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Abstract

We study the power of multiple choices in online stochastic matching. Despite a long line of
research, existing algorithms still only consider two choices of offline neighbors for each online
vertex because of the technical challenge in analyzing multiple choices. This paper introduces
two approaches for designing and analyzing algorithms that use multiple choices. For unweighted
and vertex-weighted matching, we adopt the online correlated selection (OCS) technique into the
stochastic setting, and improve the competitive ratios to 0.716, from 0.711 and 0.7 respectively.
For edge-weighted matching with free disposal, we propose the Top Half Sampling algorithm. We
directly characterize the progress of the whole matching instead of individual vertices, through
a differential inequality. This improves the competitive ratio to 0.706, breaking the 1− 1

e
barrier

in this setting for the first time in the literature. Finally, for the harder edge-weighted problem
without free disposal, we prove that no algorithms can be 0.703 competitive, separating this
setting from the aforementioned three.
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1 Introduction

Optimization problems in real-life scenarios often need to consider the uncertainties of what will
happen in future. In the multibillion business of online advertising, for example, a platform receives
over time user queries, a.k.a., impressions, and selects advertisements to show immediately when
each impression arrives without accurate knowledge of what impressions will come later.

If the algorithm knows nothing about future impressions, this is modeled by the online bipartite
matching problem of Karp, Vazirani, and Vazirani [22] and its variants. Advertisers and impressions
are vertices on the two sides of a bipartite graph. Advertisers are known to the platform beforehand,
and therefore are called the offline vertices. Impressions arrive over time and are the online vertices.
Edges of the bipartite graph model which advertiser is interested in which impression, e.g., based
on the search keywords. When each online vertex arrives, the algorithm sees its incident edges and
irrevocably decides how to match it right away. Karp et al. [22] studied unweighted matching and
gave a 1− 1

e competitive Ranking algorithm. It means that the expected size of the online matching
is at least 1− 1

e times the maximum matching size in hindsight. They also proved it to be the best
possible under worst-case analysis.

Online advertising platforms, however, have a lot of data which provide information about future
impressions. Can we use the information to break the 1− 1

e barrier? Modeling the information as
a distribution from which each online impression is drawn, Feldman et al. [13] proposed the online
stochastic matching model and gave an affirmative answer to this question assuming integral arrival
rates of online vertices.1 Their algorithm builds on an idea called the power of two choices, originally
from online load balancing [2, 27]. For each online vertex, the algorithm finds two candidate offline
neighbors based on the distribution of online vertices, independent of which offline vertices have
been matched ; it then matches the online vertex to the first unmatched candidate if there is any. A
long line of subsequent research not only improved the competitive ratio, but also generalized the
results to vertex-weighted matching [5, 16, 19] and edge-weighted matching [5, 15], and to arbitrary
arrival rates [16, 19, 25]. Despite much progress, these improved algorithms are still under the above
framework of the power of two choices.

This paper asks two natural questions: (1) Why not examine multiple choices for each online
vertex? (2) Why not focus on unmatched neighbors when selecting candidates? To our knowledge,
previous algorithms did not make these obvious improvements mainly because of the difficulties in
the analysis. Existing analyses rely on fine-grained characterizations of the match probabilities of
offline vertices. On the one hand, restricting to two choices implies that each offline vertex can
only be matched by two means: as the first candidate, or as the second candidate when the first is
already matched. The analyses then consider the probabilities of the two cases separately. On the
other hand, selecting candidates independent of past matched events ensures that the match events
of different offline vertices are almost independent (e.g., [16, 19]). The independence substantially
simplifies the calculations of the offline vertices’ matched probabilities.

1.1 Our Contributions

This paper proposes two approaches to overcome the above difficulties. The first approach adopts a
recent technique called online correlated selection (OCS) [4, 11, 14, 28] into the stochastic setting,
so that we can make adaptive matching decisions with only unmatched neighbors as candidates,
and can still analyze the matched probabilities of offline vertices. The second approach sidesteps
the characterization of individual offline vertices’ matched probabilities, and considers the online
algorithm’s overall progress directly. Both approaches lead to improved algorithms and competitive

1That is, the expected number of each type of online vertex realized in the bipartite graph is a positive integer.
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Table 1: Summary of Results. We round down algorithmic results and round up hardness results,
to three decimal places. The results in this paper are on the right of the arrows in bold.

Algorithms Hardness

Unweighted 0.711 [16] → 0.716 (§4) 0.823 [25]

Vertex-weighted 0.700 [16] → 0.716 (§4) 0.823 [25]

Edge-weighted (Free Disposal) 0.632 [13] † → 0.706 (§3) 0.823 [25]

Edge-weighted 0.632 [13] † 0.823 [25] → 0.703 (§5.1)

† Although Feldman et al. [13] only analyzed unweighted matching, they effectively showed that every edge is
matched with probability 1− 1/e times the LP variable, which is sufficient for edge-weighted matching as well.

ratios in various settings of online stochastic matching. We next briefly introduce our algorithms
and techniques in the Poisson arrival model, in which online vertices of each type independently
follow a Poisson process with time horizon [0, 1]. This is asymptotically equivalent to the original
online stochastic matching model [16]. Table 1 gives a summary of our improved competitive ratios
for general arrival rates; see Subsection 1.2 for previous results that assumed integral arrival rates.

Poisson Online Correlated Selection. Like previous works, we rely on the optimal solution
of a linear program (LP) relaxation. For any online vertex type i and offline vertex j, the LP gives
0 ≤ xij ≤ 1 as a reference of how likely a type i online vertex should be match to j. Intuitively,
we may want to match a type i online vertex to each unmatched neighbor j with probability
proportional to xij . Inspired by the multi-way semi-OCS of Gao et al. [14], we propose the Poisson
OCS which further adjusts the match probabilities based on the LP matched level xj =

∑

i xij
of offline vertices j. If a type i online vertex arrives at time t, Poisson OCS matches it to each
unmatched neighbor j with probability proportional to etxjxij . The exponential weights come
from an informal invariant. If we match each type i online vertex independently to a neighbor j
(matched or not) with probability xij , the probability that an offline vertex j is still unmatched at
time t equals e−txj . Since Poisson OCS is better, this unmatched probability is at most e−txj . The
expected mass of matching i to j at time t in Poisson OCS is therefore at most etxjxij · e−txj = xij .

Poisson Matching Linear Program Hierarchy. Our Poisson OCS analysis requires that the
LP does not match the online vertices close to deterministically. If every online vertex type i is fully
matched to a single offline neighbor, the competitive ratio is only 1− 1

e . Fortunately, existing LPs in
the literature satisfy this requirement. We first study the Natural LP and a corresponding Converse
Jensen Inequality of Huang and Shu [16], which already allow us to improve the competitive ratio
of vertex-weighted online stochastic matching from 0.7 to 0.707. Moreover, we introduce a Poisson
Matching LP Hierarchy that contains the Natural LP at its first level. We give a polynomial-time
separation oracle for the LP at any constant level, and thus show its computational tractability.
Finally, we prove a Converse Jensen Inequality for the second level Poisson Matching LP, and get
the following result for unweighted and vertex-weighted matching.

Informal Theorem 1. Poisson OCS with the second level Poisson Matching LP is a polynomial-
time, 0.716-competitive algorithm for unweighted and vertex-weighted online stochastic matching.

Top Half Sampling. We next turn to edge-weighted matching. First consider the free disposal
model which allows the algorithm to rematch a matched offline vertex to a heavier edge. In online

2



advertising, it means that we show an advertisement multiple times, but only charge the advertiser
for the most valuable impression. We design the Top Half Sampling algorithm. When a type i online
vertex comes, first consider the marginal weight of matching it to each offline neighbor j: if j is
currently matched to an edge with weight w, the marginal equals max{wij−w, 0}. Next, we sort the
offline neighbors by descending order of the marginals, double the LP matched probability xij , and
truncate the excessive probabilities if the total exceeds 1. For example, if there are three neighbors
sorted by the marginals and the xij’s equal 0.4, 0.4, and 0.2, then the adjusted probabilities are
0.8, 0.2, and 0.0. That is, the algorithm focuses on the most valuable half of the neighbors. Finally,
match to an offline neighbor according to the adjusted probabilities.

Whole-match Analysis via Differential Inequality. Top Half Sampling biases towards some
of the offline vertices by definition. Therefore, some offline vertices are matched faster than what the
LP solution indicates, and the others are matched slower. This calls for an analysis that considers
the progress of the whole matching instead of individual offline vertices. Indeed, our analysis will
characterize the whole-match progress by a linear differential inequality. Let Ā(t) be the difference
between the LP optimal and the algorithm’s expected objective at any time t. We will establish
c0Ā(t) + c1

d
dt Ā(t) + c2

d2

dt2
Ā(t) ≤ 0 for some positive coefficients c0, c1, c2. Intuitively, it means that

the farther the algorithm’s objective is from the LP optimal (i.e., if Ā(t) is large), and the faster

the marginal match rate decreases (i.e., if d2

dt2
Ā(t) is large), the larger the current match rate would

be (i.e., d
dtĀ(t) must be sufficiently negative). This breaks the 1− 1

e barrier in edge-weighted online
stochastic matching with free disposal for the first time in the literature for arbitrary arrival rates.

Informal Theorem 2. Top Half Sampling is a polynomial-time, 0.706-competitive algorithm for
edge-weighted online stochastic matching with free disposal.

On Multiple Choices. Informally, for each online vertex, previous algorithms based on the
power of two choices first sample two offline vertices according to the LP solution, oblivious to the
previous matching decisions. These algorithms then match the online vertex to the first unmatched
sampled offline vertex. The natural extension is to sample more than two offline vertices in the
first step. In the limit when we sample an infinite number of offline vertices, it becomes sampling
without replacement. Poisson OCS is a sampling without replacement with adjusted marginals.
Top Half Sampling is also a sampling without replacement with adjusted marginals for any online
type, unless the sum of LP variables corresponding to matched neighbors exceeds half the type’s
arrival rate. In this sense, our algorithms use the power of multiple choices.

Hardness Results. For the harder edge-weighted model without free disposal, we prove that no
algorithms can achieve the competitive ratios in the above positive results. This holds even if we
have unlimited computational power. Although this hardness does not rule out breaking 1− 1

e , it
separates the edge-weighted problem without free disposal from the other three settings.

Informal Theorem 3. No algorithm can be 0.703-competitive for edge-weighted online stochastic
matching without free disposal.

Finally, we prove that no algorithm can be more than 0.7062 competitive compared to the LP
of Jaillet and Lu [19]. Thus, more expressive LPs such as the Natural LP and Poisson Matching
LPs are necessary for getting our improvements in unweighted and vertex-weighted matching.

2It is 1− 1

1−ln 2

(

1

2e
−

ln 2

e2

)

. We incorrectly round it down to stress it is the same ratio as in Informal Theorem 2.
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Organization. We will first present Top Half Sampling in Section 3 because of its simplicity,
followed by Poisson OCS in Section 4. These two sections are self-contained and therefore can be
read separately. Section 5 will prove the hardness results.

1.2 Other Related Work

The literature has obtained better competitive ratios when the online types have integral arrival
rates. The best known ratio for unweighted and vertex-weighted matching is 0.7299, and the best
result for the edge-weighted case is 0.705, due to Brubach, Sankararaman, Srinivasan, and Xu [5].
Therefore, our upper bound of 0.703 for edge-weighted matching with general arrival rates shows
that the general problem is strictly harder than the special case of integral arrival rates. Further,
Brubach et al. [5] and Haeupler et al. [15] partially employed three choices in their algorithms for
the special case of integral arrival rates.

