
Edge Connectivity Augmentation in Near-Linear Time

Ruoxu Cen∗ Jason Li† Debmalya Panigrahi‡

May 11, 2022

Abstract

We give an Õ(m)-time algorithm for the edge connectivity augmentation problem and the
closely related edge splitting-off problem. This is optimal up to lower order terms and closes
the long line of work on these problems.

1 Introduction

In the edge connectivity augmentation problem, we are given an undirected graph G = (V,E) with
edge weights w, and a target connectivity τ > 0. The edge weights w and connectivity target τ are
assumed to be polynomially bounded integers. The goal is to find a minimum weight set F of edges
on V such that adding these edges to G makes the graph τ -connected. (In other words, the value
of the minimum cut of the graph G′ = (V,E ∪F ) should be at least τ .) The edge connectivity aug-
mentation problem is known to be tractable in poly(m,n) time, where m and n denote the number
of edges and vertices respectively in G. This was first shown by Watanabe and Nakamura [WN87]
for unweighted graphs, and the first strongly polynomial algorithm was obtained by Frank [Fra92].
Since then, several algorithms [CS89, NGM97, Gab16, Gab94, NI97] progressively improved the
running time and till recently, the best known result was an Õ(n2)-time1 algorithm due to Benczúr
and Karger [BK00]. This was improved to the current best runtime of Õ(m + n3/2) [CLP22] by
reducing the edge connectivity augmentation problem to polylog(n) max-flow calls. The runtime
bound follows from the current best max-flow algorithm on undirected graphs [vdBLL+21].2 This
represents a natural bottleneck for the problem since further improvement would need techniques
that do not rely on max-flows.

We overcome this bottleneck in this paper, and obtain a nearly-linear Õ(m)-time algorithm
for the edge connectivity augmentation problem. This is optimal up to poly-logarithmic terms,
and brings to an end the long line of work on this problem (barring further improvements in the
logarithmic terms). Moreover, it demonstrates that this problem is easier than max-flow, since
obtaining an Õ(m)-time max-flow algorithm remains a major open problem. We state our main
result below:

∗Department of Computer Science, Duke University.
†Simons Institute for Theory of Computing, University of California, Berkeley.
‡Department of Computer Science, Duke University.
1Õ(·) ignores (poly)-logarithmic factors in the running time.
2We note that for sparse graphs, there is a slightly faster max-flow algorithm that runs in O(m3/2−δ) time [GLP21],

where δ > 0 is a small constant. If this max-flow algorithm is used in [CLP22], a running time of O(m3/2−δ) is obtained
for the augmentation problem.

1

ar
X

iv
:2

20
5.

04
63

6v
1 

 [
cs

.D
S]

  1
0 

M
ay

 2
02

2



Theorem 1.1. There is an Õ(m)-time randomized Monte Carlo algorithm for the edge connectivity
augmentation problem.

The edge connectivity augmentation problem is closely related to edge splitting off, a widely
used tool in the graph connectivity literature (e.g., [Gab94, NI97]). A pair of (weighted) edges
(u, s) and (s, v) both incident on a common vertex s is said to be split off by weight w if we reduce
the weight of both these edges by w and increase the weight of their shortcut edge (u, v) by w. Such
a splitting off is valid if it does not change the (Steiner) connectivity3 of the vertices V \ {s}. If all
edges incident on s are eliminated by a sequence of splitting off operations, we say that the vertex
s is split off. We call the problem of finding a set of shortcut edges to split off a given vertex s the
edge splitting off problem.

Lovász [Lov79] initiated the study of edge splitting off by showing that in an undirected graph,
any vertex s with even degree (i.e. the total weight of incident edges is even) can be split off while
maintaining the (Steiner) connectivity of the remaining vertices. (Later, more powerful splitting off
theorems [Mad78] were obtained that preserve stronger properties and/or apply to directed graphs,
but these come at the cost of slower algorithms. We do not consider these extensions in this paper.)
The splitting off operation has emerged as an important inductive tool in the graph connectivity
literature, leading to many algorithms with progressively faster running times being proposed for
the edge splitting off problem [CS89, Fra92, Gab94, NI97, BK00]. Currently, the best running
time is Õ(m + n3/2), which was obtained in the same paper as the current best edge connectivity
augmentation result [CLP22]. We improve this bound as well:

Theorem 1.2. There is a randomized, Monte Carlo algorithm for the edge splitting off problem
that runs in Õ(m) time.

A key tool in augmentation/splitting off algorithms (e.g., in [WN87, NGM97, Gab16, Ben94,
BK00, CLP22]) is that of extreme sets. A non-empty set of vertices X ( V is called an extreme
set in graph G = (V,E) if for every non-empty proper subset Y ( X, we have δG(Y ) > δG(X),
where δG(X) (resp., δG(Y )) is the total weight of edges with exactly one endpoint in X (resp., Y )
in G. (If the graph is unambiguous, we drop the subscript G and write δ(·).) In edge connectivity
augmentation problem, every vertices set U with δ(U) < τ has a demand that the solution must
add edges with total weight at least τ − δG(U) across U . It turns out that satisfying the demands
of all extreme sets implies satisfying the demands of all vertices sets. The extreme sets form a
laminar family, thereby allowing an O(n)-sized representation in the form of an extreme sets tree.
The main bottleneck of the previous edge augmentation/splitting off algorithms [BK00, CLP22] is
in the construction of the extreme sets tree. Indeed, [CLP22] show that once the extreme sets tree
is constructed, the augmentation/splitting off problems can be solved in Õ(m) time:

Theorem 1.3 (Theorem 3.1 in [CLP22]). Given an algorithm to compute the extreme sets tree,
the edge connectivity augmentation and edge splitting problems can be solved in Õ(m) time.

(Benczúr and Karger [BK00] also hint that computing extreme sets is the main bottleneck of their
algorithm, although their algorithm does use Õ(n2) time in a few other places.)

Theorem 1.3 reduces Theorem 1.1 and Theorem 1.2 to obtaining an extreme sets tree in
Õ(m) time. Benczúr and Karger [BK00] used the recursive contraction framework of Karger and

3The Steiner connectivity of a set of vertices is the minimum value of any cut that has at least one of these vertices
on each side of the cut.

2



Stein [KS96] to construct the extreme sets tree, which takes Õ(n2) time. This was improved by Cen,
Li, and Panigrahi [CLP22] who used the isolating cuts framework [LP20]4 which uses polylog(n)
max-flow calls. But the isoating cuts framework is unusable if we want to improve beyond max-flow
runtime, since a special case of an isolating cut is an s− t min-cut. In this paper, we overcome this
barrier and give an Õ(m)-time algorithm for finding the extreme sets tree of a graph:

Theorem 1.4. There is a randomized, Monte Carlo algorithm for finding the extreme sets tree of
an undirected graph that runs in Õ(m) time.

Given Theorem 1.3, the rest of this paper focuses on proving Theorem 1.4.

1.1 Our Techniques

Our Õ(m)-time extreme sets algorithm can be viewed as a series of reductions to finding extreme
sets in progressively simpler settings. Recall that the original problem is to find extreme sets in
an arbitrary undirected graph. Our first step is an iterative refinement of this problem, namely
instead of finding all extreme sets, we refine the problem to finding extreme sets that are also nearly
minimum cuts (we call these near-mincut extreme sets). More precisely, suppose we have identified
all extreme sets whose cut value is at most some threshold γ. These extreme sets form a laminar
family, and induce an equivalence partition on the vertices where any two vertices that are not
separated by any of these extreme sets are in the same set of the partition. By laminarity and the
extreme sets property, we can claim that all the extreme sets whose cut value exceeds γ must be
strict subsets of the sets in this equivalance partition. This justifies a natural recursive strategy:
for each set in the equivalence partition, we contract all the vertices outside this set into a single
vertex and find extreme sets in this contracted graph.

So far, we have reduced the problem to finding extreme sets that are subsets of the set of
(uncontracted) vertices S, where in addition, there is a (contracted) vertex c representing all the
other vertices V \ S of the graph. Clearly, the Steiner connectivity of S, denoted λ, must exceed γ
(else, any minimum Steiner cut that is also minimal in terms of vertices would also be an extreme
set of cut value γ, which contradicts the inductive assumption that we have already identified all
extreme sets of cut value at most γ). We now define our iterative goal: find all extreme sets that
are subsets of S and have cut value in the range [λ, (1 + ε)λ].

To solve this problem, our next pair of tools is sparsification and tree packing. Suppose, for now,
that the minimum cut in the graph containing S and the contracted vertex c is of value λ (this may
not be true in general since the degree cut for vertex c can be smaller than λ, but we will handle
this complication later). Then, we can use a uniform sparsification technique of Karger [Kar99]
to sample edges and form a graph where the value of all cuts converge to their expected value
whp5 and where the expected value of the minimum cut is O(log n). On this graph, we can pack
O(log n) disjoint spanning trees rooted at a fixed vertex r in Õ(m) time such that the following
property holds whp: for every cut of value at most (1 + ε)λ in the original graph (this includes all
the extreme sets we are interested in finding), there is a spanning tree that contains at most two
edges from the cut (we say the cut 2-respects the tree). This essentially reduces the problem to
finding extreme sets that 2-respect a given spanning tree. There are two caveats. First, we need
an algorithm that can merge the extreme sets found for the different trees into a single extreme

4A similar framework was shown independently by Abboud, Krauthgamer, and Trabelsi [AKT21].
5with high probability, i.e., with probability 1 − o(1)

3



sets tree. Second, the contracted vertex c may have degree smaller than the number of trees, which
means that trees wouldn’t be spanning and two tree edges do not uniquely define a vertex set. We
defer the technical details to address these issues to later sections.

