
Abstract Interpretation Repair
Roberto Bruni

University of Pisa, Pisa, Italy

roberto.bruni@unipi.it

Roberto Giacobazzi

University of Verona, Verona, Italy

roberto.giacobazzi@univr.it

Roberta Gori

University of Pisa, Pisa, Italy

roberta.gori@unipi.it

Francesco Ranzato

University of Padova, Padova, Italy

francesco.ranzato@unipd.it

Abstract
Abstract interpretation is a sound-by-construction method

for program verification: any erroneous program will raise

some alarm. However, the verification of correct programs

may yield false-alarms, namely it may be incomplete. Ideally,
one would like to perform the analysis on the most abstract

domain that is precise enough to avoid false-alarms.We show

how to exploit a weaker notion of completeness, called local
completeness, to optimally refine abstract domains and thus

enhance the precision of program verification. Our main

result establishes necessary and sufficient conditions for the

existence of an optimal, locally complete refinement, called

pointed shell. On top of this, we define two repair strategies

to remove all false-alarms along a given abstract compu-

tation: the first proceeds forward, along with the concrete

computation, while the second moves backward within the

abstract computation. Our results pave the way for a novel

modus operandi for automating program verification that we

call Abstract Interpretation Repair (AIR): instead of choos-

ing beforehand the right abstract domain, we can start in

any abstract domain and progressively repair its local in-

completeness as needed. In this regard, AIR is for abstract

interpretation what CEGAR is for abstract model checking.

CCS Concepts: • Theory of computation→ Logic and
verification;Abstraction; Semantics and reasoning;Pro-
gram analysis.

Keywords: abstract interpretation, program analysis, pro-

gram verification, local completeness, CEGAR.

ACM Reference Format:
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco

Ranzato. 2022. Abstract Interpretation Repair. In Proceedings of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523453

the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’22), June 13–17, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3519939.3523453

1 Introduction
It is widely acknowledged that the chance of formally ver-

ifying programs is fundamental to effectively rise the con-

fidence level that the code we use is correct [23]. However,

as emerged in the last decades, this approach to program

correctness becomes socially acceptable when these proofs

are not only rigorous but also explainable, meaning that

they have to rely upon a largely recognized proof method

which has to be simple and inspectable [22]. As advocated by

Vardi [61], checking program correctness “is a cost that must
be justified by the benefits”. The last 50 years have shown

an impressive flourishing of formal methods and tools for

achieving this ambitious goal [32]. These include, among the

others: Certified compilers [42], certified analyzers [39], ad-

vanced type checkers [49, 50], sophisticated static analyzers

[6, 19, 25] and software model checkers [3, 37].

A high degree of confidence in the correctness of a soft-

ware system, and of its most critical components, can be ob-

tained when the code is certified by a sound and complete (viz.
precise) static analyzer [14, 25]. Abstract interpretation [17]

was introduced with this purpose in mind: simplify the proof

of correctness by interpreting the program in a simplified,

abstract, domain. This provides a general methodology for

the design of sound-by-construction analysis tools.

The Problem. The soundness of an abstract interpreter, or

program analyzer, means that all true-alarms are caught.

However, it is often the case that some false-alarms are re-

ported. Actually, when false-alarms overwhelm true ones,

then the program analyzer may become poorly trustworth.

This is a consequence of the approximation inherent in the

making of an otherwise undecidable analysis decidable. As

all alarm systems, program analysis is credible when few

false-alarms are reported, ideally none. The problem we ad-

dress in this paper is how to derive the most abstract domain
to decide program correctness without raising false-alarms.

The absence of false-alarms in program analysis is closely

related to the property of completeness in abstract interpreta-
tion [33]. As an illustrative example, consider the program

426

https://orcid.org/0000-0002-7771-4154
https://orcid.org/0000-0002-9582-3960
https://orcid.org/0000-0002-7424-9576
https://orcid.org/0000-0003-0159-0068
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523453&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

for computing the absolute value of integer variables:

AbsVal(𝑥) =△ if (𝑥 ≥ 0) then skip else 𝑥 := −𝑥

The well-known interval abstraction Int approximates any

property 𝑆 ∈ ℘(Z) of the integer values that 𝑥 may assume

by the least interval Int(𝑆) = [𝑎, 𝑏] such that 𝑆 ⊆ [𝑎, 𝑏],
where 𝑎 ∈ Z ∪ {−∞}, 𝑏 ∈ Z ∪ {+∞}, and 𝑎 ≤ 𝑏. As-

sume that we know that the possible inputs range in the

set 𝐼 = {𝑥 | 𝑥 is odd}. While the approximation in Int of
AbsVal(𝐼) is Int(AbsVal(𝐼)) = [1, +∞] showing that 0 is not

a possible result, it turns out that the best correct approxima-
tion the abstract interpreter can compute in Int is not precise,
because it also includes 0: Int(AbsVal(Int(𝐼))) = [0, +∞].
Technically, this means that Int is incomplete for AbsVal
on input 𝐼 . This can spawn a problem in verification: for

instance, if the result of AbsVal(𝐼) is used as divisor in an

integer division, the abstract interval analysis would raise a

“division-by-0” false-alarm.

Completeness intuitively encodes the greatest achievable

precision for a program analysis on a given abstract do-

main. The problem of making abstract domains complete

by either domain refinement (i.e., increasing precision) or

by domain simplification (i.e., reducing precision) has been

settled in [33]. The most abstract refinement, called complete
shell, of an abstract domain always exists for all computable

functions and it can be constructively defined as the solu-

tion of a recursive domain equation. Although extremely

powerful, this notion has an intrinsic global flavor: The com-

plete shell of an abstract domain with respect to a transfer

function 𝑓 makes the abstract domain complete for 𝑓 on all
possible inputs. As a result, the complete shell, as currently

known, yields an abstract domain that is often way too fine

grained, possibly blowing up to the whole concrete domain.

Furthermore, completeness holds for all programs in a Turing

complete language only for trivial abstract domains [7, 28],

i.e., for the “none” and “don’t-know” abstractions.

From Global to Local. Our idea is to introduce a local ap-

proach to completeness, focussing on a single execution trace

produced by the applications of abstract transfer functions

on some input of interest. A notion of local completeness in
abstract interpretation has been introduced by [8] to design

a logical proof system that can be used to simultaneously

check both program correctness and incorrectness. While

(global) completeness is a requirement that must hold for

every possible input, local completeness is tied to a particular

input. The proof system in [8] is parametric with respect

to an underlying abstract domain 𝐴: any triple ⊢𝐴 [𝐼] c [𝑄]
derivable in the proof system is such that 𝑄 is an under-

approximation of the strongest postcondition post[c] (𝐼) for
the program c on input 𝐼 , while the abstraction 𝐴(𝑄) of 𝑄
in the domain 𝐴 turns out to be a locally complete over-

approximation of post[c] (𝐼). A novel inference rule drives

logical derivations for ⊢𝐴 by introducing all and only those

local completeness proof obligations needed to infer a triple

⊢𝐴 [𝐼] c [𝑄]. These are local obligations because they are

relative to a specific computation trace. Thanks to local com-

pleteness, any alarm in 𝑄 is a true-alarm and a correctness

specification Spec expressible in 𝐴 is valid for c if and only

if 𝑄 ≤ Spec. Since logical derivations cannot work with lo-

cally incomplete abstractions, we advocate that these abstract
domains need to be repaired to achieve local completeness.

Main Contributions. In this work, we design algorithmic

methods to optimally repair any locally incomplete abstract

analysis. The idea is to repair the abstract domain whenever

a local completeness proof obligation is violated: the abstract

domain is replaced by its so-called pointed shell, that is, its
most abstract refinement that is locally complete. Notably,

each refinement is the Moore closure (i.e., closure under

arbitrary meets) of the original abstract domain with one

new abstract element only (this justifies the term “pointed”),

thus limiting the blow up in size of the domain refinement,

unlike complete shells. While other approaches consider an

optimal refinement in a given class of domains, e.g., using

interpolants and SMT solvers [1, 35, 36], pointed shells are

optimal in a general and absolute sense, i.e., they do not limit

a priori the way in which new abstract elements are repre-

sented, e.g. by formulae of some theory.

In our simple example for AbsVal, we would refine the in-
terval abstraction Int by adding a new abstraction for the in-

put 𝐼 = {𝑥 | 𝑥 is odd}, which is more precise than [−∞, +∞]
and guarantees that the guard 𝑥 ≥ 0 is complete on input 𝐼 .

Different choices could be available: in this case, the most

abstract refinement would consist in adding to Int the new
abstract element Z≠0 =

△ [−∞,−1] ∪ [1, +∞]. The verification
of AbsVal in this repaired domain will not raise alarms.

Our Abstract Interpretation Repair (AIR) shares similari-

ties with the principles of the well-known Counter-Example
Guided Abstraction Refinement (CEGAR)methodology [9, 11],

which is indeed shown to be an instance of AIR. More pre-

cisely, we prove that: any CEGAR abstract counterexample is

spurious iff it contains a locally incomplete step for the post

transformer, and each repair strategy defines an heuristics

for CEGAR’s refinement. In a slogan we may say that:

AIR is for abstract interpretation what
CEGAR is for abstract model checking.