The optimal Ranking algorithm of Karp et al. [22] for the worst-case model of online matching
was generalized to vertex-weighted matching by Aggarwal et al. [1]. Feldman et al. [12] noted that
no non-trivial competitive ratio is possible for edge-weighted online matching without free disposal.
They introduced the free disposal model and gave an optimal 1− 1

e competitive algorithm under a
large-market assumption. Mehta et al. [26] introduced another notable variant of online matching
called AdWords. They gave an optimal 1− 1

e competitive algorithm also assuming a large market.
These results were later simplified and unified under the online primal dual framework [6, 7, 8].
The aforementioned OCS technique led to the first algorithms that improve the 1

2 competitive ratio
of greedy in the general cases of edge-weighted matching [4, 11, 14, 28] and AdWords [18].

The literature has also studied models between the worst-case and stochastic models, notably
the unknown IID model and the random arrival model. The former assumes that online vertices are
IID like online stochastic matching, but the algorithm does not know the distribution. The latter
considers worst-case bipartite graphs like the worst-case model, but assumes a random arrival order
of online vertices. These models allow us to break the 1− 1

e barrier in unweighted matching [21, 24]
and vertex-weighted matching [17, 20], to get a 1

e competitive edge-weighted algorithm without free
disposal [23], and even to be 1− ǫ competitive in AdWords under a large-market assumption [9].

2 Preliminaries

Poisson Arrival Model. Consider a set I of online vertex types and a set J of offline vertices.
Each online type i arrives independently following a Poisson process with time horizon 0 ≤ t ≤ 1
and arrival rate λi. Define λS =

∑

i∈S λi for any subset S of online types. We refer to Λ = λI as the
(expected) number of online vertices. Online vertices of type i are adjacent to a subset Ji of offline
vertices. We denote the set of edges as E = {(i, j) : i ∈ I, j ∈ Ji}, and let Ij = {i ∈ I : (i, j) ∈ E}
be the set of online types adjacent to any offline vertex j. Each edge (i, j) has a positive weight
wij . We want to maximize the expected total weight of the matched edges. The problem is vertex-
weighted if wij = wj for all edges (i, j) in which case the objective becomes maximizing the expected
total weight of the matched offline vertices. It is unweighted if wij = 1 for all edges (i, j) in which
case the objective is to maximize the expected cardinality of the matching.

(Original) Online Stochastic Matching Model. The model by Feldman et al. [13] considers a
fixed integral number of online vertices Λ. The online vertices arrive one by one, each independently
draws a type i with probability λi

Λ . The rest is the same as the Poisson arrival model. Huang and
Shu [16] proved an asymptotic equivalence between the two models.
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Online Algorithms. An online algorithm immediately and irrevocably decides how to match
each online vertex when it arrives. This paper considers the worst-case competitive analysis which
examines the ratio of an online algorithm’s expected objective to the expected optimal objective
in hindsight, i.e., that from always choosing the optimal matching based on the realized bipartite
graph. The competitive ratio of an online algorithm is the infimum of this ratio. We also say that
an online algorithm is Γ-competitive if its competitive ratio is at least Γ.

The problem admits free disposal if each offline vertex can be matched multiple times, yet only
the heaviest edge matched to it contributes to the objective. This effectively allows the algorithm
to dispose earlier lighter edges for free. Note that free disposal is irrelevant in the vertex-weighted
and unweighted problems since all edges adjacent to an offline vertex have the same weight.

Natural Linear Program. Like previous works, our analyses compare the algorithms’ objectives
to the optimal value of a linear program (LP) relaxation of the online stochastic matching problem.
Our starting point is the Natural LP introduced by Huang and Shu [16] (see also Torrico et al. [29]
for a version for online stochastic matching with integral arrival rates), which is the tightest in the
literature thus far:

maxx≥0

∑

(i,j)∈E

wijxij s.t. ∀i ∈ I :
∑

j∈Ji

xij ≤ λi , ∀j ∈ J,∀S ⊆ Ij :
∑

i∈S

xij ≤ 1− e−λS .

Let Opt be the optimal LP objective. We abuse notation and let xij also denote the optimal
solution of the natural LP (and of the tighter LPs that we will introduce in this paper). Further
artificially define xij = 0 for any (i, j) /∈ E for notational simplicity. Finally, let ρij =

xij

λi
which

may be interpreted as the probability that an online vertex of type i is matched to offline vertex j.

Theorem 1 (c.f., Huang and Shu [16]). The natural LP can be solved in polynomial time.

Theorem 2 (Converse Jensen Inequality, c.f., Huang and Shu [16]). For any convex f : [0, 1] → R

such that f(0) = 0, and any offline vertex j ∈ J with xj =
∑

i xij:

∑

i∈I

λif
(xij
λi

)

≤
∫ − ln(1−xj)

0
f
(
e−λ

)
dλ .

Denote function max{x, 0} as x+. Considering f(x) =
(
x− 1

2

)+
gives the next corollary.

Corollary 3. For any offline vertex j ∈ J ,
∑

i∈I

(
xij − λi

2

)+ ≤ 1−ln 2
2 .

3 Edge-weighted Matching with Free Disposal

3.1 Top Half Sampling

Suppose that an online vertex of type i arrives at time 0 ≤ t ≤ 1. Let wj(t) denote the maximum
edge-weight matched to j right before time t. The marginal weight of edge (i, j) is:

wij(t)
def
=

(
wij − wj(t)

)+
.

Further let ≻i,t be the total order over offline neighbors in descending order of the marginal
weights, breaking ties arbitrarily. Hence, if j 6= j′ ∈ Ji and j ≻i,t j

′ then wij(t) ≥ wij′(t). Naturally
j �i,t j

′ means that either j ≻i,t j
′ or j = j′.
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wij(t) = 2

0
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λi = 1

xij
=
0.1
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0.3

0.4

0.5

θ

Figure 1: Illustration of how Top Half Sampling matches an online vertex of type i arriving at t.

Finally, define σi,t : [0, λi) → Ji such that for any θ ∈ [0, λi), σi,t(θ) satisfies:

∑

j∈Ji:j≻i,tσi,t(θ)

xij ≤ θ <
∑

j∈Ji:j�i,tσi,t(θ)

xij .

If θ ≥ ∑

j∈Ji
xij, artificially define σi,t(θ) =⊥ as a dummy with zero marginal weight. Intuitively,

σi,t(θ) is the θ-th heaviest neighbor of online vertex type i at time t where each edge occupies
xij “slots”. The algorithm matches the online vertex to j = σi,t(θ) for θ sampled uniformly from
[0, λi

2 ). See Figure 1 for an illustration.
We may interpret the 1− 1

e competitive Suggested Matching algorithm of Feldman et al. [13] as
sampling θ uniformly from [0, λi), and defining σi,t by an arbitrary order of offline neighbors, not
necessarily the descending order of marginal weights. Our algorithm, by contrast, samples from
the top half of offline neighbors by the marginal weights. We therefore call it Top Half Sampling.

Top Half Sampling

Input at the beginning:

• Online types I, offline vertices J , edges E;

• Arrival rates (λi)i∈I , edge weights (wij)(i,j)∈E ;

• Fractional matching (xij)(i,j)∈E that satisfies Corollary 3, e.g., the Natural LP solution.

When an online vertex of type i ∈ I arrives at time 0 ≤ t ≤ 1:

• Sample θ uniformly from [0, λi

2 );

• Match the online vertex to j = σi,t(θ).

3.2 Analysis

Theorem 4. Top Half Sampling is Γ-competitive for edge-weighted online stochastic matching with
free disposal where:

Γ = 1− 1

1− ln 2

( 1

2e
− ln 2

e2

)

> 0.7062 .

Recall that Opt is the optimal LP objective. For any time t, let A(t) denote the objective of
the algorithm right before time t, and further define Ā(t) = Opt − A(t). Our main lemma is the
next differential inequality. We next prove Theorem 4 assuming the lemma’s correctness, deferring
the lemma’s proof to the end of section.
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Lemma 5. For any 0 ≤ t ≤ 1:

(2 + 2 ln 2)E Ā(t) + (3 + ln 2)
d

dt
E Ā(t) +

d2

dt2
E Ā(t) ≤ 0 . (1)

The following boundary conditions follow from the definitions of Ā(t) and Top Half Sampling.
For completeness, Appendix A.1 includes the proof of Lemma 7.

Lemma 6. Ā(0) = Opt.

Lemma 7. d
dtEĀ(t = 0) ≤ −Opt.

Proof of Theorem 4. By the differential inequality and boundary conditions in Lemmas 5, 6 and 7:

EĀ(1)

Opt
≤ 1

1− ln 2

( 1

2e
− ln 2

e2

)

,

with equality achieved when for any 0 ≤ t ≤ 1:

EĀ(t)

Opt
=

1

1− ln 2

( 1

(2e)t
− ln 2

e2t

)

.

For completeness, Appendix A.2 includes this standard analysis of differential inequality. Now
the theorem follows since the expected objective of Top Half Sampling is EA(1) = Opt−E Ā(1).

3.2.1 Proof of Lemma 5: Unweighted Case

It is instructive to first consider unweighted matching. The unweighted assumption is only used to
relate the differential inequality with our variables; all inequalities and lemmas about the variables
themselves continue to hold in the edge-weighted case. Generalizing to the edge-weighted case will
be relatively straightforward given these ingredients.

For any time t and any edge (i, j), let xij(t) = xij if j is unmatched right before time t, and 0
otherwise. Let xi(t) =

∑

j∈Ji
xij(t) for any online vertex type i. Suppose that an online vertex of

type i arrives at time t. Consider function p(ρ) = min{2ρ, 1}. By definition, Top Half Sampling at
most doubles the LP match probability, and therefore matches this online vertex with probability
p(xi(t)

λi
). Since type i vertices arrive at rate λi, they contribute λi p(

xi(t)
λi

) to the algorithm’s match

rate (i.e., − d
dt Ā(t)). Further let yij(t) be edge (i, j)’s contribution. We have:

∑

j∈Ji

yij(t) = λi p
(xi(t)

λi

)

. (2)

The definition of Top Half Sampling further implies:

λi p
(xi(t)

λi

)

︸ ︷︷ ︸

match rate of i

− λi p
(xi(t)

λi
− xij(t)

λi

)

︸ ︷︷ ︸

max match rate of (i, j′) for j′ 6= j

≤ yij(t)

︸ ︷︷ ︸

match rate of (i, j)

≤ min
{
2xij(t), λi

}

︸ ︷︷ ︸

doubled LP match rate, capped by λi

(3)

We next prove the main lemma about function p.

Lemma 8. For any 0 ≤ ρi ≤ 1 and any ρij ≥ 0 such that
∑

j∈Ji
ρij = ρi:

p(ρi)− ρi ≥
1

2

∑

j∈Ji

(

p(ρi)− p(ρi − ρij)− (2ρij − 1)+
)

.

7



Proof. If ρi ≤ 1
2 , we have p(ρ) = 2ρ on both sides, and (2ρij − 1)+ = 0 for all j. Both sides are ρi.

Next suppose that ρi >
1
2 . The left-hand-side then equals 1− ρi.