Now, we have reduced the extreme sets problem to finding all extreme sets that 2-respect a given
tree. If we were interested in finding a minimum cut (see [Kar00]), then we would use a dynamic
program at this stage. But, extreme sets are more complex. First, the extreme set condition is more
difficult to check than tracking the minimum cut. More importantly, extreme sets are asymmetric,
i.e., even if X is an extreme set, V \X may or may not be an extreme set. This seems to defeat the
purpose of working on a tree. For instance, when the two tree edges are comparable, i.e., form an
ancestor-descendant pair, the extreme set is not contiguous in the tree. It is unclear at all how we
can check the extreme sets property for such a non-contiguous set. To overcome these difficulties,
we undertake two further simplifications of the problem. The first is a recursive rotation of the
tree based on the idea of a centroid decomposition. We show that this ensures that all 2-respecting
cuts will appear as two incomparable edges in some level of the recursion, thereby eliminating the
need for handling comparable tree edges. Our next technique reduces the problem from trees with
arbitrary structure to spiders. (A spider is a tree where only the root can have degree greater than
2.) The basic idea is to perform a heavy-light decomposition of the spanning tree, and then sample
each path of this decomposition independently for contraction in a manner that the resulting tree is
a spider. If this process is repeated O(log n) times, then for every 2-respecting cut, there whp is at
least one spider that preserves both edges of the cut in the tree. (This idea was previously explored
by Li [Li19], although in a somewhat different context.) As an aside, we note that both these
simplifications are also valid for the minimum cut problem, and can be used to simplify Karger’s
celebrated near-linear time minimum cut algorithm [Kar00].

We have now reduced the problem to finding 2-respecting extreme sets on spiders, with the
additional guarantee that if the cut contains exactly two edges in the tree, then those two edges
will be incomparable. At this point, we first find all 1-respecting extreme sets using a simple
dynamic program. Conceptually, this is simple because we can run the algorithm “in parallel” on
each branch of the spider. However, the 2-respecting case still needs additional work. At this point,
we use our final simplification, where we reduce the 2-respecting extreme sets problems from spiders
to paths (equivalently, spiders with only two branches). The basic idea behind this transformation
is that we use the laminar structure of extreme sets to claim that all 2-respecting extreme sets can
be partitioned into equivalence classes, where each set of the partition corresponds to two distinct
branches of the spider. This allows us to run the 2-respecting algorithm “in parallel” on these
spiders containing only two branches each, i.e., on paths. Finally, for each path, we can solve the
2-respecting extreme sets problem using a simple dynamic program.

Roadmap. We introduce some preliminaries in Section 2. Section 3 describes the iterative frame-
work that we use in our extreme sets algorithm, and reduces the problem to finding 2-respecting
extreme sets for a spanning tree of the graph. In Section 4, we use the recursive rotation based on
centroid partitioning and the random sampling over the heavy-light decomposition to reduce the
problem to finding 2-respecting extreme sets in a spider. We solve this latter problem in Section 5,
using the reduction to a path and the employing a dynamic program. Finally, in Section 6, we give
the algorithm to merge the extreme sets revealed by the different steps into a single extreme sets
tree.

4



2 Preliminaries

Use δ(S) to denote the value of a cut S ( V , that is the sum of weights of edges with exactly one
endpoint in S. For disjoint S, T ( V , denote δ(S, T ) to be the sum of weights of edges with one
endpoint in S and the other endpoint in T . For vertices s 6= t, denote λ(s, t) to be the value of
minimum s-t cut.

Our goal is to find all the extreme sets of an undirected graph G = (V,E). We can define an
extreme set as follows.

Definition 2.1 (Extreme set). A nonempty set X ( V is extreme if for every non-empty proper
subset U of X, we have δ(U) > δ(X). By convention, all singleton sets are extreme sets.

One noteworthy aspect of this definition is that although the graph G is undirected, the notion
of extreme sets is asymmetric. In other words, if X is an extreme set, it is not necessarily the case
that the complementary set V \ X is also an extreme set. As described in the introduction, this
asymmetry is one of the main contributors to the difficulty of the problem.

We need the following properties of cut function in undirected graphs.

Proposition 2.2 (submodularity). ∀X,Y ⊆ V, δ(X ∩ Y ) + δ(X ∪ Y ) ≤ δ(X) + δ(Y ).

Proposition 2.3 (posi-modularity). ∀X,Y ⊆ V, δ(X \ Y ) + δ(Y \X) ≤ δ(X) + δ(Y ).

A family of sets is said to be laminar if any two of them are either disjoint or one is contained
in the other. It is well known that extreme sets form a laminar family.

Lemma 2.4. Extreme sets form a laminar family.

Proof. Assume for contradiction that there are two extreme sets X and Y violate laminarity, i.e.,
X \ Y, Y \X, and X ∩ Y are all non-empty sets. Then, since both X and Y are extreme sets, we
have δ(X \ Y ) > δ(X) and δ(Y \ X) > δ(Y ). Then δ(X \ Y ) + δ(Y \ X) > δ(X) + δ(Y ), which
contradicts posi-modularity of the cut function.

Laminarity induces a natural tree structure on extreme sets where all the vertices of the graph
(as trivial extreme sets) are leaves of the tree and every subtree (or equivalently, the internal tree
node where the subtree is rooted) represents an extreme set containing all the vertices that are
leaves in the subtree. We call this the extreme sets tree. Our goal in this paper is to find an
extreme sets tree in Õ(m) time, thereby establishing Theorem 1.4.

We also use the notion of Steiner connectivity of a set of vertices, which is the minimum value of
a cut that has at least one terminal on each side of the cut. If we remove this additional condition
(equivalently, set all vertices as terminals), then we get the edge connectivity of the graph.

Definition 2.5 (Steiner connectivity). The Steiner connectivity of a set of vertices X ⊆ V (called
terminals) is the minimum value of a cut S such that X ∩ S and X \ S are both nonempty. If
X = V , then we call this the edge connectivity of the graph.

3 Reduction to 2-respecting Extreme Sets

In this section, we reduce the problem of finding all extreme sets to that of finding extreme sets
that satisfy an additional property called 2-respecting that we will define later. This reduction

5



is in two parts. In the first part, we use a framework that iteratively calls an algorithm to find
all extreme sets whose cut values are in a given range. In the second part, we reduce from the
problem of finding all extreme sets in a given range of cut values to all extreme sets that satisfy
the 2-respecting property.

3.1 Iterative Framework for Extreme Sets Algorithm

We use an iterative framework to find all extreme sets of the graph. In fact, consider the following
reformulation of this problem. Given a set of vertices S ( V , we need to find all extreme sets that
are subsets of S (including S itself if it is an extreme set). We note that this problem is actually
equivalent to the problem of finding all extreme sets in the graph. In one direction, an algorithm
that finds all extreme sets also identifies those that are subsets of S. But, also conversely, we can
add a dummy isolated vertex to the graph, and then set S = V to find all extreme sets of the
graph.

We further refine the task of finding extreme sets contained in S into finding extreme sets whose
cut value is in the range [λ, (1 + ε)λ] for a fixed constant ε > 0. Here, λ is the Steiner connectivity
of S after we contract V \ S into a single vertex c. We call these near-mincut extreme sets.

Definition 3.1 (Near-mincut Extreme Set). Suppose we are given an undirected graph and a set
of vertices S. Let λ denote the Steiner connectivity of S when V \S is contracted to a single vertex
c. Given a fixed constant ε > 0 (whose precise value will be given in Lemma 3.8), a near-mincut
extreme set S′ is an extreme set that is a subset of S (i.e., S′ ( S) and whose cut value satisfies
δ(S′) ∈ [λ, (1 + ε)λ).

In the rest of this section, we describe an algorithm to find all extreme sets contained in S by
iteratively using an algorithm that finds near-mincut extreme sets. To describe our algorithm, it
is convenient to partition cuts based on a threshold d into d-strong and d-weak cuts.

Definition 3.2 (d-Strong and d-Weak Cuts). A nonempty set of vertices X ( V is said to be
d-strong if the cut value δ(X) ≥ d, else it is said to be d-weak.

Note that the problem of finding all near-mincut extreme sets is equivalent to that of finding
all (1 + ε)λ-weak extreme sets after contracting V \ S into a single vertex c. In Algorithm 1, we
use a subroutine that returns all (1 + ε)λ-weak extreme sets to obtain all extreme sets contained in
S. Since the near-mincut extreme sets form a laminar family (by Lemma 2.4), these (1 + ε)λ-weak
extreme sets induce a canonical partition of the vertices of S defined below.

Definition 3.3 (Canonical Partition). Define an equivalence relation on the vertices of S using the
following rule: two vertices are related if and only if they are not separated by any of the (1 + ε)λ-
weak extreme sets contained in S. The equivalence classes corresponding to this equivalence relation
form the canonical partition of S.

The following lemma asserts that all (1 + ε)λ-strong extreme sets contained in S must respect
this canonical partition.

Lemma 3.4. Any (1+ε)λ-strong extreme sets contained in S must be contained in some equivalence
class of the canonical partition.

6



Figure 1: Implementation of line 5 of Algorithm 1. Left: d-weak extreme sets. Middle: extreme
sets trees returned by recursive calls. Right: the merged extreme sets tree.

Proof. Suppose not, and let u, v ∈ S be two vertices in different equivalence classes of the canonical
partition that are both in some (1 + ε)λ-strong extreme set S′. By definition of the equivalence
relation, there must be some (1 + ε)λ-weak extreme set X ( S such that u ∈ X, v /∈ X (or vice-
versa). By Lemma 2.4, it must be that X ( S′ since u ∈ X ∩ S′. But, this violates the fact that
S′ is an extreme set since δ(X) < (1 + ε)λ ≤ δ(S′).

This lemma allows us to recurse on the individual equivalence classes of the canonical partition
in Algorithm 1.

Algorithm 1: Iterative Framework for Extreme Sets

Input : Graph G = (V,E) and a set S ( V .
Output: The family of all extreme sets in G that are contained in S.

1 When S is a singleton, return the singleton as the only extreme set contained in S.
2 Let λ denote the Steiner connectivity of S after contracting V \ S into a single vertex c.

Let d = (1 + ε)λ.
3 Call the near-mincut extreme sets subroutine to find all d-weak extreme sets contained in

S. This induces a canonical partiton of S into subsets S1, S2, . . . , Sk.
4 For each set Si, recursively find all extreme sets contained in Si.
5 Construct a laminar family of all extreme sets in the current call and all extreme sets

found in the recursive calls. Return the laminar family.