By leveraging this idea of local completeness repair, we

define two general purpose verification strategies, called

forward and backward repair.
The forward repair of an abstract domain 𝐴 driven by an

input property for a given program c consists in refining 𝐴

so that local completeness is preserved by assignments and

Boolean guards occurring in the analysis of c. For the above
program AbsVal on input 𝐼 this forward repair coincides

with our previous example. Actually, it collects the proof

obligations raised by completeness of the guard 𝑥 ≥ 0 local

to input 𝐼 and refine Int accordingly. No proof obligation

427

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

for the assignment 𝑥 := −𝑥 is collected because it is already

globally complete for Int. The repaired analysis of AbsVal
on input 𝐼 will output [1, +∞], thus proving that 𝑥 ≠ 0 holds.

The backward repair for AbsVal on input 𝐼 consists, in-

stead, in tracing back the bad value 𝑥 = 0 that is present in

the result of the abstract analysis of AbsVal on Int, and then

refining the abstraction Int accordingly. Intuitively, the bad
value 𝑥 = 0 is reported back to the guard 𝑥 ≥ 0 hinting that

the abstraction has to be refined so that the input 𝐼 after the

filtering 𝑥 ≥ 0 does not have to contain the value 𝑥 = 0, i.e.,

the abstraction of 𝐼 itself cannot contain 0. This provides a

refinement of Int that still adds the above point Z≠0, as in

the forward repair case, but this is purely incidental. In back-

ward repair, local completeness refers to the largest correct

input, so that the pointed shell corresponds to adding this

point itself. Contrary to the forward repair, the backward

strategy proceeds with the next repair (if necessary) along

the existing abstract computation.

Structure of the Paper. After an illustrative example in

Section 2 and some background in Section 3: Section 4 in-

troduces pointed shells; Section 5 defines AIR strategies;

Section 6 draws connections with CEGAR; Section 7 applies

AIR to program verification; Section 8 discusses some imple-

mentation challenges. Concluding remarks are in Section 9.

Related Work. In general, repairing computations means

modifying program executions in order to remove flaws,

possibly without human intervention. The problem of (au-

tomatic) program/model repair has been extensively inves-

tigated in software engineering as a solution for efficiently

maintaining software (see, e.g., [27, 47]). These works are

intended to repair the program in order to achieve that trans-

formed code does not expose bugs. This means either modi-

fying the program code or modifying the execution state at

runtime. AIR can be viewed as an instance of the process of

automatically removing flaws in the abstract interpreter by

acting at the level of its abstract domain(s). Because abstract

interpretation is sound-by-construction, the flaws amount to

the possible false-alarms raised by the analyzer. A standard

way to fix these flaws is through abstract domain refine-

ments. The completeness refinement designed in [33] refines

the whole abstract domain in order to remove all possible
false-alarms that may be produced for any program and

for all possible inputs. Even when applied to the specific

case of a CTL formula on state partitions in abstract model

checking, the result is a global partition refinement which

is independent from the initial and intermediate states of

traces satisfying or violating that formula, hence often boil-

ing down to the concrete model [29–31]. By contrast, AIR is

a kind of surgical refinement of the abstract domain, making

a specific abstract transfer function complete (i.e., producing

no false-alarms) w.r.t. a given input property of interest. It is

therefore possible to tailor the abstract domain along a given

execution trace, e.g., by repairing the analysis at runtime.

AIR is inherently dynamic as compared to the global com-

pleteness refinements in [33] and provides local fixes of the

abstract domain, resulting in a more abstract and therefore

efficient program analysis algorithm. Under this perspective,

the most closely related approach is the well-known CEGAR

method pioneered in [9, 11]. The use of pointed shells goes

beyond the relation settled by [29] between completeness

shell and CEGAR. Moreover, AIR can be applied to arbi-

trary Galois connection-based abstract domains and transfer

functions defined on generic complete lattices, hence go-

ing beyond the state partitions used in early abstract model

checking. Modern abstraction refinement heuristics improv-

ing on the original partition-based CEGARmethod have been

later proposed [1, 35, 36, 38, 57, 59, 60]. However, contrary

to AIR, they focus on some specific class of abstract domains

and refinements, typically domains of logical formulae and

interpolant-based refinements.

The logical proof system LCL𝐴 for local completeness

of [8] extends the early proof system for global completeness

defined in [28]. LCL𝐴 is applicable to prove both program cor-

rectness, as in Hoare logic for partial correctness, and, when

this fails, to detect true-alarms, as in O’Hearn’s incorrect-

ness logic [48]. However, each proof in LCL𝐴 corresponds

to a locally complete abstract computation in the abstract

domain 𝐴. How to make a generic abstract domain locally

complete was set as an open problem in [8, Section VII]. AIR

solves this problem by exhibiting the most abstract domain

that allows LCL𝐴 to complete a derivation.

2 Illustrative Example
Let us consider the following program computing the sum

of the first 5 positive integers, taken verbatim from [46, 58]

and that will be generalized after a preliminary discussion:

c =△ 𝑖 := 1; 𝑗 := 0;while (𝑖 ≤ 5) do { 𝑗 := 𝑗 + 𝑖; 𝑖 := 𝑖 + 1}

Recalling that the numbers𝑇𝑘 =
△ ∑𝑘

𝑖=1
𝑖 = 𝑘 (𝑘+1)/2 are called

triangular, this program c therefore outputs 𝑗 = 𝑇5 = 15 and

𝑖 = 6. Assume we want to prove that c meets the postcon-

dition Spec =
△
𝑗 ≤ 15. The analysis of c on Int, using the

standard widening for intervals, infers the abstract loop in-

variant 𝑃 =
△
𝑖 ∈ [1, 6] ∧ 𝑗 ∈ [0,∞], and outputs the abstract

store 𝑄 =
△
𝑖 ∈ [6, 6] ∧ 𝑗 ∈ [0,∞]. Since Int is a nonrela-

tional domain, its elements cannot represent relationships

between the variables 𝑖 and 𝑗 . The weakly relational octagon

domain Oct [44] refines the interval domain by representing

relational constraints of type ±𝑥 ± 𝑦 ≤ 𝑘 between any two

variables 𝑥 and𝑦. The analysis withOct infers a more precise

abstract loop invariant: 1 ≤ 𝑖 ≤ 6∧𝑖− 𝑗 ≤ 1∧𝑖+ 𝑗 ≥ 1∧ 𝑗 ≥ 0.

As observed in [58, Sect. 1], even if the convex polyhedra

abstraction Poly [21] is more precise than both Int and Oct,
an analysis of c with Poly infers a weaker loop invariant:

𝑖 ≤ 6. This may appear counterintuitive, but there exist many

incomparable polyhedra representing a finite set of states

428

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

and the combined use of joins and widenings makes it diffi-

cult for the generalization step to pick the best polyhedron.

Anyway, none of the above analyses is conclusive for Spec.
Since at the beginning of each loop iteration, 𝑗 stores the

(𝑖 − 1)-th triangular number 𝑇𝑖−1 = 𝑖 (𝑖 − 1)/2, we observe
that the concrete (i.e., strongest) loop invariant of c is:

Inv =
△

𝑖 ∈ [1, 6] ∧ 𝑗 = 𝑇𝑖−1.

AIR allows us to refine the aforementioned abstract domains

Int and Oct by adding to them the least amount of informa-

tion necessary to prove the validity of Spec in a compositional
way w.r.t. the program structure, that is, our solution is in-

ductively computed on the program syntax to guarantee

that each abstract computation step (i.e., abstract transfer

functions of the Boolean guard and assignments) is locally

complete. First, the program c is encoded as the following

regular command (cf. Section 3.2):

r =△ 𝑖 := 1; 𝑗 := 0;

(r1︷ ︸︸ ︷
(𝑖 ≤ 5)?; 𝑗 := 𝑗 + 𝑖; 𝑖 := 𝑖 + 1

)∗
; (𝑖 > 5)?

For the case of Int, our backward repair (cf. Algorithm 2)

proves that Spec holds by refining Int with the addition of

five new abstract elements:

𝑃 =
△

𝑖 ∈ [1, 6] ∧ 𝑗 ∈ [0,𝑇𝑖−1]
𝑅1 =

△
𝑖 ∈ [1, 5] ∧ 𝑗 ∈ [0,𝑇𝑖−1]

𝑅2 =
△

𝑖 ∈ [1, 5] ∧ 𝑗 ∈ [1,𝑇𝑖]
𝑅3 =

△
𝑖 ∈ [2, 6] ∧ 𝑗 ∈ [1,𝑇𝑖−1]

𝑉 =
△ (𝑖 ∈ [1, 5] ∧ 𝑗 ∈ [0,∞]) ∨ (𝑖 = 6 ∧ 𝑗 ∈ [0,𝑇5]).