If ρij > 1
2 for some j, for all other j′ 6= j we have ρi − ρij′ >

1
2 and p(ρi) = p(ρi − ρij′) = 1.

Hence, the right-hand-side equals 1
2

(
1− 2(ρi − ρij)− (2ρij − 1)

)
= 1− ρi.

Otherwise, the right-hand-side is
∑

j

(
1− p(ρi− ρij)

)
. Since 1− p(ρi− ρij) is convex in ρij , it is

maximized when there are j1, j2 with ρij1 = 1
2 and ρij2 = ρi − 1

2 , with maximum value 1− ρi.

Proof of Eqn. (1). We shall prove it for any time t even conditioned on the randomness before
time t both in the Poisson arrivals and in the algorithm. The remaining argument omits t in the
variables for notational simplicity. Since yij is the match rate of edge (i, j), let yj =

∑

i yij be the
total match rate of offline vertex j. Next we write the three terms of the differential inequality by
our notations. The zeroth-order term satisfies:

Ā ≤
∑

i∈I

xi =
∑

(i,j)∈E

xij .

It holds with equality at time 0. Further, the right-hand-side decreases by at most 1 when an offline
vertex is matched, and the left decreases by exactly 1. The first-order and second-order terms are:

d

dt
Ā = −

∑

j∈J

yj

d2

dt2
Ā =

∑

j∈J

yj
︸︷︷︸

match rate of j

∑

i∈Ij

(

λi p
(xi
λi

)

︸ ︷︷ ︸

current match rate of i

− λi p
(xi
λi

− xij
λi

)

︸ ︷︷ ︸

match rate of i after matching j

)

.

Writing ∆ij = (2xij − λi)
+ and ∆j =

∑

i∈Ij
∆ij , Equation (3) implies that:

yj ≤
∑

i∈Ij

min
{
2xij , λi

}
= 2

∑

i∈Ij

xij −
∑

i∈Ij

∆ij ≤ 2−∆j . (4)

We can therefore relax the second-order term as follows. This relaxation is superfluous in
unweighted matching but will be necessary in the edge-weighted case.

d2

dt2
Ā =

∑

j∈J

yj
∑

i∈Ij

(

λi p
(xi
λi

)

− λi p
(xi
λi

− xij
λi

)

−∆ij

)

+
∑

j∈J

yj∆j

≤
∑

j∈J

(
2−∆j

)∑

i∈Ij

(

λi p
(xi
λi

)

− λi p
(xi
λi

− xij
λi

)

−∆ij

)

+
∑

j∈J

yj∆j .

Finally, Corollary 3 can be restated as for any j ∈ J :

∆j ≤ 1− ln 2 . (5)

Replacing the three terms of differential inequality (1) by the above relaxations and rearranging
terms, it reduces to the following lemma.

Lemma 9. Suppose that nonnegative (xij)(i,j)∈E, (yij)(i,j)∈E and (∆j)j∈J satisfy Equations (2),
(3), and (5). Further suppose that xi =

∑

j xij ≤ λi, yj =
∑

i yij, and ∆ij = (2xij − λi)
+.3 Then:

∑

j∈J

(
2−∆j

)∑

i∈Ij

(

λi p
(xi
λi

)

−λi p
(xi
λi

−xij
λi

)

−∆ij

)

+
∑

j∈J

yj
(
∆j−1+ln 2

)
≤ (2+2 ln 2)

∑

(i,j)∈E

(
yij−xij

)
.

3This lemma does not assume
∑

i
∆ij = ∆j , an important flexibility that will be useful in the edge-weighted case.
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Proof. Consider any
(
zij

)

(i,j)∈E
that satisfies

∑

j zij = 2
∑

j(yij − xij) for all i ∈ I and:

λi p
(xi
λi

)

− λi p
(xi
λi

− xij
λi

)

−∆ij ≤ zij ≤ yij . (6)

It exists because (i) by the first part of Eqn. (3), the lower bound of zij is smaller than or equal to
the upper bound; (ii) by Lemma 8 and Eqn. (2) the lower bound sums to at most 2

∑

j(yij − xij);
and (iii) by the second part of Eqn. (3) the upper bound sums to at least 2

∑

j(yij − xij).
It remains to prove that:

∑

j

(
2−∆j

)∑

i

zij +
∑

j

yj
(
∆j − 1 + ln 2

)
≤

(
1 + ln 2

)∑

j

∑

i

zij .

Rearrange terms and this becomes:

∑

j

(
1− ln 2−∆j

)∑

i

(
yij − zij

)
≥ 0 ,

which follows by Equations (5) and (6).

3.2.2 Proof of Lemma 5: Edge-weighted Case

Like the unweighted case, we shall prove differential inequality (1) at any time t conditioned on
any realization of randomness before time t both in the Poisson arrivals and in the algorithm. We
will drop t from all variables except for the marginal weights for notational simplicity.

For any edge (i, j) and any weight-level w ≥ 0, define xij(w) = xij if the marginal weight meets
the weight-level, i.e., wij(t) ≥ w, and xij(w) = 0 otherwise. Let xi(w) =

∑

j xij(w). Recall that
yij is the match rate of edge (i, j), i.e., the product of type i’s arrival rate λi and the probability
that Top Half Sampling would match a type i online vertex to j should it arrive at time t; and
yj =

∑

i yij. For any weight-level w ≥ 0 let yij(w) = yij if wij(t) ≥ w and yij(w) = 0 otherwise.
Finally, let yj(w) =

∑

i yij(w).
The zeroth-order term can be bounded by:

Ā ≤
∑

(i,j)∈E

xijwij(t) =

∫ ∞

0

∑

(i,j)∈E

xij(w) dw .

The inequality holds with equality at time 0. Further, when an edge is matched the left decreases
by exactly the marginal weight, while the right decreases by at most the marginal weight.

The first-order term is:

d

dt
Ā = −

∑

(i,j)∈E

yijwij(t) = −
∫ ∞

0

∑

(i,j)∈E

yij(w)dw .

Finally consider the second-order term. The match rate of edge (i, j) is yij. If such an edge is
matched, the marginal weight of any edge (i′, j) decreases from wi′j(t) to (wi′j(t)−wij(t))

+. Hence:

d2

dt2
Ā =

∑

(i,j)

yij
∑

i′

∫ wi′j(t)

(wi′j(t)−wij (t))+

(

λi′ p
(xi′(w)

λi′

)

− λi′ p
(xi′(w)

λi′
− xi′j(w)

λi′

))

dw .

9



Recall that ∆ij =
(
2xij − λi

)+
, ∆j =

∑

i∆ij , and yj ≤ 2−∆j (i.e., Eqn. (4)). Further for any

weight-level w ≥ 0 let ∆ij(w) =
(
2xij(w) − λi

)+ ≤ ∆ij. The definition of function p implies:

λi p
(xi(w)

λi

)

− λi p
(xi(w)

λi
− xij(w)

λi

)

−∆ij(w) ≥ 0 . (7)

We bound the second-order term in two parts. This corresponds to the superfluous relaxation
in the unweighted case, although it is necessary and more involved this time. The two parts are:

∑

(i,j)

yij
∑

i′

∫ wi′j(t)

(wi′j(t)−wij(t))+

(

λi′ p
(xi′(w)

λi′

)

− λi′ p
(xi′(w)

λi′
− xi′j(w)

λi′

)

−∆i′j(w)

)

dw

≤
∫ ∞

0

∑

(i,j)

yij
∑

i′

(

λi′ p
(xi′(w)

λi′

)

− λi′ p
(xi′(w)

λi′
− xi′j(w)

λi′

)

−∆i′j(w)

)

dw (Eqn. (7))

≤
∫ ∞

0

∑

j

(
2−∆j

)∑

i′

(

λi′ p
(xi′(w)

λi′

)

− λi′ p
(xi′(w)

λi′
− xi′j(w)

λi′

)

−∆i′j(w)

)

dw , (Eqn. (4))

and

∑

(i,j)

yij
∑

i′

∫ wi′j(t)

(wi′j(t)−wij (t))+
∆i′j(w) dw ≤

∑

(i,j)

yij
∑

i′

wij(t)∆i′j (∆i′j(w) ≤ ∆i′j)

=
∑

(i,j)

yijwij(t)∆j =

∫ ∞

0

∑

(i,j)

yij(w)∆j dw .

Together we have that d2

dt2
Ā is at most:

∫ ∞

0

∑

j

(
(
2−∆j

) ∑

i

(

λi p
(xi(w)

λi

)

− λi p
(xi(w)

λi
− xij(w)

λi

)

−∆ij(w)
)

+
∑

(i,j)

yij(w)∆j

)

dw .

Now that we have written all three terms as integrals over weight-levels from 0 to ∞, it suffices
to prove that for any weight-level w ≥ 0 (rearranging terms):

∑

j

(
2−∆j

)∑

i

(

λi p
(xi(w)

λi

)

− λi p
(xi(w)

λi
− xij(w)

λi

)

−∆ij(w)

)

+
∑

j

yj(w)
(
∆j − 1 + ln 2

)

≤ (2 + 2 ln 2)
∑

(i,j)

(
yij(w) − xij(w)

)
.

This follows by Lemma 9, as it is easy to verify that the variables satisfy the lemma’s conditions.

4 Vertex-weighted Matching

4.1 Poisson Online Correlated Selection

In vertex-weighted and unweighted matching, we only need to consider the probability of matching
each offline vertex. Our algorithm is an online rounding in the Poisson arrival model. It receives at
the beginning a fractional matching (xij)(i,j)∈E from some polytope, e.g., that of the Natural LP.
Then, when an online vertex of type i arrives, the algorithm matches it to an unmatched neighbor j

10



with positive xij. For any offline vertex j that is matched to xj =
∑

i xij in the fractional matching,
our algorithm shall match j with probability at least Γxj by the end, where Γ is the competitive
ratio for the stochastic matching problem and its value depends on the tightness of the polytope.

Our algorithm and its analysis are inspired by the online correlated selection (OCS) literature,
in particular, by the multi-way semi-OCS of Gao et al. [14]. Hence, we call it Poisson OCS.

Poisson Online Correlated Selection

Input at the beginning:

• Online types I, offline vertices J , edges E;

• Arrival rates (λi)i∈I ;

• Fractional matching (xij)(i,j)∈E such that ∀i ∈ I,
∑

j xij ≤ λi, and ∀j ∈ J,
∑

i xij ≤ 1.

Preprocessing:

• Compute ρij =
xij

λi
for any (i, j) ∈ E, and xj =

∑

i xij for any j ∈ J .

When an online vertex of type i ∈ I arrives at time 0 ≤ t ≤ 1:

• Match it to an unmatched offline neighbor j with probability proportional to etxjρij.

4.2 Meta Analysis

For any offline vertex j and any 0 ≤ t ≤ 1, let Yj(t) be the indicator of whether j stays unmatched
from time 0 to t. Further let Ȳj(t) = EYj(t) be the probability that j stays unmatched from time
0 to t. We seek to upper bound Ȳj(1) for any j ∈ J . More generally, for any subset T ⊆ J of offline
vertices and any 0 ≤ t ≤ 1, we will consider YT (t) =

∏

j∈T Yj(t), and ȲT (t) = EYT (t).
The proof of the next lemma is essentially the same as the counterpart in Gao et al. [14]. We

include it nonetheless to be self-contained.

