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ABSTRACT

Despite immense progress in quantum Hamiltonian complexity

in the past decade, little is known about the computational com-

plexity of quantum physics at the thermodynamic limit. In fact,

even defining the problem properly is not straight forward. We

study the complexity of estimating the ground energy of a fixed,

translationally-invariant (TI) Hamiltonian in the thermodynamic

limit, to within a given precision; this precision (given by 𝑛 the

number of bits of the approximation) is the sole input to the prob-

lem. Understanding the complexity of this problem captures how

difficult it is for a physicist to measure or compute another digit

in the approximation of a physical quantity in the thermodynamic

limit. We show that this problem is contained in FEXPQMA-EXP

and is hard for FEXPNEXP. This means that the problem is doubly

exponentially hard in the size of the input.

As an ingredient in our construction, we study the problem of

computing the ground energy of translationally invariant finite 1D

chains. A single Hamiltonian term, which is a fixed parameter of

the problem, is applied to every pair of particles in a finite chain.

In the finite case, the length of the chain is the sole input to the

problem and the task is to compute an approximation of the ground

energy. No thresholds are provided as in the standard formulation

of the local Hamiltonian problem. We show that this problem is

contained in FPQMA-EXP and is hard for FPNEXP. Our techniques

employ a circular clock structure in which the ground energy is

calibrated by the length of the cycle. This requires more precise

expressions for the ground states of the resulting matrices than

was required for previous QMA-completeness constructions and

even exact analytical bounds for the infinite case which we derive

using techniques from spectral graph theory. To our knowledge,

this is the first use of the circuit-to-Hamiltonian construction which

shows hardness for a function class.
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1 INTRODUCTION

Kitaev’s fundamental QMA-completeness result [16] initiated the

field of quantum Hamiltonian complexity [12]; however its setting

is still very far from the problems that naturally arise in condensed

matter physics. Subsequent work brought QMA-completeness re-

sults closer to physical settings by extending from the general

geometry of Kitaev’s local Hamiltonians to 2D [18], and even 1D

[1] lattices; Gottesman and Irani [15] showed that the 1D result

holds even for translationally invariant (TI) systems, and even when

the only input is 𝑁 , the size of the system.

Despite this important and fundamental progress, such complex-

ity results are still far from capturing the primary challenges in

computational many-body physics. Physicists study finite systems

by necessity, but the problem which is typically of greatest interest

is the estimation of physical quantities (energy density, two body

correlations, etc.) in the Thermodynamic limit (TL)1. Their focus is

not the estimation of physical quantities as a function of the size of

the system, as in the QMA completeness results, but instead, they

study a particular quantity of a Hamiltonian whose local terms are

fixed, as 𝑁 ↦−→ ∞.

The breakthrough undecidability result for computing the spec-

tral gap by Cubitt, Perez-Garcia, Wolf [10] and its follow up [6]

provided the first study of the computability of Hamiltonian prob-

lems in the TL. To the best of our knowledge, the only existing result

about computational complexity in the TL, is that of [15] who study

this as a side result to their main finite case result. More specifically,

the TL problem they study is parameterized by three polynomials,

𝑟 , 𝑝 and 𝑞. The input is an integer 𝑁 in binary representation and

a Hamiltonian term ℎ acting on a pair of 𝑑-dimensional particles

whose entries are integer multiples of 1/𝑟 (𝑁 ). They show that it is a

QMA-EXP-complete problem to determine whether the ground en-

ergy density of the Hamiltonian resulting from applying ℎ to every

pair of particles in an infinite 1D chain is below 1/𝑝 (𝑁 ) or above
1/𝑝 (𝑁 ) + 1/𝑞(𝑁 ). However, importantly, [15] (as well as [6, 10])

study the TL when the Hamiltonian term applied to each pair of

particles is input dependent. While the input-dependent Hamilton-

ian settings makes sense in the context of studying gappedness as

a function of the Hamiltonian parameters (as in [6, 10]; see also

the studies of phase diagrams for gappedness [7, 8]), it seems much

less justifiable in the common physical scenario of approximating

quantities of the ground state in the TL. In this context, physicists

1This question was highlighted by I. Cirac in an online discussion in a SIMONS institute
quantum workshop, 2017
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usually treat say, the AKLT model, as a different problem than, say,

the Ising model.

Here we initiate the study of computational complexity in the TL

for fixed, input-independent physical systems. An immediate prob-

lem arises: it is not clear how to even define the problem, namely,

how to associate computational complexity to a problem whose

quantity of interest is merely a single, fixed number. Our natural

approach is to have the input specify only the desired precision to

which the number ś here the ground energy density in the TL ś

is computed, in terms of number of bits. The required precision

is the only input to the problem. In order to show computational

hardness, we have to show how to encode a full language into that

single number. Note that this challenge does not arise in the case

of input-dependent terms addressed in [15], where the reduction

can encode the answer to a decision problem on input 𝑥 into the

input-dependent ground energy of the Hamiltonian resulting from

the TI term ℎ𝑥 .

1.1 Problem Definition and Results

We will formally define the problem for the 2D grid; there are

natural extensions to 1D and higher dimensions. The problem in

2D is parameterized by the dimension of each individual particle

𝑑 , and two 𝑑2 × 𝑑2 Hermetian matrices ℎ𝑟𝑜𝑤 and ℎ𝑐𝑜𝑙 denoting

the energy interaction between two neighboring particles in the

horizontal and vertical directions on a 2D grid. Then𝐻2𝐷 (𝑁 ) is the
Hamiltonian of an 𝑁 ×𝑁 2D grid of 𝑑-dimensional particles, where

the same fixed 𝑑2 × 𝑑2 local terms, ℎ𝑟𝑜𝑤 and ℎ𝑐𝑜𝑙 , are applied to

every pair in the horizontal and vertical directions. 𝜆0 (𝐻2𝐷 (𝑁 )) is
the ground energy of 𝐻2𝐷 (𝑁 ). The ground energy density of the

system in the TL is defined as the following limit (we prove this

limit always exists in the full version [2] ):

Definition 1.1. Energy density in the TL:We define 𝛼0 as the

limit

𝛼0 = lim
𝑁→∞

𝜆0 (𝐻2𝐷 (𝑁 ))
𝑁 2

. (1)

The main problem we consider is to compute 𝛼0 to within a

given precision specified by the input:

Definition 1.2. Function-GED-2D for (ℎ𝑟𝑜𝑤 , ℎ𝑐𝑜𝑙 )
Input: An integer 𝑛 expressed in binary.

Output: A number 𝛼 such that |𝛼 − 𝛼0 | ≤ 1/2𝑛 .

At first sight, it might seem counter intuitive that this problem

is hard as the ground energy density for a fixed Hamiltonian in

the TL is just a single number. A hardness result would need to

embed a hard computational problem for all instances into a specific

number 𝛼0. We address this by exploiting the fact that the ground

energy density in the TL is an infinite precision number, and we

can use different portions of its binary representation to encode

the solution to different instances of the problem from which we

are reducing. Our main result is:

Theorem 1.3. Function-GED-2D is hard for FEXPNEXP under

Karp reductions, and is contained in FEXPQMA-EXP.

A remark is due regarding our chosen definition of the problem

Function-GED-2D. While it would have been possible to consider

a decision version of this problem, such as some variant of deter-

mining the 𝑛𝑡ℎ bit of 𝛼0, we believe the function version more

naturally describes the problem encountered in physics. Moreover,

computing the 𝑛𝑡ℎ bit essentially requires computing bits 1 through

𝑛 − 1, as one can measure the 𝑛𝑡ℎ bit of the energy for a particular

state, but in order to verify that the state being measured is close

enough to the ground state, it seems necessary to verify that the

first 𝑛 bits of the energy for the given state correspond to the true

ground energy density. We believe the computational complexity

of determining a particular bit of 𝛼0 would still be characterized

by an oracle class, which constitutes the hardest challenge in our

proof.

As in [6, 10], the proof is based onKitaev’s circuit-to-Hamiltonian

construction, and works by embedding finite 1D chains into the 2D

infinite lattice using Robinson tiles. The problem for the infinite

grid thus reduces to a problem for finite 1D chains. However, the

constructions in [6, 10] require a "two-threshold version" of the

finite 1D problem; by this wemean the standard QMA-type problem,

in which one needs to decide whether a quantity is larger than some

threshold or smaller than another. Therefore [6, 10] can directly

apply techniques from the finite case (the main result) of [15],

which addresses this two-threshold setting in the 1D finite TI case.

However, the hardness result given here (Theorem 1.3) requires a

different type of finite 1D problem, where the task is to approximate

the ground energy to some given precision, and no threshold is given.

To this end we define an approximation version of the 1D finite

problem and characterize its complexity. Our results in the finite

case pertain to 1D systems, but they can be naturally generalized for

higher dimensions. In the 1D case, there is a single𝑑2×𝑑2 Hermitian

matrix ℎ which parameterizes the problem, and 𝐻1𝐷 (𝑁 ) is the
Hamiltonian resulting from applying ℎ to every pair of neighboring

particles in a 1𝐷 chain of length 𝑁 . The function version of the

finite TI Hamiltonian problem in 1D (Function-TIH-1D) is defined

as follows:

Definition 1.4. Function-TIH-1D for ℎ and constant 𝑐

Input: An integer 𝑁 expressed in binary.

Output: A number 𝜆 such that |𝜆 − 𝜆0 (𝐻1𝐷 (𝑁 )) | ≤ 1/𝑁𝑐 .

The following theorem encapsulates our results for Function-

TIH:

Theorem 1.5. Function-TIH-1D problem is hard for FPNEXP under

Karp reductions, and is contained in FPQMA-EXP.

The proof of Theorem 1.5, which comprises the main technical

effort of this paper, requires strengthening the finite TI results of

[15] to handle approximation problems rather than two-threshold

type problems. We note that [5] improves on [15] by reducing

the dimension of the particles significantly. However, critically,

their Hamiltonian is not input-independent. Ambainis [4], and later

also [13, 14], studied a related class of problems of approximating

quantities of groundstates, called APX-SIM, which they argue are

better physically motivated than the standard two-threshold type

local Hamiltonian problems. In those approximation problems, as

in the one studied here, the absence of a given threshold presents

an inherent challenge: one needs to verify that the state being

measured is close enough to the ground state. As a result, the upper

bounds on the complexity of these problems all require some form

751



Hamiltonian Complexity in the Thermodynamic Limit STOC ’22, June 20ś24, 2022, Rome, Italy

of binary search with queries to a QMA or QMA-EXP oracle [4].

Indeed the natural complexity classes for such problems are oracular

ones. This oracular structure poses a technical challenge for lower

bounds (assuming the lower bounds are proven in the stronger

setting of Karp reductions), due to the fact that "no" answers from

the oracle cannot be verified. To overcome this challenge, we make

use of a technique pioneered by Krentel [17, 19] who proved that

the optimization version of certain NP-hard problems are complete

for FPNP. Our main technical contribution is implementing a TI

version of Krentel’s technique with sufficiently precise ground

energy estimations as needed for the infinite case. We elaborate on

how we do this in Subsection 1.2.

We remark regarding the exponential difference in complexity

between the finite and the infinite case (Theorems 1.5 and 1.3).

Roughly, the ground energy density in the TL in 2D can be estimated

to within ±1/𝑁 by solving a a finite grid of size 𝑂 (𝑁 2) by 𝑂 (𝑁 2).
This fact is a by-product of the proof that the limit in (1) always

exists, which is given in the full version [2]. Since the input 𝑛 to

the FUNCTION-GED-2D problem requires precision 1/2𝑛 and is

specified using log𝑛 bits, the complexity is doubly exponential in

the input size. In the finite case, the size of the system itself (𝑁 ) is

given in binary, so the complexity is only singly exponential. From

an expressibility perspective, in the finite case, every value of 𝑁

can be used to encode the solution to an instance of the problem

from which we are reducing. By contrast, in the infinite case, the

most efficient reduction we can hope for is where each bit of 𝛼0
encodes an answer to a computational problem. In this case, the

system size has to double for each input encoded.