Theorem 3.5. Algorithm 1 finds all extreme sets that are contained in S.

Proof. The proof is by induction on the size of S. When |S| = 1, the singleton set is the only
extreme set. Next consider |S| ≥ 2. Any d-weak extreme set contained in S will be found by
the near-mincut extreme sets subroutine. Consider any d-strong extreme set S′. By Lemma 3.4,
such an extreme set must be contained in one of the equivalence classes of the canonical partition.
To apply the inductive hypothesis asserting that S′ will be revealed in a recursive call made by
the algorithm, we need to show that the equivalence classes of the canonical partition are proper
subsets of S, i.e., they are strictly smaller than S. This is because there is at least one cut of value
λ that is contained in S, since λ is the Steiner connectivity of S after contracting V \S into a single
vertex c. Now, if we consider any minimal subset of S of cut value λ, it must be an extreme set by
definition. Therefore, the canonical partition is nontrivial, i.e., it contains at least two equivalence
classes. Consequently, each set in the equivalence partition is a strict subset of S.

7



We also need to verify that any recursive call on a set S1 ( S does not return spurious extreme
sets, i.e., sets that are extreme in the graph where V \S1 is contracted, but are not extreme in the
original graph. But, this can be ruled out based on the definition of extreme sets since the property
only depends on the cut values of subsets of S1 which are unaffected by the contraction.

We now bound the running time for the overall algorithm.

Theorem 3.6. If we can find all near-mincut extreme sets in Õ(m) time, then Algorithm 1 finds
all extreme sets contained in S in Õ(m) time.

Proof. In each recursive level, the uncontracted vertices form a disjoint partition of S. Thus, each
edge of the graph appears in at most 2 subproblems. So each recursive level has O(m) edges across
all subproblems, and therefore, takes Õ(m) time by induction.

To bound the depth of the recursion, we compare the value of λ between a subproblem with set S
(call this λ(S)) and its child subproblem with set Si (call this λ(Si)). We claim: λ(Si) ≥ (1+ε)λ(S).
Suppose not; then, there is a proper subset of Si that has cut value < (1 + ε)λ. Now, any minimal
subset (call it S′i) of Si with cut value < (1 + ε)λ must be an extreme set by definition. But,
now if we choose two vertices u, v ∈ Si where u ∈ S′i, v /∈ S′i, then u and v cannot be in the
same equivalence class of the canonical partition since that would contradict the fact that S′i is a
(1 + ε)λ-weak extreme set contained in S. This implies that λ(Si) ≥ (1 + ε)λ(S). This bounds the
depth of recursion in Algorithm 1 to O(ε−1 log n) since the edge weights are polynomially bounded.

Finally, we need to give an implementation of line 5 of Algorithm 1 (see Figure 1). We map each
set of the canonical partition to a unique node in the d-weak extreme sets tree (call it T ) returned
by line 3. This can be done naturally by mapping every vertex in S to the smallest extreme set
that it belongs to among the d-weak ones. (All vertices in S that are not in any d-weak extreme
set are mapped to the root representing V .) Note that by definition of the canonical partition, the
recursive calls are on sets of graph vertices that are mapped to the same node in T . Consider a
recursive call for a set X. X is mapped to a node x representing X ′ ⊇ X in T . The recursive call
returns an extreme sets tree T ′ whose root represents X. If X ( X ′, we attach T ′ as a child of x
in T ; If X = X ′, we attach the children of the root of T ′ as children of x in T . Note that this can
done in O(n) time across all the recursive calls because the corresponding extreme set trees are
disjoint.

The total time complexity of Algorithm 1 is then given by Õ(m).

3.2 Sparsification and Tree Packing

We further reduce near-mincut extreme sets to 2-respecting extreme sets via tree packing. We start
with the following uniform sampling theorem.

Theorem 3.7 ([Kar99]). Given a weighted undirected graph G with min-cut value λ and any
constant ε ∈ (0, 1), we can construct in O(m) time a subgraph H such that the following holds whp:
for every cut S in H, its value in H (denoted δH(S)) and its value in G (denoted δ(S)) are related

by δH(S) ∈ [(1 − ε)p · δ(S), (1 + ε)p · δ(S)], where p = O
(
logn
λ

)
. Note that this implies that the

min-cut value in H is O(log n).

First, we use this theorem to prove the following lemma on sampling graphs to preserve near-
mincut extreme sets.

8



Lemma 3.8. Given a weighted undirected graph G = (V = S ∪ {c}, E), we can construct in O(m)
time a subgraph H where the following hold whp: (a) the Steiner min-cut value of S in graph H is
λH = O(log n), and (b) every near-mincut extreme set in G has cut value at most 1.1λH in H.

Proof. Let λ be the Steiner min-cut value of vertices S in graph G. Choose ε = 0.01. Let δ(c)
denote the value of the singleton cut {c} in graph G.

When δ(c) ≥ ελ, we use Theorem 3.7 to get a graph H1 with min cut value λ1 = O(log n). We
have

λ1 ≥ (1− ε)p ·min{λ, δ(c)} ≥ ε(1− ε)pλ,

which implies that pλ = O(log n). The Steiner min-cut value of S in H is

λH ∈ [(1− ε)pλ, (1 + ε)pλ] = O(log n).

For any near-mincut extreme set S′, we have δ(S′) ∈ [λ, (1 + ε)λ), which implies

δH(S′) ≤ (1 + ε)p · δ(S′) ≤ (1 + ε)2pλ ≤ (1 + ε)2

(1− ε)
λH ≤ 1.1λH .

(The first inequality is by Theorem 3.7 and the second inequality by property of near-mincut
extreme sets.)

When δ(c) < ελ, let G′ be the graph formed by removing c from G. For any Steiner cut S′

separating S, we have δG′(S
′) ≥ δ(S′)− δ(c) ≥ (1− ε)λ. Use Theorem 3.7 on G′ to get a subgraph

H with min-cut value λH = O(log n). Note that

λH ≥ (1− ε)pλG′ ≥ (1− ε)2pλ.

Now, for any near-mincut extreme set S′′, we have

δH1(S′′) ≤ (1 + ε)p · δG′(S′′) ≤ (1 + ε)p · δ(S′′)

≤ (1 + ε)2pλ ≤ (1 + ε)2

(1− ε)2
λH ≤ 1.1λH .

(The first inequality is by Theorem 3.7, the second inequality by the fact that G′ is a subgraph of
G, and the third inequality by property of near-mincut extreme sets.)

So far, we have constructed a subgraph H of G where every near-mincut extreme set has value
at most 1.1λH , where λH is the Steiner connectivity of S in H. We now pack a set of disjoint
spanning trees in H. The next theorem follows from the work of Bang-Jensen et al. [BFJ95] and
can also be derived from earlier work by Edmonds [Edm73]. We state a version of the theorem
from [CH03, BHKP07]. First, we need the following definition:

Definition 3.9. Given a directed graph G and a vertex r, a directionless tree rooted at r is a
(possibly non-spanning) tree of directed edges that is a subgraph of G, and where all edges incident
r are directed away from r. All other edges can have arbitrary direction.

Theorem 3.10 ([CH03, BHKP07]). Given an Eulerian directed graph G, a root vertex r and a
value C, there exists C edge-disjoint directionless trees rooted at r, such that the in–degree of every
vertex v 6= r in the union of all the trees is min{λ(r, v), C}, where λ(r, v) is the value of minimum
r-v cut. Such a tree packing can be obtained in Õ(mC) time.

9



For an undirected graph, we can replace each undirected edge with two directed edges oriented
in opposite direction and apply the above theorem to obtain the following corollary.

Corollary 3.11. Given an undirected graph G, a root vertex r and a value C, there exists C
(possibly non-spanning) trees rooted at r, such that (a) each vertex v 6= r appears in at least
min{λ(r, v), C} trees, and (b) every edge appears in at most two trees. Such a tree packing can be
obtained in Õ(mC) time.

Using this undirected tree packing, we can now reduce the problem of finding near-mincut
extreme sets to finding extreme sets that 2-respect a tree. We first define the 2-respecting property.

Definition 3.12. Given an undirected graph G = (V,E) and a tree T that is a subgraph of G (T
may not be spanning), an extreme set S ( V in G is said to 2-respect T if there are at most two
edges from the cut (S, V \ S) that appear in T .

Now, we are ready to further reduce near-mincut extreme sets to the following three problems:

• Finding 2-respecting extreme sets: given a weighted undirected graph G on vertices S ∪ {c},
and a subgraph T that is a tree spanning S (it may or may not contain c), find a laminar
family of vertex sets that contains all extreme sets in G that 2-respect T and are subsets of
S.

• Merging two laminar trees: given a weighted undirected graph G, and two laminar families
of vertex sets, merge these laminar families by selecting a single laminar collection of vertex
sets from the two families that includes all extreme sets in G that are in these families.

• Removing non-extreme sets from a laminar family: given a weighted undirected graph G on
vertices S ∪ {c}, and a laminar family of vertex sets containing all near-mincut extreme sets
of G (but possibly other sets), find the near-mincut extreme sets of G and discard the other
sets that are not near-mincut extreme sets.

Theorem 3.13. Suppose that given a weighted undirected graph G on vertices S ∪ {c} containing
m edges, there are algorithms that can find 2-respecting extreme sets, merge two laminar trees,
and remove non-extreme sets from a laminar family in Õ(m) time. Then we can find whp all
near-mincut extreme sets in Õ(m) time.

Proof. Given a near-mincut extreme sets problem instance in a graph G on vertices S ∪ {c} where
λ denotes the Steiner connectivity of S, we first use Lemma 3.8 to obtain a subgraph H. Let λ′

be the Steiner connectivity of S in H. If we set C = λ′ in Corollary 3.11 and apply it to H, then
we get λ′ = O(log n) trees spanning S. S is spanned because for each v ∈ S \ {r}, λH(r, v) ≥ λ′

by definition of Steiner connectivity, and v appears in all λ′ = min{λH(r, v), C} trees. We remark
that these trees may or may not contain c.