Lemma 10. For any subset T ⊆ J of offline vertices and any time 0 ≤ t < 1:

d

dt
ȲT (t) ≤ −ȲT (t)

∑

i

λi

∑

j∈T etxjρij ȲT (t)
∑

j∈T etxjρijȲT (t) +
∑

j /∈T etxjρij ȲT+j(t)
(8)

Proof. For any time 0 ≤ t < 1, any sufficiently small ǫ > 0, any subset T ⊆ J of offline vertices,
and conditioned on any realization of Y (t) =

(
YT (t)

)

T⊆J
, we have:

E
[
YT (t+ ǫ) | Y (t)

]
= YT (t)

(

1− ǫ
∑

i∈I

λi

∑

j∈T etxjρijYj(t)
∑

j∈J e
txjρijYj(t)

)

+O(ǫ2) .

Multiplying the numerator and denominator by YT (t), and using that X2 = X for X ∈ {0, 1}:

E
[
YT (t+ ǫ) | Y (t)

]
= YT (t)

(

1− ǫ
∑

i∈I

λi

∑

j∈T etxjρijYT (t)
∑

j∈T etxjρijYT (t) +
∑

j /∈T etxjρijYT+j(t)

)

+O(ǫ2) .

This is concave (jointly) in YT (t) and
∑

j /∈T etxjρijYT+j(t) (with its value defined as 0 when both
terms are 0). Next consider the expectation over the realization of Y (t). By the Jensen Inequality:

ȲT (t+ ǫ) ≤ ȲT (t)

(

1− ǫ
∑

i∈I

λi

∑

j∈T etxjρij ȲT (t)
∑

j∈T etxjρijȲT (t) +
∑

j /∈T etxjρij ȲT+j(t)

)

+O(ǫ2) .

Taking the limit with ǫ going to 0 proves the lemma.
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We can therefore upper bound ȲT (t) for any subset T ⊆ J and any time 0 ≤ t ≤ 1 by a family of
functions satisfying differential inequality (8) in the opposite direction. The next lemma formalizes
this. We defer its proof to Appendix B.1.

Lemma 11. If a family of absolutely continuous functions pT : [0, 1] → R
+ for T ⊆ J satisfy:

pT (0) = 1 , and

d

dt
pT (t) ≥ − pT (t)

∑

i

λi

∑

j∈T etxjρijpT (t)
∑

j∈T etxjρijpT (t) +
∑

j /∈T etxjρijpT+j(t)
(9)

almost everywhere, then for any T ⊆ J and any 0 ≤ t ≤ 1:

ȲT (t) ≤ pT (t) .

Rest of the Section in a Nutshell. If the fractional matching is unrestricted (other than being
a fractional matching), we may have ρij = 1 or 0 for all (i, j), and Eqn. (9) for each offline vertex j
degenerates to d

dtpj(t) ≥ −pj(t)xj , giving only a trivial bound pj(t) = e−txj (Subsection 4.5). Using
the constraints of the Natural LP and the Converse Jensen Inequality, we can already improve the
state-of-the-art competitive ratio for vertex-weighted matching from 0.7 to 0.707 (Subsection 4.6).
Further, we next introduce an LP hierarchy that generalizes the Natural LP (Subsection 4.3), and
give a Converse Jensen Inequality for the second level LP of this hierarchy (Subsection 4.4). Using
the second level LP we obtain our final competitive ratio 0.716 (Theorem 22, Subsection 4.7). We
leave further improvements using higher level LPs as a future research direction.

4.3 Poisson Matching Linear Program Hierarchy

Let Pk(λ) be the value of Poisson cumulative distribution function with arrival rate λ at k ∈ Z
+:

Pk(λ) = e−λ
k∑

ℓ=0

λℓ

ℓ!
.

Lemma 12. For any k ∈ Z
+ and any λ ≥ 0, d

dλPk(λ) = Pk−1(λ)− Pk(λ).

Its proof is basic calculus which we omit. For any ℓ ≥ 1, the ℓ-th level Poisson Matching LP is:

maximize
∑

(i,j)∈E

wijxij

subject to
∑

j∈J

xij ≤ λi ∀i ∈ I

∑

i∈S

∑

j∈T

xij ≤
∑

1≤k≤m

(
1− Pk−1(λS)

)
∀1 ≤ m ≤ ℓ,∀S ⊆ I,∀T ⊆ J : |T | = m (10)

xij ≥ 0 ∀(i, j) ∈ E

Artificially let the matching LP (i.e., to maximize
∑

wijxij in the matching polytope which
we will present as Eqn. (11)) be the 0-th level Poisson Matching LP. The matching constraints for
offline vertices, i.e.,

∑

i xij ≤ 1, are subsumed by constraints (10) in the ℓ-th level Poisson Matching
LPs for any ℓ ≥ 1 with S = I, T = {j}. The Natural LP is the first level Poisson Matching LP.

The next lemmas show that the LPs in the hierarchy are indeed relaxations of online stochastic
matching, and are computationally tractable at the constant levels. The proofs are similar to the
counterparts for the Natural LP [16] so we defer them to Appendices B.2 and B.3.
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Lemma 13. For any online stochastic matching instance, the optimal objective of the instance is
at most the optimal objective of the ℓ-th level Poisson Matching LP at any level ℓ ≥ 0.

Lemma 14. For any ℓ ≥ 0, the ℓ-th level Poisson Matching LP is solvable in time polynomial in
|I| and |J |max{ℓ,1}.

4.4 Second Level Converse Jensen Inequality

A smooth function f : [0, 1]d → R is diminishing returns (DR) submodular if its Hessian matrix
has no positive entries, i.e.:

∀i, j ∈ [d],∀x ∈ [0, 1]d : ∂ijf(x) ≤ 0 .

For any y, z ∈ [0, 1]d, we write y ∨ z =
(
max{yk, zk}

)

k∈[d]
and y ∧ z =

(
min{yk, zk}

)

k∈[n]
for

the entry-wise maximum and minimum of two vectors.

Lemma 15 (Submodularity, c.f., Bian et al. [3]). Suppose that f : [0, 1]d → R is a DR submodular
function. Then, for any y, z ∈ [0, 1]d:

f(y) + f(z) ≥ f(y ∨ z) + f(y ∧ z) .

For any y, z ∈ [0, 1]d write y ≥ z if yk ≥ zk for any k ∈ [d]. The next lemma may be folklore, but
we cannot find a direct reference. We therefore include its proof in Appendix B.4 for completeness.

Lemma 16 (Jensen Inequality for DR Submodular Functions on Ordered Points). Suppose that
y : [0, 1] → [0, 1]d satisfies that for any 0 ≤ µ < µ′ ≤ 1, y(µ) ≤ y(µ′), and f : [0, 1]d → R is a DR
submodular function. Then:

∫ 1

0
f
(
y(µ)

)
dµ ≤ f

(∫ 1

0
y(µ)dµ

)

.

A function f : [0, 1]d → R is normalized if f(0, 0, . . . , 0) = 0.

Theorem 17 (Second Level Converse Jensen Inequality). Suppose that (xij)(i,j)∈E is in the polytope
of the second level Poisson Matching LP, and f : [0, 1]2 → R is a normalized and DR submodular
function. For any j1 6= j2 ∈ J , let λ∗

1, λ
∗
2 be the unique solution to:

xj1 = 1− P0(λ
∗
1) ;

xj2 =
(
2− P0(λ

∗
2)− P1(λ

∗
2)
)
−

(
1− P0(min{λ∗

1, λ
∗
2})

)
.

Recall that ρij =
xij

λi
for any (i, j) ∈ E. We have:

∑

i

λif(ρij1 , ρij1 + ρij2) ≥







∫ λ∗
1

0
f
(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
2

λ∗
1

f
(
0, P1(λ)

)
dλ if λ∗

1 ≤ λ∗
2 ;

∫ λ∗
2

0
f
(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
1

λ∗
2

f
(
P0(λ), P0(λ)

)
dλ if λ∗

1 > λ∗
2 .

The theorem follows by making a sequence of adjustments to (ρij1)i∈I and (ρij2)i∈I subject to
the Poisson constraints for the singleton set {j1} and for set {j1, j2}, so that (ρij1)i∈I and (ρij2)i∈I
are closer to their values on the right-hand-side after each adjustment, and the weighted sum of
function values on the left weakly decreases. We defer the proof to Appendix B.5.
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4.5 Zeroth Level Analysis: Matching Polytope

We start from the simplest instantiation of the meta analysis, which only assumes that the fractional
matching (xij)(i,j)∈E is from the matching polytope:

∀i ∈ I :
∑

j∈J

xij ≤ λi , ∀j ∈ J :
∑

i∈I

xij ≤ 1 , ∀(i, j) ∈ E : xij ≥ 0 . (11)

Lemma 18. Suppose that (xij)(i,j)∈E is in the matching polytope. Then, the Poisson OCS ensures
that for any T ⊆ J and any 0 ≤ t ≤ 1:

ȲT (t) ≤ exp
(

− t
∑

j∈T

xj

)

.

Proof. It suffices to show that functions pT (t) = exp
(
− t

∑

j∈T xj
)
for T ⊆ J satisfy Equation (9).

With these functions, and by
∑

j ρij ≤ 1, the right-hand side (omitting the negative sign) is:

exp
(

− t
∑

j∈T

xj

)∑

i

λi

∑

j∈T etxjρij
∑

j∈T etxjρij +
∑

j /∈T ρij
≥ exp

(

− t
∑

j∈T

xj

)∑

i

λi

∑

j∈T etxjρij
∑

j∈T (e
txj − 1)ρij + 1

.

Further:
∑

j∈T etxjρij
∑

j∈T (e
txj − 1)ρij + 1

=
(
∑

j∈T (e
txj − 1)ρij)(1 −

∑

j∈T ρij)
∑

j∈T (e
txj − 1)ρij + 1

+
∑

j∈T

ρij ≥
∑

j∈T

ρij .

Hence, the right hand side is at most:

− exp
(

− t
∑

j∈T

xj

)∑

i

λi

∑

j∈T

ρij = − exp
(

− t
∑

j∈T

xj

)∑

j∈T

xj .

which equals the left-hand-side

This implies that for any j ∈ J , 1− Ȳj(1) ≥ 1− e−xj ≥ (1− 1
e )xj . Hence, the Poisson OCS with

Matching LP is (1− 1
e )-competitive for unweighted and vertex-weighted online stochastic matching.

4.6 First Level Analysis: Natural Polytope

Next, we further assume that (xij)(i,j)∈E is in the polytope of the Natural LP. This polytope is a
subset of the matching polytope so Lemma 18 still holds. Using the Converse Jensen Inequality
(Theorem 2), we prove a stronger bound for singleton sets.

Theorem 19. Suppose that (xij)(i,j)∈E is in the polytope of the Natural LP. Then, Poisson OCS
matches each offline vertex j with probability at least 0.707xj by the end, and therefore is 0.707
competitive for unweighed and vertex-weighted online stochastic matching.

Proof. We will use the zeroth level bounds for all subsets T with at least two offline vertices, and
define pj(t) for individual offline vertices j by recursively:

pT (t) = exp
(

− t
∑

j∈T

xj

)

, ∀T ⊆ J, |T | ≥ 2 ;

pj(0) = 1 , ∀j ∈ J ;

d

dt
pj(t) = pj(t)

log
(
1− xj + xj · e−2txj

pj(t)

)

1− e−2txj

pj(t)

, 4 ∀j ∈ J . (12)
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We next verify for any offline vertex j that function pj(t) satisfies Eqn. (9). First we state a
lower bound of pj(t) to ensure non-negativity of the denominator. Appendix B.6 includes the proof.