1.2 Proof Overview: The Finite Case

We start by giving an overview of the proof of Theorem 1.5 for

computing the ground energy of finite 1D TI Hamiltonians. More

details and references to the lemmas in the paper are given in

Subsections 2.4- 2.8. The finite construction is used in the infinite

case (Theorem 1.3) as 1D finite Hamiltonians are layered on top of

a Robinson tiling of the infinite grid. An overview of the infinite

case is given in Subsection 1.3.

We now consider an arbitrary 𝑓 ∈ FPNEXP, and describe how

the reduction to Function-TIH-1D works. First, 𝑓 is associated with

a fixedHamiltonian termℎ that operates on two𝑑-dimensional parti-

cles. Let𝐻𝑁 denote the Hamiltonian on a chain of 𝑁 𝑑-dimensional

particles resulting from applying ℎ to each neighboring pair in the

chain. The reduction maps an input string 𝑥 of length 𝑛 for the

function 𝑓 , to a positive integer 𝑁 = 𝑁 (𝑥) such that 𝑁 (𝑥) can be

computed in time polynomial in 𝑛. We will show that there is a

polynomial 𝑞 and a polynomial time classical algorithm, which for

any 𝑥 can compute 𝑓 (𝑥) given a 1/𝑞(𝑛)-approximation of 𝜆0 (𝐻𝑁 )
(namely a value 𝐸, where |𝐸 − 𝜆0 (𝐻𝑁 ) | ≤ 1/𝑞(𝑛)).

In the circuit-to-Hamiltonian construction, the Hilbert space of

the entire chain consists of a Hilbert space which encodes the state

of the computation, tensored with a Hilbert space that contains a

clock which regulates the process of transitioning from one config-

uration to another. In the absence of any additional penalty terms,

the ground energy is 0 and is achieved by the state that is a uniform

superposition of all states in the computation, entangled with the

clock state for that point in time:
∑𝐿
𝑡=0 |𝑡⟩|𝜙𝑡 (init)⟩. The |𝑡⟩ denotes

the state of the clock and |𝜙𝑡 (init)⟩ denotes the state of the compu-

tation after starting in state |init⟩ and progressing for 𝑡 clock steps.

In our construction. the ground state of the Hamiltonian encodes

the history of a computation which simulates the polynomial time

Turing Machine that computes the function 𝑓 , with access to a

NEXP oracle.

As mentioned above, the oracle calls pose a challenge in the

circuit-to-Hamiltonian construction: the no guesses of the oracle

responses cannot be verified. To overcome this, we use Krentel’s

accounting scheme [17, 19] that applies a cost to every string 𝑦

representing guesses for the sequence of responses to all the oracle

queries made. The accounting scheme needs to ensure that the

minimum cost𝑦 is equal to the correct sequence of oracle responses,

𝑦. yes and no guesses are treated differently, due to the fact that the

verifier can check yes instances (and thus incorrect yes guesses can

incur a very high cost), but no guesses, cannot be directly verified.

In Krentel’s scheme, no guesses incur a more modest cost, whether

correct or not, and their cost must decrease exponentially. This is

because the oracle queries are adaptive; an incorrect oracle response

could potentially change all the oracle queries made in the future

and so it is important that the penalty for an incorrect guess on

the 𝑖𝑡ℎ query is higher than the energy that could potentially be

saved on all future queries. Thus, the costs range from a constant

to exponential in 𝑚, where 𝑚 is the number of oracle calls; our

main challenge is that a fixed translationally-invariant Hamiltonian

cannot directly encode these costs in penalty terms.

We address this issue as follows. The computation consists of

repeated loops, each of which lasts 𝑝 (𝑁 ) steps. In each repetition

the computation simulates the verifier for all the yes oracle guesses

and imposes an energy cost if any of these computations rejects (i.e.,

the yes guess was wrong). We define a function 𝑇 (𝑥,𝑦) (discussed
below) and enforce that the number of loop repetitions is 2𝑇 (𝑥,𝑦) +
1, making the total length of the computation 𝐿 = (2𝑇 (𝑥,𝑦) +
1) · 𝑝 (𝑁 ) steps. The clock is circular, making eigenvalues analysis

easier, and hence we refer to the entire computation as a cycle. The

Hamiltonian is thus block diagonal in those cycles, where each cycle,

or block, corresponds to a computation initiated with different input

parameters: the guess string 𝑦, a guess 𝑇 (in unary) of 𝑇 (𝑥,𝑦), a
string𝑤 corresponding to the witnesses needed for verifying the

yes guesses of the oracle, and finally the initial configuration for

the computation, which we denote by 𝑣-init. The ground energy of

the Hamiltonian is the minimum over the ground values of these

blocks.

To achieve the large penalty for incorrect yes guesses, we intro-

duce a penalty for each verification computation that ends with

reject. This results in a periodic cost occurring once per iteration.

We use spectral graph theory to obtain a close-to-tight lower bound

on the lowest eigenvalues of the relevant blocks, which are Lapla-

cians with periodic +1’s on the diagonal; We show that the ground

energy for blocks with incorrect yes guesses would then behave

inversely with the square of the period’s length, and will thus be

respectively large.

To penalize incorrect no guesses, we introduce two consecutive

+1/2 penalty terms on the diagonal for every computation (even

correct ones). We show that the ground energy of the resulting
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block (where all yes guesses are correct) is exactly

1 − cos(𝜋/(𝐿 + 1)), (2)

which is a function of 𝐿. Our idea is that we can vary the length of the

computation 𝐿 to control the ground energy, in order to implement

the energy penalty for the no guesses. This is achieved by defining

the following function 𝑇 (𝑥,𝑦), for a given input 𝑥 and oracle guess

sequence 𝑦:

𝑇 (𝑥,𝑦) = 𝑓 (𝑥,𝑦) + 2𝑚 · 4𝑚+1 + 2𝑚 ·
𝑚∑︁

𝑗=1

𝑦 𝑗 · 4𝑚−𝑗+1 (3)

Note that a yes guess (𝑦 𝑗 = 1) increases the value of𝑇 and in turn of

𝐿, and thus decreases the lowest eigenvalue. Therefore no guesses

have an implicit cost. The function 𝑇 has the required exponential

structure so that the cost of a no guess decreases exponentially

with each query. This fact, along with the fact that incorrect yes

guesses incur a very high periodic cost, guarantees that the smallest

eigenvalue will correspond to a block with 𝑇 (𝑥,𝑦), where 𝑦 is the

string of correct oracle responses.

The function 𝑓 (𝑥,𝑦) in the definition of 𝑇 (𝑥,𝑦) is the outcome

of the computation on input 𝑥 , when string 𝑦 is used for the oracle

responses made by the Turing Machine computing 𝑓 . If 𝑦 is the

set of correct oracle responses, then 𝑓 (𝑥) = 𝑓 (𝑥,𝑦). We show in

the proof of Theorem 2.17 (given in the full version [2]) that if the

ground energy (1 − cos(𝜋/(𝐿 + 1))) can be computed to a 1/poly
precision for a sufficiently high degree polynomial, then the value

of 𝐿 = 𝑝 (𝑁 ) · (2𝑇 (𝑥,𝑦) + 1) can be recovered, from which 𝑇 (𝑥,𝑦)
can be recovered. Here we are assuming that 𝑓 (𝑥,𝑦) is of length at

most𝑚; this can be guaranteed using a standard padding argument

(see [2]). Thus, as can be seen from the expression for𝑇 (𝑥,𝑦) given
in Equation (3), 𝑓 (𝑥,𝑦) is just the low order bits of 𝑇 (𝑥,𝑦).

1.3 Proof Overview: The Infinite Case

We use the technique introduced by Cubitt, Perez-Garcia, and Wolf

in [10] who incorporate an apreiodic tiling structure into the Hamil-

tonian term for the infinite plane. They use Robinson tiles [20]

which are a finite set of tiling rules that when applied to the infinite

plane, force an aperiodic structure with squares of exponentially

increasing size. Each square has size 4𝑘 , for positive integer 𝑘 , and

the density of squares of size 4𝑘 in the limit of the infinite plane

is 1/42𝑘+1. Tiling rules are essentially a classical version of local

Hamiltonians, so the tiling rules can be encoded into a 2D layer of

the Hilbert space on the plane. As was done in [10], we layer a TI

1D Hamiltonian on top of one of the sides of all the squares. The

tiling pattern on the lower layer determines where the 1D term

is applied. The effect of this structure is that the ground energy

density 𝛼0 for the infinite plane is the sum of the ground energies

for an infinite series of finite 1D systems divided by the density of

each square size:

𝛼0 =

∞∑︁

𝑥=1

𝜆0 (𝑁𝑥 )
4(𝑁𝑥 )2

, (4)

where 𝑁𝑥 = 4𝑥
2
and 𝜆0 (𝑁𝑥 ) is the ground energy of a 1D chain of

length 𝑁𝑥 with the Hamiltonian term from the 1D finite construc-

tion applied to each pair in the chain. Note that it is essential here

that the TI construction for finite 1D chains have a fixed Hamilton-

ian term that does not depend on the chain size since in the infinite

construction the same Hamiltonian term is applied to every pair of

neighboring particles along each dimension.

As noted earlier, our reduction needs to encode an entire lan-

guage in one, infinite-precision number 𝛼0. In our construction,

different portions of the binary representation of 𝛼0 encode the

value of a function 𝑓 on different inputs. In particular, bits 4𝑥2

through 4(𝑥 + 1)2 encode the value of 𝑓 (𝑥). The top segment of

each square of size 4𝑥
2
in the Robinson tiling of the infinite plane

is layered with a TI 1D Hamiltonian whose ground energy encodes

the value 𝑓 (𝑥), where the function problem 𝑓 is from the oracle

complexity class FEXPNEXP. This 1D Hamiltonian is exactly the

construction used in the finite case, except that the computation

is in FEXP instead of FP as in the finite case. The reason for the

exponential increase in complexity is that we are using a square of

size 4𝑥
2
to encode the computation on input 𝑥 .

Each 𝜆0 (𝑁𝑥 ) in Equation (4) is an irrational number, so bits 4𝑥2

through 4(𝑥 + 1)2 which encode the value of 𝑓 (𝑥) will also include

the "overflow" from the energy contributions of 𝑓 (𝑥 ′) for every
𝑥 ′ < 𝑥 . The values of 𝑓 on inputs 𝑥 ′ < 𝑥 , then need to be calculated

to the required precision in the classical calculation of the reduction

and subtracted off from 𝛼0 in order to recover the bits required to

reconstruct the value of 𝑓 (𝑥). Using the analysis of our construction
for the finite 1D case, we know that 𝜆0 (𝑁𝑥 ) = (1− cos(𝜋/(𝐿𝑥 + 1)),
where 𝐿𝑥 is the integer equal to 𝑝 (𝑁𝑥 ) · (2𝑇 (𝑥,𝑦) + 1). Recall that
𝑇 (𝑥,𝑦) encodes the desired value for 𝑓 (𝑥).

We now sketch how the first 4(𝑥 + 1)2 + 2 bits of 𝛼0 are sufficient

to recover 𝜆0 (𝑁𝑥 ) by inductively subtracting off 𝜆0 (𝑁𝑥 ′)/4(𝑁𝑥 ′)2
for every 𝑥 ′ < 𝑥 . Note that dividing 𝜆0 (𝑁𝑥 ′) by 4(𝑁𝑥 ′)2 effec-

tively shifts the binary representation of 𝜆0 (𝑁𝑥 ′) to the right by

log2 [4(𝑁𝑥 ′)2] = 4(𝑥 ′)2 + 2 bits. Let 𝛼0 be the current value of

the sum. Initially, 𝛼0 is equal to the first 4(𝑥 + 1)2 + 2 bits of 𝛼0.