Therefore, 𝑃 and 𝑅1, 𝑅2, 𝑅3 encode relational polynomial

constraints between 𝑖 and 𝑗 , while 𝑉 is a disjunction of in-

tervals. Let us describe how these points are obtained. Re-

call that the abstract analysis of r in Int returns 𝑄 = 𝑖 ∈
[6, 6] ∧ 𝑗 ∈ [0,∞]. Since we aim to prove 𝑗 ≤ 15, AIR first

computes the point 𝑄 =
△
𝑄 ∧ Spec = 𝑖 ∈ [6, 6] ∧ 𝑗 ∈ [0, 15],

which is already in Int. Since𝑄 was obtained by the abstract

evaluation of the exit condition (𝑖 > 5)? on the abstract loop

invariant 𝑉 =
△
𝑖 ∈ [1, 6] ∧ 𝑗 ∈ [0,∞] for r∗

1
, this repair step

introduces the largest precondition 𝑉 below (i.e., entailing)

𝑉 such that the guard (𝑖 > 5)? filters𝑉 into a result below𝑄 .

This explains why and how the new point 𝑉 is introduced.

Since 𝑉 is not an invariant for r∗
1
, the next repair step in-

fers the largest loop invariant for r∗
1
below 𝑉 , and this is the

property 𝑃 . The new points 𝑅ℎ are introduced because the

repair procedure is inductively defined and they are needed

to guarantee local completeness. For example, 𝑅1 is the point

necessary for making the guard (𝑖 ≤ 5)? locally complete

on 𝑃 . Similarly, 𝑅2 makes the assignment 𝑗 := 𝑗 + 𝑖 locally
complete on 𝑅1, and, in turn, 𝑅3 is necessary for making

𝑖 := 𝑖 + 1 locally complete on 𝑅2 (more details are given in

Example 7.13). If we started the repair inOct, then we would

have obtained a more concrete result. If the specification

𝑗 = 15 was considered, our repair would have instead intro-

duced the concrete invariant Inv in place of 𝑃 and restricted

the range of 𝑗 in 𝑅ℎ,𝑉 in a similar way.

Let us discuss what happens when we generalize the ex-

ample. To this aim, we replace the guard 𝑖 ≤ 5 (constant

boundary) by 𝑖 ≤ 𝑛, where 𝑛 is a variable, and consider the

specification Spec =△ 𝑗 ≤ 𝑇 for a generic constant 𝑇 .

As a first investigation, we consider the precondition 𝑛 ∈
[𝐾,𝐾] for some constant 𝐾 ≥ 0 such that 𝑇𝐾 ≤ 𝑇 . Letting
𝐷𝐾 =

△
𝑇 − 𝑇𝐾 ≥ 0, our repair strategy is still able to prove

that Spec holds by refining Int with the addition of five new

abstract elements that can be represented as follows:

𝑃 [𝐾] =
△

𝑛 = 𝐾 ∧ 𝑖 ∈ [1, 𝐾 + 1] ∧ 𝑗 ∈ [0, 𝐷𝐾 +𝑇𝑖−1]
𝑅1 [𝐾] =

△
𝑛 = 𝐾 ∧ 𝑖 ∈ [1, 𝐾] ∧ 𝑗 ∈ [0, 𝐷𝐾 +𝑇𝑖−1]

𝑅2 [𝐾] =
△

𝑛 = 𝐾 ∧ 𝑖 ∈ [1, 𝐾] ∧ 𝑗 ∈ [1, 𝐷𝐾 +𝑇𝑖]
𝑅3 [𝐾] =

△
𝑛 = 𝐾 ∧ 𝑖 ∈ [2, 𝐾 + 1] ∧ 𝑗 ∈ [1, 𝐷𝐾 +𝑇𝑖−1]

𝑉 [𝐾] =
△

𝑛 = 𝐾 ∧ ((𝑖 ∈ [1, 𝐾] ∧ 𝑗 ∈ [0,∞]) ∨ 𝑆)

where 𝑆 =
△
𝑖 = 𝐾 + 1 ∧ 𝑗 ∈ [0,𝑇]. An easy generalization of

the arguments illustrated above for r explains why and how

these new elements are computed. As expected, when 𝐾 = 5

and 𝑇 = 𝑇5 (so that 𝐷𝐾 = 0), they coincide with 𝑃, 𝑅ℎ,𝑉 .

Next, consider the precondition 𝑛 ∈ [𝐾1, 𝐾2], for some

constants 0 ≤ 𝐾1 ≤ 𝐾2 such that 𝑇𝐾2
≤ 𝑇 . Even in this

case our repair strategy proves Spec by refining Int with the

addition of five abstract elements, such as:

𝑃 [𝐾1, 𝐾2] =
△

𝑛 ∈ [𝐾1, 𝐾2] ∧ (𝑃 [𝑛] ∨ 𝑆 [𝑛])
𝑉 [𝐾1, 𝐾2] =

△
𝑛 ∈ [𝐾1, 𝐾2] ∧ (𝑉 [𝑛] ∨ 𝑆 [𝑛])

where 𝑆 [𝑛] =△ 𝑖 ∈ [𝑛+1, 𝐾2+1]∧ 𝑗 ∈ [0,𝑇]. Here, the notation
𝑃 [𝑛] denotes the syntactic replacement of the parameter of

𝑃 [·] with 𝑛, so as to establish a relational constraint between

the variables 𝑖 , 𝑗 and 𝑛. Clearly, for each value of 𝑛 in the

range [𝐾1, 𝐾2] the values of 𝑖 and 𝑗 are constrained by the

new abstract points 𝑃 [𝐾1, 𝐾2] and𝑉 [𝐾1, 𝐾2] in the same way

as they are, respectively, in 𝑃 [𝑛] and 𝑉 [𝑛], except for the
cases 𝑖 ∈ [𝑛+1, 𝐾2+1] when the guard of the loop is false and
the postcondition is enforced. The reasoning for the other

three points 𝑅ℎ [𝐾1, 𝐾2] is analogous. When 𝐾1 = 𝐾2 they all

boil down to 𝑃 [𝐾2], 𝑅ℎ [𝐾2],𝑉 [𝐾2], respectively.
To conclude, we remark that: (i) AIR provides the most

abstract refinement (cf. Section 4) of Int for proving that Spec
holds; (ii) even if the analysis starts in the nonrelational do-

main Int, AIR yields a relational refinement and infers poly-

nomial constraints; (iii) our findings have been validated by a

proof-of-concept implementation of AIR based on an explicit

enumerative representation of abstract elements; (iv) an ad-

vanced tool implementing AIR would necessarily require the

ability of dealing in practice with specific classes of symbolic

abstract domains, e.g., domains of SMT logical formulae, con-

straints, bit-vectors, etc.; this challenge is briefly discussed

in Section 8 and not addressed by this work, whose goal is to

characterize general optimal refinements with no restriction

about their symbolic representations.

429

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

3 Background
Notation. Any function 𝑓 : 𝑋 → 𝑌 is overloaded to denote

its lifting 𝑓 : ℘(𝑋) → ℘(𝑌) to powersets: 𝑓 (𝑆) =△ {𝑓 (𝑥) |
𝑥 ∈ 𝑆}. A complete lattice 𝐶 is denoted by ⟨𝐶, ≤,∨,∧,⊤,⊥⟩,
with partial order ≤, lub ∨, glb ∧, greatest element ⊤ and

least element ⊥. Given 𝑋 ⊆ 𝐶 , its set of maximal elements

is max(𝑋) =△ {𝑥 ∈ 𝑋 | ∀𝑦 ∈ 𝑋 . 𝑥 ≤ 𝑦 ⇒ 𝑥 = 𝑦}. A lub-

preserving (resp. glb-preserving) function between complete

lattices is called additive (resp. co-additive). If 𝐶 is a lattice

and 𝑓 , 𝑔 : 𝑋 → 𝐶 then 𝑓 ⊑ 𝑔 denotes pointwise ordering,

i.e., ∀𝑥 ∈ 𝑋 . 𝑓 (𝑥) ≤𝐶 𝑔(𝑥). The least fixpoint of a monotone

function 𝑓 : 𝐶 → 𝐶 is denoted by lfp(𝑓).

3.1 Abstract Interpretation
We just recall some basics of abstract interpretation [17] (see

the book [16] for a comprehensive introduction). In abstract

interpretation the concrete domain 𝐶 and the abstract do-

main 𝐴 are complete lattices related by a pair of monotone

maps ⟨𝛼 : 𝐶 → 𝐴,𝛾 : 𝐴→ 𝐶⟩ forming a Galois insertion (GI),

i.e., ∀𝑐 ∈ 𝐶, 𝑎 ∈ 𝐴.𝛼 (𝑐) ≤𝐴 𝑎 ⇔ 𝑐 ≤𝐶 𝛾 (𝑎) and 𝛼𝛾 = id𝐴. We

let Abs(𝐶) denote the class of abstract domains of 𝐶 , where

the notation 𝐴𝛼,𝛾 ∈ Abs(𝐶) makes explicit the maps of a GI.

A concrete value 𝑐 ∈ 𝐶 is expressible in 𝐴 if 𝛾𝛼 (𝑐) = 𝑐 .