Lemma 20. For any j ∈ J and any 0 ≤ t ≤ 1, pj(t) ≥ e−2txj .

Next by p{j,j′} = e−t(xj+xj′ ), the right-hand-side of Eqn. (9) is (omitting the negative sign):

pj(t)
∑

i

λi
ρij

ρij +
e−2txj

pj(t)

∑

j′ 6=j ρij′
≥ pj(t)

∑

i

λi
ρij

ρij +
e−2txj

pj(t)
(1− ρij)

.

By the Converse Jensen Inequality (Theorem 2) with f(x) = − x
x+Q·(1−x) where Q = e−2txj

pj(t)
≤ 1

(Lemma 20), the right-hand-side of Eqn. (9) is at most:

pj(t)

∫ − ln(1−xj)

0
− e−λ

e−λ +Q · (1− e−λ)
dλ = pj(t)

log (1− xj +Q · xj)
1−Q

,

which equals the left-hand-side of Eqn. (9) according to our recurrence (12).
Since the recurrence (12) is determined by xj but no other information about j, we instead

consider for any x ∈ [0, 1]:

px(0) = 1 ; ∀ 0 ≤ t ≤ 1,
d

dt
px(t) = px(t)

log
(
1− x+ x · e−2xt

px(t)

)

1− e−2xt

px(t)

. (13)

It remains to show that minx∈[0,1]
1−px(1)

x ≥ 0.707. Calculating it numerically at x = 1 gives
1− p1(1) ≈ 0.7075 > 0.707 as desired. We next prove that the ratio is defined by x = 1. Consider:

d

dt

1− px(t)

x
= − px(t)

log
(
1− x+ x · e−2tx

px(t)

)

x
(
1− e−2tx

px(t)

) .

For any time 0 ≤ t ≤ 1 and any 0 ≤ x ≤ 1, consider y = 1−px(t)
x . Applying Lemma 20 and

log(1 − z) ≤ −z to recurrence (13), we have d
dtpx(t) ≤ −px(t)x and therefore px(t) ≤ e−xt. This

further means that y ≥ 1−e−xt

x ≥ 1−e−t. We have the next lemma, whose proof is in Appendix B.7.

Lemma 21. For any t ∈ [0, 1], any x ∈ [0, 1], and any y ≥ 1− e−t:

(1− yx)
log

(
1− x+ x · e−2xt

1−yx

)

x
(
1− e−2xt

1−yx

) ≤ (1− y)
log

(
e−2t

1−y

)

1− e−2t

1−y

,

with equality at x = 1.

Hence, conditioned on any current value of 1−px(t)
x , it decreases the fastest when x = 1.

4Define it to be −pj(t)xj at the boundary case when pj(t) = e−2xjt.
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4.7 Second Level Analysis: Second Level Poisson Matching Polytope

Our final result for unweighted and vertex-weighted matching assumes that (xij)(i,j)∈E lies in the
polytope of the second level Poisson Matching LP. Since it is a subset of the zeroth and first level
polytopes, results from the last two subsections still hold. Using the first and second level Converse
Jensen Inequality (Theorems 2 and 17), we next prove the main result of the section.

Theorem 22. Suppose that (xij)(i,j)∈E is in the polytope of the second level Poisson Matching LP.
Then, Poisson OCS matches each offline vertex j with probability at least 0.716xj by the end, and
therefore is 0.716 competitive for unweighed and vertex-weighted online stochastic matching.

Proof. We will use the zeroth level bounds for all subsets T with at least three offline vertices:

pT (t) = exp
(

− t
∑

j∈T

xj

)

, ∀T ⊆ J s.t. |T | ≥ 3 .

We next define a family of functions pT (t) for |T | = 2 that satisfy Eqn. (9). The proofs of all
lemmas are deferred to the end of the subsection.

Lemma 23. Suppose that for any 1 ≥ x1 ≥ x2 ≥ 0 and the corresponding λ∗
1, λ

∗
2 satisfying:

x1 = 1− P0(λ
∗
1) ,

x2 =
(
2− P0(λ

∗
2)− P1(λ

∗
2)
)
−

(
1− P0(min{λ∗

1, λ
∗
2})

)
,

function dx1,x2
: [0, 1] → [0, 1] satisfies that:

dx1,x2
(0) = 1 ;

d

dt
dx1,x2

(t) = − dx1,x2
(t) ·







∫ λ∗
1

0
fx1,x2

(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
2

λ∗
1

fx1,x2

(
0, P1(λ)

)
dλ if λ∗

1 ≤ λ∗
2 ,

∫ λ∗
2

0
fx1,x2

(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
1

λ∗
2

fx1,x2

(
P0(λ), P0(λ)

)
dλ if λ∗

1 > λ∗
2 ,

where (recall that z+ = max{z, 0}):

fx1,x2
(y, z) =

et(2x1+x2)dx1,x2
(t) y + et(x1+2x2)dx1,x2

(t) (z − y)
(
et(2x1+x2)dx1,x2

(t)− 1
)+

y +
(
et(x1+2x2)dx1,x2

(t)− 1
)+

(z − y) + 1
.

Then, for any T = {j1, j2} ⊆ J where xj1 ≥ xj2 , pT (t) = dxj1
,xj2

(t) satisfies Equation (9).

In other words, we use the second level Converse Jensen Inequality to get an improved bound
when T is a doubleton. To propagate the improvement to individual offline vertices, we consider
functions qx : [0, 1] → [0, 1] for x ∈ [0, 1] such that for any x′ ∈ [0, 1]:

qx(t) ≥







e−tx′
dx,x′(t) if x ≥ x′;

e−tx′

dx′,x(t) if x < x′.
(14)

This allows us have the same coefficients for all j /∈ T in the denominator in Eqn. (9) for
singleton T , as we will see in the proof of the next lemma.
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Lemma 24. Suppose that for any 0 ≤ x ≤ 1, function sx : [0, 1] → [0, 1] satisfies:

sx(0) = 1 ;

d

dt
sx(t) =

sx(t) log
(

1− x+ x · e−txqx(t)
sx(t)

)

1− e−txqx(t)
sx(t)

.

Then, for any j ∈ J , pj(t) = sxj
(t) satisfies Equation (9).

It remains to find functions
(
dx1,x2

)

1≥x1≥x2≥0
,
(
qx
)

0≤x≤1
, and

(
sx
)

0≤x≤1
that on the one hand

satisfy the conditions in Lemmas 23 and 24 and in Equation (14), and on the other hand ensure
that for any 0 ≤ x ≤ 1:

1− sx(1) ≥ 0.716x . (15)

While we do not have the functions in closed forms, Appendix C explains how to numerically
verify it for any given 0 ≤ x ≤ 1 by an appropriate discretization of the functions. Further, once
we have verified it for a finite yet sufficiently dense subset of [0, 1] with ratios strictly better than
0.716, we also cover the other values of x in between.

We next prove that the functions fx1,x2
defined above satisfy the condition of the second level

Converse Jensen Inequality. This allows us to prove Lemma 23.

Lemma 25. For any 1 ≥ x1 ≥ x2 ≥ 0, function fx1,x2
is normalized and DR submodular.

Proof. It follows by the definition that fx1,x2
(0, 0) = 0. Next we prove DR submodularity. For ease

of presentation, let A = et(2x1+x2)dx1,x2
(t) and B = et(x1+2x2)dx1,x2

(t); we shall simply write f for
fx1,x2

. By x1 ≥ x2 we have that A ≥ B. The function then simplifies as:

f(y, z) =
Ay +B (z − y)

(A− 1)+ y + (B − 1)+ (z − y) + 1
.

If A ≥ B ≥ 1:

∂y2f(y, z) = − 2(A−B)2(1− z)
(
(A−B) y + (B − 1) z + 1

)3 ≤ 0 ,

∂yzf(y, z) = − 2(B − 1)(B + (A−B)y)
(
(A−B) y + (B − 1) z + 1

)3 ≤ 0 ,

∂z2f(y, z) = − (A−B)((A−B)y +Bz + 3(1− z))
(
(A−B) y + (B − 1) z + 1

)3 ≤ 0 .

If A ≥ 1 > B, i.e., if z’s coefficient in the denominator is 0, we have:

∂y2f(y, z) = − 2
(
(1−B) + (A− 1)(1 −Bz)

)

(
(A− 1)y + 1

)3 ≤ 0 ,

∂yzf(y, z) = − (A− 1)B
(
(A− 1)y + 1

)2 ≤ 0 ,

∂z2f(y, z) = 0.

Finally if A,B < 1, f is linear and therefore is DR submodular.
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Proof of Lemma 23. Up to renaming, we will assume without loss of generality that j1 = 1 and
j2 = 2, for ease of notations. Applying the zeroth level bound p1,2,j(t) = e−t(x1+x2+xj) for any
j 6= 1, 2 to the denominator of Eqn. (9) with T = {1, 2}, and multiplying both the numerator and
denominator by et(x1+x2), it reduces to (recall that

∑

j ρij ≤ 1):

d

dt
pT (t) ≥ − pT (t)

∑

i

λi
et(2x1+x2)pT (t)ρi1 + et(2x1+x2)pT (t)ρi2

et(2x1+x2)pT (t)ρi1 + et(2x1+x2)pT (t)ρi2 + (1− ρi1 − ρi2)
.

Since the coefficients of ρi1, ρi2 in the denominator are et(2x1+x2) − 1 ≤ (et(2x1+x2) − 1)+, and
et(x1+2x2) − 1 ≤ (et(x1+2x2) − 1)+, it suffices to prove:

d

dt
pT (t) ≥ − pT (t)

∑

i

λifx1,x2

(
ρi1, ρi1 + ρi2

)
.

which follows by the second level Converse Jensen Inequality and the recurrence of pT = dx1,x2
.

Next we show that our new bound for any doubleton T is indeed an improvement compared to
the first level analysis.

Lemma 26. For any 1 ≥ x1 ≥ x2 ≥ 0, and any 0 ≤ t ≤ 1, dx1,x2
(t) ≤ e−t(x1+x2).

Proof. Observe that dx1,x2
(t) ≥ e−t(x1+x2) implies d

dtdx1,x2
(t) ≤ −dx1,x2

(t)(x1+x2) according to its
recurrence, and that it holds with equality at t = 0. The rest is a standard argument in analysis
which we omit. See, e.g., the proof of Lemma 11 in Appendix B.1 for a similar argument.

By the definition of qx(t) in Equation (14), we have the following corollary.

Corollary 27. For any 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, qx(t) ≤ e−tx.

Lemma 28. For any 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, sx(t) ≥ e−txqx(t).

This is the counterpart of Lemma 20 from the first level analysis, except this time we have
qx(t) ≤ e−tx (Corollary 27) instead of exactly equal. We omit the almost verbatim proof.

Proof of Lemma 24. The right-hand-side of the Eqn. (9) equals (omitting the negative sign):

pj(t)
∑

i

λi
etxjρijpj(t)

etxjρijpj(t) +
∑

j′ 6=j e
txj′ρij′p{j,j′}(t)

≥ pj(t)
∑

i

λi
etxjρijpj(t)

etxjρijpj(t) +
∑

j′ 6=j qxj
(t)ρij′

≥ pj(t)
∑

i

λi
etxjρijpj(t)

etxjρijpj(t) + qxj
(t)(1 − ρij)

.