In an inductive step, one has subtracted off 𝜆0 (𝑁𝑥 ′)/4(𝑁𝑥 ′)2 for
every 𝑥 ′ < 𝑧 for some 𝑧 ≤ 𝑥 . As shown in Figure, 1, the first

4𝑧2 + 2 bits of 𝛼0 are 0 and the next 4(𝑧 + 1)2 − 4𝑧2 bits are deter-

mined solely by 𝜆0 (𝑁𝑧). We show in the proof of Theorem 2.17

that this is enough information to recover the integer 𝐿𝑧 where

𝜆0 (𝑁𝑧) = (1−cos(𝜋/(𝐿𝑧 +1)). Once 𝐿𝑧 is recovered, 𝜆0 (𝑁𝑧) can be

computed to any desired accuracy. In particular, it can be calculated

up to 4(𝑥+1)2+2 bits of precision and subtracted off from 𝛼0. The re-

sult is a new 𝛼0 which is equal to the sum
∑𝑥
𝑥 ′=𝑧+1 𝜆0 (𝑁𝑥 ′)/4(𝑁𝑥 ′)2

up to 4𝑥2 + 2 bits of precision. This illustrates why it is necessary

to calculate the ground energy for each finite chain to an arbitrary

level of precision: for every 𝑧 < 𝑥 , it is necessary to calculate 𝜆0 (𝑁𝑧)
to a precision of 4𝑥2+2 bits in order to derive 𝑓 (𝑥) from a 4𝑥2+2-bit
approximation of 𝛼0.

1.4 Summary of Main New Technical
Contributions in the Proof

While the results in the paper make use of many previously known

techniques from Hamiltonian complexity, there are several novel

technical contributions introduced here which we hope will be

useful elsewhere.

As mentioned above, to the best of our knowledge this is the first

time that the length of the computation (which we control using
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Figure 1: The partial sum 𝛼0. The first 4𝑧2 + 2 bits of 𝛼0 are

0 and the next 4(𝑧 + 1)2 − 4𝑧2 bits are determined solely by

𝜆0 (𝑁𝑧). This is enough information to recover the integer 𝐿𝑧
where 𝜆0 (𝑁𝑧) = (1 − cos(𝜋/(𝐿𝑧 + 1)).

the number of repetitions 𝑇 (𝑥,𝑦)) is used to control the ground

energy and make sure that the ground value indeed corresponds to

the correct initial parameters.

We believe this is also the first time in Hamiltonian complexity

that such precise control over the eigenvalues was required. We

need the high level of precision in several places in the proof. First,

in the infinite case, the precise analysis of the lowest eigenvalue

is essential in simultaneously encoding an infinite sequence of

numbers (values 𝑓 (𝑥) for an infinite sequence of 𝑥 ’s) into a single,

infinite-precision number. The high level of precision is needed

so that given a precise enough estimate for 𝛼0 we can inductively

subtract off the energy contributions of 𝑓 (𝑥 ′) for each 𝑥 ′ < 𝑥 , in

the classical computation of the reduction; this then leaves enough

information to determine 𝑓 (𝑥).
Secondly, even in our finite case construction, the fact that we are

considering a function problem implies that we must distinguish

between many different values for the cost function as opposed

to extracting only a single bit as required for a decision problem.

This requires a more precise handle on the lowest eigenvalue of the

resulting matrix.

Last but not least, in the finite case, as explained in subsection 1.3,

we use highly precise lower bounds to show that the energy penalty

for incorrect yes oracle guesses, which we achieve by periodic

penalties of period 𝑝 (𝑁 ), is indeed larger than the ground energy

in the case that all yes guesses are correct. The usual lower bound of

Ω(1/𝑝 (𝑁 )3) used in previous circuit-to-Hamiltonian constructions

does not suffice, as it needs to be larger than our upper bound on the

ground value, which is 𝑂 (1/𝑇 2𝑃 (𝑁 )2) by Equation (2). We cannot

take 𝑇 to be arbitrarily large, since 𝑇 has to be computed in unary

in less than 𝑁 steps and so it is bounded by roughly
√
𝑁 .

The use of the circular clock also requires some additional care, as

it is important that the computation part of the state also returns to

its initial state at the end of the cycle. By contrast, if the computation

is a path, the ending state of the computation can be arbitrary. We

handle this by embedding a computation which executes a process

in the forward direction for a certain number of steps. Since the

action on the computation tracks is reversible, the computation can

be undone by executing the same number of reverse steps.

1.5 Concluding Remarks, Related Work and
Open Questions

To our knowledge, this is the first time the complexity of calculating

physical quantities in the TL for a fixedHamiltonian is characterized

from a computational perspective. To this end we define a function

problem which captures roughly the complexity of the task that

a physicist encounters when attempting to calculate a physical

quantity with one more bit of precision; we show, roughly, that it

is doubly exponential. To our knowledge this is also the first use

of a circuit-to-Hamiltonian construction to show hardness for a

function problem.

After completing this work, we learned that Cubitt and Watson

independently considered the problem of computing the ground

energy density in the TL with a fixed Hamiltonian term [22]. They

study a classical two-threshold version of our GED problem (which

they call GSED), and prove that the class of languages computable

by an exponential time Turing Machine with access to GSED is con-

tained in EXPNEXP and contains 𝑃NEEXP. Their hardness result thus

holds for Turing reductions but not for Karp reductions, as in our

reduction; using Turing reductions frees them from the need to em-

ploy Krentel’s accounting scheme to embed the entire interaction

with an oracle in a single instance, which is the primary technical

contribution in our work. In their proof, the finite construction

embedded in each square of the Robinson tiling is a NEEXP compu-

tation, as opposed to the FEXPNEXP computation implemented in

our finite construction. We note that we do not know how to prove

Karp reduction results for the two-threshold problem variant. The

problem is that in a Karp reduction, a polynomial time reduction

must take an instance 𝑥 of a language 𝐿 and create an instance of

GSED that encodes whether 𝑥 ∈ 𝐿. The instance of GSED must, by

definition, include thresholds and computing the correct threshold

for the 𝑛𝑡ℎ bit of 𝛼0 essentially requires computing the first 𝑛 − 1

bits of 𝛼0.

Importantly, our results are not tight. We note that in our hard-

ness results, since we are reducing from functions 𝑓 ∈ FPNEXP,

and 𝑓 ∈ FEXPQMA-EXP, the verifier 𝑉 and hence all of the com-

putations we are simulating are classical. We still need a quantum

construction to execute the clock and create a ground state that is a

superposition of the states of the computation at each clock step.We

conjecture that the finite problem is in fact hard for FPQMA-EXP,

and the infinite one is hard for FEXPQMA-EXP. We believe that

our constructions can be generalized in a straight-forward way to

encode the computation of quantum verifiers and quantum wit-

nesses required for a QMA-EXP oracle instead of the classical ones

required for NEXP. The main problem in completing the quantum

hardness result is that QMA and QMA-EXP are classes of promise

problems which means that the Turing Machine can make invalid

oracle queries, and there is no guarantee on the responses for in-

valid queries. Recently, Gharibian and Yirka [14] and later Watson,

Bausch, and Gharibian [21] managed to get around the invalid

queries issue in the finite APX-SIM problem, for quantities other

than the ground-energy; however, in the context of measuring the

ground energy itself, it is unknown how to do this since invalid

queries have an uncontrolled effect on the ground energy. As writ-

ten, the constructions in [21], while TI, also have input-dependent

754



STOC ’22, June 20ś24, 2022, Rome, Italy Dorit Aharonov and Sandy Irani

Hamiltonian parameters, but this could probably be fixed. The issue

of invalid queries, on the other hand, appears to be an obstacle

for extending these results to the ground energy, even when the

Hamiltonian terms are position-dependent as in [13, 14], as well

as in the finite TI constructions given here and in [21]. It remains

open to provide tight complexity bounds for computing the ground

energy to within a given precision, even in the finite non-TI case.

Another interesting open problem is to extend the works of [21]

to the infinite case, and arrive at tight complexity results in the TL

fixed Hamiltonian case, for measuring quantities other than energy.

We note that several recent works [5, 6, 9, 10] study a relaxed

notion of TI (called semi-TI in [3]), in which the Hamiltonian is

a weighted sum of fixed terms; the weights are given as part of

the input. This notion seems less natural for the TL setting where

infinitely many weights need to be given in order to specify the

problem.

2 COMPUTING GROUND ENERGIES FOR
FINITE TI HAMILTONIANS

In this section we provide more details for the main technical proof

in the paper which is that computing the ground energies of finite

tranlsational-invariant Hamiltonians is hard for FPNEXP. We refer

the reader to the full version [2] for a complete description of the

construction and proofs.

2.1 Eigenvalue Bounds

The analysis of the construction requires new bounds on the small-

est eigenvalues of certain matrices. The proofs of the second and

third bounds are given in the full version [2].

Let 𝐶𝐿 be the propagation matrix for a matrix for a cycle of

length 𝐿. Note that 𝐶𝐿 is 1/2 times the Laplacian matrix for a cycle

of length 𝐿. We will use 𝑃𝐿 to denote the 𝐿 × 𝐿 matrix which is 1/2
times the Laplacian matrix for a path of length 𝐿.

Lemma 2.1. [Smallest Eigenvalue for the Path Graph Plus

a Penalty] Let 𝐷1 be the matrix that is all 0’s, except for a 1 in the

upper left corner. The smallest eigenvalue for 𝑃𝐿 + 𝐷1 is at least
(
1 − cos

( 𝜋

2𝐿 + 1

))

Proof. [11] show that the smallest eigenvalue of 𝑃𝐿 + 1
2𝐷1 is

exactly (
1 − cos

( 𝜋

2𝐿 + 1

))
.

Since the 𝐷1 is positive semi-definite, the smallest eigenvalue of

𝑃𝐿 + 1
2𝐷1 is a lower bound for the smallest eigenvalue of 𝑃𝐿 + 𝐷1.

The lemma follows. □

Lemma 2.2. [Smallest Eigenvalue for the Cycle Graph Plus

Two 1/2 Penalties] Let𝐷2× 1
2
be an 𝐿×𝐿matrix that is 0 everywhere

except for two consecutive diagonal entries which are 1/2. The smallest

eigenvalue of 𝐶𝐿 + 𝐷2× 1
2
is exactly

(
1 − cos

( 𝜋

𝐿 + 1

))
.

Lemma 2.3. [Smallest Eigenvalue Lower Bound for the Cy-

cle Graph Plus a Periodic Penalty] If 𝐿 = 𝑟𝑠 and let𝐷𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 be a

diagonalmatrix which is has all zero entries except for𝐷𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 [𝑖, 𝑖] =

Figure 2: Sample configurations for the clock and computa-

tion tracks. The clock tracks are the top three tracks (Tracks

1, 2, and 3) and the computation tracks are the bottom three

tracks (Tracks 4, 5, and 6). The computation tracks represent

the configuration of a TuringMachinewith Track 4 represent-

ing the state and location of the head, Track 5 representing

the contents of the work tape, and Track 6 representing a

read-only witness string.

1 if 𝑖 is an integer multiple of 𝑠 . The smallest eigenvalue of 𝐶𝐿 +
𝐷𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 is at least

1

8

(
1 − cos

( 𝜋

2𝑠 + 1

))

2.2 The Track Structure of the Hilbert Space

The Hilbert space of each particle is a tensor product of 6 different

spaces which will be used to form 6 tracks. There are also two

additional states and . So the Hilbert space for particle 𝑖 is

H𝑖 = { , } ⊕
(
H𝑖,1 ⊗ H𝑖,2 ⊗ H𝑖,3 ⊗ H𝑖,4 ⊗ H𝑖,5 ⊗ H𝑖,6

)
.

Later, we will introduce constraints that enforce the condition that

for a low energy state, the leftmost particle must be in state , the

right particle must be in state and the particles in between are

not in states or . We will call all such standard bases states

bracketed. The space spanned by all bracketed states is H𝑏𝑟 and

the final Hamiltonian is invariant on H𝑏𝑟 . For any bracketed state,

Track 𝑘 of the system of 𝑁 particles consists of the tensor ofH𝑖,𝑘

as 𝑖 runs from 2 to 𝑁 − 1.

Three of the tracks are clock tracks which contain the state of

the clock. The other tracks are computation tracks that encode

the configuration of a Turing Machine computation. An example

is given in Figure 2. The symbols in the figure above represent

standard basis states for each portion of the Hilbert space.

2.3 Circuit-to-Hamiltonian Preliminaries

The Hamiltonian term ℎ in the construction is a sum of two body

terms, and there are two types of terms. Type I terms will have the

form |𝑎𝑏⟩⟨𝑎𝑏 | where 𝑎 and 𝑏 are possible states. This has the effect

of adding an energy penalty to any state which has a particle in

state 𝑎 to the immediate left of a particle in state 𝑏. In this case,

we will refer to 𝑎𝑏 as an illegal pair. We will sometimes consider

the restriction of an illegal pair to a set of tracks. In this case we

implicitly mean that the Hamiltonian term acts as the identity on

the remaining (unspecified tracks). The restriction of an illegal pair
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to a set of tracks will sometimes be referred to as an illegal pattern.

