First, we replace v with two new nodes v1 and v2. Second, we replace each link of type {u, v} with two

new links {u, v1} and {u, v2}. Third, we add the edge {v1, v2} to the forest. Note that this does not change

the number of connected components of the forest. Now we apply the approximation algorithm in the claim

to the instance IB, obtaining some solution SB. We convert SB into a solution SA for IA by mapping back

each link of type {ui, vj} in SB to the corresponding link {u, v} in IA. Observe that the solution SA might

not be feasible since it could contain two copies e1 and e2 of the same link {u, v}. To resolve this issue

in any such case we remove e2 from SA and, in case e1 is a bridge of F ∪ SA \ {e2}, we add an arbitrary

link ℓ 6= e1 connecting the two connected components of F ∪ SA \ {e1, e2}. Such a link ℓ must exist since

by assumption F ∪ L is 2-edge-connected. This results in a feasible solution SB to the instance B with

|SA| ≤ |SB |.
Let OPTA and OPTB be some optimal solutions to the instances A and B, respectively. We now

show that |OPTB | ≤ |OPTA|. Indeed, a solution of size |OPTA| for B can be constructed from OPTA

as follows. For an isolated node v, we replace one link {u, v} ∈ OPTA by the link {u, v1} and all other

links {u, v} ∈ OPTA by the corresponding links {u, v2}. Suppose the resulting link set S is not a feasible

solution for the instance IB , i.e., there exists a cut that contains less than two edges in F ∪ S. Because

OPTA is a feasible solution for the instance IA (that can be obtained from IB by the contraction of the

edge {v1, v2}), this cut must contain the edge {v1, v2}. Now consider the unique link {u, v} ∈ OPTA

that we replaced by the link {u, v1}. Because OPTA is a feasible solution for the instance A, the edge set

F ∪OPTA contains two edge-disjoint u-v paths, only one of which can use the edge {u, v}. The other path

corresponds to a u-v2 path in F ∪OPTB that does not contain the edge {u, v1} and hence also not the edge

{v1, v2} because by construction, v1 has degree two in F ∪S. But then extending this u-v2 path by the edge

{v1, u} yields an v1-v2 path in F ∪S that does not contain the edge {v1, v2}. This contradicts the existence

of a cut of size less than two that contains the edge {v1, v2}. We conclude that S is feasible and thus indeed

|OPTB | ≤ |OPTA|.
Recall that the number ncomp of connected components of the forest is the same in the instances IA and

IB. We obtain

|SA| ≤ |SB| ≤ ρ · |OPTB |+K · (|OPTB| − ncomp) ≤ ρ · |OPTA|+K · (|OPTA| − ncomp),

hence the claimed approximation factor.

Lemma 30. Given a polynomial time (ρ,K)-approximation algorithm for PAP without isolated nodes for

some constants ρ ≥ 1 and K > 0, there is polynomial-time (ρ,K ′)-approximation algorithm for FAP

without isolated nodes, where K ′ := K + 2(ρ− 1).

Proof. Given a FAP instance (V, F,L) without isolated nodes, we transform it into a PAP instance without

isolated nodes by iteratively applying the following procedure. Consider any tree T in the current forest

with at least 3 leaves (notice that each tree in F has at least 2 leaves by assumption). Let e = {v, u} be any

edge of T incident on a node v of degree at least 3 such that the component of T \{e} containing u is a path
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(the latter path might be an isolated node). We delete e from F , add a dummy node w to V , add a dummy

link e′ = {v,w} to L, and add a dummy edge e′′ = {w, u} to F .

This creates a PAP instance (V ′, F ′, L′) without isolated nodes. To this PAP instance we apply a (ρ,K)-
approximation algorithm, obtaining a solution APX′. Then we return the solution APX for the original FAP

instance obtained from APX′ by removing all dummy links.

Let q be the number of iterations of the above procedure. Notice that every dummy edge and link must

belong to every feasible solution to (V ′, F ′, L′) since dummy nodes have degree 2 (in F ′ ∪ L′). Hence

|APX| ≤ |APX′| − q. We observe that each of the q many steps of the above modification procedure

increases the value of an optimal solution by at most 1 and increases the number of connected components

of the forest by 1. Thus,

|APX| ≤ |APX′| − q

≤ ρ · opt′ +K · (opt′ − n′
comp)− q

≤ ρ · (opt + q) +K · (opt− ncomp)− q = ρ · opt +K · (opt− ncomp) + (ρ− 1)q,

where opt and opt′ denote the optimal values of the FAP and PAP instance and ncomp and n′
comp denote the

number of connected components of (V, F ) and (V ′, F ′), respectively.

Each tree T in the original forest (V, F ) with k ≥ 2 leaves contributes with k− 2 to the total value of q.

Hence

q = nleaf − 2ncomp ≤ 2opt− 2ncomp,

where nleaf is the number of leaves in (V, F ), and the inequality follows from the fact that each leaf in

(V, F ) must have a link of OPT incident to it, thus opt ≥ nleaf/2. The claim follows.
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