The lemma then follows by the first level Converse Jensen Inequality (with convexity ensured
by Lemma 28), and the recurrence for pj(t) = sxj

(t).
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5 Hardness Results

In this section, Opt denotes the expected objective of the optimal matching for the realized bipartite
graph, and Alg denotes the expected objective of the online algorithm.

5.1 Hardness for Edge-weighted Matching without Free Disposal

In unweighted matching, vertex-weighted matching, and edge-weighted matching with free disposal,
it is without loss of generality to match every online vertex whenever possible. In edge-weighted
matching without free-disposal, however, we may want to leave an online vertex unmatched even
if it has an unmatched neighbor, so that the neighbor will be available for a possible heavier edge
later. This is another disadvantage of the online algorithm, because the offline optimal knows the
realization of online vertices and correctly decides whether to match the lighter edge. We combine
this with the hard instance of Manshadi et al. [25] to obtain a harder instance for edge-weighted
matching without free disposal, separating it from the other three settings.

Theorem 29. There is an instance of edge-weighted online stochastic matching model without free
disposal for which no algorithm has a competitive ratio better than 0.703.

Proof. The instance is online-vertex-weighted, which means that each online vertex type has a
positive weight wi and wij = wi for all its adjacent edges (i, j).

Consider |J | = n offline vertices for a sufficiently large n. There are four kinds of online types
I = I1 ⊔ I2 ⊔ I3 ⊔ In. For k ∈ {1, 2, 3, n}, Ik contains

(
n
k

)
online types, each adjacent to a different

subset of k offline vertices. Following the instance of Manshadi et al. [25], consider m = 1
2c

∗
2.5n

where c∗2.5 ≈ 0.81 is a constant from Dietzfelbinger et al. [10], and let online types in I2 and I3
have unit weights and arrival rates m/

(n
2

)
and m/

(n
3

)
respectively. Further, let ε be an infinitesimal

constant, and let x be a constant to be determined. The unique online type in In also has unit
weight, and arrives at rate n − 2m − nε.4 Finally, let the online types in I1 have weights x

ε and
arrival rates ε. See Figure 2a for an illustrative picture.

On the one hand, offline optimal can match all online vertices with types in I2, I3, In with high
probability [10, 25], when no online vertices have types in I1. On the other hand, offline optimal can
match each online vertex with type in I1 (potentially making an online vertex with types in I2, I3, In
unmatched), and increases the objective by at least x

ε − 1 ≈ x
ε . Hence, Opt = (1 + x)n− o(n).

Next consider any online algorithm. It is easier to analyze it under the original online stochastic
model; the result applies to the Poisson arrival model as well by the asymptotic equivalence. Since
the arrival rates sum to Λ = n, we next consider steps t = 1, 2, . . . , n each of which has an online
vertex drawn from the distribution. For 1 ≤ t ≤ n, A(t) denotes the number of matched offline
vertices after step t; let A(0) = 0. Fixing any step 0 ≤ t < n and the value of A(t), consider step
t + 1. For k = 2, 3, with probability m

n the online vertex has type in Ik, and conditioned on that

its neighbors are all matched with probability
(A(t)

k

)
/
(n
k

)
. Hence:

A(t+ 1) ≤ A(t) + 1− m

n

(A(t)
2

)

(n
2

) − m

n

(A(t)
3

)

(n
3

) .

Taking expectation on both sides and by the Jensen Inequality:

EA(t+ 1) ≤ EA(t) + 1− m

n

(
EA(t)

2

)

(
n
2

) − m

n

(
EA(t)

3

)

(
n
3

) . (16)

4We let it be n− 2m− nε instead of n− 2m so that the arrive rates sum to n, making the hard instance valid in
the original online stochastic matching model. It could be n− 2m if we only consider the Poisson arrival model.
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Let B(t) denote the total weight of matched online vertices with types in I1 after time t, with
B(0) = 0. Fix any step 0 ≤ t < n and the value of A(t), and consider step t+ 1. With probability
ε the online vertex has type in I1. Conditioned on that, matching it adds x

ε to B(t+ 1), but with

probability 1− A(t)
n the unique neighbor is already matched. Hence:

EB(t+ 1) ≤ EB(t) + x
(

1− EA(t)

n

)

. (17)

By definition we have Alg ≤ EA(n) +EB(n). It remains to bound EA(n) +EB(n) subject
to Equations (16) and (17). First, it is without loss of generality to assume that Eqn. (17) holds
with equality. We next prove that the maximum value can only be achieved when for all 0 ≤ t < n,
either EA(t) = 0, or Eqn. (16) holds with equality. Suppose for contrary that for some t we have
EA(t) > 0 but the left-hand-side of Eqn. (16) is strictly smaller than the right. We then decrease
EA(t) by a sufficiently small amount so that Eqn. (16) still holds, with the same value for EA(n).
By Eqn. (17) with equality, on the other hand, the value of EB(n) strictly increases.

Finally, to numerically bound the maximum of EA(n) +EB(n), we can enumerate 1 ≤ k ≤ n,
and for each k consider EA(t) = 0 for t < k and for some value of 0 ≤ EA(k) ≤ 1 recursively
compute EA(t) for k < t ≤ n by Eqn. (16) with equality. In fact, we further assume EA(k) = 0
which introduces an absolute error of at most 1 in the bound. For n = 106, x = 0.94, the numerical
bound shows that Alg

Opt
< 0.703, with the maximum value achieved when k ≈ 2.07 × 105.

5.2 Hardness for the Jaillet-Lu Linear Program

Since Top Half Sampling only needs the inequality in Corollary 3, its competitive ratio still holds
if we use the LP of Jaillet and Lu [19] (instead of the Natural LP), which we restate below:

maximize
∑

(i,j)∈E

wijxij

subject to
∑

j∈Ji

xij ≤ λi ∀i ∈ I

∑

i∈Ij

xij ≤ 1 ∀j ∈ J

∑

i∈Ij

(2xij − λi)
+ ≤ 1− ln 2 ∀j ∈ J

xij ≥ 0 ∀(i, j) ∈ E

In fact, our competitive ratio is the same as that of Jaillet and Lu [19] for unweighted matching,
which has been the state-of-the-art until a very recent improvement by Huang and Shu [16]. We
next show that this ratio is tight if we compare to the Jaillet-Lu LP. In this sense our analysis is
tight. It also indicates that more expressive LPs such as the Natural LP and the Poisson Matching
LPs are necessary for the better ratios in unweighted and vertex-weighted matching in Section 4.

Theorem 30. There is an instance of unweighted online stochastic matching for which no algorithm
gets Alg

JL
> 1− 1

1−ln 2

(
1
2e − ln 2

e2

)
≈ 0.706, where JL is the optimal value of the Jaillet-Lu LP.

Proof. We prove it with a small instance in the Poisson arrival model. By duplicating many copies
of the instance and the asymptotic equivalence of models, the theorem holds in the original online
stochastic matching model as well.
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x/ǫǫ

...I1

new
gadget

instance of Manshadi et al. (2012)

1m/(n2)

...I2

1m/(n3)

...I3

1n− 2m− ǫ

In

...

...

(a) Edge-weighted without Free Disposal

T1− ln 2

M2 ln 2

B1− ln 2

t

b

1− ln 2

ln 2

ln 2

1−
ln 2

(b) Jaillet-Lu LP

Figure 2: Illustration of Hard Instances. The number on the left of each online type is the arrival
rate. On the left, the number inside a vertex is the vertex-weight. On the right, the letter inside a
vertex is its name.

Let I = {T,M,B}, J = {t, b}, where T, t stand for top, B, b stand for bottom, and M stands for
middle. Let E = {(T, t), (B, b), (M, t), (M, b)}. Online types T,B have arrival rates λT = λB = 1−
ln 2. Online type M has arrival rate λM = 2 ln 2. The Jaillet-Lu LP optimal is xTt = xBb = 1− ln 2,
xMt = xMb = ln 2, with objective JL = 2. See Figure 2b for an illustrative picture.

We claim that the optimal algorithm simply matches each online vertex whenever possible and
arbitrarily. For an online vertex of type T or B, or an online vertex of type M with only one
unmatched neighbor when it arrives, it is trivially true. For an online vertex of type M with both
neighbors unmatched, this is still true by symmetry. Consider an optimal algorithm that break ties
in favor of t. For any i ∈ I, let ni be the number of online vertices of type i. Further let i0 be the
type of the earliest online vertex. We have:

Alg = 2−Pr
[
t is unmatched

]
−Pr

[
b is unmatched

]

= 2−Pr
[
nT = nM = 0

]
−

(

Pr
[
nB = nM = 0

]
+Pr

[
nB = 0, nM = 1, i0 = M

])

.

By the Poisson arrival model:

Pr
[
nT = nM = 0

]
= Pr

[
nB = nM = 0

]
= e−(1+ln 2) .

21



Finally:

Pr
[
nB = 0, nM = 1, i0 = M

]
= e−(1−ln 2)

︸ ︷︷ ︸

Pr[nB=0]

(2 ln 2)e−2 ln 2

︸ ︷︷ ︸

Pr[nM=1]

∫ 1

0
e−(1−ln 2)tdt

︸ ︷︷ ︸

Pr[i0=M |nB=0,nM=1]

= e−(1+ln 2) 2 ln 2

1− ln 2

(

1− 2

e

)

.

Putting together gives:

Alg = 2
(

1− 1

1− ln 2

( 1

2e
− ln 2

e2

))

.

Comparing Alg and JL proves the theorem.
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A Missing Proofs in Section 3

A.1 Proof of Lemma 7

The definition of σi,t ensures that wi,σi,t(θ)(t) is non-increasing over θ, so we have:

d

dt
EĀ(t = 0) = −

∑

i∈I

λi

︸︷︷︸

arrival rate of i

· 2

λi

∫ λi/2

0
wi,σi,0(θ)dθ

︸ ︷︷ ︸

expected gain from an arrival of i

≤ −
∑

i∈I

∫ λi

0
wi,σi,0(θ)dθ

= −
∑

i∈I

∑

j∈Ji

xijwij

= −Opt .

A.2 Missing Analysis of Differential Inequality from Section 3

Recall that the differential inequality is:

(2 + 2 ln 2)E Ā(t) + (3 + ln 2)
d

dt
E Ā(t) +

d2

dt2
E Ā(t) ≤ 0 ,
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and the boundary conditions are:

Ā(0) = Opt ,
d

dt
E Ā(t = 0) ≤ −Opt .

Consider B(t) that satisfies the differential inequlaity and boundary conditions with equalities:

B(t) =
Opt

1− ln 2

( 1

(2e)t
− ln 2

e2t

)

.

We seek to prove that EĀ(1) ≤ B(1). In fact we will prove a stronger claim that EĀ(t) ≤ B(t)
for all 0 ≤ t ≤ 1. Let C(t) = EĀ(t)−B(t). The claim is then C(t) ≤ 0 for all t.

The differential inequality and equality for EĀ(t) and B(t) and their boundary conditions imply:

(2 + 2 ln 2)C(t) + (3 + ln 2)
d

dt
C(t) +

d2

dt2
C(t) ≤ 0 ,

and boundary conditions:

C(0) = 0 ,
d

dt
C(t = 0) ≤ 0 .

Further consider D(t) = 2C(t) + d
dtC(t). The differential inequality and boundary conditions

for C(t) implies a differential inequality for D(t):

(1 + ln 2)D(t) +
d

dt
D(t) ≤ 0 ,

and its boundary condition:
D(0) ≤ 0 .