We will refer to standard basis states of the whole chain or a subset

of the tracks as configurations. Any configuration which has an

illegal pattern or illegal pair is said to be illegal.

Type II termswill have the form: 12 ( |𝑎𝑏⟩⟨𝑎𝑏 |+|𝑐𝑑⟩⟨𝑐𝑑 |−|𝑎𝑏⟩⟨𝑐𝑑 |−
|𝑐𝑑⟩⟨𝑎𝑏 |). These terms enforce that for any eigenstate with zero

energy, if there is a configuration 𝐴 with two neighboring particles

in states 𝑎 and 𝑏, there must be a configuration 𝐵 with equal ampli-

tude that is the same as 𝐴 except that 𝑎 and 𝑏 are replaced by 𝑐 and

𝑑 . Even though a Type II term is symmetric, we break this symme-

try and associate with each such term a direction by choosing an

order on the pair of pairs. If we decide that 𝑎𝑏 precedes 𝑐𝑑 , then

we denote the term as: 𝑎𝑏 → 𝑐𝑑 . Type II terms are also referred

to as transition rules. We will say that configuration 𝐴 transitions

into configuration 𝐵 by rule 𝑎𝑏 → 𝑐𝑑 if 𝐵 can be obtained from

𝐴 by replacing an occurrence of 𝑎𝑏 with an occurrence of 𝑐𝑑 . We

say that the transition rule applies to 𝐴 in the forward direction

and applies to 𝐵 in the backwards direction. The sum of all the

Type II terms is called ℎ𝑝𝑟𝑜𝑝 or the propagation Hamiltonian. Again,

we may specify that a transition rule acts on a particular subset

of the tracks: 𝑎𝑏𝑇 → 𝑐𝑑𝑇 , where 𝑇 is a subset of the tracks. This

implicitly means that the Hamiltonian term acts as the identity

on the remaining tracks. It will also sometimes be convenient to

say that a transition rule applies to every state except a particular

standard particle basis state. In this case, we will denote the rule

by: 𝑎(¬𝑏) → 𝑐𝑑 to indicate that the rule applies to every 𝑎𝑥 pair,

where 𝑥 ≠ 𝑏.

2.4 The Clock

In this subsection we focus on the Hamiltonian restricted to the

subspace of the clock. The clock used in this construction is a more

elaborate version of the clock used in [15]. Any standard basis state

of Tracks 1 through 3 is called a clock configuration. We define

a set of well formed clock configurations such that the condition

of being well formed can be enforced by Type I terms. Thus, all

clock configurations which are not well formed will have an energy

penalty and do not appear in the support of the ground state. Let

ℎ𝑤𝑓 −𝑐𝑙 denote the Hamiltonian terms with the constraints that

give an energy penalty for any clock state that is bracketed but not

well-formed.

The well-formed clock configurations have a special structure

defined by a configuration graph:

Definition 2.4. [Configuration Graph] The vertices of the

configuration graph correspond to the well-formed clock configura-

tion for Tracks 1, 2, and 3. There is a directed edge from configuration

𝑐1 to configuration 𝑐2, if 𝑐2 can be reached from 𝑐1 by the application

of one transition rule in the forward direction.

We prove the following lemma which establishes that the con-

figuration graph is a set of disjoint paths and cycles.

Lemma 2.5. [Degree Bound for the Configuration Graph]

The transition rules are closed on the set of well-formed clock configu-

rations. Furthermore, for every well-formed clock configuration, there

is at most one transition rule that applies in the forward direction and

at most one transition rule that applies in the reverse direction.

We first describe the structure of the configuration considering

just the configurations for Tracks 1 and 2 and then further refine

the analysis with Track 3 added in.

Track 1 has exactly one pointer that shuttles back and forth be-

tween the left and right ends of the chain according to the transition

rules. The pointer moves to the right and the pointer moves

to the left. The Track 1 pointers come in 8 different varieties and

are labeled with tags in the range from 1 through 8. There are two

pointers with the label 𝑖: and . The different types of Track 1

pointers act as a means of program control as they trigger different

operations on the three computation tracks (Tracks 4, 5, and 6).

In each iteration for Tracks 1 and 2, two different Turing Ma-

chines (described in the next subsection) are run sequentially, each

for 𝑁 − 2 steps. The Track 1 pointer acts as a second hand for the

clock. In a round trip of a Track 1 pointer, a single step of the Turing

Machine is executed on the computation tracks. The number of

Turing Machine steps in the iteration is regulated by the pointer in

Track 2 which is advanced by one location as the Track 1 pointer

sweeps by. Thus, the Track 2 pointer acts as a minute hand for

the clock. Some of the Track 1 pointers act as the identity on the

computation tracks and are used to check certain local conditions

and impose an energy penalty if those conditions are not met.

We further classify well-formed configurations for Tracks 1 and

2 as either correct or incorrect. Type I constraints are added which

will ensure that incorrect clock configurations will never be in the

support of the ground state. The complete specification of these

Type I terms is given in the full version and the sum of these terms

is called ℎ𝑐𝑙 .

Lemma 2.6. [Incorrect Configurations form Short Paths]

Any incorrect clock configuration for Tracks 1 and 2 will reach an

illegal configuration (from ℎ𝑐𝑙 ) in at most 2(𝑁 − 2) clock steps from
which there is no out-going transition.

There are exactly 𝑝 (𝑁 ) = 4(𝑁 − 2) (2𝑁 − 3) correct clock config-
urations for Tracks 1 and 2. The following lemma establishes that

the correct clock configurations for Tracks 1 and 2 form a single

cycle:

Lemma 2.7. [Correct Configurations Form Cycles] Starting

from any correct configuration 𝑐 for Tracks 1 and 2, the transition rules

will reach every correct configuration for Tracks 1 and 2 exactly once

before returning to configuration 𝑐 after 𝑝 (𝑁 ) = 4(𝑁 − 2) (2𝑁 − 3)
clock steps.

We will refer to a sequence of 𝑝 (𝑁 ) clock steps as a iteration.

The third clock track acts like an hour hand in that the pointer on

Track 3 moves by one location each time an iteration is completed.

Track 3 is used to hold a timer, that will count the number of

iterations. The number of or particles, denoted by 𝑇 , is called

the timer length for Track 3, and the transition rules never alter the

length of the timer. If the timer length is 𝑇 , the iteration will be

repeated 2𝑇 + 1 times, to form a clock cycle. This is done as follows.

The Track 3 pointer shuttles back and forth, as do the pointers

on Tracks 1 and 2. However, the right-moving Track 3 pointer will

turn around when it reaches the the left-most particle. This

provides a way to control the number of iterations of Tracks 1 and

2 in each clock cycle. In the sample configuration shown in Figure

2, the Track 3 timer has length 6. If the length of the timer is𝑇 , then
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Track 3 transitions through 2𝑇 + 1 configurations before repeating.

Referring again to the example in Figure 2, since the timer has

length 6, there will be 13 iterations of Tracks 1 and 2 for each clock

cycle. Starting in a correct clock configuration in which Track 3

has a timer length 𝑇 , after (2𝑇 + 1) · 𝑝 (𝑁 ) time steps, the clock

configuration will return to its original state completing a clock

cycle. We note that in referring to a clock configuration without

specifically restricting to a subset of the tracks, we are referring to

a configuration for all three clock tracks.

The notion of correct and incorrect clock configurations is gen-

eralized to Tracks 1, 2, and 3 by adding additional constraints on

Track 3. These additional constraints are also added to the ℎ𝑐𝑙 term.

The structure of the configuration graph then is summarized in the

following lemma:

Lemma 2.8. [Structure of the Configuration Graph] In the

configuration graph, the correct clock configurations with timer length

𝑇 form a cycle of length (2𝑇 + 1)𝑝 (𝑁 ). Every correct clock configu-
ration for Tracks 1 and 2 occurs exactly 2𝑇 + 1 times in the cycle at

intervals of exactly 𝑝 (𝑁 ). All other well-formed clock configurations

are in paths of length at most 𝑝 (𝑁 ) that end in an illegal configuration
(from ℎ𝑐𝑙 ).

Definition 2.9. [Enumeration of Correct Clock Configu-

rations] A clock configuration is at Time 0 for Tracks 1, 2, and 3 if

it’s Track 1 state is ∗ , it’s Track 2 state is ∗ , and its

Track 3 state is ∗ .

|𝑐𝑇,0,0⟩ is the clock configuration in which the Track 3 timer has

length 𝑇 and Tracks 1, 2, and 3 are all at Time 0. Note that the timer

length is well-defined for 𝑇 ∈ {0, . . . , 𝑁 − 3}. For 𝑠 ∈ {0, . . . , 2𝑇 }
and 𝑡 ∈ {0, . . . , 𝑝 (𝑁 ) − 1}, |𝑐𝑇,𝑠,𝑡 ⟩ is the clock configuration that is

reached after 𝑠 · 𝑝 (𝑁 ) + 𝑡 clock steps starting in |𝑐𝑇,0,0⟩. 𝑠 uniquely
determines the configuration of Track 3 and 𝑡 uniquely determines

the configuration of Tracks 1 and 2.

Lemma 2.12 (proven in Section 2.9.1) uses this structure to show

that the space spanned by incorrect clock configurations have high

energy. The Hamiltonian restricted to correct clock configurations

is block diagonal, with one block corresponding to each possible

timer length 𝑇 . The block corresponding to timer length 𝑇 is 1/2
times the Laplacian of a cycle graph with (2𝑇 + 1) · 𝑝 (𝑁 ) vertices.
When the Hilbert space for the computation tracks is tensored with

the Hilbert space for the clock, the state space expands but the

Hamiltonian retains this block diagonal structure. In the expanded

space that includes both the computation and the clock space, every

block is parametrized by its timer length 𝑇 in addition to the initial

configuration of the Turing Machine, denoted by 𝑣-init (describing

the state of Tracks 4 and 5) as well as the read-only witness string

on Track 6. It will be convenient to divide the witness string into a

string 𝑦 used as the guesses for the responses to the oracle queries

and𝑤 for the witness string used in simulating the verifier for the

calls made to the oracle in which the guess is yes (for each such

yes guess there will be a different witness string𝑤𝑖 ). Thus, every

block is parameterized by the 4-tuple (𝑇, 𝑣-init, 𝑦,𝑤). Penalty terms

described in Subsection 2.8 will be added in to ensure that blocks

corresponding to incorrect parameters have a high ground energy.

First we describe in Subsection 2.5 the computation performed in

each iteration.

2.5 Overview of the Computation Embedded in
the Hamiltonian

Here we give an overview of the computation used in the construc-

tion. This computation is repeated 2𝑇 + 1 times.

Stage 1 - Binary Counter Turing Machine: A Turing Machine

that increments a binary counter called𝑀𝐵𝐶 is run for (𝑁 − 2) TM
steps, where 𝑁 is the length of the chain. If the starting configu-

ration has the string ”1” on the work tape, then after (𝑁 − 2) TM
steps, there will be some string 𝑥 on the work tape representing

the number of increment operations performed. 𝑥 is then used as

the input to the next stage of the computation.

The idea of using a binary counter TM to translate the length of

the 1D chain into an input string 𝑥 was used in [15] as well. Define

𝑁 (𝑥) to be the number such that after (𝑁 (𝑥) − 2) TM steps, the

binary counter TM completes an increment operation with 𝑥 on

the work tape. The function mapping 𝑥 to 𝑁 (𝑥) is the reduction.
The complete specification of the binary counter Turing Machine

as well as an explicit formula for 𝑁 (𝑥) is given in the full version

[2].

Stage 2 - Timer and Verification Turing Machine: In the second

stage of the computation, a Turing Machine called𝑀𝑇𝑉 simulates

the verifier for oracle responses for which the guess response is

yes, and then computes the function 𝑇 (𝑥,𝑦) shown in Equation (3).