Soundness and Completeness. Given 𝐴𝛼,𝛾 ∈ Abs(𝐶) and
a function 𝑓 : 𝐶 → 𝐶 , an abstract function 𝑓 ♯ : 𝐴→ 𝐴 is a

correct (or sound) approximation of 𝑓 if 𝛼 𝑓 ⊑ 𝑓 ♯𝛼 holds. If

𝑓 ♯ is a correct approximation of 𝑓 then fixpoint correctness

𝛼 (lfp(𝑓)) ≤𝐴 lfp(𝑓 ♯) holds. The best correct approximation
(bca) of 𝑓 in 𝐴 is defined by 𝑓 𝐴 =

△
𝛼 𝑓 𝛾 : 𝐴→ 𝐴.

The function 𝑓 ♯ is a complete approximation of 𝑓 (or just

complete) if 𝛼 𝑓 = 𝑓 ♯𝛼 holds. The abstract domain 𝐴 is a

complete abstraction for 𝑓 if there exists a complete approx-

imation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓 . Completeness of 𝑓 ♯ intuitively

encodes the greatest achievable precision when abstracting

the concrete behaviour of 𝑓 on the abstract domain 𝐴. In

complete abstractions the loss of precision is only due to the

abstract domain and not to the abstract function itself, which

is necessarily the bca of 𝑓 . Indeed, it turns out that complete-

ness 𝛼 𝑓 = 𝑓 ♯𝛼 holds for some (sound) 𝑓 ♯ iff 𝛼 𝑓 = 𝛼 𝑓 𝛾𝛼 iff

(𝛾𝛼) 𝑓 = (𝛾𝛼) 𝑓 (𝛾𝛼), which, by a slight abuse of notation,

will be denoted by𝐴𝑓 = 𝐴𝑓 𝐴. It is known that completeness

transfers to fixpoints, meaning that if 𝑓 ♯ is complete for 𝑓

then fixpoint completeness 𝛼 (lfp(𝑓)) = lfp(𝑓 ♯) holds.

Domains as Closures. An abstract domain refinement is a

transform that yields a more precise abstract domain [26].

Because increasing precision means adding new elements

to abstract domains, refinements are simpler to define when

abstract domains are viewed as closure operators. An upper

closure operator (uco) on a complete lattice ⟨𝐶, ≤⟩ is a func-
tion 𝜇 : 𝐶 → 𝐶 that is monotone, idempotent and extensive

(i.e., ∀𝑐 ∈ 𝐶. 𝑐 ≤ 𝜇 (𝑐)). Let uco(𝐶) denote the set of ucos on
𝐶 . The isomorphism between GIs and uco’s is known:

(1) if 𝐴𝛼,𝛾 ∈ Abs(𝐶) is a GI then 𝛾𝛼 ∈ uco(𝐶), and
(2) if 𝜇 ∈ uco(𝐶) then 𝜇 (𝐶)𝜇,id ∈ Abs(𝐶) is a GI.
Thus, GIs and uco’s are completely equivalent approaches for

defining abstract domains. We will often abuse notation, and

write 𝐴 for its underlying closure 𝛾𝛼 . For instance, we write

Int({−2, 5}) = [−2, 5]. Each closure 𝜇 ∈ uco(𝐶) is uniquely
determined by the set of its fixpoints, which also coincides

with its image 𝜇 (𝐶), because 𝜇 = 𝜆𝑥 . ∧{𝑦 ∈ 𝜇 (𝐶) | 𝑥 ≤ 𝑦}
holds. Let us also recall that a subset 𝑋 ⊆ 𝐶 is the set

of fixpoints of a uco on 𝐶 iff 𝑋 is meet-closed, i.e., 𝑋 =

M(𝑋) =△ {∧𝑌 | 𝑌 ⊆ 𝑋 } (note that ⊤ = ∧∅ ∈ M(𝑋)). When

𝐶 is a complete lattice, ⟨uco(𝐶), ⊑,⊔,⊓, 𝜆𝑥 .⊤, id⟩ is a com-

plete lattice as well. By the above isomorphism, ⟨Abs(𝐶), ⊑,
⊔,⊓, 𝜆𝑥 .⊤𝐶 , id𝐶⟩ denotes the so-called lattice of abstract in-
terpretations [18, Section 8], where 𝐴′ ⊑ 𝐴 means that 𝐴′ is
more precise than (i.e., is a refinement of) 𝐴, and one can

consider the most concrete simplification (i.e., lub ⊔) and
the most abstract refinement (i.e., glb ⊓) of any family of

abstract domains. In particular, recall that 𝐴′ ⊑ 𝐴 holds

when 𝛾𝐴 (𝐴) ⊆ 𝛾𝐴′ (𝐴′) and, consequently, that a lub of a

set X ⊆ Abs(𝐶) of abstract domains coincides with their

intersection, i.e., ⊔{𝐴 | 𝐴 ∈ X} = ∩{𝛾𝐴 (𝐴) | 𝐴 ∈ X}.

Domain Refinements. Given 𝐴 ∈ Abs(𝐶) and 𝑁 ⊆ 𝐶 we

define 𝐴 ⊞ 𝑁 =
△ M(𝛾𝐴 (𝐴) ∪ 𝑁) as the least refinement of

𝐴 including the (possibly) new elements in 𝑁 . Using the

shorthand 𝐴𝑁 for 𝐴 ⊞ 𝑁 , it holds that for all 𝑐 ∈ 𝐶 , 𝐴𝑁 (𝑐) =
∧{𝑥 ∈ (𝑁 ∪{𝐴(𝑐)}) | 𝑐 ≤ 𝑥}. As a special case, we write𝐴𝑧
for 𝐴 ⊞ {𝑧}, with 𝐴𝑧 (𝑐) = 𝑧 ∧𝐴(𝑐) if 𝑐 ≤ 𝑧 and 𝐴𝑧 (𝑐) = 𝐴(𝑐)
otherwise. The domain𝐴𝑧 is called a pointed refinement of𝐴.

3.2 Regular Commands
Following [8, 48, 51] (see also [62, Chapter 14]), we consider

a language of regular commands that covers imperative lan-

guages as well as other programming paradigms [40, 41].

Reg ∋ r ::= e | r; r | r ⊕ r | r∗

This language is parametric on the syntax of basic trans-

fer expressions e ∈ Exp, which define the basic commands.

These can be instantiated, e.g., with (deterministic or nonde-

terministic or parallel) assignments, Boolean guards, error

generation primitives, etc. Moreover, regular commands rep-

resent in a compact way the structure of control-flow graphs

(CFGs) of imperative programs. The term r1; r2 represents

sequential composition, r1 ⊕ r2 a choice command that can

behave as either r1 or r2, and r∗ is Kleene iteration, where r
can be executed 0 or any bounded number of times.

Concrete Semantics. We assume that basic expressions

have a semantics L ·M : Exp→ 𝐶 → 𝐶 on a complete lattice

𝐶 such that LeM is an additive function for any e ∈ Exp.
This assumption can be done w.l.o.g. in Hoare-like collecting

semantics, since the basic transfer functions are defined by

additive lifting. In turn, the concrete semantics J·K : Reg→

430

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

𝐶 → 𝐶 of regular commands is defined as follows:

JeK𝑐 =△ LeM𝑐 Jr1 ⊕ r2K𝑐 =
△ Jr1K𝑐 ∨𝐶 Jr2K𝑐

Jr1; r2K𝑐 =
△ Jr2K(Jr1K𝑐) Jr∗K𝑐 =△

∨
𝐶 {JrK𝑛𝑐 | 𝑛 ∈ N}

Abstract Semantics. The abstract semantics of regular com-

mands J·K♯
𝐴

: Reg → 𝐴 → 𝐴 on an abstract domain 𝐴 ∈
Abs(𝐶) is defined by structural induction as follows:

JeK♯
𝐴
𝑎 =
△ JeK𝐴𝑎 = 𝐴(LeM𝑎) Jr1 ⊕ r2K

♯

𝐴
𝑎 =
△ Jr1K

♯

𝐴
𝑎 ∨𝐴 Jr2K

♯

𝐴
𝑎

Jr1; r2K
♯

𝐴
𝑎 =
△ Jr2K

♯

𝐴
(Jr1K

♯

𝐴
𝑎) Jr∗K♯

𝐴
𝑎 =
△ ∨

𝐴{(JrK
♯

𝐴
)𝑛𝑎 | 𝑛 ∈ N}

The above abstract semantics is monotonic and sound, i.e.,

𝐴 ◦ JrK ⊑ JrK♯
𝐴
◦𝐴 holds. Note that the abstract semantics of

a basic expression e is its bca JeK𝐴 on 𝐴: this agrees with

the standard definition by structural induction of abstract

semantics used in abstract interpretation [16, 54]. Best cor-

rect approximations are preserved by choice commands,

i.e., Jr1 ⊕ r2K𝐴𝑎 = Jr1K𝐴𝑎 ∨𝐴 Jr2K𝐴𝑎, but, in general, not by

sequential composition and Kleene iteration: for example,

Jr2K𝐴 ◦ Jr1K𝐴 is not guaranteed to be the bca Jr1; r2K𝐴.