Next, for each of these trees, we find a laminar family containing all 2-respecting extreme sets
using the first algorithm. We need to show that every near-mincut extreme set in G will 2-respect
at least one of the trees, and therefore, will be in one of these laminar families. Set ε = 0.01. For
any (1 + ε)λ-weak extreme set S′ ⊆ S in G, we have that S′ is a 1.1-approximate Steiner min-cut
in H. Thus, the λ′ trees share at most 2.2λ′ cut edges, since each edge appears at most twice in
the trees by Corollary 3.11. So, on average, each tree has at most 2.2 cut edges. Thus, there is at
least one tree that has at most 2 cut edges.

10



Now, we iteratively use the second algorithm to merge the laminar families returned for each
tree into a single laminar family, and then remove the non-extreme sets from this family using the
third algorithm to obtain the near-mincut extreme sets.

Next, we bound the running time. The application of Lemma 3.8 takes O(m) time, and that of
Corollary 3.11 makes Õ(mλ′) time. Since λ′ = O(log n) by Lemma 3.8, we can conclude that the
tree packing takes Õ(m) time. Then, we run the extreme sets algorithm on each of the O(log n)
trees, which takes Õ(m) time. Since there are O(log n) trees, it follows that we need to call the
merger algorithm O(log n) times, which takes Õ(m) time. Finally, the algorithm to remove non-
extreme sets a takes O(m) time. Thus, the total runtime is Õ(m).

We will give the algorithm to find 2-respecting extreme sets in the statement of Theorem 3.13
in Section 4 and Section 5, and the algorithm for merging two extreme sets trees into an extreme
sets tree in Section 6. Here, we give details of the last step, that of removing non-extreme sets from
a laminar family.

Lemma 3.14. Given a laminar family containing all near-mincut extreme sets, we can remove all
sets that are not near-mincut extreme sets in O(m) time.

Proof. First remove all sets X with δ(X) ≥ (1 + ε)λ or X \ S 6= ∅ because they cannot be near-
mincut extreme sets. Then do a post-order traversal on the tree formed by the laminar family.
When visiting some node X, compare the cut value of X and all its children. If some child has cut
value less or equal to δ(X), we remove X from the family and assign its children to its parent in
the tree. Given the cut values, the traversal takes O(n) time.

Next we show that all cut values of sets in the laminar family can be computed in O(m) time.
For each vertex u ∈ V , let p(u) be the collection of sets containing u in the laminar family. Add set
V into the family, so that p(u) is always nonempty. Because the family is laminar, p(u) is a nested
chain of sets. Let l(u) be the minimal set in p(u), then p(u) is a path from the root to l(u) in the
laminar tree. Every edge (u, v) contributes to the cut values of sets separating u and v, which are
sets in exactly one of p(u) or p(v). On the laminar tree, they are on the path from l(u) to l(v)
excluding the lowest common ancestor (LCA) of l(u) and l(v). Use Tarjan’s offline LCA algorithm
[GT83] to calculate LCA(l(u), l(v)) of all edges (u, v) in O(m+n) time. Assign a label to each tree
node. The labels are 0 initially. For every edge (u, v) with weight w, add w to the label of l(u) and
l(v), and add −2w to the label of LCA(l(u), l(v)). Then for every set in the family, its cut value
is the sum of labels in the corresponding subtree. These sums of labels can be calculated in O(n)
time using dynamic programming.

Clearly, near-mincut extreme sets will not be removed by this algorithm. Next, we show that
all sets that are not near-mincut extreme sets will indeed be removed. By the first step, we can
only focus on non-extreme sets X ( S that have cut value δ(X) < (1 + ε)λ. For such a set X,
there must be some extreme subset Y ( X with δ(Y ) ≤ δ(X) < (1 + ε)λ (e.g., a vertex minimal
subset of X that violates the extreme condition for X is a valid Y ). Then Y is a near-mincut
extreme set, so Y is in the family and has not been removed when visiting X in the post-order
traversal. Let Y ′ be the ancestor of Y that is also a child of X. Because the path from Y to Y ′

has survived the post-order traversal, the cut values will be monotone decreasing along this path.
Thus, δ(Y ′) ≤ δ(Y ) ≤ δ(X), which implies that X will be removed.

11



4 Reduction to Spiders

In this section, we reduce the problem of finding 2-respecting extreme sets in Theorem 3.13 to
the special case when the tree T is a spider. This significantly simplifies the case analysis of the
extreme sets algorithm.

Definition 4.1 (Spider). A spider is a rooted tree that is the edge-disjoint union of root-to-leaf
paths.

The full reduction has two steps. We first impose one additional restriction: we only need to
find extreme sets for which the root r of T is on the path in T between the two crossed edges. Of
course, this requires the extreme set to cross exactly two edges in T , and we call such a set exactly
2-respecting. The reduction is captured by the lemma below, which we prove in Section 4.1 using
the technique of centroid decomposition on a tree.

Lemma 4.2. Assume that given a weighted undirected graph, and a tree T spanning all but at most
one vertex, we can find in Õ(m) time all extreme sets in V (T ) that either (a) 1-respect T , or (b)
exactly 2-respect T such that r is on the path in T between the two crossed edges. Then, we can
find in Õ(m) time all 2-respecting extreme sets (with no additional condition).

Finally, we reduce this special case to one that assumes the tree T is a spider. The lemma below
is proved in Section 4.2 using the random branch contraction technique inspired by [Li19].

Lemma 4.3. Assume that given a weighted undirected graph, a special vertex c and a spider T
spanning all but at most one vertex, we can find in Õ(m) time a laminar family of V (T ) that
includes all extreme sets that either (a) 1-respect T , or (b) exactly 2-respect T such that r is on
the path in T between the two crossed edges. Then, the same is true with “spider” replaced by a
general “tree”.

4.1 Centroid Decomposition

In this section, we prove Lemma 4.2.
For a given tree T , the centroid is a vertex r such that if we root T at r, then each subtree

rooted at a vertex different from r has at most half the total number of vertices. The centroid is
guaranteed to exist for any tree, and one can be computed in linear time easily.

Root T at the centroid r, and first call the 2-respecting extreme sets algorithm under the special
restriction described in the lemma statement. In particular, this algorithm returns a laminar family
of subsets that includes all exactly 2-extreme sets on T for which r is on the path in T between the
two crossed edges.

Next, let T1, . . . , T` be the subtrees rooted at the children of r, with the additional edge between
r and the root of the subtree, so that T1, . . . , T` is an edge partition of T . We can split the set of
subtrees into two groups such that each group has at most 2/3 the total number of vertices. Without
loss of generality, let T1, . . . , Tk and Tk+1, . . . , T` be the two groups. The algorithm recursively solves
two instances, one with all edges in T1, . . . , Tk contracted to a single vertex, and one with all edges in
Tk+1, . . . , T` contracted to a single vertex. Take the two laminar families returned by the recursive
calls and “uncontract” the contracted vertex in any set that contains it, i.e., replace it with the
vertices in T1 ∪ · · · ∪ Tk or Tk+1 ∪ · · · ∪ T` depending on which instance. This does not destroy

12



laminarity of the two families. We then use Lemma 6.1 to merge the three laminar families found
overall (including the one from the non-recursive case above).

We claim that the resulting laminar family includes all extreme sets 2-respecting T . There are
a few cases:

1. If an extreme set 1-respects T , then it is picked up by the non-recursive case.

2. If an extreme set crosses two edges, one in T1 ∪ · · · ∪ Tk and one in Tk+1 ∪ · · · ∪ T`, then it
satisfies the specific condition that the root r is on the path in T between the two crossed
edges, so the non-recursive case outputs this set.

3. If an extreme set crosses two edges, either both in T1 ∪ · · · ∪ Tk or both in Tk+1 ∪ · · · ∪ T`,
then it survives when the other (T1 ∪ · · · ∪ Tk or Tk+1 ∪ · · · ∪ T`) is contracted, so it is output
by the corresponding recursive algorithm.

It follows that all 2-respecting extreme sets are output by the algorithm. By Lemma 6.1, they all
survive the merging step, and are therefore included in the final output.

As for running time, the recursion depth is O(log n) since the number of vertices in T drops
by a constant factor on each recursive call. Also, on each recursion level, the sum of the sizes
of the instances is O(m + n log n) by the following argument. Each vertex in the original tree T
appears in at most one instance (as a non-contracted vertex), and each instance has an additional
O(log n) contracted vertices (one from each recursive call before it) and possibly one vertex c in V
not spanned by T . There are at most m edges across the instances whose endpoints are not c nor
contracted vertices, since each original edge appears in at most one instance (the one containing
both of its endpoints as non-contracted vertices, if any). Each instance with k vertices also gets
an extra O(k log n) edges adjacent to either one of the O(log n) contracted vertices or c. It is not
hard to see that the total number of vertices among the instances is O(n), so this is an additional
O(n log n) edges. It follows that the sum of the sizes of the instances at each level is O(m+n log n),
and over all the O(log n) levels, this is still Õ(m).

4.2 Reduction from Trees to Spiders

In this section, we further simplify to the case when T is a spider, proving Lemma 4.3. The idea
is simple: we compute a heavy-light decomposition of the tree, viewed as a set of edge-disjoint
branches, and randomly contract a subset of them so that the remaining graph is a spider. We
ensure that for any two fixed edges for which the root is on the path between them, with probability
Ω(1/ log2 n) both edges survive the contraction.

More precisely, we define a heavy-light decomposition as a partition P of the edges of T into
monotone paths (i.e., consecutive vertices along the path have increasing/decreasing distance from
the root) called branches, such that for any vertex v in T , the path from v to the root r shares
edges with O(log n) many branches. The algorithm samples each branch in P independently with
probability 1/ log n, and we keep all sampled branches whose path from (any vertex on) the branch
to the root does not intersect any edge of another sampled branch; see Figure 2. The algorithm
contracts all other branches. It repeats this process O(log3 n) times, and for each instance, it calls
the extreme sets algorithm on a spider described in the statement of Lemma 4.3. The algorithm
then “uncontracts” all edges to obtain collections of sets of vertices in G, and merges them using
Lemma 6.1. We claim that this algorithm correctly outputs all extreme sets promised by Lemma 4.3.