The first𝑚 bits of the witness track are used as the guess 𝑦 for the

oracle responses and the remaining bits 𝑤 are used as witnesses

for the verifier as needed. If 𝑓 ∈ FPNEXP, then 𝑓 is computed by

a polynomial time Turing Machine𝑀 with access to an oracle for

language 𝐿 ∈ NEXP. The exponential time verifier for 𝐿 is called

𝑉 . First𝑀 is simulated on input 𝑥 using the oracle responses given

by 𝑦. This completely determines the oracle inputs 𝑥1, . . . , 𝑥𝑚 . If 𝑦

guesses that an oracle response is yes (𝑦𝑖 = 1) then 𝑉 is simulated

on input 𝑥𝑖 using bits from the witness𝑤 from the witness track. If

any of the oracle computations that correspond to yes guesses are

rejecting, a character is placed on the work tape that will trigger

a penalty term at the second checking phase, which occurs at the

end of the computation (as explained in Subsection 2.8). Next the

function 𝑇 (𝑥,𝑦) is computed and written in unary on Track 3 so

that it can be checked (again, in the second checking phase) against

the timer used to regulate the number of iterations of the clock. The

pseudo-code for the computational process executed in the second

𝑁 − 2 TM steps is given in Figure 3.

The following definition allows us to refer to the correct output

of𝑀𝑇𝑉 whose behavior depends on the input pair (𝑥, 𝜔) as well as
TuringMachines𝑀 and𝑉 .𝜔 is the binary witness string𝜔 of length

𝑁 − 2 written on the witness track and contains the string 𝑦 used

for oracle responses as well as the witnesses𝑤 used in verification.

Definition 2.10. Define Out(𝑥,𝜔,𝑀,𝑉 ) as the correct output of
𝑀𝑇𝑉 on input (𝑥, 𝜔) using Turing Machines𝑀 and 𝑉 , as described

in Figure 3.
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Input: (𝑥, 𝜔)
(1) Compute 𝑁 = 𝑁 (𝑥)
(2) 𝑚 is the number of oracle queries made by𝑀 on input 𝑥

(3) 𝑟 is the size of the witness used by 𝑉 on any oracle query

generated by𝑀 on input 𝑥

(4) 𝑚 and 𝑟 are hard-coded functions of |𝑥 | determined

by𝑀 and 𝑉 .

(5) Simulate Turing Machine𝑀 on input 𝑥

(6) Use 𝑦 for the responses to the oracle queries, where 𝑦

denotes the first𝑚 bits of 𝜔

(7) Simulation generates 𝑥1, . . . , 𝑥𝑚 , inputs to oracle queries

(8) Reject = FALSE

(9) for 𝑖 = 1 . . .𝑚

(10) if 𝑦𝑖 = 1

(11) Simulate 𝑉 on input (𝑥𝑖 ,𝑤𝑖 )
(12) 𝑤𝑖 is the string formed by bits𝑚 + (𝑖 − 1)𝑟 + 1

through𝑚 + 𝑟𝑖 of 𝜔
(13) If 𝑉 rejects on input (𝑥𝑖 ,𝑤𝑖 )
(14) Reject = TRUE

(15) if (Reject)

(16) Write 𝜎𝑅 in the left-most position of the work tape

(17) else

(18) Write 𝜎𝐴 in the left-most position of the work tape

(19) Compute 𝑇 (𝑥,𝑦)
(20) Write the value of 𝑇 (𝑥,𝑦) in unary with 𝜎𝑋 symbols

starting in the second position of the work tape

Output: ({𝜎𝐴, 𝜎𝑅}(𝜎𝑋 )𝑇 (𝑥,𝑦) ;𝑥, 𝜔)

Figure 3: Pseudo-code for the Turing Machine𝑀𝑇𝑉 .

2.6 Implementing TM Steps in Propagation
Terms

We will add Type I terms that will give an energy penalty to any

standard basis state for the computation tracks that do not corre-

spond to a well-defined Turing Machine configuration. These are

the well-formed computation configurations. Let ℎ𝑤𝑓 −𝑐𝑜 denote

the Hamiltonian terms with the constraints that give an energy

penalty for any state of the computation tracks that is not well-

formed. 𝐶𝑁 is defined to be the set of standard basis states for the

well-formed computation configurations.

A single sweep of a pointer on Track 1 from right to left

causes the TM configuration on Tracks 4 through 6 to advance by

one TM step. The details of this part of the construction follow [15]

closely and are given in the full version [2]. Note that since we are

reducing from FPNEXP instead of FPQMA-EXP, all of the Turing

Machines in our construction, including the verifier𝑉 , are classical

reversible Turing Machines instead of Quantum Turing Machines.

Define 𝑆 to be the set of standard basis states associated with the

computation tracks of two neighboring particles. The propagation

terms in ℎ𝑝𝑟𝑜𝑝 for a forward step of a TM all have the form:

1

2
[𝐼S ⊗ | ⟩⟨ | + 𝐼S ⊗ | ⟩⟨ |

+ 𝑃 ⊗ | ⟩⟨ | + 𝑃† ⊗ | ⟩⟨ |]

𝑃 is a unitary operation that applies to the space spanned by 𝑆 .

In fact since the computations are classical the function 𝑃 is a

permutation on 𝑆 . Each of the two Turing Machines𝑀𝐵𝐶 and𝑀𝑇𝑉

give rise to two different permutations 𝑃𝐵𝐶 and 𝑃𝑇𝑉 .

As the Track 1 pointer sweeps from right to left, 𝑃 is applies

to each pair of particles from right to left. The particles will be

numbered from left to right 0 through 𝑁 − 1, so the non-bracketed

particles are 1 through 𝑁 − 2. Applying 𝑃 to particles 𝑖 and 𝑖 +
1 will be denoted 𝑃 (𝑖,𝑖+1) . The following sequence of operations

accomplishes one forward step of the Turing Machine associated

with 𝑃 :

𝑃 (1,2)𝑃 (2,3) · · · 𝑃 (𝑁−3,𝑁−2)

The reverse step a Turing Machine is then accomplished with a

left to right sweep of a Track 1 . These propagation terms have

the form:
1

2
[𝐼S ⊗ | ⟩⟨ | + 𝐼S ⊗ | ⟩⟨ |

+ 𝑃 ⊗ | ⟩⟨ | + 𝑃† ⊗ | ⟩⟨ |]
As the Track 1 pointer sweeps from left to right, 𝑃† to each pair.

A single sweep across the entire chain applies the operations:

(𝑃 (𝑁−3,𝑁−2) )† · · · (𝑃 (2,3) )† (𝑃 (1,2) )†

2.7 Overview of an Iteration

We will use the different 𝑖-pointers on Track 1 to trigger different

operations, depending on whether the operation is a forward or re-

verse step and whether the Turing Machine step is dictated by𝑀𝐵𝐶

or𝑀𝑇𝑉 . The list below shows the segments for an entire iteration

for Tracks 1 and 2 and how many steps of each Turing Machine are

triggered on the computation tracks during the segment. Segments

1 through 3 trigger a step of one of the two TMs as the 1-pointer

moves from right to left. A sweep of the triggers the application

of the corresponding 𝑃 operation to each pair of particles from

right to left. Segments 5 through 7 trigger the inverse operation of

the TMs. A sweep of the triggers the application of the corre-

sponding 𝑃† operation to each pair of particles from left to right.

This will cause the state of the computation tracks to return to their

original state after each iteration for Tracks 1 and 2. Segments 4

and 8 are used for checking purposes only. The 4 and 8-pointers

act as the identity on the computation tracks. We will add Type I

terms that cause a penalty in the presence of a 4 or 8-pointer to

penalize certain conditions on the computation tracks described in

the next subsection.

1) N-3 forward steps of𝑀𝐵𝐶 5) N-2 reverse steps of𝑀𝑇𝑉

2) One forward step of𝑀𝐵𝐶 6) One reverse step of𝑀𝐵𝐶

3) N-2 forward steps of𝑀𝑇𝑉 7) N-3 reverse steps of𝑀𝐵𝐶

4) Identity 8) Identity

Figure 4: The Turing Machine steps executed in each 𝑖-

segment.

When the forward steps of𝑀𝐵𝐶 and𝑀𝑇𝑉 are executed, 𝑃𝐵𝐶 is

applied to each pair of neighboring particles, from left to right 𝑁 −2
times, followed by 𝑃𝑇𝑉 applied to each pair of neighboring particles,

from left to right 𝑁 − 2 times. When the reverse steps of 𝑀𝐵𝐶
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and𝑀𝑇𝑉 are executed, 𝑃†
𝑇𝑉

is applied to each pair of neighboring

particles, from right to left 𝑁 − 2 times, followed by 𝑃†
𝐵𝐶

applied to

each pair of neighboring particles, from right to left𝑁 −2 times. The

net effect is that the the computation tracks return to the same state

at the end of each iteration for Tracks 1 and 2 as formerly stated in

the lemma below. The notation |𝑐𝑇,𝑠,𝑡 ⟩ refers to the enumeration

of correct clock configurations given in Definition 2.9.

Lemma 2.11. [The Computation is Cyclic] Consider a sequence

of clock steps from |𝑐𝑇,𝑠,𝑝 (𝑁 )−1⟩ to |𝑐𝑇,𝑠+1,𝑝 (𝑁 )−1⟩. If the computa-

tion tracks start out in a state |𝜙⟩, then the state of the computation

tracks is unchanged at the end of the sequence of clock steps. That is,

𝑝 (𝑁 ) clock steps applied to |𝑐𝑇,𝑠,𝑝 (𝑁 )−1⟩|𝜙⟩ will result in the state

|𝑐𝑇,𝑠+1,𝑝 (𝑁 )−1⟩|𝜙⟩

2.8 Penalty Terms and Lowest Eigenvalues

We now explain the checking phases, the conditions they impose,

and how those conditions determine the lowest energy eigenvalue.

If any of the conditions enforced in the checking phases are violated,

that will trigger a penalty (via Type I terms) that occurs every 𝑝 (𝑁 )
clock steps for a total of 2𝑇 + 1 times during one full iteration

of the cycle of length (2𝑇 + 1) · 𝑝 (𝑁 ). This will result in a block

matrix corresponding to a cycle of length 𝐿 = (2𝑇 + 1) · 𝑝 (𝑁 )
with an additional +1 every 𝑝 (𝑁 ) locations along the cycle. We use

techniques from spectral graph theory to exploit the exact periodic

structure of the penalty terms to show in Lemma 2.3 that the lowest

energy eigenvalue of this matrix is at least

1

8

(
1 − cos

(
𝜋

2𝑝 (𝑁 ) + 1

))
= Θ

(
1

(𝑝 (𝑁 ))2

)
. (5)

This lower bound is large enough to eliminate any blocks with

these periodic costs. We now explain how we use this mechanism

to create the large costs that penalize an incorrect yes guess for an

oracle response as well as to check that the initial configuration

and the timer lengths are correct.

The first checking phase takes place before the forward execution

of the Turing Machines and verifies that the Turing Machine is

starting in the correct initial configuration for Tracks 4 and 5which

is called 𝑣-init and is depicted below:

𝑞0
1 # # # # # # # # #

The Type I terms associated with this penalty are called ℎ𝑖𝑛𝑖𝑡 . If the

computation begins in this special initial configuration then at the

end of 𝑁 − 2 steps of the Turing Machine𝑀𝐵𝐶 , the correct input 𝑥

for chain length 𝑁 will be written on the work tape.

The second checking phase occurs after the forward computation

of the two Turing Machine and checks that the timer on Track 3

matches the calculation of 𝑇 (𝑥,𝑦) performed by𝑀𝑇𝑉 . Thus, there

will be a periodic cost unless the timer length 𝑇 is equal to 𝑇 (𝑥,𝑦)
for the correct input 𝑥 and the 𝑦 written on the witness track. The

Type I terms associated with this penalty are called ℎ𝑙𝑒𝑛𝑔𝑡ℎ . In

addition, the second checking phase is used to check that all the

simulations of the verifier performed by 𝑀𝑇𝑉 are accepting. In

other words, a penalty is applied if any of the verifier computations

were rejecting. The Type I terms associated with this penalty are

called ℎ𝑉 .