Imp. We consider standard basic transfer expressions used

in deterministic while programs, as defined below, where,

for simplicity, we consider just integer variables 𝑥 ∈ Var :
AExp ∋ a ::= 𝑣 ∈ Z | 𝑥 ∈ Var | a + a | a − a | a ∗ a
BExp ∋ b ::= tt | ff | a = a | a < a | a ≤ a | b ∧ b | ¬b
Exp ∋ e ::= skip | 𝑥 := a | b?

A standard deterministic imperative language like Winskel’s

Imp [62] can be easily retrieved using guarded branching

and loop commands as syntactic sugar (cf. [40]):

if (b) then c1 else c2 =
△ (b?; c1) ⊕ (¬b?; c2)

while (b) do c =△ (b?; c)∗; ¬b?

do c while (b) =△ c; (b?; c)∗; ¬b?

A program store 𝜎 : 𝑉 → Z is a total function from a finite

set of variables of interest𝑉 ⊆ Var to values and Σ =
△
𝑉 → Z

denotes the set of stores. The concrete domain is S =△ ℘(Σ),
ordered by inclusion. Store update is defined as usual and

lifted to sets 𝑆 ∈ S: 𝑆 [𝑥 ↦→ 𝑣] =△ {𝜎 [𝑥 ↦→ 𝑣] | 𝜎 ∈ 𝑆}. The
semantics LeM : S→ S of basic commands is standard:

LskipM𝑆 =
△
𝑆, L𝑥 := aM𝑆 =

△ {𝜎 [𝑥 ↦→ {|a|} 𝜎] | 𝜎 ∈ 𝑆},
Lb?M𝑆 =

△ {𝜎 ∈ 𝑆 | {|b|} 𝜎 = tt},
where {|a|} : Σ → Z and {|b|} : Σ → {tt,ff} are inductively
defined as expected. For brevity, we sometimes overload b to
denote the set Lb?M Σ of all and only the stores that satisfy

b, so that Lb?M𝑆 = 𝑆 ∩ b. When 𝑉 = {𝑥}, we let 𝑆 ∈ ℘(Z)
denote the set {𝜎 ∈ Σ | 𝜎 (𝑥) ∈ 𝑆} ∈ S.

4 Making AI Locally Complete
The completeness property 𝐴𝑓 = 𝐴𝑓 𝐴 for an abstract do-

main𝐴 w.r.t. a transfer function 𝑓 is, to some extent, a global
property, meaning that it is universally quantified on all

possible concrete inputs, i.e., ∀𝑐 ∈ 𝐶. 𝐴𝑓 (𝑐) = 𝐴𝑓 𝐴(𝑐). In

program analysis, the semantic transfer functions 𝑓 are given

by the collecting semantics JeK of basic commands e, and the
corresponding concrete domain S is the set of all possible
input store properties. While completeness can be hard/im-

possible to achieve globally, as argued by [8], it may well

happen that completeness holds locally, i.e. just for some in-

put properties, thus giving grounds for investigating a more

permissive notion of local completeness in program analysis.

We investigate how to “repair” an abstract domain through

a refinement when local completeness fails. In particular, we

provide necessary and sufficient conditions for the existence

of a novel type of most abstract domain refinement, called

pointed (locally complete) shell, that compares domain re-

finements on the basis of their new points rather than their

relative precision order ⊑ in the standard lattice of abstract

interpretation.

4.1 Local Completeness
Definition 4.1 (Local Completeness [8]). An abstract do-

main𝐴 ∈ Abs(𝐶) is locally complete for a function 𝑓 : 𝐶 → 𝐶

on a value 𝑐 ∈ 𝐶 , denoted by C𝐴𝑐 (𝑓), if 𝐴𝑓 (𝑐) = 𝐴𝑓 𝐴(𝑐), i.e.
C𝐴𝑐 (𝑓) ⇔

△
𝐴𝑓 (𝑐) = 𝐴𝑓 𝐴(𝑐) .

When the abstraction 𝐴 is clear from the context, we simply

write that 𝑓 is locally complete on 𝑐 . □

Local completeness enjoys a sort of convexity property,

meaning that whenever C𝐴𝑐 (𝑓) holds then C𝐴𝑥 (𝑓) holds for
any other concrete point 𝑥 ∈ 𝐶 such that 𝑐 ≤ 𝑥 ≤ 𝐴(𝑐).
We remark that, w.r.t. a compositional program analysis,

global and local completeness disclose a significant disparity:

while the composition (via generic regular commands, and,

consequently, via conditionals and loops of CFGs) of globally

complete transfer functions is still globally complete, the

same does not necessarily happen for local completeness.

Example 4.2 (Local Completeness is notCompositional).
Consider the Imp program

c =
△ if (0 < 𝑥) then 𝑥 := 𝑥 − 2 else 𝑥 := 𝑥 + 1

and the interval abstraction Int. While the Boolean guard

J0 < 𝑥?K is not globally complete, it turns out that J0 < 𝑥?K
is locally complete for any 𝑃 ∈ ℘(Z) such that:

(1) 𝑃 ⊆ Z>0, or (2) 𝑃 ⊆ Z≤0, or (3) {0, 1} ⊆ 𝑃 .
Since the transfer functions for 𝑥 ± 𝑘 are globally complete

for Int, c is locally complete for any 𝑃 satisfying one of the

above conditions (1)–(3). For example, if 𝑃1 = {2, 5} ⊆ Z>0,

then Int(JcK𝑃1) = Int({0, 3}) = [0, 3] and Int(JcKInt(𝑃1)) =
Int(JcK[2, 5]) = Int({0, 1, 2, 3}) = [0, 3]. Contrariwise, if
𝑃2 = {0, 3} we have that Int(JcK𝑃2) = Int({1}) = [1, 1], but
Int(JcKInt(𝑃2)) = Int(JcK[0, 3]) = Int({1,−1, 0}) = [−1, 1].
Consider now the composite command c; c. While Int is
locally complete for c on 𝑃1, it is not locally complete for c; c
on 𝑃1, because Int(Jc; cK{2, 5}) = Int(JcK{0, 3}) = [1, 1], but
Int(Jc; cKInt({2, 5})) = Int(Jc; cK[2, 5]) = [−1, 1]. □

431

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Similarly to what is known for global completeness [33],

local completeness for an abstraction 𝐴 can be constructively
characterized, meaning that there exists a set of concrete

points that are expressible in 𝐴 if and only if 𝐴 is locally

complete. In order to achieve this, transfer functions need to

be merely continuous, so that our result is widely applicable.

Definition 4.3 (Local Completeness Set). Let 𝑓 : 𝐶 → 𝐶 ,

𝐴 ∈ Abs(𝐶) and 𝑐 ∈ 𝐶 . The local completeness set L𝐴
𝑐,𝑓
⊆ 𝐶

is defined by L𝐴
𝑐,𝑓

=
△ {𝑥 ∈ 𝐶 | 𝑥 ≤ 𝐴(𝑐), 𝑓 (𝑥) ≤ 𝐴𝑓 (𝑐)}. □

The local completeness set L𝐴
𝑐,𝑓

includes 𝑐 as well as any

concrete element 𝑥 below𝐴(𝑐) (notice that 𝑥 is not necessar-

ily comparable with 𝑐) such that its image 𝑓 (𝑥) is bounded
from above in 𝐴 by 𝐴𝑓 (𝑐). By resorting to an equivalent

formulation of the axiom of choice called Hausdorff maximal

principle, it turns out that any element in L𝐴
𝑐,𝑓

is dominated

by a maximal one in max(L𝐴
𝑐,𝑓
), and this technically enables

the following characterization for continuous transfer func-

tions, which is further specialized for additive functions.

Theorem 4.4 (Characterization of Local Completeness).
Let 𝑓 : 𝐶 → 𝐶 , 𝐴 ∈ Abs(𝐶) and 𝑐 ∈ 𝐶 .

(i) If 𝑓 is continuous then, C𝐴𝑐 (𝑓) ⇔ max(L𝐴
𝑐,𝑓
) ⊆ 𝐴.

(ii) In particular, if 𝑓 is additive then, C𝐴𝑐 (𝑓) ⇔ ∨L𝐴𝑐,𝑓 ∈ 𝐴.
Moreover, ∨L𝐴

𝑐,𝑓
= 𝐴(𝑐) ∧

(
∨ {𝑥 ∈ 𝐶 | 𝑓 (𝑥) ≤ 𝐴𝑓 (𝑐)}

)
.