13



Figure 2: Build spider from heavy-light decomposition. Dashed branches: not sampled. Red
branches: sampled and used in spider. Blue branches: sampled but discarded.

We first claim that the resulting graph is indeed a spider. Indeed, for every branch B that is
kept, consider the path from the branch to the root; any other branch sharing edges with this path
was not sampled, otherwise branch B would not be kept. It follows that the branch hangs off the
root in the contracted graph. Since all branches are monotone and hang off the root, the contracted
graph must be a spider.

Finally, we claim that for any two edges of T for which the root is on the path between them,
with probability Ω(1/ log2 n) both edges survive the contraction, i.e., the branches containing them
are kept. For a single edge e, in order for its respective branch B to be kept, that branch must
be sampled and none of the O(log n) other branches sharing edges with the path Pe from e to the
root can be sampled. This occurs with probability 1/ log n · (1− 1/ log n)O(logn) = Ω(1/ log n). By
assumption, for the two edges e1, e2, the paths Pe1 and Pe2 are edge-disjoint and connected at the
root, so the set of branches sharing edges with Pe1 is disjoint from the set of branches sharing edges
with Pe2 . It follows that the event that e1 survives the contraction is independent from the event
for e2, and the overall probability of success is Ω(1/ log2 n).

Therefore, if we repeat this procedure O(log3 n) times, then with high probability, for any two
such edges e1, e2, they both survive in one of the resulting spiders. In particular, if there is an
exactly 2-respecting extreme set crossing e1 and e2, then that extreme set survives the contraction
as well. Likewise, a 1-respecting extreme set crossing e1 or e2 survives as well. It follows that the
extreme sets algorithm on a spider outputs the contracted version of this extreme set. The set is
then uncontracted to the original extreme set, and then included in the final output after merging.
It follows that with high probability, all targeted extreme sets are output by the algorithm.

5 2-respecting Extreme Sets on a Spider

In this section, we propose an efficient algorithm that, given a weighted undirected graph on vertices
S∪{c} and a tree T spanning S, finds all extreme sets in S that 2-respect T . Using the reduction in
Section 4, we can assume that T is a spider. Such extreme sets can be divided into four ‘universes’:
one subtree, complement of one subtree, two subtrees and complement of two subtrees. We design
algorithms to find extreme sets in each universe, and merge all the families by Lemma 6.1.

We now introduce some notations exclusive to this section. For a tree T , define u↓ ⊆ V (T ) as
the vertices in the subtree of T rooted at u, and u↑ ⊆ V (T ) as the vertices on the path from u to the
root. The complement X = V (T ) \X is defined with respect to vertices on the tree. We say that
two vertices u, v ∈ V (T ) are incomparable if u↓ ∩ v↓ = ∅, i.e., neither is an ancestor or descendant

14



of the other, and we sometimes use the notation u⊥v to indicate that u and v are incomparable.
Likewise, we say that u, v are comparable if u↓ ∩ v↓ 6= ∅, and we sometimes use the notation u ‖ v.
Note that on a spider, two non-root vertices are incomparable iff they lie on different branches, and
they are comparable iff they lie on the same branch.

5.1 Universe 1: One Subtree

The one subtree case is simple. Let F be the laminar family of all (vertex sets of) subtrees of T :
F = {v↓ : v ∈ V (T )}, then F trivially contains all extreme sets in the form of one subtree.

5.2 Universe 2: Complement of One Subtree

Note that all sets in this universe contain the root, so any laminar family of sets in this universe
must be a nested chain, which means the cut edges of the sets on the tree must lie on the same
branch. We can actually find this main branch.

Lemma 5.1. Let S1 be the set with minimum cut value among all subtrees and complement of

subtrees. When S1 is a subtree, let S1 = u↓1, otherwise let S1 = u↓1. (They are not equivalent when

c /∈ V (T ).) If S = u↓ is extreme, then u ‖ u1.

Proof. Assume for contradiction that u ⊥ u1. Then u↓1 ( S and δ(u↓1) > δ(S) because S is extreme.

When S1 = u↓1 this contradicts S1’s minimality. When S1 = u↓1, by posi-modularity

δ(S1) + δ(S) ≥ δ(S \ S1) + δ(S1 \ S) = δ(u↓1) + δ(u↓) > δ(S) + δ(S1),

contradiction. Therefore u ‖ u1.

It immediately follows that {u↓ : u ‖ u1} is a laminar family containing all extreme sets in the
form of complement of one subtree.

5.3 Universe 3: Two Subtrees

In this section, we compute a laminar family of subsets such that each extreme set composed of
the union of two subtrees is included in the family, i.e., they can be written as u↓ ∪ v↓ for some u, v
on different branches of the spider. We introduce two concepts central to the algorithm: partners
and bottlenecks.

Partners. Informally, we consider a vertex v to be a vertex u’s partner if u↓ ∪ v↓ is a potential
extreme set. A necessary condition for this to happen is

δ(v↓) > δ(u↓ ∪ v↓) ⇐⇒ δ(u↓, v↓) >
1

2
δ(u↓) (P)

Note that for a fixed u there cannot be two incomparable vertices v satisfying condition (P).
Therefore, the partners of u are pairwise comparable (if they exist), so on a spider, they must lie
on a single branch of the spider, and we can define the lowest partner p(u) to be the partner of u
of highest depth in the tree (i.e., farthest away from the root). We also require p(u) ⊥ u because
we assume v in on a different branch with u, and we say p(u) does not exist if there is no vertex v
satisfying (P), or equivalently, the lowest partner is comparable to u.

15



Fact 5.2. If u↓ ∪ v↓ is extreme, then (P) holds, and v ∈ p(u)↑ and u ∈ p(v)↑.

We now show that we can efficiently compute p(u) for every vertex u.

Lemma 5.3. We can compute p(u) for every u ∈ V (T )− r in Õ(m) time.

Proof. We give an algorithm computing p(u) for a branch B in time proportional to (up to polylog-
arithmic factors) |B| plus the number of edges incident to vertices in B. Repeating this algorithm
for all branches gives an Õ(m) time algorithm.

Iterate over all u ∈ B from the leaf upwards. This means that in each iteration, we add a new
node into u↓. We use a heap to maintain value δ(u↓, B′) for every other branch B′ 6= B. (Recall
that each branch B′ is a root-to-leaf path minus the root.) Also, for each branch B′ 6= B, we
maintain a sorted list of added edges (u, v) where u ∈ B, v ∈ B′, sorted by the position of v in
branch B′ from leaf to root.

In each iteration with new node u, for every edge (u, v) incident on u with v /∈ B ∪ {r}, add its
weight to the value at the branch B containing v, and also insert edge (u, v) to the sorted list of
edges for B′. After the update step, we query the branch B′ 6= B with maximum value δ(u↓, B′).
If δ(u↓, B′) > 1

2δ(u
↓), then we find the lowest vertex v ∈ B satisfying δ(u↓, v↓) > 1

2δ(u
↓), which can

be done by binary searching over v and taking a prefix sum of the sorted list to determine each
δ(u↓, v↓). We set p(u) to be this vertex v.

Recall that by definition, a partner v should be incomparable to u and satisfy condition (P).
If p(u) does not exist, u cannot be one of the two subtrees that form an extreme set. Therefore,
after computing p(u) for all u, we can contract every u whose lowest partner does not exist to its
parent without losing any extreme set composed of two subtrees. After this preprocessing step, we
can assume the lowest partner p(u) exists for all u ∈ V (T ).

Bottlenecks. We now define the concepts of weak bottleneck and bottleneck as a sort of upper
bound on the cut size of an extreme set. The weak bottleneck for a vertex u is defined as bweak(u) =
minw∈u↓−u δ(u

↓ \ w↓), and the bottleneck is

b(u) = min
v∈u↓

bweak(v) = min
v∈u↓,w∈v↓−v

δ(v↓ \ w↓).

The fact below explains the motivation of bottleneck as an upper bound.

Fact 5.4. If u↓ ∪ v↓ is extreme, then δ(u↓ ∪ v↓) < min{b(u), b(v)}.

Proof. By the definition of bottleneck, there exists some w1 ∈ u↓ and w2 ∈ w↓1 − w1 such that

b(u) = δ(w↓1 \ w
↓
2). Also δ(u↓ ∪ v↓) < δ(w↓1 \ w

↓
2) because δ(w↓1 \ w

↓
2) ⊆ u↓ and u↓ ∪ v↓ is extreme.

Therefore, δ(S) < b(u). Swapping u and v in the argument gives δ(S) < b(v) as well.

The next fact establishes monotonicity of bottleneck, which is useful for a binary search proce-
dure we execute later on.

Fact 5.5. b(u) is monotonic decreasing in a branch from leaf to root.

Fact 5.6. We can compute b(u) for every u ∈ V (T )− r in Õ(m) time.

16



Figure 3: Bad case in the proof of Lemma 5.7

Proof. Note that b(u) can be computed independently for each branch, so we focus on a single
branch B. We first calculate bweak(u) for every u. Observe that δ(u↓\w↓) = 2δ(u↓\w↓, w↓)+δ(u↓)−
δ(w↓). We can easily calculate δ(w↓) for all w by traversing the vertices of the branch from the leaf
upwards, and using that for a parent v of vertex w, we have δ(v↓) = δ(w↓) + δ(v)− 2δ(v, w↓). This
takes time proportional to |B| plus the number of edges incident to vertices in B. Next, initialize
a dynamic array with value −δ(w↓) on each vertex w. Traverse the branch from the leaf upwards,
and for the current vertex u, we take all edges (u, v) for v ∈ u↓, and for each such edge, we add
twice its weight to all vertices on the array from v inclusive to u exclusive. This way, each vertex
w ∈ u↓ has current value 2w(u↓ \w↓, w↓)− δ(w↓), so we can query the minimum value of the prefix
of the array up to u to obtain minw∈u↓ 2w(u↓ \w↓, w↓)− δ(w↓). Finally, adding δ(u↓) to the query
gives us minw∈u↓

(
2δ(u↓ \w↓, w↓)+ δ(u↓)− δ(w↓)

)
= bweak(u). Altogether, the algorithm on branch

B takes time proportional to (up to logarithmic factors) |B| plus the number of edges incident to
vertices in B. Summed over all branches B, this is Õ(m) time total.