Thus, if a block parameterized by (𝑇, 𝑣-init, 𝑦,𝑤) does not have
a periodic cost, then the computation generates the correct input

𝑥 , the timer 𝑇 is equal to 𝑇 (𝑥,𝑦), and all of the oracle guess where

𝑦𝑖 = 1 (yes guesses) are correct and use a correct witness from𝑤 in

the verifying computation.

Finally, there is a penalty even for correct computations and

clock configurations for every cycle for Tracks 1, 2, and 3. This

term is called ℎ𝑓 𝑖𝑛𝑎𝑙 and adds a penalty of 1/2 to two consecutive

clock states in every block.

The final 2-particle Hamiltonain term is:

ℎ = ℎ𝑝𝑟𝑜𝑝 + ℎ𝑤𝑓 −𝑐𝑙 + ℎ𝑤𝑓 −𝑐𝑜 + ℎ𝑐𝑙 + ℎ𝑖𝑛𝑖𝑡 + ℎ𝑙𝑒𝑛𝑔𝑡ℎ + ℎ𝑉 + ℎ𝑓 𝑖𝑛𝑎𝑙 .

For each of these terms ℎ∗, we will use 𝐻𝑁,∗ to refer to the Hamil-

tonian on a chain of length 𝑁 obtained by applying the 2-particle

term ℎ∗ to each pair of neighboring particles in the chain.

Now we discuss the mechanism used to apply the more modest

penalty for no guesses for oracle responses. In our construction,

every computation, regardless of the outcome of the computation,

will incur two consecutive penalties of +1/2 at a particular point
in the cycle. The resulting matrix is the propagation matrix for a

cycle of length 𝐿 = (2𝑇 + 1) · 𝑝 (𝑁 ) with an additional +1/2 at two
consecutive locations on the diagonal. We show in Lemma 2.2 that

the lowest eigenvalue for this matrix is exactly 1 − cos(𝜋/(𝐿 + 1)).
Thus any block which does not have a periodic cost will have a

smallest eigenvalue equal to 1−cos(𝜋/(𝐿+1)), with 𝐿 = (2𝑇 (𝑥,𝑦)+
1) · 𝑝 (𝑁 ). The block with the smallest eigenvalue will correspond

to the 𝑦 that has the largest value of𝑇 (𝑥,𝑦) subject to the condition
that 𝑦 does not include any incorrect yes guesses. The exponential

structure of the function 𝑇 (𝑥,𝑦) shown in Equation (3) guarantees

that the block with the smallest eigenvalue uses the correct oracle

guesses 𝑦, as shown in Lemma 2.15.

Recovering the value of 𝑓 (𝑥) from an approximation of the

ground energy requires a much sharper analysis of the lowest

eigenvalue than has been required in previous constructions.

2.9 Analysis of the Ground Energy of the
Hamiltonian

This section contains the analysis of the ground energy of the

Hamiltonian and a proof that if the chain length is 𝑁 (𝑥), then the

value 𝑓 (𝑥) can be determined by a sufficiently accurate (1/𝑝𝑜𝑙𝑦 (𝑁 ))
estimate of the ground energy.

Section 2.9.1 contains the main analysis of the ground energy of

the Hamiltonian. The Hamiltonian has a block-diagonal structure

which allows us to analyze the energy of each block independently.

We first eliminate blocks that correspond to incorrect clock states.

Then we eliminate blocks in which the initial configuration of the

computation is incorrect. Thus, we can assume that we have a

correct computation which uses the correct string 𝑥 as the input.

A block is also parameterized by 𝑦 the first𝑚 bits of the witness

tape which are used as guesses for the responses of the oracle. We

eliminate blocks in which the timer length on Track 3 does not

correspond to the correct 𝑇 (𝑥,𝑦) and blocks in which 𝑦 contains

an incorrect yes guess. These all have periodic costs that occur at

least once every 𝑝 (𝑁 ) clock steps in an iteration. Finally, we give

an exact expression for the lowest eigenvalue within blocks which

do not have a periodic cost, and show that blocks that correspond
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to the correct 𝑦 will have the smallest eigenvalue. Then we show

how the value of 𝑇 (𝑥,𝑦) and 𝑓 (𝑥) can be extracted from a good

approximation of this smallest eigenvalue.

Section 2.9.2 finally addresses the assumption we have been

making all along that the state is in the span of all bracketed states.

Additional terms are added to the Hamiltonian which ensure that

the ground state of the Hamiltonian is in fact in the span of all

bracketed states. Theorem 2.17 ties all the various pieces of the finite

construction together and gives the final result on the hardness of

Function-TIH.

2.9.1 Analysis of the Ground Energy. Let H𝑤𝑓 denote the span

of the bracketed well-formed clock configurations tensored with

the span of 𝐶𝑁 , the set of well-formed computation configurations

on a chain of length 𝑁 . It will be useful at this point to separate

the state, head location, and work tape (Tracks 4 and 5) from the

witness track (Track 6). We will also separate the first𝑚 bits of the

witness track 𝑦 from the remaining 𝑁 − 2 −𝑚 bits, which we refer

to as𝑤 . We will denote a well-formed standard basis state in 𝐶𝑁

as |𝑣⟩|𝑦⟩|𝑤⟩, where |𝑣⟩ is a standard basis state for Tracks 4 and 5,

and |𝑦⟩|𝑤⟩ is a standard basis state for Track 6.

According to Lemmas 2.7 and 2.6, the configuration graph de-

fined on the set of well-formed clock configurations consists of

paths of relatively short length (≤ 𝑝 (𝑁 )) and cycles of the correct

clock states. We will first handle the the part of the Hilbert space

in which the clock configuration is in one of these short paths.

LetH𝑝𝑎𝑡ℎ be the Hilbert space spanned by the states whose clock

configuration is in a path in the configuration graph.𝐻𝑁,𝑝𝑟𝑜𝑝 is the

only term in the Hamiltonian that is not diagonal in the standard

basis and 𝐻𝑁,𝑝𝑟𝑜𝑝 is closed on H𝑝𝑎𝑡ℎ . Therefore, we can lower

bound the the eigenvalues of 𝐻 restricted toH𝑝𝑎𝑡ℎ separately from

the rest of the space.

Lemma 2.12. [Eliminating Incorrect Clock States] The lowest

eigenvalue of 𝐻𝑁 restricted toH𝑝𝑎𝑡ℎ is at least (1− cos(𝜋/(2𝑝 (𝑁 ) +
1))).

Proof. Let |𝑐0⟩, . . . , |𝑐𝑙 ⟩ be the clock states in a path in the clock

configuration graph. According to Lemma 2.6, 𝑙 ≤ 𝑝 (𝑁 ) − 1. Con-

sider a state |𝑣⟩|𝑦⟩|𝑤⟩ for the computation tracks from𝐶𝑁 . Starting

in state |𝑐0⟩|𝑣⟩|𝑦⟩|𝑤⟩, after 𝑡 applications of the transition func-

tion, the state of the system will be |𝑐𝑡 ⟩|𝑣 ′⟩|𝑦⟩|𝑤⟩, where |𝑣 ′⟩ is
determined by (𝑐0, 𝑣, 𝑦,𝑤, 𝑡). We will call this state |𝜙 (𝑐0, 𝑣, 𝑦,𝑤, 𝑡)⟩,
where 𝜙 (𝑐0, 𝑣, 𝑦,𝑤, 𝑡) ∈ 𝐶𝑁 . Since the operations performed on the

computation tracks are always permutations, the following set of

states is ortho-normal:

𝑆 (𝑐0) = {|𝑐𝑡 ⟩|𝜙 (𝑐0, 𝑣, 𝑦,𝑤, 𝑡)⟩ : for |𝑣⟩|𝑦⟩|𝑤⟩ ∈ 𝐶𝑁 , 0 ≤ 𝑡 ≤ 𝑙}.

The propagation term 𝐻𝑁,𝑝𝑟𝑜𝑝 is block diagonal on the space

spanned by this set. Each block is specified by a choice of |𝑣⟩|𝑦⟩|𝑤⟩.
If we express 𝐻𝑁,𝑝𝑟𝑜𝑝 in the standard basis, then each block is 𝑙 × 𝑙

and is the Laplacian of a path of length 𝑙 .

The set 𝑆 (𝑐0) is the only set of states in the basis ofH𝑤𝑓 that has

clock states |𝑐0⟩, . . . , |𝑐𝑙 ⟩. Since the terms𝐻𝑁,𝑖𝑛𝑖𝑡 +𝐻𝑁,𝑙𝑒𝑛𝑔𝑡ℎ+𝐻𝑁,𝑉

are diagonal in the standard basis, they are all closed on the span

of 𝑆 (𝑐0). Since these terms are also positive semi-definite, we need

only lower bound the smallest eigenvalue of 𝐻𝑁,𝑝𝑟𝑜𝑝 + 𝐻𝑁,𝑐𝑙 on

this space. According to Lemma 2.6, the final clock configuration

in the path is illegal, which means that the upper-left element of

the matrix will have an additional +1 from 𝐻𝑁,𝑐𝑙 . According to

Lemma 2.1, the smallest eigenvalue in this space is at least (1 −
cos(𝜋/(2𝑝 (𝑁 ) + 1))). □

We can now focus on the space of correct clock states. According

to Lemma 2.11, if the system starts out in state |𝑐𝑇,𝑠,0⟩|𝜙⟩, where
𝜙 ∈ 𝐶𝑁 , then 𝑝 (𝑁 ) steps later, the clock configuration will be

|𝑐𝑇,𝑠+1,0⟩ and the computation tracks will have returned to state |𝜙⟩.
Therefore, if we fix the computation state to be some |𝑣⟩|𝑦⟩|𝑤⟩ ∈
𝐶𝑁 at time (0, 0), the state of the computation tracks at some time

(𝑠, 𝑡), depends only on 𝑡 and not on 𝑠 or 𝑇 . We will call this state

|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩. Since the operations performed on the computation

tracks are always permutations, the following set of states is orth-

onormal:

𝑆𝑐𝑦𝑐 = {|𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩ : for

|𝑣⟩|𝑦⟩|𝑤⟩ ∈ 𝐶𝑁 , 𝑇 ∈ {0, . . . , 𝑁 − 3},
𝑠 ∈ {0, . . . , 2𝑇 }, 𝑡 ∈ {0, . . . , 𝑝 (𝑁 ) − 1}}.

Note that since the verifier 𝑉 is classical, |𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩ is also a

classical standard basis state. The matrix for 𝐻𝑁,𝑝𝑟𝑜𝑝 expressed in

the basis 𝑆 is block diagonal. Each block is specified by a value for

𝑇 and starting configuration |𝑣⟩|𝑦⟩|𝑤⟩ for the computation tracks.

The block has dimension (2𝑇+1)𝑝 (𝑁 ) and is 1/2 times the Laplacian

of a cycle of length (2𝑇 + 1)𝑝 (𝑁 ). All other terms are diagonal in

this basis.

We will refer to the correct starting configuration for Tracks 4

and 5 as |𝑣-init⟩. In this correct starting configuration, the contents

of Track 5 are 1 #∗ , the state on Track 4 is 𝑞0, and the head is

at the same location as the 1 on Track 5.

There is a correct 𝑥 for the length 𝑁 of the chain. This is the

string that is written on the computation track after 𝑀𝐵𝐶 runs

for 𝑁 − 2 steps starting in |𝑣-init⟩. The string 𝑦 is used as the

guesses for the responses to the oracle calls. Thus, once 𝑥 and 𝑦

are fixed, the inputs to the oracles 𝑥1, . . . , 𝑥𝑚 are determined. In

addition, the function 𝑇 (𝑥,𝑦) is also determined. Since the state of

the witness track (including |𝑦⟩) does not change over time, the

values of 𝑥1, . . . , 𝑥𝑚 and 𝑇 (𝑥,𝑦) are well-defined for a block. The

verifier 𝑉 will be run on the oracle queries for the cases in which

the string 𝑦 guesses that the query string is in 𝐿. Define the set

𝑌𝑟𝑒 𝑗 = {𝑦 | for some 𝑖 ∈ [𝑚], 𝑦𝑖 = 1 and 𝑥𝑖 ∉ 𝐿}.