The differential inequality for D gives:

d

dt
(2e)tD(t) = (2e)t

(

(1 + ln 2)D(t) +
d

dt
D(t)

)

≤ 0 .

Hence, for any t we have (2e)tD(t) ≤ D(0) ≤ 0. Thus, D(t) ≤ 0, or equivalently:

2C(t) +
d

dt
C(t) ≤ 0 .

Similarly, this means that:

d

dt
e2tC(t) = e2t

(

2C(t) +
d

dt
C(t)

)

≤ 0 ,

and therefore e2tC(t) ≤ C(0) ≤ 0 for any t. This gives C(t) ≤ 0 as desired.

B Missing Proofs in Section 4

B.1 Proof of Lemma 11

We shall prove the lemma by an induction on the size of T in descending order. The base case is
T = J . Recall that Λ =

∑

i λi is the total arrival rate. The conditions about ȲJ(t) simplify to:

ȲJ(0) = 1 ,
d

dt
ȲJ(t) ≤ −ȲJ(t)Λ .
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which implies d
dte

ΛtȲJ(t) ≤ 0 and therefore ȲJ(t) ≤ e−Λt.
Similarly, the condition about pJ(t) simplify to:

pJ(0) = 1 ,
d

dt
pJ(t) ≥ −pJ(t)Λ almost everywhere,

which implies d
dte

ΛtpJ(t) ≥ 0 almost everywhere and therefore pJ(t) ≥ e−Λt.
Next for some n < |J | suppose that the inequality holds for any subset T ⊆ J with |T | = n+1.

Consider any subset T ⊂ J with |T | = n. We first relax the differential inequality for ȲT (t) by
bounding ȲT+j(t) using the inductive hypothesis:

d

dt
ȲT (t) ≤ −ȲT (t)

∑

i

λi

∑

j∈T etxjρij ȲT (t)
∑

j∈T etxjρij ȲT (t) +
∑

j /∈T etxjρijpT+j(t)
.

The right-hand-side is decreasing in ȲT (t). Hence, almost everywhere we get that ȲT (t) ≥ pT (t)
implies d

dt ȲT (t) ≤ d
dtpT (t). Consider an auxiliary function g(t) = pT (t)−ȲT (t) for t ∈ [0, 1]. We have

that g(0) = 0, and almost everywhere g(t) ≤ 0 implies d
dtg(t) ≥ 0. Further by absolutely continuity

of pT and observing that ȲT (t) is also absolutely continuous (in fact, it is decreasing and Λ-Lipschitz
because it cannot decrease faster than the total arrival rate of online vertices), g is also absolutely
continuous. The inequality of the lemma is equivalent to g(t) ≥ 0 for 0 ≤ t ≤ 1. Suppose for
contrary that there is 0 ≤ t0 ≤ 1 such that g(t0) < 0. Consider t1 = sup{0 ≤ t ≤ t0 : g(t) ≥ 0}. We
have g(t1) = 0, t1 < t0, and g(t) < 0 for any t1 < t ≤ t0. On the one hand, g(t0)−g(t1) = g(t0) < 0.
On the other hand , g(t0)−g(t1) =

∫ t0
t1

g′(t)dt ≥ 0 since g(t) < 0 implies g′(t) ≥ 0 almost everywhere
for t1 < t < t0. We have a contradiction.

B.2 Proof of Lemma 13

For any (i, j) ∈ E, let xij be the probability that offline vertex j is matched to an online vertex of
type i in the optimal matching of the realized graph. By definition, the expected objective of the
optimal matching is:

∑

(i,j)∈E

wijxij .

It remains to prove that this is feasible for the ℓ-th level Poisson Matching LP for any ℓ ≥ 0.
Non-negativity holds trivially. We next verify the other constraints.

Matching Constraints (Online). For any online type i ∈ I,
∑

j xij is the expected number of
matched online vertices of type i in the optimal matching for the realized graph, which is upper
bounded by the expected number of online vertices of type i, i.e.:

∑

j∈J

xij ≤ λi .

Matching Constraints (Offline). This is relevant only at the zeroth level. For any offline
vertex j ∈ J ,

∑

i xij is the probability that j is matched in the optimal matching for the realized
graph, and therefore cannot exceed one, i.e.:

∑

i∈I

xij ≤ 1 .
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Poisson Constraints (ℓ-th Level). For any subset S ⊆ I of online types, any subset T ⊆ J
of offline vertices such that |T | = ℓ,

∑

i∈I

∑

j∈J xij is the expected number of offline vertices in T
that are matched to some online vertices with types in S, in the optimal matching for the realized
graph. This is upper bounded by the expectation of the number of online vertices with types in S
capped by |T | = ℓ. Recall that 1 − Pk−1(ΛS) is the probability of having at least k online vertices
with types S in the realized graph in the Poisson arrival model. The aforementioned expectation
can be written as

∑ℓ
k=1

(
1− Pk−1(λS)

)
. Therefore:

∑

i∈S

∑

j∈T

xij ≤
ℓ∑

k=1

(
1− Pk−1(λS)

)
.

B.3 Proof of Lemma 14

The case of ℓ = 0 holds because the matching LP has at most |I||J | variables and |I|+|J | non-trivial
constraints.

Next consider any level ℓ ≥ 1. The ℓ-th level Poisson Matching LP has |I||J | variables, and |I|
matching constraints for online types. It remains to give a separation oracle for the exponentially
many Poisson constraints. For any 1 ≤ m ≤ ℓ, and any of the

(|J |
m

)
subsets T ⊆ J with |T | = m,

we will give a polynomial-time (in |I| and |J |) separation oracle for the Poisson constraints:

∀S ⊆ I :
∑

i∈S

∑

j∈J

xij ≤
m∑

k=1

(
1− Pk−1(λS)

)
. (18)

Then, combining these O(|J |ℓ) separation oracles gives one for the ℓ-th level Poisson Matching
LP with running time polynomial in |I| and |J |ℓ.

Lemma 31. The Poisson constraints (18) are equivalent to that for any 0 ≤ µi ≤ λi, i ∈ I:

∑

i∈I

µi

λi

∑

j∈J

xij ≤
m∑

k=1

(

1− Pk−1

(∑

i∈I

µi

))

. (19)

Proof. On the one hand, the Poisson constraints (18) are special cases of the stated constraint in
this lemma, when µi ∈ {0, λi}, i ∈ I. On the other hand, the left-hand-side is linear in µi, i ∈ I, and
the right-hand-side is concave. Hence, the difference between the right and the left is minimized at
a vertex of the hyperrectangle ×i∈I [0, λi].

For any fixed value of
∑

i µi, we can maximize the left-hand-side of (19) by greedily assigning
masses in descending order of 1

λi

∑

j∈J xij. Therefore, it suffices to check constraints (18) only for

the subsets S of first k elements in I by the descending order of 1
λi

∑

j∈J xij for 1 ≤ k ≤ |I|.

B.4 Proof of Lemma 16

We prove it by a hybrid argument. Let ȳ =
∫ 1
0 y(µ)dµ. For 0 ≤ k ≤ d, define y(k) : [0, 1] → [0, 1]d

so that for any coordinate ℓ ∈ [d]:

y
(k)
ℓ (µ) =

{

yℓ(µ) if ℓ > k,

ȳℓ otherwise.
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By definition y(0)(µ) = y(µ), and y(d)(µ) = ȳ for any 0 ≤ µ ≤ 1. It suffices to prove that for
any 1 ≤ k ≤ d:

∫ 1

0
f
(
y(k−1)(µ)

)
dµ ≤

∫ 1

0
f
(
yk(µ)

)
dµ .

The lemma then follows by summing this inequality for 1 ≤ k ≤ d.
Next fix any 1 ≤ k ≤ d. By definition y(k−1)(µ), y(k)(µ) differ only in the k-th coordinate. Let:

µ∗ = inf{µ : y
(k−1)
k (µ) ≥ ȳk} .

Then, for any 0 ≤ µ < µ∗ the k-th coordinate of y(k−1)(µ) is less than or equal to ȳk, the k-th
coordinate of y(k)(µ); we also have that y(k)(µ) ≤ y(k)(µ∗). Similarly, for any µ∗ < µ < 1, the k-th
coordinate of y(k−1)(µ) is greater than or equal to ȳk, the k-th coordinate of y(k)(µ); we also have
that y(k)(µ) ≥ y(k)(µ∗). Combining this with the (anti-)monotonicity of ∂kf , for any 0 ≤ µ ≤ 1:

(

ȳk − y
(k−1)
k (µ)

)(

∂kf
(
y(k)(µ)

)
− ∂kf

(
y(k)(µ∗)

))

≥ 0 . (20)

Hence, by the diminishing returns of f we have:

∫ 1

0
f
(
yk(µ)

)
dµ−

∫ 1

0
f
(
y(k−1)(µ)

)
dµ =

∫ 1

0

(

f
(
yk(µ)

)
− f

(
y(k−1)(µ)

))

dµ

≥
∫ 1

0
∂kf

(
y(k)(µ)

)(
ȳk − y

(k−1)
k (µ)

)
dµ (∂kkf ≤ 0)

≥ ∂kf
(
y(k)(µ∗)

)
∫ 1

0

(
ȳk − y

(k−1)
k (µ)

)
dµ (Eqn. (20))

= 0 .

B.5 Proof of Theorem 17

For ease of notations we shall write yi = ρij1 and zi = ρij1 + ρij2 . They satisfy:

1. (Poisson constraint for y) For any S ⊆ I:

∑

i∈S

λiyi ≤ 1− P0(λS) .

2. (Poisson constraint for z) For any S ⊆ I:

∑

i∈S

λizi ≤ 2− P0(λS)− P1(λS) .

3. (Order constraint) For any i ∈ I:
yi ≤ zi .

4. (Fixed sum constraint)

∑

i

λiyi = xj1 ,
∑

i

λizi = xj1 + xj2 .
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This proof does not need the Poisson constraint for ρj2 (i.e., zi − yi). We shall next perform a
sequence of transformations to the yi’s and zi’s such that

∑

i f(yi, zi) is non-increasing after each
transformation.

First, sort I in descending order of yi. We may further assume without loss of generality that
zi’s are also in descending order. Otherwise, suppose that yi > yi+1 but zi < zi+1. We can change
the value of zi in the first min{λi, λi+1} portion of i to zi+1, and change the value of zi+1 in the
last min{λi, λi+1} portion of i+ 1 to zi. By submodularity (Lemma 15), this weakly decreases the
value of

∑

i f(yi, zi).
Further, define λ≤i =

∑

k≤i λk in the remaining argument for notational simplicity. We may
assume without loss of generality that there are indices i1 and i2 such that λ≤i1 = λ∗

1 and λ≤i2 = λ∗
2.

This is because we can split any i into two copies with the same yi and zi and whose arrival rates
sum to λi.

Next we prove the case of λ∗
1 ≤ λ∗

2, which implies i1 ≤ i2. The other case of λ∗
1 < λ∗

2 be proved
similarly.

We may further assume without loss of generality that both Poisson constraints are tight for
any i ≤ i1, i.e.:

∑

k≤i

λkyk = 1− P0

(

λ≤i

)

,

∑

k≤i

λkzk = 2− P0

(
λ≤i

)
− P1

(
λ≤i

)
.