5.3.1 Lowest Partner Condition

The follow lemma captures the key property of our definition of the lowest partner p(u).

Lemma 5.7. If u↓ ∪ v↓ is extreme, then for every w ∈ u↓ whose lowest partner exists, we have
p(w) ‖ p(u). Symmetrically, for all w ∈ v↓, we have p(w) ‖ p(v).

Proof. Assume for contradiction that there exists some w ∈ u↓ with p(w) ⊥ p(u). Since (P) holds
for u and v, the lowest partner p(u) must be lower than v, and in particular, they share the same
branch of the spider, so p(w) ⊥ v. By definition of lowest partner, we must have p(w) ⊥ w, and since
u and w share a branch, this implies p(w) ⊥ u. It follows that p(w)↓∩S = ∅. Let Sw = w↓∪p(w)↓.
By condition (P), we have δ(Sw) < δ(p(w)↓). Since S is extreme, δ(S) < δ(S \ w↓). Adding these
two inequalities contradicts δ(S) + δ(Sw) ≥ δ(S \ Sw) + δ(Sw \ S) = δ(S \ w↓) + δ(p(w)↓), which
holds by posi-modularity.

This lemma allows us to pair up branches as follows. Compute lowest partners p(u) for all
vertices u. Then, for each branch B, take the lowest vertex u in that branch whose lowest partner
p(u) is defined (if it exists), and let f(B) be the branch containing p(u). We pair up branches B,B′

satisfying B′ = f(B) and B = f(B′). Some branches may not be paired; we leave them alone.

Lemma 5.8. For any extreme set u↑ ∪ v↑, the two branches containing u and v are paired up.

17



Proof. By Fact 5.2 and Lemma 5.7, for an extreme set u↑∪ v↑, both p(u) and p(v) are defined, and
for the lowest vertices u′ ‖ u and v′ ‖ v whose p(u′), p(v′) are defined, we have p(u′) ‖ p(u) ‖ v and
p(v′) ‖ p(v) ‖ u. In other words, the two branches containing u and v are paired up, as needed.

Therefore, we can process each pair of branches separately by contracting all other branches to
the root. The remaining task is to compute, for each pair of branches B,B′, a laminar family that
contains all extreme sets of the form u↓ ∪ v↓. The laminar family we construct is

F(B,B′) =
{
u↓ ∪ v↓ : u ∈ B, v ∈ B′, δ(u↓ ∪ v↓) < min{b(u), b(v)}

}
.

Lemma 5.9. The set F(B,B′) is laminar. That is, any two sets u↑1 ∪ v
↑
1, u

↑
2 ∪ v

↑
2 ∈ F(B,B′) satisfy

either u1 ∈ u↓2, v1 ∈ v
↓
2 or u2 ∈ u↓1, v2 ∈ v

↓
1.

Proof. Suppose for contradiction that u1 ∈ u↓2 − u2 and v2 ∈ v↓1 − v1 (without loss of generality).

Let S1 = u↑1 ∪ v
↑
1 and S2 = u↑2 ∪ v

↑
2. Then, the sets S1 and S2 cross, and by posi-modularity,

δ(S1) + δ(S2) ≥ δ(S1 \ S2) + δ(S2 \ S1)

= δ(v↓1 \ v
↓
2) + δ(u↓2 \ u

↓
1)

≥ b(v1) + b(u2).

But S1, S2 ∈ F(B,B′) implies that δ(S1) < b(v1) and δ(S2) < b(v2), a contradiction.

Lemma 5.10. Over all branches B,B′, we can compute all pairs (u, v) : u ∈ B, v ∈ B′ with
u↓ ∪ v↓ ∈ F in Õ(m) time total.

Proof. For a fixed pair of branches B,B′, we describe an algorithm that finds all u↓ ∪ v↓ ∈ F(B,B′)

such that b(u) ≤ b(v). The other case b(u) > b(v) can be handled by swapping B and B′ and
running the same algorithm. Repeating the algorithm for all pairs of branches establishes the
lemma.

Fix a pair of branches B,B′. We maintain a range minimum query data structure D on the
vertices in branch B′. Initialize the data structure with value δ(v↓) for each vertex v ∈ B′.

Now iterate through the vertex u ∈ B from leaf to root. Let the current iteration be at vertex
u ∈ B. First, for each edge (u, v) with v ∈ B′, subtract twice its weight from all vertices in v↑ in the
data structures, which is an interval update. This ensures that each element v has current value
δ(v↓)−2δ(u↓, v↓) in the data structure. Next, we seek all sets u↓∪v↓ ∈ F for the current u, assuming
b(u) ≤ b(v). By monotonicity of b(v) (Fact 5.5), the vertices v ∈ B′ satisfying b(u) ≤ b(v) form a
consecutive interval I in the branch which can be found by binary search. To find vertices v ∈ I
with u↓∪v↓ ∈ F and b(u) ≤ b(v), we are looking for vertices v ∈ I satisfying δ(u↓∪v↓) < b(u). Note
that δ(u↓∪v↓) = δ(u↓)+δ(v↓)−2δ(u↓, v↓), so this is equivalent to δ(v↓)−2δ(u↓, v↓) < b(u)−δ(u↓),
so it suffices to find all vertices v whose value in D is less than b(u) − δ(u↓), a value independent
of v. This can be done by repeatedly querying for the vertex of minimum value inside interval I in
D, and if the value is less than b(u)− δ(u↓), then add a large value M to the value of v and repeat,
ensuring a different vertex has the minimum value this time; this recovers all such (u, v), and we
can subtract M from these vertices v once we are done.

Altogether, for vertex u ∈ B, the total running time is proportional to (up to polylog(n) factors)
the number of edges (u, v) with v ∈ B′ plus the number of pairs (u, v) found. The former totals at
most the number of edges between branches B and B′, and the latter totals O(|B|+ |B′|) since F

18



is a laminar family by Lemma 5.9. Finally, over all pairs of branches B,B′, the number of edges
between pairs of branches totals at most m, and the sum of O(|B| + |B′|) totals O(n). It follows
that the entire algorithm takes Õ(m) time.

Next, note that the laminar families F(B,B′) are disjoint from each other since they are con-
tained in their respective branches B ∪ B′ which are pairwise disjoint. It follows that their union⋃

(B,B′)F(B,B′) is also a laminar family. We have thus computed a laminar family containing all

desired extreme sets in Õ(m) time.

5.4 Universe 4: Complement of Two Subtrees

This section finds a laminar family containing all extreme sets in the form of complement of two
subtrees. The algorithm has the same spirit as in two subtrees case.

5.4.1 Find Main Branch

All sets of the form u↓ ∪ v↓ contain the root, so a laminar sub-family must be a nested chain of
sets. This means the cut edges on the tree must be contained in two branches. We first locate one
of the two branches to be some u↑0. Then the problem can be reduced to finding extreme sets in

the form of u↓ ∪ v↓ where u ∈ u↑0.

Lemma 5.11. Let S1 be the set with minimum cut value among four types of sets: a subtree,

complement of a subtree, two subtrees, and complement of two subtrees. Describe set S1 by u↓1, u↓1,

u↓1 ∪ v
↓
1 or u↓1 ∪ v

↓
1 respectively in the four cases.

Any extreme set of the form u↓ ∪ v↓ has one endpoint in the branch of u1 in the first two cases,
and has one endpoint in the branch of u1 or v1 in the last two cases.

Proof. Let S = u↓ ∪ v↓ be any such extreme set. Let X = u↓1 in the first two cases, and X = u↓1∪v
↓
1

in the last two cases, so that either S1 = X or S1 = X.
Assume for contradiction that neither u or v is comparable to u1 in the first two cases, and to

u1 or v1 in the last two cases, which means X ( S and u↓1∪ v
↓
1 ( X. Since S is an extreme set, this

means that δ(X) > δ(S). When S1 = X, we obtain δ(S1) > δ(S), which contradicts the minimality
of δ(S1). When S1 = X, by posi-modularity

δ(S) + δ(S1) ≥ δ(S \ S1) + δ(S1 \ S) = δ(u↓ ∪ v↓) + δ(X) > δ(S1) + δ(S),

contradiction. Therefore u or v is comparable to u1 in the first two cases, and to u1 or v1 in the
last two cases.

In the first two cases, we fix the main branch containing u1, which is u↑0 where u0 is the leaf of
that branch. In the last two cases, we try fixing main branches u1 and v1, compute the two laminar
families, and merge them using Lemma 6.1. From now on, assume that we have correctly identified
the branch u↑0.

If the tree T spans all but one vertex c, then we attach c below u0 in the tree. This way, the
new tree T ′ now spans all vertices, and all extreme sets we wish to find (in particular, they do not

include c) are still of the form u↓ ∪ v↓.

19



5.4.2 Partner Condition

Like in two subtrees case, the idea is to restrict the potential partners onto a path, but with a
different partner condition. This time, we define the lowest partner

p(u) = arg min
v⊥u

δ(u↓ ∪ v↓, v↓) (P')

Since δ(u↓ ∪ v↓, v↓) = 1
2(δ(u↓ ∪ v↓) + δ(v↓)− δ(u↓)), lowest partners can be calculated in the same

way as in Lemma 5.3 from the two subtrees case.

Lemma 5.12. If S = u↓ ∪ v↓ is an extreme set, then v ∈ p(u)↑.