Example 4.5. Let us consider the interval abstraction Int
and the function JcK : ℘(Z) → ℘(Z) of Example 4.2 which

has been shown locally complete on 𝑃1 = {2, 5}, but not on
𝑃2 = {0, 3}. In fact, coherently with Theorem 4.4 (ii), it turns

out that (recall that JcK is an additive function):

(1)LInt
𝑃1,JcK

= {𝑋 ∈ ℘(Z) | 𝑋 ⊆ Int(𝑃1), JcK𝑋 ⊆ Int(JcK𝑃1)} =
{𝑋 ∈ ℘(Z) | 𝑋 ⊆ [2, 5], JcK𝑋 ⊆ [0, 3]} and ∪LInt

𝑃1,JcK
= [2, 5]

(2)LInt
𝑃2,JcK

= {𝑋 ∈ ℘(Z) | 𝑋 ⊆ Int(𝑃2), JcK𝑋 ⊆ Int(JcK𝑃2)} =
{𝑋 ∈ ℘(Z) | 𝑋 ⊆ [0, 3], JcK𝑋 ⊆ [1, 1]} and∪LInt

𝑃2,JcK
= {0, 3}

so that ∪LInt
𝑃1,JcK

∈ Int, while ∪LInt
𝑃2,JcK

∉ Int. □

4.2 Exact Locally Complete Shells
If local completeness C𝐴𝑐 (𝑓) fails during some step of a pro-

gram abstract interpretation on a domain𝐴, we are interested

in repairing the abstract domain 𝐴 in order to retrieve local

completeness in that failure step. When this repair procedure

is iterated along an abstract trace, the objective is to make our

abstract domain locally complete along that abstract compu-

tation. Domain refinement is an obvious choice to repair the

local completeness of some abstraction. The ideal goal would

be to enhance 𝐴 by adding the minimum number of new ab-

stract points that allows us to attain local completeness. This

kind of minimal refinement of abstract domains to achieve

some domain property is known as exact shell [26] once ab-
stract domains are compared w.r.t. their relative precision

ordering ⊑ in the lattice of abstract interpretation Abs(𝐶)
(cf. Section 3.1). For the property of local completeness of a

transfer function 𝑓 : 𝐶 → 𝐶 on some point 𝑐 ∈ 𝐶 , the exact

locally complete shell of 𝐴 exists when its minimal refine-

ment 𝐴ref =
△ ⊔{𝐵 ∈ Abs(𝐶) | 𝐵 ⊑ 𝐴, C𝐵𝑐 (𝑓)} turns out to be

locally complete on 𝑐 . Unfortunately, the following example

shows that, in general, this minimal refinement does not

exist, even under strong hypotheses.

Example 4.6 (Exact Shells May Not Exist). Let us con-
sider a simple collecting transfer function 𝑓 : ℘(Z) → ℘(Z)
defined as follows: 𝑓 (𝑋) =△ {𝑥 + 1 | 𝑥 ∈ 𝑋 }. Thus, 𝑓 is the

additive transformer of the imperative assignment 𝑥 := 𝑥 + 1,

namely, 𝑓 = J𝑥 := 𝑥+1K. We consider the toy abstract domain

𝐴 =
△ {Z, [0, 4], [1, 3]} ∈ Abs(℘(Z)), which is a finite chain of

three integer intervals and is deliberately artificial for the

ease of exposition. For the store property 𝑃 = {0, 2}, observe
that C𝐴

𝑃
(𝑓) does not hold, because: 𝐴𝑓 (𝑃) = 𝐴({1, 3}) =

[1, 3] while 𝐴𝑓 𝐴(𝑃) = 𝐴𝑓 ([0, 4]) = 𝐴([1, 5]) = Z.
Consider the following two pointed refinements of 𝐴:

𝐴[0,2] = 𝐴 ∪ {[0, 2], [1, 2]}, 𝐴{0,2} = 𝐴 ∪ {{0, 2}, {2}}.
Since 𝑃 ∈ 𝐴{0,2} , we have that 𝐴{0,2} is trivially locally com-

plete on 𝑃 . Moreover, 𝐴[0,2] also achieves local completeness

on 𝑃 : 𝐴[0,2] 𝑓 𝐴[0,2] (𝑃) = 𝐴[0,2] 𝑓 ([0, 2]) = 𝐴[0,2] ([1, 3]) =

[1, 3] = 𝐴[0,2] ({1, 3}) = 𝐴[0,2] 𝑓 (𝑃). Therefore,𝐴[0,2], 𝐴{0,2} ∈
{𝐵 ∈ Abs(℘(Z)) | 𝐵 ⊑ 𝐴, C𝐵

𝑃
(𝑓)}. Since 𝐴[0,2] ⊔ 𝐴{0,2} =

𝐴[0,2]∩𝐴{0,2} = 𝐴, it turns out that𝐴ref = ⊔{𝐵 ∈ Abs(℘(Z)) |
𝐵 ⊑ 𝐴, C𝐵

𝑃
(𝑓)} = 𝐴. This entails that the exact shell refine-

ment of 𝐴 which is locally complete on 𝑃 does not exist. □

The above example shows that even when the concrete

domain is a complete Boolean algebra, the transfer function

is both additive and co-additive and the abstract domain

is a finite chain, exact shells of local completeness do not

necessarily exist. This observationmakes it impossible to find

some adequate sufficient conditions on the transfer function

and/or the abstract domain guaranteeing the existence of

locally complete shells. Nevertheless, it is worth remarking

that the locally complete shell for some specific abstract

domain, transfer function and concrete point may well exist.

4.3 Pointed Locally Complete Shells
Let us focus on pointed refinements𝐴𝑥 of a given abstraction

𝐴. The following result shows which pointed refinements

𝐴𝑥 may achieve local completeness.

Lemma 4.7. Let 𝑓 : 𝐶 → 𝐶 be monotone,𝐴 ∈ Abs(𝐶) and 𝑐 ∈
𝐶 . Assume that local completeness does not hold, i.e., 𝐴𝑓 (𝑐) ≠
𝐴𝑓 𝐴(𝑐). If 𝑥 ∈ 𝐶 is such that C𝐴𝑥

𝑐 (𝑓), i.e. local completeness
holds, and 𝑥 ≰ 𝐴(𝑐) then there exists some 𝑦 < 𝐴(𝑐) such that
𝐴𝑥 ⊑ 𝐴𝑦 and C

𝐴𝑦

𝑐 (𝑓).
Hence, this result tells us that if 𝐴 is not locally complete

on 𝑐 and we are looking for a pointed refinement 𝐴𝑥 that

achieves local completeness on 𝑐 then we can restrict our

search to those new points 𝑥 which are below 𝐴(𝑐), because
for 𝑥 ≰ 𝐴(𝑐) a more abstract pointed refinement 𝐴𝑦 which

is locally complete and with 𝑦 < 𝐴(𝑐) can always be found.

However, as shown in Section 4.2, the most abstract pointed

432

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

refinement of 𝐴 which is locally complete on 𝑐 , in general,

does not exist. For instance, in Example 4.6 we have shown

that the two pointed refinements 𝐴[0,2] and 𝐴{0,2} are both
locally complete but their common abstraction𝐴[0,2] ⊔𝐴{0,2}
is 𝐴 itself, which is not locally complete. Notice that for

the standard precision ordering ⊑ in the lattice of abstract

interpretations Abs(𝐶), the locally complete pointed refine-

ments 𝐴[0,2] and 𝐴{0,2} turn out to be incomparable because

𝐴[0,2] ⊈ 𝐴{0,2} and 𝐴{0,2} ⊈ 𝐴[0,2] . Nevertheless, we argue
that the pointed refinement 𝐴[0,2] should be preferred to 𝐴{0,2}
because the new point [0, 2] is more abstract than {0, 2},
namely, {0, 2} ⊊ [0, 2] holds. One further reason support-

ing our claim is that, due to the convexity property of local

completeness mentioned after Definition 4.1, the choice of a

more abstract approximation 𝑐♯ for 𝑐 guarantees that local

completeness holds not only for 𝑐 but also for any concrete

element in between 𝑐 and 𝑐♯. We therefore put forward a

novel notion of shell refinement of abstract domains, which

is restricted to pointed refinements 𝐴𝑥 and compares them

by the relative precision ordering of their new point 𝑥 .

Definition 4.8 (Pointed Shells). Let 𝑓 : 𝐶 → 𝐶 be mono-

tone, 𝐴 ∈ Abs(𝐶) and 𝑐 ∈ 𝐶 . The pointed locally complete
shell, pointed shell for short, of 𝐴 in 𝑐 exists when

max({𝑥 ∈ 𝐶 | 𝑥 ≤ 𝐴(𝑐), C𝐴𝑥
𝑐 (𝑓)}) = {𝑢} (1)

and, in such a case, this pointed shell is 𝐴𝑢 ∈ Abs(𝐶). □

Let us remark that the condition 𝑥 ≤ 𝐴(𝑐) in (1) is justified
by Lemma 4.7, as discussed above. We therefore give the

following main result that: (i) by leveraging Theorem 4.4,

characterizes the point 𝑢 of a pointed shell 𝐴𝑢 , and (ii) when

𝑓 is additive, provides a necessary and sufficient condition

for the existence of a pointed shell.

Theorem 4.9 (Existence of Pointed Shells). Let us consider
𝑓 : 𝐶 → 𝐶 , 𝐴 ∈ Abs(𝐶) and 𝑐 ∈ 𝐶 , and let 𝑢 =

△ ∨L𝐴
𝑐,𝑓

.