In order words, 𝑌𝑟𝑒 𝑗 is the set of oracle guesses for which there

is at least one oracle call in which the guess is yes but the correct

answer is no.

We will now partition 𝑆𝑐𝑦𝑐 into four different sets and consider

the subspace spanned by each set separately. The states from 𝑆𝑐𝑦𝑐
will be put into one of the four sets in blocks. That is, each block is

completely contained in one of the four sets.

𝑆1 consists of the states of the form |𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩ in
which |𝑣⟩ ≠ |𝑣-init⟩. These are the states from the blocks

that do not start in the correct initial configuration.

𝑆2 consists of the states of the form |𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑝,𝑦,𝑤, 𝑡)⟩,
where |𝑣⟩ = |𝑣-init⟩, but 𝑇 (𝑥,𝑦) is not equal to the length of

Track 3 timer.
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𝑆3 consists of the states of the form |𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩
where |𝑣⟩ = |𝑣-init⟩, 𝑇 (𝑥,𝑦) is equal to the length of the

Track 3 timer, and 𝑦 ∈ 𝑌𝑟𝑒 𝑗 .

𝑆4 consists of the states of the form |𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩
where |𝑣⟩ = |𝑣-init⟩, 𝑇 (𝑥,𝑦) is equal to the length of the

Track 3 timer, and 𝑦 ∉ 𝑌𝑟𝑒 𝑗 .

𝐻𝑁,𝑝𝑟𝑜𝑝 is closed on each 𝑆𝑖 because the states from each block are

completely contained in 𝑆𝑖 or are disjoint from 𝑆𝑖 . All of the other

Hamiltonian terms besides 𝐻𝑁,𝑝𝑟𝑜𝑝 are all diagonal in the standard

basis and are therefore diagonal on the basis 𝑆𝑐𝑦𝑐 .

If 𝑁 = 𝑁 (𝑥) for some 𝑥 , then staring with the correct input

configuration |𝑣-init⟩|𝑦⟩|𝑤⟩, if we run the process𝑀𝐵𝐶 for 𝑁 − 2

steps followed by 𝑀𝑇𝑉 for 𝑁 − 2 steps, the contents of the work

track should be Out(𝑥,𝑦𝑤,𝑀,𝑉 ), the same tape contents as𝑀𝑇𝑉

on input (𝑥,𝑦𝑤) when it halts (See Figure 3). Note that the second

input parameter to𝑀𝑇𝑉 is 𝜔 , is the entire binary string on Track 6,

which is the concatenation of 𝑦 and𝑤 .

Lemma 2.13. [Eliminating States from 𝑆1, 𝑆2, and 𝑆3] Sup-

pose that the process (𝑀𝐵𝐶 )𝑁−2 followed by (𝑀𝑇𝑉 )𝑁−2 starting in
configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ produces Out(𝑥,𝑦𝑤,𝑀,𝑉 ) on the work

track. Then the smallest eigenvalue of 𝐻 in the span of 𝑆1 ∪ 𝑆2 ∪ 𝑆3,

is at least (1/8) (1 − cos(𝜋/(2𝑝 (𝑁 ) + 1))).

Proof. Since the terms are all closed on the spans of 𝑆1, 𝑆2, and

𝑆3, we can lower bound each space separately. For a fixed (𝑇, 𝑥,𝑦,𝑤),
consider the block defined by states of the form |𝑐𝑇,𝑠,𝑡 ⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡)⟩.
If |𝑣⟩ ≠ |𝑣-init⟩, then the configuration of Tracks 4 and 5 is not equal
to |𝑣-init⟩ at time (0, 0). Since the does not alter Tracks 4 and 5 as

it sweeps left, the state of Tracks 4 and 5will not be equal to |𝑣-init⟩
for the preceding 𝑁 − 2 time steps. There will be at least one point

in time when the is sweeping left that an illegal configuration

from 𝐻𝑁,𝑖𝑛𝑖𝑡 is hit. Call this time 𝑡 ′. Then for all 𝑠:

𝐻𝑁,𝑖𝑛𝑖𝑡 |𝑐𝑇,𝑠,𝑡 ′⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡 ′)⟩ = |𝑐𝑇,𝑠,𝑡 ′⟩|𝜙 (𝑣,𝑦,𝑤, 𝑡 ′)⟩
Note that there may be more locations where an illegal configura-

tion is reached but we need only consider one as the others can only

increase the energy of a state. The diagonal matrix corresponding

to 𝐻𝑁,𝑖𝑛𝑖𝑡 will have a 1 at each location of the form 𝑡 ′ + 𝑠 · 𝑝 (𝑁 ),
where 𝑠 ∈ {0, . . . , 2𝑇 }. If we add this matrix to𝐻𝑁,𝑝𝑟𝑜𝑝 which is 1/2
times the Laplacian of a cycle graph of length (2𝑇 + 1) · 𝑝 (𝑁 ), then
according to Lemma 2.3, the smallest eigenvalue of the sum of the

matrices is at least (1/8) (1 − cos(𝜋/(2𝑝 (𝑁 ) + 1))). This reasoning
can be applied to each block in the span of 𝑆1 which gives a lower

bound of (1/8) (1 − cos(𝜋/(2𝑝 (𝑁 ) + 1))) for any eigenvalue in this

space.

A similar reasoning can be applied to the span of 𝑆2 using the

operator𝐻𝑁,𝑙𝑒𝑛𝑔𝑡ℎ . If a block is inside 𝑆2, then it is using the correct

initial configuration |𝑣-init⟩ which produces the correct input 𝑥 .

Therefore the string 𝑦 from the witness track and 𝑥 determine the

correct value 𝑇 (𝑥,𝑦) for the length of the clock on Track 3. This

correct value is written in unary on the computation track at the

end of the computation𝑀𝑇𝑉 , which by assumption of the lemma

corresponds to the contents of the work track after (𝑀𝐵𝐶 )𝑁−2

followed by (𝑀𝑇𝑉 )𝑁−2 applied to |𝑣-init⟩|𝑦⟩|𝑤⟩. The contents of
the track are (𝜎𝐴 + 𝜎𝑅) (𝜎𝑋 )𝑇 (𝑥,𝑦) . Since the first 𝜎𝐴 or 𝜎𝑅 symbol

counts as a unary digit, the value encoded is 𝑇 (𝑥,𝑦) + 1. This is

checked against the length of the prefix 𝑗 𝑇−𝑗 or 𝑇−𝑗 𝑗

on Track 3, which is equal to the timer length 𝑇 plus 1. (The plus

1 comes from the pointer on Track 3.) The Track 1 pointer

will reach an illegal configuration if and only if the Track 3 clock

does not have the correct length 𝑇 (𝑥,𝑦). As with the reasoning

for 𝑆1, there may be more than one such violation, but we need

only consider one that occurs regularly at times (𝑠, 𝑡 ′) for some

fixed 𝑡 ′ and 𝑠 ∈ {0, . . . , 2𝑇 }. Since 𝑆2 consists of those blocks in

which the Track 3 timer has the incorrect length, the smallest

eigenvalue of 𝐻𝑁,𝑝𝑟𝑜𝑝 +𝐻𝑁,𝑙𝑒𝑛𝑔𝑡ℎ in the span of 𝑆2 will be at least

(1/8) (1 − cos(𝜋/(2𝑝 (𝑁 ) + 1))).
A similar reasoning can be applied to the span of 𝑆3 using the

operator 𝐻𝑁,𝑉 . If a block is inside 𝑆3, then it is using the correct

initial configuration |𝑣-init⟩ which produces the correct input 𝑥 .

Therefore the string 𝑦 from the witness track and 𝑥 determine the

oracle queries 𝑥1, . . . , 𝑥𝑚 . If for any 𝑖 ∈ {1, . . . ,𝑚},𝑦𝑖 = 1 and 𝑥𝑖 ∉ 𝐿,

the verifier will be run on input 𝑥𝑖 and will reject, regardless of the

string used as witness. By assumption of the lemma, the contents of

the work track after the process (𝑀𝐵𝐶 )𝑁−2 followed by (𝑀𝑇𝑉 )𝑁−2

starting in configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ will be the correct output of
𝑀𝑇𝑉 on input (𝑥,𝑦𝑤). This means that there will be an 𝜎𝑅 symbol

written in the first location of the work tape after Segment 4. In this

case, Track 1 pointer will reach an illegal configuration from ℎ𝑉 .

Since 𝑆3 consists of those blocks in which 𝑦 ∈ 𝑌𝑟𝑒 𝑗 , the smallest

eigenvalue of 𝐻𝑁,𝑝𝑟𝑜𝑝 + 𝐻𝑁,𝑉 in the span of 𝑆3 will be at least

(1/8) (1 − cos(𝜋/(2𝑝 (𝑁 ) + 1))). □

Finally, we arrive at the space spanned by 𝑆4. Define

𝑆𝑦,𝑤 = {|𝑐𝑇 (𝑥,𝑦),𝑠,𝑡 ⟩|𝜙 (𝑣-init, 𝑦,𝑤, 𝑡)⟩ :
0 ≤ 𝑠 ≤ 2𝑇 (𝑥,𝑦), 0 ≤ 𝑡 < 𝑝 (𝑁 )}

𝑆𝑦,𝑤 is the set of standard basis states for a single block, where the

initial state is |𝑣-init⟩|𝑦⟩|𝑤⟩ and the Track 3 timer is the correct

𝑇 (𝑥,𝑦). Define 𝑆𝑦 to be the union of 𝑆𝑦,𝑤 over all possible𝑤 . Note

that 𝑆4 is the union of all 𝑆𝑦 , where 𝑦 ∉ 𝑌𝑟𝑒 𝑗 . All of the terms in 𝐻

are closed on the span of each 𝑆𝑦,𝑤 .

Lemma 2.14. [Smallest Eigenvalues for Blocks in 𝑆4] Sup-

pose that the process (𝑀𝐵𝐶 )𝑁−2 followed by (𝑀𝑇𝑉 )𝑁−2 starting in
configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ produces Out(𝑥,𝑦𝑤,𝑀,𝑉 ) on the work

track. If 𝑦 ∉ 𝑌𝑟𝑒 𝑗 , then the minimum eigenvalue of the space spanned

by 𝑆𝑦 is exactly

𝐸 (𝑥,𝑦) =
(
1 − cos

( 𝜋

𝐿 + 1

))
,

where 𝐿 = (2𝑇 (𝑥,𝑦) + 1) · 𝑝 (𝑁 ).

Proof. All of the terms in 𝐻 except for 𝐻𝑁,𝑝𝑟𝑜𝑝 , 𝐻𝑁,𝑉 , and

𝐻𝑁,𝑓 𝑖𝑛𝑎𝑙 are 0 on the entire space spanned by 𝑆4 and are therefore

0 on any 𝑆𝑦 such that 𝑦 ∉ 𝑌𝑟𝑒 𝑗 . Consider 𝐻𝑁,𝑝𝑟𝑜𝑝 restricted to the

span of a particular 𝑆𝑦,𝑤 and expressed in the 𝑆𝑦,𝑤 basis. Thismatrix

is 1/2 times the Laplacian of a cycle of length (2𝑇 (𝑥,𝑦) + 3) · 𝑝 (𝑁 ).
The term 𝐻𝑁,𝑓 𝑖𝑛𝑎𝑙 adds a +1/2 to two consecutive locations along

the diagonal. Since 𝐻𝑁,𝑉 is semi-positive definite, by Lemma 2.2,

the smallest eigenvalue for this block is at least 𝐸 (𝑥,𝑦).
𝑉 is only run on those 𝑖 such that𝑦𝑖 = 1. If𝑦 ∉ 𝑌𝑟𝑒 𝑗 , we know that

each such 𝑥𝑖 is in 𝐿 which means that there is a witness which will

cause 𝑉 to accept. Therefore, there is a𝑤 such that 𝐻𝑁,𝑉 applied

to every state in 𝑆𝑦,𝑤 is 0. The lowest eigenvalue of 𝐻 restricted to

the space spanned by this 𝑆𝑦,𝑤 is exactly the lowest eigenvalue of
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𝐻𝑁,𝑝𝑟𝑜𝑝 + 𝐻𝑁,𝑓 𝑖𝑛𝑎𝑙 restricted to this space, which by Lemma 2.2,

is 𝐸 (𝑥,𝑦). □

We are finally ready to establish that the smallest eigenvalue oc-

curs within blocks 𝑆𝑦 , where 𝑦 is the set of correct oracle responses,

which we refer to as 𝑦.