Suppose not. Let i be the smallest index for which the above constraints are not tight. We
may increase the values of yi and zi to make them tight, while decreasing the values of yi′ and zi′

for i′ > i to maintain the fixed sum constraint. By the non-positivity of f ’s Hessian entries, this
weakly decreases the value of

∑

i λiyi. Then, for any i ≤ i1, by the Jensen inequality (Lemma 16):

λif(yi, zi) ≥
∫ λ≤i

λ≤i−1

f
(
P0(λ), P1(λ)

)
dλ

Finally, the tightness of the Poisson constraints for i ≤ i1 implies yi = 0 for i > i1. By a similar
argument, we may assume without loss of generality that the Poisson constraint for z is tight for
any i > i1. Then, for any i > i1, by the Jensen inequality (Lemma 16):

λif(yi, zi) ≥
∫ λ≤i

λ≤i−1

f
(
0, P1(λ)

)
dλ .

Putting together proves the inequality of the theorem.

B.6 Proof of Lemma 20

The lemma holds trivially if xj = 0. Next consider xj > 0. Since pj(0) = e−2txj = 0, it suffices to
prove that for 0 ≤ t < 1:

d

dt
log pj(t) ≥ −2xj .

Suppose for contrary that {0 ≤ t < 1 : d
dt log pj(t) < −2xj} is non-empty. Let t0 be its infimum.

Then, we have d
dt log pj(t) ≥ −2xj for 0 ≤ t < t0 and therefore pj(t) ≥ e−2txj for 0 ≤ t ≤ t0. Then,

by Eqn. (12) and log(1− y) ≤ −y for any y ≤ 1, we get that for any 0 ≤ t ≤ t0:

d

dt
log pj(t) ≤ −xj ,
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and thus:
pj(t) ≤ e−txj .

In particular, the above bound at t = t0 implies that:

1− e−2xjt0pj(t0) ≥ 1− e−xjt0 ≥ 1− 1

e
.

Putting into Eqn. (12), we get that:

d

dt
log pj(t = t0) ≥

log
(
1− (1− 1

e )xj
)

1− 1
e

≥ − e

e− 1
xj .

Since pj is continuous which further implies the continuity of d
dt log pj(t) by our recurrence (12),

the above inequality indicates that d
dt log pj(t) ≥ −2xj holds for t ∈ [t0, t0 + ε) with a sufficiently

small ε, contradicting the definition of t0.

B.7 Proof of Lemma 21

Let f(x) = log(1−x)
x , g(x) = x

(
1− e−2xt

1−yx

)
, the left-hand-side is then (1− yx)f(g(x)). Consider:

h(x) = x
(

1− e−2xt−x log(1−y)
)

≤ g(x) ,

which follows by (1 − y)x ≥ 1− yx. It holds with equality holds when x = 0 and 1. It remains to
prove that (1− yx)f(h(x)) achieves its maximum value at x = 1.

We next show that it is non-decreasing in x. The derivative is:

d

dx
(1− yx)f(h(x)) = (1− yx)f ′(h(x))h′(x)− yf(h(x)) , (21)

where:
h′(x) = 1 + e−2xt−x log(1−y)

(
2xt+ x log(1− y)− 1

)
.

Fix any x, t. When y decreases, 1−yx increases, h′(x) increases, h(x) increases, f ′(h(x))
f(h(x)) increases.

Hence the derivative in Eqn. (21) is minimized when y = 1− e−t. In this case h(x) = x
(
1− e−xt

)

and h′(x) = 1− (1− xt)e−xt. The non-negativity of derivative reduces to:

(
1− (1− e−t)x

) (
1− (1− xt)e−xt

) f ′(x
(
1− e−xt

)
)

f(x (1− e−xt))
≤ 1− e−t .

By x(1− e−xt) ≤ 1− e−xt and the monotonicity of f ′(z)
f(z) , it further reduces to:

(
1

1− e−t
− x

)
(
1− (1− xt)e−xt

) f ′(1− e−xt)

f(1− e−xt)
≤ 1 .

Next fix the product z = xt, let α(t) = 1
1−e−t − x = 1

1−e−t − z
t . Its derivative is:

α′(t) = − e−t

(1− e−t)2
+

z

t2
.

Therefore:

et(1− e−t)2α′(t) =
2z(cosh t− 1)

t2
− 1 ,
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which is increasing. Hence, α′(t) is at first negative and then non-negative in t ∈ [z, 1], including
always negative and always non-negative as special cases. This means that the maximum of α(t)
is either at t = z or at t = 1. It remains to verify:

(
1

1− e−z
− 1

)

· (1− (1− z)e−z) · f
′(1− e−z)

f(1− e−z)
≤ 1.

(
1

1− e−1
− z

)

· (1− (1− z)e−z) · f
′(1− e−z)

f(1− e−z)
≤ 1.

If z ≥ 0.8, 1
1−e−z − 1 ≤ 0.82, 1

1−e−1 − z ≤ 0.78, while f ′(1−e−z)
f(1−e−z)

≤ f ′(1−e−1)
f(1−e−1)

= 1.14. Hence the

inequalities hold.
If z ≤ 0.8, we have 1

1−e−z − 1 ≥ 1
1−e−1 − z. Hence, it suffices to verify the first inequality.

Expanding f ′(1−e−z)
f(1−e−z) , it becomes:

(
1− (1− z)e−z

)
(
ez

z
− ez

ez − 1

)

≤ ez − 1 .

Multiplying both sides by z(ez − 1), and viewing it as a quadratic function of ez − 1 with
coefficients depending on z, the inequality follows by:

∀z ∈ [0, 1] : ez − 1 ≤ z√
1− z

.

C Numerical Verification for the Second Level Analysis

This section explains how to numerically lower bound the probability that Poisson OCS matches an
offline vertex j by the end when its LP matched level is xj = x. In other words, we will numerically
compute an upper bound of sx(1).

Let ∆x,∆t be sufficiently smaller constants such that 1
∆x

, 1
∆t

are integers. We will write [0, 1]∆
as the set of multiples of ∆ between 0 and 1.

1. For any x′ ∈ [0, 1]∆x :

(a) Let x1 = max{x, x′} and x2 = min{x, x′}, and compute λ∗
1, λ

∗
2 that satisfy:

x1 = 1− P0(λ
∗
1) ,

x2 =
(
2− P0(λ

∗
2)− P1(λ

∗
2)
)
−

(
1− P0(min{λ∗

1, λ
∗
2})

)
.

(b) For any time t ∈ [0, 1] and any D ∈ [0, 1], define ∆ log d̂(D, t) as:

∆ log d̂(D, t) = −







∫ λ∗
1

0
f̂D,t

(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
2

λ∗
1

f̂D,t

(
0, P1(λ)

)
dλ if λ∗

1 ≤ λ∗
2 ,

∫ λ∗
2

0
f̂D,t

(
P0(λ), P1(λ)

)
dλ+

∫ λ∗
1

λ∗
2

f̂D,t

(
P0(λ), P0(λ)

)
dλ if λ∗

1 > λ∗
2 ,

where (recall that z+ = max{z, 0}):

f̂D,t(y, z) =
et(2x1+x2)Dy + et(x1+2x2)D (z − y)

(
et(2x1+x2)D − 1

)+
y +

(
et(x1+2x2)D − 1

)+
(z − y) + 1

.
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(c) For t ∈ [0, 1]∆t recursively compute d̂x1,x2
(t) by:

d̂x1,x2
(0) = 1 ,

d̃x1,x2
(t) = d̂x1,x2

(t) · exp
(
∆t ·∆ log d̂(d̂x1,x2

(t), t)
)
,

d̂x1,x2
(t+∆t) = d̂x1,x2

(t) · exp
(
∆t ·∆ log d̂(d̃x1,x2

(t), t)
)
, .

2. For any t ∈ [0, 1]∆t , compute:

q̂x(t) = min
{

e−tx, max
x′∈[0,1]∆x

et(x
′+∆x)d̂max{x,x′},min{x,x′}(t)

}

.

3. For t ∈ [0, 1]∆t , recursively compute ŝx(t) by:

ŝx(0) = 1 ;

s̃x(t) = ŝx(t) exp
(
∆t ·∆ log ŝx(t)

)
;

ŝx(t+∆t) = ŝx(t) exp
(
∆t ·∆ log s̃x(t)

)
,

where:

∆ log ŝx(t) =
log

(

1− x+ x · e−txq̂x(t)
ŝx(t)

)

1− e−txq̂x(t)
ŝx(t)

,

∆ log s̃x(t) =
log

(

1− x+ x · e−txq̂x(t)
s̃x(t)

)

1− e−txq̂x(t)
s̃x(t)

.

Lemma 32. For any 1 ≥ x1 ≥ x2 ≥ 0 and t ∈ [0, 1]∆t , d̂x1,x2
(t) ≥ dx1,x2

(t).

Proof. We will prove it by induction in t ∈ [0, 1]∆t by ascending order. The base case of t = 0 holds
with equality because both sides equal 1. Suppose that for some t < 1 we have d̂x1,x2

(t) ≥ dx1,x2
(t).

Next consider the lemma at time t+∆t.
First we have that d̃x1,x2

(t) ≤ d̂x1,x2
(t) by the monotonicity of f̂D,t(y, z) in D. It implies that

d̂x1,x2
(t+∆t) ≥ d̃x1,x2

(t). If further d̃x1,x2
(t) ≥ dx1,x2

(t+∆t) we have proved the lemma for t+∆t.

Otherwise, we can verify that ∆ log d̂(d̃x1,x2
(t), t) ≥ d

dt log dx1,x2
(t′) for any t ≤ t′ ≤ t + ∆t, so

by the definition of d̂x1,x2
(t+∆t) it is greater than or equal to dx1,x2

(t+∆t).

Lemma 33. For any x ∈ [0, 1] and t ∈ [0, 1]∆t , q̂x(t) ≥ qx(t).

Proof. We first observe that for any t ∈ [0, 1], dx1,x2
(t) is non-increasing in both x1 and x2. Suppose

that x′1 ≥ x1 and x′2 ≥ x2. By the recursion of dx1,x2
and dx′

1,x
′
2
, dx1,x2

(t) ≤ dx′
1,x

′
2
(t) would imply:

d

dt
dx1,x2

(t) ≥ d

dt
dx′

1,x
′
2
(t) .

Hence, for any x′ ∈ [0, 1]∆x and any x′′ ∈ [x′, x′ +∆x), and any time t ∈ [0, 1]∆t we have:

etx
′′

dmax{x,x′′},min{x,x′′}(t) ≤ et(x
′+∆x)dmax{x,x′},min{x,x′}(t)

≤ et(x
′+∆x)d̂max{x,x′},min{x,x′}(t) . (Lemma 32)

Combining it the trivial bound of qx(t) ≤ e−xt (Lemma 27), the lemma follows from the defini-
tion of q̂x(t).
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Similar to Lemma 28, we have the following lemma which underlies the first-level converse
Jensen inequality, and the proof is omitted.

Lemma 34. For any 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, ŝx(t) ≥ e−txq̂x(t).

Lemma 35. For any x ∈ [0, 1] and t ∈ [0, 1]∆t , ŝx(t) ≥ sx(t).

This is the same argument as Lemma 33 so we omit the proof.
One can now numerically verify that 1−ŝx(1)

x ≥ 0.716 for any x ∈ [0, 1] when ∆x = ∆t = 10−4,
e.g., using our implementation in Julia.
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