(i) If 𝑓 is monotone then: C𝐴𝑢
𝑐 (𝑓) ⇔ 𝐴𝑢 is the pointed shell

of 𝐴 for 𝑓 on 𝑐 .
(ii) If 𝑓 is additive then: C𝐴𝑢

𝑐 (𝑓) ⇔ (𝑓 (𝑐) ≤ 𝑢⇒ 𝑓 (𝑢) ≤ 𝑢).
Hence, for an additive function 𝑓 , such as a collecting

semantics, and the new concrete element 𝑢 = ∨L𝐴
𝑐,𝑓

, the

pointed shell of 𝐴 exists exactly when 𝑓 (𝑐) ≰ 𝑢 or 𝑓 (𝑢) ≤ 𝑢
holds, and in such a case 𝐴𝑢 is the pointed shell.

Example 4.10. Consider again Example 4.6 dealing with

local completeness of the function 𝑓 = J𝑥 := 𝑥 + 1K on input

𝑃 = {0, 2} in the toy abstract domain 𝐴 = {Z, [0, 4], [1, 3]}.
We have: L𝐴

𝑃,𝑓
= {𝑋 ∈ ℘(Z) | 𝑋 ⊆ 𝐴(𝑃), 𝑓 (𝑋) ⊆ 𝐴𝑓 (𝑃)} =

{𝑋 ∈ ℘(Z) | 𝑋 ⊆ [0, 4], 𝑓 (𝑋) ⊆ [1, 3]}, so that𝑢 = ∪L𝐴
𝑃,𝑓

=

[0, 2]. Since 𝑓 (𝑃) = {1, 3} ⊈ [0, 2] = 𝑢, the condition of

Theorem 4.9 (ii) is satisfied, because its premise 𝑓 (𝑃) ⊆ 𝑢 is

false, thus 𝐴[0,2] is the pointed shell of 𝐴 for 𝑓 on 𝑃 .

Consider now Example 4.5, showing that Int is not locally
complete on 𝑃2 = {0, 3} for the program c in Example 4.2. We

have already seen that 𝑢 = ∪LInt
𝑃2,JcK

= {0, 3}. Since JcK𝑃2 =

{1} ⊈ {0, 3} = 𝑢 holds, the condition JcK𝑃2 ⊆ 𝑢 ⇒ JcK𝑢 ⊆ 𝑢
of Theorem 4.9 (ii) is satisfied, and Int{0,3} = Int ∪ {0, 3} is
the pointed shell of Int for JcK on 𝑃2. □

4.4 Boolean Guards
Boolean guards are particularly important in this scenario

because, as argued in [28], they represent the major source

of incompleteness. In this case we are interested in achieving

local completeness for two transfer functions Jb?K and J¬b?K.
Definition 4.8 can be slightly generalized as follows: the

pointed locally complete shell of 𝐴 in 𝑐 exists for a set of

functions 𝐹 ⊆ 𝐶 → 𝐶 when:

max({𝑥 ∈ 𝐶 | 𝑥 ≤ 𝐴(𝑐),∀𝑓 ∈𝐹 . 𝐴𝑥 𝑓 (𝑐) = 𝐴𝑥 𝑓 𝐴𝑥 (𝑐)})= {𝑢}.
If this is the case, then𝐴𝑢 is defined to be the pointed (locally

complete) shell of 𝐴 for 𝐹 . Interestingly, we constructively

prove that pointed shells for Boolean guards always exist.

Theorem 4.11 (Pointed Shell for Boolean Guards). Given
b ∈ BExp, 𝐴 ∈ Abs(S) and 𝑃 ∈ S, let

𝑢 =
△ (𝐴(𝑃 ∩ b) ∩ b) ∪ (𝐴(𝑃 ∩ ¬b) ∩ ¬b) ∈ S.

Then, 𝐴𝑢 is the pointed shell for {Jb?K, J¬b?K} on 𝑃 .
Example 4.12. Let us apply Theorem 4.11 to the case of the

interval domain and the Boolean guard b =
△ (𝑥 > 0)? on the

point of incompleteness 𝑃 = {−3,−1, 2}. Letting
𝑢 =
△ (Int(𝑃 ∩ 𝑥 ≤ 0) ∩ 𝑥 ≤ 0) ∪ (Int(𝑃 ∩ 𝑥 > 0) ∩ 𝑥 > 0)
= (Int({−3,−1}) ∩ ¬b) ∪ (Int({2}) ∩ b) = [−3,−1]∪{2},

by closing under meets, we obtain that the pointed shell is

Int𝑢 = Int ∪
{
[−3,−1] ∪ {2}, [−2,−1] ∪ {2}, {−1, 2}

}
. □

5 Repair Strategies
Whenever the current abstract domain is not precise enough

to prevent false-alarms, we advocate AIR as a way to opti-

mally refine the abstract domain so to remove false-alarms.

The general scenario consists of a composite transfer func-

tion 𝑓 =
△
𝑓𝑛 ◦ ... ◦ 𝑓1, e.g., modeling the sequential composition

of 𝑓1, ..., 𝑓𝑛 : 𝐶 → 𝐶 , a concrete input 𝑐 and a correctness spec-

ification 𝑎 for which we want to decide whether 𝑓 (𝑐) ≤ 𝑎 is
satisfied, without actually computing 𝑓 (𝑐). In CEGAR, the

functions 𝑓𝑘 are the post transformers of a transition system,

while in program verification each 𝑓𝑘 is the transfer function

of some basic command. In abstract interpretation, we select

an abstract domain𝐴 ∈ Abs(𝐶) such that the property𝑎 is ex-
pressible in𝐴 and then we check whether 𝑓

♯

𝐴
𝐴(𝑐) ≤𝐴 𝑎 holds,

where 𝑓
♯

𝐴
=
△
𝑓 𝐴𝑛 ◦ ... ◦ 𝑓

𝐴
1
and each 𝑓 𝐴𝑖 is the bca in 𝐴 of 𝑓𝑖 . In

the positive case, by soundness of abstract interpretation, we

are done. Otherwise, we cannot tell if the specification 𝑎 is

met or not, because the bca 𝑓 𝐴 of 𝑓 in𝐴 does not coincide, in

general, with 𝑓
♯

𝐴
. However, if 𝑓

♯

𝐴
𝐴(𝑐) = 𝐴(𝑓 (𝑐)) holds, then

from 𝑓
♯

𝐴
𝐴(𝑐) ≰𝐴 𝑎 we can conclude that 𝑎 is not met, because

𝐴(𝑓 (𝑐)) ≰𝐴 𝑎 implies 𝑓 (𝑐) ≰ 𝑎 when 𝑎 ∈ 𝐴.

433

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

A(ck) A fk A (ck)

ck
A fk (ck)

fk(ck)

Figure 1. A bca repair.

Forward Repair Strategy. By letting 𝑐𝑘 =
△
𝑓𝑘−1...𝑓1 (𝑐), with

𝑐1 =
△
𝑐 , the equality 𝑓

♯

𝐴
𝐴(𝑐) = 𝐴(𝑓 (𝑐)) is a consequence of 𝑛

local completeness proof obligations:

∀𝑘 ∈ [1, 𝑛] . 𝐴𝑓𝑘 (𝑐𝑘) = 𝐴𝑓𝑘𝐴(𝑐𝑘).
The forward repair strategy processes these proof obligations

in increasing index order: as soon as the smallest index 𝑘 is

found such that 𝐴𝑓𝑘 (𝑐𝑘) ≠ 𝐴𝑓𝑘𝐴(𝑐𝑘), then 𝐴 is repaired by

some pointed shell 𝐴𝑢 and the analysis is restarted in the

refined domain 𝐴𝑢 , now locally complete for 𝑓𝑘 on 𝑐𝑘 .

Let us focus on a step where 𝐴𝑓𝑘 (𝑐𝑘) ≠ 𝐴𝑓𝑘𝐴(𝑐𝑘), as
depicted in Fig. 1: the states in 𝑐𝑘 are black-filled while

the source of incompleteness is due to the crossed states

in 𝐴𝑓𝑘𝐴(𝑐𝑘) ∖ 𝐴𝑓𝑘 (𝑐𝑘). To repair this incompleteness we

could thus introduce any approximation 𝑢 of 𝑐𝑘 such that

𝑐𝑘 ≤ 𝑢 ≤ 𝐴(𝑐𝑘) and 𝐴𝑢 𝑓𝑘 (𝑢) = 𝐴𝑢 𝑓𝑘 (𝑐𝑘). Our methodology

is simple: when a local completeness violation is detected,

we refine the domain 𝐴 to the pointed shell 𝐴𝑢 by adding

𝑢 =
△ ∨L𝐴

𝑐𝑘 ,𝑓𝑘
(cf. Theorem 4.9), when it exists, otherwise we

can just take 𝑢 = 𝑐𝑘 , which is the most concrete pointed

refinement. Note that by taking the pointed shell, the re-

fined domain turns out to be locally complete for 𝑓𝑘 on any

concrete 𝑥 in between 𝑐𝑘 and 𝑢 (by abstract convexity), so

this refinement is, e.g., more likely reusable within abstract

fixpoint computations. Moreover, as explained in Section 4.3,

the pointed shell is the best possible refinement strategy we

can locally apply for removing the incompleteness of 𝑓𝑘 on

𝑐𝑘 . However, this forward method requires to compute the

concrete element 𝑐𝑘 on which local completeness is violated.