Proof. Assume for contradiction that v /∈ p(u)↑, so that either v ⊥ p(u) or v ∈ p(u)↓− p(u). There
are two cases:

Case 1: v ⊥ p(u). p(u) is also incomparable to u by definition, so p(u) ( S. Because S is extreme,
δ(p(u)↓) > δ(S), which implies

δ(p(u)↓, S − p(u)↓) > δ(S − p(u)↓, u↓ ∪ v↓) ≥ δ(S − p(u)↓, v↓).

Adding δ(v↓, p(u)↓) to both sides gives δ(u↓ ∪ p(u)↓, p(u)↓) > δ(S, v↓) = δ(u↓ ∪ v↓, v↓), which con-
tradicts minimality in (P').

Case 2: v ∈ p(u)↓ − p(u). Let X = u↓ ∪ p(u)↓ ( S and Y = S \ X = p(u)↓ \ v↓. Because S is
extreme,

δ(X) > δ(S) =⇒ δ(X,Y ) > δ(Y, u↓ ∪ v↓) ≥ δ(Y, v↓).

Adding δ(X, v↓) to both sides gives δ(X, p(u)↓) > δ(S, v↓), or in other words, δ(u↓ ∪ p(u)↓, p(u)↓) >

δ(u↓ ∪ v↓, v↓), which contradicts minimality in (P').

5.4.3 Find the Second Branch

We would now like to identify a second branch to locate all extreme sets. Our key observation is
that if S = u↓ ∪ v↓ is extreme, then for any w that is incomparable to both u and v, δ(w↓) > δ(S)
because w↓ ( S. We call this the subtree cut condition:

∀w, w⊥u, w⊥v : δ(w↓) > δ(S) (S)

Therefore, δ(S) is less than the minimum subtree cut in all branches other than u’s and v’s (or
equivalently, p(u)’s by Lemma 5.12).

Next, define the optimal partner opt(u) = arg minv∈p(u)↑ δ(u
↓ ∪ v↓). We only calculate the

optimal partners for u ∈ u↑0, which can be done in Õ(m) time. For each branch, calculate the
minimum cut value among all subtrees on the branch. List the values as a sequence to perform
range minimum queries.

Lemma 5.13. Let u1 be the highest node on main branch u↑0 such that u↓1 ∪ opt(u1)↓ satisfies subtree

cut condition (S). Then, any extreme set S = u↓ ∪ v↓ with u ∈ u↑0 has v ‖ opt(u1).

20



Figure 4: Proof of Lemma 5.13. Left: the second case where u is above u1. Right: the third case
where u is below u1.

Proof. For any extreme set S = u↓ ∪ v↓ with u ∈ u↑0, we define u1 as in the lemma. Assume for

contradiction that v ⊥ opt(u1). We case on the location of u: either u = u1, or u ∈ u↑1 − u1, or

u ∈ u↓1 − u1. Note that u ‖ u1 because both are in u↑0.
First, suppose that u = u1. Then opt(u1) = opt(u), which is in p(u)↑ by definition of opt(u).

Vertex v, as a partner of u, is also in p(u)↑ by Lemma 5.12. This contradicts v ⊥ opt(u1).
Second, suppose that u ∈ u↑1−u1. By definition of u1, we have that u↓ ∪ opt(u)↓ does not satisfy

subtree cut condition (S), since otherwise u would be a better choice than u1. Since u↓ ∪ opt(u)↓

does not satisfy (S), there exists some w incomparable to both u and p(u) such that δ(w↓) ≤
δ(u↓ ∪ opt(u)↓). By definition of opt(u), we have δ(u↓ ∪ opt(u)↓) ≤ δ(S). These two inequalities
implies δ(w↓) ≤ δ(S). However, since v ‖ p(u) by Lemma 5.12 and w is incomparable to both u
and p(u), we have w↓ ( S, and since S is extreme, this implies that δ(w↓) > δ(S), a contradiction.

The final case is u ∈ u↓1 − u1. Let S1 = u↓1 ∪ opt(u1)↓. The sets S1 and S cross because u ‖ u1
and v ⊥ opt(u1). Since S is extreme, we have δ(S \ S1) > δ(S), so by posi-modularity, we have
δ(S1 \ S) < δ(S1). Notice that S1 \ S = v↓. It follows that δ(v↑) < δ(S1), which contradicts S1’s
subtree cut condition (S).

5.4.4 Reducing to the Two Subtrees Case

Let v0 be the leaf of the second branch guaranteed by Lemma 5.13. To find all extreme sets in
the form of complement of two subtrees, u↓ ∪ v↓, we only need to find the extreme sets with two
endpoints u and v on the branches of u0 and v0. Now we can contract edges except those on u↑0
and v↑0, so that the tree only consists of two branches. Split the two branches by deleting the tree
edge incident to the root on the branch of v0. Then, contract u0 and v0 into a single vertex, and
declare it as the new root; see Figure 5. It is easy to see that any extreme set that was previously
of the form u↑ ∪ v↑ for u ∈ u↑0 and v ∈ v↑0 is now a union of two subtrees, or just one subtree if v is
a child of root. Therefore, we have reduced to the two subtrees case, as desired.

6 Merging Two Laminar Trees

In this section, we prove the lemma that merges two laminar families and preserves all extreme sets
in both families.

21



Figure 5: Reduction from complement case to subtrees case after fixing 2 branches

Lemma 6.1. Given two laminar families X and Y on the vertex sets, Algorithm 2 constructs a
merged laminar family R containing all extreme sets in X ∪ Y (and possibly other sets in X ∪ Y)
in Õ(m) time.

We represent each laminar family by a tree to ensure its representation size is linear and not
quadratic. In the tree representation, each node corresponds to a set in the family, except the root
which represents all vertices V . Each node x has a (possibly empty) set of vertices in V associated
with it, and the corresponding set in the laminar family is all vertices in V associated with any
node in the subtree rooted at x. Each vertex in V is associated with exactly one node. Note that
we do not require that only leaves have a nonempty set of associated vertices. This is because even
if we start with a tree with only nonempty sets at leaves, the algorithm’s operations on the tree
may produce internal vertices with nonempty sets.

Our algorithm requires the definition of a bough of a tree, as follows.

Definition 6.2. A bough is a tree path that starts at a leaf, extends toward the root and stops
before reaching the first node with more than one children.

Our algorithm decomposes the laminar trees into disjoint boughs. Initially all vertices are in
the leaves. But as we proceed, the boughs will be contracted to their parents, so there may be
vertices in internal nodes.

6.1 Removing Inconsistent Sets

We start by analyzing Algorithm 2.

Definition 6.3. We define a set U ⊆ V to be consistent with W ⊆ V if δ(U \W ) > δ(U) or W is
disjoint from U . We define U to be consistent with a laminar family Y if U is consistent with all
W ∈ Y.

Fact 6.4. An extreme set is consistent with any vertex set.

Lemma 6.5. Consider a bough of X consisting of nested sets U1 ⊆ U2 ⊆ · · · ⊆ Uk. There is
an algorithm that outputs all sets Ui for which there exists W ∈ Y with δ(U \ W ) ≤ δ(U) and
U ∩W 6= ∅. The algorithm takes Õ(m) preprocessing time and then handles each bough in time
proportional to (up to polylogarithmic factor) the size of the induced subgraph G[Uk].

22



Algorithm 2: Verify(X ,Y)

Input : Laminar trees X and Y on vertex set V .
Output: Laminar tree of X ∗ = X \ {U ∈ X : ∃W ∈ Y, δ(U \W ) ≤ δ(U) and U ∩W 6= ∅}.

1 Let X ∗ = X .
2 while X is nonempty do
3 foreach bough B of X do
4 Using Lemma 6.5, find all sets U ∈ B such that ∃W ∈ Y, δ(U \W ) ≤ δ(U) and

U ∩W 6= ∅. Add all sets in B to X ∗ except for the ones we found.
5 Remove the bough from X , and contract the vertices in the bough to the bough’s

parent node.
6 end

7 end
8 return X ∗.

Proof. Initialize a dynamic tree on the tree T representing laminar family Y with initial value 0
on each node, along with a Boolean flag that is initially false. Our goal is to maintain, for each
W ∈ Y, the value δ(U \W ) − δ(U). We are interested in whether this value is at most 0 for all
W with U ∩ W 6= ∅. Throughout, we abuse notation by referring to each node and its set W
interchangeably.

Iterate through U1, U2, . . . , Uk in that order. For each Ui, we loop through the vertices u ∈
Ui \ Ui−1 one by one in arbitrary order u1, u2, . . . , u`. For convenience, define Ui−1,j = Ui−1 ∪
{u1, . . . , uj}. For each vertex uj , do the following.

1. For each incident edge (uj , v) where v ∈ Ui−1,j−1, add twice the weight to each node on the
path from v to the lowest common ancestor of uj and v (excluding the LCA).

2. Add 2δ(uj , Ui−1,j−1) − δ(uj) to each node on the path from uj to root. Each such node has
its Boolean flag set to true.

After these operations, the algorithm queries the minimum value over all nodes whose flag is set to
true. If this minimum value is at most 0, then we add Ui to the output set.

For convenience, define U0 = ∅. We prove by induction on i ≥ 0 that after processing Ui,
each node in the dynamic tree carries value δ(Ui \W ) − δ(Ui). This is vacuously true for i = 0
since U0 = ∅ and each node carries value 0. To prove each inductive step, we perform a separate
induction on vertices u1, . . . , uj−1 ∈ Ui \ Ui−1. We claim that after inserting uj , each node in
the dynamic tree with corresponding set W ⊆ V carries value δ(Ui−1,j \ W ) − δ(Ui−1,j) where
Ui−1,j = Ui−1 ∪ {u1, . . . , uj} = Ui−1,j−1 ∪ {uj}. This is true for j = 0 by induction on i − 1. For
each set W , consider the change of its value after adding uj into Ui−1,j−1, that is

∆j = (δ(Ui−1,j \W )− δ(Ui−1,j))− (δ(Ui−1,j−1 \W )− δ(Ui−1,j−1)).

There are two cases. If uj /∈W ,

∆j = 2δ(uj , Ui−1,j−1 ∩W ).