Lemma 2.15. [The Ground Energy Corresponds to Blocks

with Correct Oracle Guesses] Suppose that the process (𝑀𝐵𝐶 )𝑁−2

followed by (𝑀𝑇𝑉 )𝑁−2 starting in configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ pro-
duces Out(𝑥,𝑦𝑤,𝑀,𝑉 ) on the work track. The smallest eigenvalue

for 𝐻𝑁 |H𝑏𝑟
is 𝐸 (𝑥,𝑦), where 𝑦 are the correct oracle responses for

input 𝑥 .

Proof. Recall that throughout the construction, we analyzed

the smallest eigenvalue for 𝐻𝑁 restricted to the space spanned by

all bracketed states.

Note that since 𝑦 ∉ 𝑌𝑟𝑒 𝑗 , according to Lemma 2.14, there is an

eigenvector whose eigenvalue is 𝐸 (𝑥,𝑦), so we only need to show

that every other eigenvalue is at least 𝐸 (𝑥,𝑦).
The smallest eigenvalue of any state that is perpendicular to

H𝑤𝑓 is at least 1 from 𝐻𝑁,𝑤𝑓 −𝑐𝑙 and 𝐻𝑁,𝑤𝑓 −𝑐𝑜 . From Lemma

2.1, the smallest eigenvalue of any state in H𝑝𝑎𝑡ℎ is at least 1 −
cos(𝜋/(2𝑝 (𝑁 ) + 1)) which will always be larger than 𝐸 (𝑥,𝑦) for
any 𝑦. By Lemma 2.13, the smallest eigenvalue of any state in the

span of 𝑆1 ∪𝑆2 ∪𝑆3 is at least (1/8) (1− cos(𝜋/(2𝑝 (𝑁 ) + 1))) which
will always be larger than 𝐸 (𝑥,𝑦) for any 𝑦. Therefore, the smallest

eigenvalue for 𝐻 will correspond to an eigenvector in the span of

𝑆4.

We will prove that if 𝑦 ≠ 𝑦, then the smallest eigenvalue of 𝐻

restricted to the span of 𝑆𝑦 is greater than 𝐸 (𝑥,𝑦). Suppose that the
first 𝑘 bits of 𝑦 are the same as the first 𝑘 bits of 𝑦, but 𝑦𝑘+1 ≠ 𝑦𝑘+1.
Note that the next oracle query 𝑥𝑘+1 will be the same for 𝑦 and 𝑦.

If 𝑥𝑘+1 ∉ 𝐿, then 𝑦𝑘+1 = 0. If 𝑦 matches 𝑦 in the first 𝑘 bits and

has 𝑦𝑘+1 = 1, then 𝑦 ∈ 𝑌𝑟𝑒 𝑗 which means that 𝑆𝑦 is contained in 𝑆3
and the smallest eigenvalue of 𝐻 restricted to this space is larger

than 𝐸 (𝑥,𝑦) for any 𝑦.
Now suppose that 𝑥𝑘+1 ∈ 𝐿. Then 𝑦𝑘+1 = 1. Consider a string

𝑦 that matches 𝑦 in the first 𝑘 bits and has 𝑦𝑘+1 = 0. The value of

𝑇 (𝑥,𝑦) for any such 𝑦 must be at most:

𝑇 (𝑥,𝑦) = 2𝑚 + 2𝑚

4𝑚+1 +

𝑚∑︁

𝑗=𝑘+2
4𝑚−𝑗+1 +

𝑘∑︁

𝑗=1

𝑦 𝑗 · 4𝑚−𝑗+1


Meanwhile, the value of 𝑇 (𝑥,𝑦) will be at least

𝑇 (𝑥,𝑦) = 2𝑚

4𝑚+1 + 4𝑚−𝑘 +

𝑘∑︁

𝑗=1

𝑦 𝑗 · 4𝑚−𝑗+1


The lower bound for 𝑇 (𝑥,𝑦) is larger than any 𝑇 (𝑥,𝑦), where 𝑦
matches𝑦 in the first 𝑘 bits and does not match𝑦 on bit 𝑘 +1. There-
fore 𝐸 (𝑥,𝑦) > 𝐸 (𝑥,𝑦) and the smallest eigenvalue for 𝐻 restricted

to 𝑆𝑦 is greater than 𝐸 (𝑥,𝑦). □

2.9.2 Bracketed States and the Final Reduction. Throughout the

construction, we have analyzed the Hamiltonian restricted to the

space spanned by all bracketed states (H𝑏𝑟 ). These states have the

leftmost particle in state , right rightmost particle in state and

none of the particles in between in state or . We now add an

additional term to ℎ to ensure that the ground state is inH𝑏𝑟 . We

will denote a basis of the 𝑑-dimensional particles by | ⟩, | ⟩, and
|1⟩, . . . , |𝑑 − 2⟩. Let

ℎ̄ = ℎ +
𝑑−2∑︁

𝑗−1

1

4
( | 𝑗⟩⟨ 𝑗 | ⊗ 𝐼 + 𝐼 ⊗ | 𝑗⟩⟨ 𝑗 |) + 𝐼 ⊗ | ⟩⟨ | + | ⟩⟨ | ⊗ 𝐼

Let 𝐻𝑁 denote the Hamiltonian resulting from applying ℎ̄ to each

pair of neighboring particles in a chain of length 𝑁 .

Lemma 2.16. 𝜆0 (𝐻𝑁 ) = 𝜆0 (𝐻𝑁 |H𝑏𝑟
) + 𝑁−2

2

Proof. The first two terms in ℎ̄ give a 1/4 penalty to each end

particle if it is not in a bracket states and 1/2 penalty to each middle

particle if it is not in a bracket state. The next two terms cause a

penalty of +1 for any pair with a on the right and a +1 for any
pair with a on the left.

Since 𝐻𝑁 is closed onH𝑏𝑟 andH⊥
𝑏𝑟
, we can consider each space

separately. We will first consider the energy penalty from the ad-

ditional terms in ℎ̄. The bracketed states will have an additional

energy of exactly (𝑁 − 2)/2 from the additional terms, since they

add 1/2 for every particle, except the two at the ends. Therefore, the
lowest energy of any state inH𝑏𝑟 will be (𝑁 −2)/2+𝜆0 (𝐻𝑁 |H𝑏𝑟

) <
(𝑁 −2)/2+1/4. Note that the bound in Lemma 2.15, on 𝜆0 (𝐻𝑁 |H𝑏𝑟

)
is less than 1/4 for any 𝑁 ≥ 4.

Consider a state which is not bracketed. We will only consider

the energy from the additional terms which will give a lower bound

for the energy for the state. If the particle on the left is not in state

, then replacing it with will cause the energy to go down by

at least 1/4. Similarly, If the particle on the right is not in state ,

then replacing it with will cause the energy to go down by at

least 1/4. If there is a particle in a bracketed state in the middle,

replacing it with a non-bracketed state will cause the energy to go

down by at least 1/2. The process can be repeated until the state is

bracketed at which point the energy from the additional terms will

be exactly (𝑁 − 2)/2. Therefore any non-bracketed configuration

will have energy at least (𝑁 − 2)/2 + 1/4. □

We are finally ready to put the pieces together to prove that

Function-TIH is hard for FPNEXP.

Theorem 2.17. [Function-TIH is hard for FPNEXP] For any

𝑓 ∈ FPNEXP, there is a Hamiltonian ℎ that operates on two 𝑑-

dimensional particles. Let 𝐻𝑁 denote the Hamiltonian on a chain

of 𝑁 𝑑-dimensional particles resulting from applying ℎ to each neigh-

boring pair in the chain. There is a polynomial time computable

function 𝑁 (𝑥) and polynomial 𝑞 = 32𝑁 4𝑝 (𝑁 )4 = 𝑂 (𝑁 12) such that,

the value of 𝑓 (𝑥) can be computed in time polynomial in |𝑥 |, given a

value 𝐸 such |𝐸 − 𝜆0 (𝐻𝑁 ) | ≤ 1/𝑞(𝑁 ).

Proof. We have shown a construction for ℎ based on the Turing

Machine𝑀 that computes 𝑓 (𝑥) and the TM𝑉 that is the verifier for

the oracle language 𝐿 in NEXP. Recall that the function 𝑁 (𝑥) is the
number such that after (𝑁 (𝑥) −2) TM steps, the binary counter TM

completes an increment operation with 𝑥 on the work tape. Suppose

that for some string 𝑥 , 𝑁 = 𝑁 (𝑥) and let𝑚 be the number of oracle

queries made by𝑀 on input 𝑥 . Suppose further that for every 𝜔 ∈
{0, 1}𝑁−4, the process (𝑀𝐵𝐶 )𝑁−2 followed by (𝑀𝑇𝑉 )𝑁−2 starting
in configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ produces Out(𝑥,𝜔,𝑀,𝑉 ) on the
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work track, where 𝑦𝑤 = 𝜔 and |𝑦 | =𝑚. Then by Lemma 2.15, the

ground energy of 𝐻𝑁 |HH𝑏𝑟

is

𝐸 (𝑥,𝑦) =
(
1 − cos

( 𝜋

𝐿 + 1

))
, (6)

where 𝐿 = (2𝑇 (𝑥,𝑦) + 1) · 𝑝 (𝑁 ) and 𝑦 is the string denoting the

correct oracle responses on input 𝑥 . Lemma 2.16 establishes that

the state corresponding to the ground energy is inH𝑏𝑟 .

The Turing Machine𝑀𝑇𝑉 ensures that the conditions of Lemma

2.15 are met. Namely, it is in fact the case that for 𝑁 = 𝑁 (𝑥)
and for every 𝜔 ∈ {0, 1}𝑁−4, the process (𝑀𝐵𝐶 )𝑁−2 followed

by (𝑀𝑇𝑉 )𝑁−2 starting in configuration |𝑣-init⟩|𝑦⟩|𝑤⟩ produces

Out(𝑥,𝜔,𝑀,𝑉 ) on the work track.

The propagation terms of the Hamiltonian implement the TM

computations on the computation tracks in each iteration of the

clock for Tracks 1 and 2 and the ground energy for 𝐻𝑁 is equal to

the expression given in Equation (6).

Suppose you are given a value𝐸 where |𝐸−𝐸 (𝑥,𝑦) | < 1/2𝑁 4𝑝 (𝑁 )4.
We will show that the value of 𝑓 (𝑥,𝑦) = 𝑓 (𝑥) can be computed in

polynomial time. If 𝐿 and 𝐿′ are distinct positive integers, then
���cos

( 𝜋

𝐿 + 1

)
− cos

( 𝜋

𝐿′ + 1

)��� ≥
1

𝐿4
.

Therefore, the value of 𝐿 is uniquely determined, given a value 𝐸

such that |𝐸−𝐸 (𝑥,𝑦) | ≤ 1/2𝐿4, where 𝐿 = (2𝑇 (𝑥,𝑦)+1) ·𝑝 (𝑁 ). Note
that in order for the construction to work, 𝑇 (𝑥,𝑦) must be written

in unary on the work tape, which means that 𝑇 (𝑥,𝑦) ≤ 𝑁 − 2.

Therefore, 𝐿 ≤ 2𝑁𝑝 (𝑁 ), and as long as the estimate is within

32𝑁 4𝑝 (𝑁 )4 of the true ground energy, 𝐿 can be uniquely recovered.

Given 𝐸, the value of integer 𝐿 can be found by binary search

in time 𝑂 (log𝐿). Since the value of 𝑁 is known, then 𝑇 (𝑥,𝑦) can
be recovered. The low order bits in the binary representation of

𝑇 (𝑥,𝑦) are exactly 𝑓 (𝑥,𝑦), due to the assumption that the length of

the output 𝑓 (𝑥) is at most𝑚, the number of oracle queries, which

is a valid assumption due to the padding argument given in the

full version [2]. The value of all the numbers in the calculations

are polynomial in 𝑁 and therefore take time polynomial in log𝑁 ,

which is polynomial in |𝑥 |. □
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