If uj ∈W ,
∆j = 2δ(uj , Ui−1,j−1)− δ(uj).

23



We show that this change is correctly accounted for in the dynamic tree updates. For each set
W not containing uj , each edge (uj , v) with v ∈ Ui−1,j−1 ∩W has its weight added twice to the
value of W , since W as an ancestor of v but not an ancestor of uj on T . Therefore the value of
W is increased by 2δ(uj , Ui−1,j−1 ∩W ), as expected. Note that in step (1), for each edge (uj , v),
we only add its weight to sets not containing uj . For each set W containing uj , it lies on the path
from uj to the root, and its value is increased by 2δ(uj , Ui−1,j−1)− δ(uj) in step (2), as expected.
These changes match the required net change ∆j .

It remains to show that a set Ui should be output if and only if there is a node in the tree with
value at most 0 and Boolean flag set to true. We have already shown that any node W of value
at most 0 satisfies δ(U \W ) − δ(U) ≤ 0, so it remains to show that a node W is flagged true if
and only if U ∩W 6= ∅. Observe that for each vertex uj processed, we flag the nodes from uj to
the root as true; their sets are precisely those that contain uj . Since the sets Ui are nested, once
we finished processing Ui, the nodes uj we have processed on iterations up to i are precisely Ui. In
other words, a set W is flagged true if and only if U ∩W 6= ∅, as desired.

Finally, we discuss running time. All dynamic tree operations take O(log n) time. The total
number of edges (uj , v) for v ∈ Ui−1,j−1, summed over all i and j, is at most the number of edges
in the induced subgraph G[Uk].

Lemma 6.6. Algorithm 2 takes Õ(m) time.

Proof. For each bough with root Uk, we spend time proportional to the number of edges in induced
graph G[Uk], and then we contract all vertices in Uk into a single vertex. The contraction removes
all edges in the induced graph G[Uk], so the decrease in number of edges pays for the processing
time of the bough. Since there are m initial edges, the total running time becomes Õ(m).

Corollary 6.7. Given two laminar families X and Y, let X ∗ = Verify(X ,Y) and Y∗ = Verify(Y,X ).
Then, X ∗ ∪ Y∗ is laminar.

Proof. Assume for contradiction that some U ∈ X ∗ ⊆ X crosses some W ∈ Y∗ ⊆ Y. Then
U ∩W 6= ∅, and by posi-modularity, either δ(U \W ) ≤ δ(U) or δ(W \U) ≤ δ(W ). By Lemma 6.5,
either U or W will be removed in Algorithm 2, which contradicts the definitions of X ∗ and Y∗.

Given laminar families X ,Y and their tree structures, we can therefore run Algorithm 2 to
obtain X ∗,Y∗ such that X ∗ ∪ Y∗ is a laminar family containing all extreme sets in X ∪Y. We can
easily recover the tree structures of X ∗ and Y∗ as well. It remains to recover the tree structure of
X ∗ ∪ Y∗.

Lemma 6.8. Assume that X ∗, Y∗, and X ∗ ∪ Y∗ are all laminar families. There is an O(n log n)
algorithm that computes the tree structure of X ∗ ∪ Y∗.

Proof. Let TX ∗ and TY∗ be the tree structures for X ∗ and Y∗, respectively. We first find, for each
set Z ∈ X ∗ ∪ Y∗, (a pointer to) the parent node of Z in the tree structure T of X ∗ ∪ Y∗. Pick an
arbitrary vertex z ∈ Z. Since X ∗ ∪ Y∗ is laminar, the parent of Z is exactly the set Z ′ ∈ X ∗ ∪ Y∗
satisfying z ∈ Z ′ and |Z ′| > |Z| and |Z ′| is as small as possible given these two constraints. The set
Z ′ can be found by computing a binary search on the path from z to the root on the tree structures
for X ∗ and Y∗ and taking the best Z ′ found. If there is a tie, as in both X ∗ and Y∗ include the
parent Z ′, then we take the pointer to the one in X ∗, and we can ignore the duplicate one in Y∗ in
the next step of the algorithm.

24



By computing all the parents (and ignoring the duplicate nodes), we can build the tree T for
X ∗ ∪ Y∗ where each node corresponds to the same set as its pointer in the tree structure of X ∗ or
Y∗. It remains to compute the set of vertices associated with each node. For each node Z ∈ X ∗
or Z ∈ Y∗ with children Z1, . . . , Zk in TX ∗ or TY∗ respectively, we check whether each vertex in
Z \

⋃
i Zi is in any child of Z in T . This can be done by first marking the pointer of each child

of Z in T (which is a node in TX ∗ or TY∗), and then testing, for each vertex v ∈ Z \
⋃
i Zi and

for both TX ∗ and TY∗ , whether the node associated with v in either TX ∗ or TY∗ is a descendant of
a marked node. This can be done in O(log n) time per vertex v using tree data structures. Any
vertex v ∈ Z that is not a descendant of any marked node is associated with Z in the new tree T .
As for running time, marking the pointer of each child of Z in T takes O(log n) times the number
of children, which is O(n log n) time summed over all Z. Also, we can iterate through v ∈ Z \

⋃
i Zi

since these are precisely the nodes associated with Z in either TX ∗ or TY∗ , and the descendant
queries take O(|Z \

⋃
i Zi| log n) time overall, which again sums to O(n log n) over all Z.

25



References

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for
gomory-hu tree in unweighted graphs. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC ’21, pages 1725–1737, New
York, NY, USA, 2021. ACM. 3

[Ben94] András A. Benczúr. Augmenting undirected connectivity in rnc and in randomized
Õ(n3) time. In Proceedings of the 26th Annual ACM Symposium on Theory of Com-
puting, STOC ’94, page 658–667, New York, NY, USA, 1994. ACM. 2

[BFJ95] Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local
edge-connectivity in mixed graphs. SIAM J. Discret. Math., 8(2):155–178, 1995. 9

[BHKP07] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. An
õ(mn) gomory-hu tree construction algorithm for unweighted graphs. In Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, STOC ’07, pages 605–
614, New York, NY, USA, 2007. ACM. 9

[BK00] András A. Benczúr and David R. Karger. Augmenting undirected edge connectivity
in Õ(n2) time. J. Algorithms, 37(1):2–36, October 2000. 1, 2

[CH03] Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner edge
connectivity. In Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, STOC ’03, pages 167–176, New York, NY, USA, 2003. ACM. 9

[CLP22] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting connectivity via isolating
cuts. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA ’22, pages 3237–3252, New York, NY, USA, 2022. ACM. 1, 2, 3

[CS89] Guo-Ray Cai and Yu-Geng Sun. The minimum augmentation of any graph to a
k-edge-connected graph. Networks, 19(1):151–172, 1989. 1, 2

[Edm73] Jack Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96,
1973. 9

[Fra92] András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discrete Mathematics, 5(1):25–53, February 1992. 1, 2

[Gab94] Harold N. Gabow. Efficient splitting off algorithms for graphs. In Proceedings of the
26th Annual ACM Symposium on Theory of Computing, STOC ’94, page 696–705,
New York, NY, USA, 1994. ACM. 1, 2

[Gab16] Harold N. Gabow. The minset-poset approach to representations of graph connectivity.
ACM Trans. Algorithms, 12(2):24:1–24:73, 2016. 1, 2

[GLP21] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse
maxflow faster than Goldberg-Rao. In IEEE 62nd Annual Symposium on Foundations
of Computer Science, FOCS ’21, pages 516–527. IEEE, 2021. 1

26



[GT83] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special
case of disjoint set union. In Proceedings of the Fifteenth Annual ACM Symposium on
Theory of Computing, STOC ’83, page 246–251, New York, NY, USA, 1983. ACM.
11

[Kar99] David R. Karger. Random sampling in cut, flow, and network design problems. Math.
Oper. Res., 24(2):383–413, 1999. 3, 8

[Kar00] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, January
2000. 4

[KS96] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
J. ACM, 43(4):601–640, July 1996. 3

[Li19] Jason Li. Faster minimum k-cut of a simple graph. In IEEE 60th Annual Symposium
on Foundations of Computer Science, FOCS ’19, pages 1056–1077. IEEE, 2019. 4, 12

[Lov79] László Lovász. Combinatorial Problems and Exercises. North-Holland Publishing
Company, Amsterdam, 1979. 2

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-
flows. In IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS
’20, pages 85–92. IEEE, 2020. 3

[Mad78] W. Mader. A reduction method for edge-connectivity in graphs. In B. Bollobás, editor,
Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 145–
164. Elsevier, 1978. 2

[NGM97] Dalit Naor, Dan Gusfield, and Charles U. Martel. A fast algorithm for optimally
increasing the edge connectivity. SIAM J. Comput., 26(4):1139–1165, 1997. 1, 2

[NI97] Hiroshi Nagamochi and Toshihide Ibaraki. Deterministic õ(nm) time edge-splitting in
undirected graphs. J. Comb. Optim., 1(1):5–46, 1997. 1, 2

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly linear
time for dense instances. In 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC ’21, pages 859–869, New York, NY, USA, 2021. ACM. 1

[WN87] Toshimasa Watanabe and Akira Nakamura. Edge-connectivity augmentation prob-
lems. Journal of Computer and System Sciences, 35(1):96–144, 1987. 1, 2

27


	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Reduction to 2-respecting Extreme Sets
	3.1 Iterative Framework for Extreme Sets Algorithm
	3.2 Sparsification and Tree Packing

	4 Reduction to Spiders
	4.1 Centroid Decomposition
	4.2 Reduction from Trees to Spiders

	5 2-respecting Extreme Sets on a Spider
	5.1 Universe 1: One Subtree
	5.2 Universe 2: Complement of One Subtree
	5.3 Universe 3: Two Subtrees
	5.3.1 Lowest Partner Condition

	5.4 Universe 4: Complement of Two Subtrees
	5.4.1 Find Main Branch
	5.4.2 Partner Condition
	5.4.3 Find the Second Branch
	5.4.4 Reducing to the Two Subtrees Case


	6 Merging Two Laminar Trees
	6.1 Removing Inconsistent Sets