Forward repair stops as soon as we obtain a domain that

is precise enough to prove the correctness specification 𝑎

or such that all the local completeness requirements are

met. The worst case happens when 𝑓 (𝑐) ≰ 𝑎, because this
means that all the local completeness equations must be

inspected and, consequently, all the concrete elements 𝑐𝑘
must be computed.

Backward Repair Strategy. Forward repair focuses on

the strongest postconditions 𝑐𝑘 and aims at a refinement

𝐴f such that 𝑓
𝐴

f

𝑛 ...𝑓
𝐴

f

𝑘+1𝐴f (𝑐𝑘) ≤ 𝑎, where, by local complete-

ness of 𝐴f for 𝑓𝑘 on 𝑐𝑘 , we have that 𝑓
𝐴

f

𝑛 ...𝑓
𝐴

f

𝑘+1𝐴f (𝑐𝑘) =

𝑓
𝐴

f

𝑛 ...𝑓
𝐴

f

1
𝐴f (𝑐) = 𝑓

♯

𝐴
f

𝐴f (𝑐) holds. Backward repair relies in-

stead on weakest liberal preconditions [24] and looks for

a refinement 𝐴b such that 𝐴b (𝑓𝑛 ...𝑓𝑘+1 𝑓 𝐴b

𝑘
...𝑓

𝐴
b

1
𝐴b (𝑐)) ≤ 𝑎

holds, and 𝐴b (𝑓𝑛 ...𝑓𝑘+1 𝑓 𝐴b

𝑘
...𝑓

𝐴
b

1
𝐴b (𝑐)) = 𝑓

♯

𝐴
b

𝐴b (𝑐) follows
by local completeness. Recall that, given 𝑓 : 𝐶 → 𝐶 and

B1 Bk Bk+1 Bn

<latexit sha1_base64="UwbNLbfQnPEH9810a5uyx8czdhs=">AAACBnicbVC7TsNAEDyHVwgvE0qaExESVWQjBJRRaCiDRB5SYqLzZRNOOT90t0aJLPd8BS1UdIiW36DgX7CNC0iYajSzq50dN5RCo2V9GqWV1bX1jfJmZWt7Z3fP3K92dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151eZX73AZQWgX+L8xAcj018MRacYSoNzWpzGE+Tu3iAMMNYKJUkQ7Nm1a0cdJnYBamRAq2h+TUYBTzywEcumdZ92wrRiZlCwSUklUGkIWR8yibQT6nPPNBOnGdP6HGkGQY0BEWFpLkIvzdi5mk999x00mN4rxe9TPzP60c4vnRi4YcRgs+zQygk5Ic0VyItBehIKEBkWXKgwqecKYYISlDGeSpGaUuVtA978ftl0jmt2+f1s5uzWqNZNFMmh+SInBCbXJAGuSYt0iaczMgTeSYvxqPxarwZ7z+jJaPYOSB/YHx8AxDnma0=</latexit>

Birr
k

<latexit sha1_base64="SgE+jgwn33KP7+wxmDf1dbIvGWY=">AAACB3icbVDLTgJBEJzFF+JrlaOXicTEE9k1RD0SvHjERB4JIOkdGpww+8hMr5Fs9gP8Cq968ma8+hke/BcX5KBgnSpV3enq8iIlDTnOp5VbWV1b38hvFra2d3b37P2DpgljLbAhQhXqtgcGlQywQZIUtiON4HsKW974cuq37lEbGQY3NImw58MokEMpgDKpbxdr/WSc3iZdwgdKBgiDNO3bJafszMCXiTsnJTZHvW9/dQehiH0MSCgwpuM6EfUS0CSFwrTQjQ1GIMYwwk5GA/DR9JJZ+JQfxwYo5BFqLhWfifh7IwHfmInvZZM+0J1Z9Kbif14npuFFL5FBFBMGYnqIpMLZISO0zFpBPpAaiWCaHLkMuAANRKglByEyMc5qKmR9uIvfL5Pmadk9K1euK6Vqbd5Mnh2yI3bCXHbOquyK1VmDCTZhT+yZvViP1qv1Zr3/jOas+U6R/YH18Q2idJn4</latexit>

Bdead
k

<latexit sha1_base64="tgL151v/K9p0/gCTn15Uf4mEKlo=">AAACBnicbVC7TgJBFJ3FF+ILsbSZSEysyK4xakmwscREHgkguTtccMLsIzN3DWSzvV9hq5WdsfU3LPwXl5VCwVOdnHNv7rnHDZU0ZNufVm5ldW19I79Z2Nre2d0r7peaJoi0wIYIVKDbLhhU0scGSVLYDjWC5ypsueOrmd96QG1k4N/SNMSeByNfDqUASqV+sVTrx+PkLu4STih2YZAk/WLZrtgZ+DJx5qTM5qj3i1/dQSAiD30SCozpOHZIvRg0SaEwKXQjgyGIMYywk1IfPDS9OMue8OPIAAU8RM2l4pmIvzdi8IyZem466QHdm0VvJv7ndSIaXvZi6YcRoS9mh0gqzA4ZoWVaCvKB1EgEs+TIpc8FaCBCLTkIkYpR2lIh7cNZ/H6ZNE8rznnl7OasXK3Nm8mzQ3bETpjDLliVXbM6azDBJuyJPbMX69F6td6s95/RnDXfOWB/YH18A9UzmYc=</latexit>

Bbad
k

Figure 2. A spurious counterexample.

𝑧 ∈ 𝐶 , the weakest liberal precondition of 𝑓 for 𝑧 is

wlp(𝑓 , 𝑧) =△ ∨{𝑥 ∈ 𝐶 | 𝑓 (𝑥) ≤ 𝑧}.

When 𝑓 is additive, the key property of wlp is that 𝑓 (𝑐) ≤ 𝑎
is equivalent to 𝑐 ≤ wlp(𝑓 , 𝑎), and, analogously, 𝑓 ♯

𝐴
𝐴(𝑐) ≤ 𝑎

iff 𝐴(𝑐) ≤ wlp(𝑓 ♯
𝐴
, 𝑎). Letting 𝑎𝑘 =

△
𝑓 𝐴
𝑘
...𝑓 𝐴

1
𝐴(𝑐), we induc-

tively define 𝑣𝑘 =
△
𝑎𝑘∧wlp(𝑓𝑘+1, 𝑣𝑘+1), with 𝑣𝑛 =

△
𝑎𝑛∧𝑎. Thus,

backward repair amounts to check and possibly repair𝑛 local

completeness proof obligations:

∀𝑘 ∈ [1, 𝑛] . 𝐴𝑓𝑘 (𝑣𝑘) = 𝐴𝑓𝑘𝐴(𝑣𝑘),

which are best processed in decreasing order, from 𝑛 to 1.

Forward and backward strategies compute the pointed

shells for different concrete elements, as in general 𝑐𝑘 ≠ 𝑣𝑘 .

Backward repair looks more appealing for several reasons:

(i) backward repair mainly operates on abstractions𝐴(𝑐) and
not on concrete elements 𝑐 ; (ii) the abstract domain𝐴b can be

used to decide the (in)correctness of any 𝑑 ≤ 𝐴(𝑐), whereas
the domain𝐴f of a forward repair can only be used to decide

the (in)correctness of any element 𝑑 such that 𝑐 ≤ 𝑑 ≤ 𝐴(𝑐);
(iii) the pointed shell for 𝑓𝑘 on 𝑣𝑘 is just 𝐴𝑣𝑘 : 𝑣𝑘 is the largest

element that satisfies the correctness specification, so any

larger approximation would compromise the validity of that

property; (iv) finally, a major distinction is that, after any

repair, the forward strategy must redo the abstract interpreta-
tion, while the backward strategy can apply the next repair

(if necessary) along the existing abstract computation.

6 CEGAR as AIR
CounterExample-Guided Abstraction Refinement (CEGAR)

[9, 11] is a popular abstraction refinement strategy applicable

to the verification of temporal logic formulas. CEGAR tackles

the critical state explosion problem [10] by model checking

an abstract model instead of the concrete one.

CEGAR in a Nutshell. Consider a finite state transition
system S = ⟨Σ,�⟩ whose successor/predecessor transform-

ers post/pre are defined as post(𝑋) =△ {𝑡 | ∃𝑠 ∈ 𝑋, 𝑠 � 𝑡}
and pre(𝑋) =△ {𝑠 | ∃𝑡 ∈ 𝑋, 𝑠 � 𝑡}, for all 𝑋 ∈ ℘(Σ). Given a

partitioning abstraction 𝐴 ∈ Abs(℘(Σ)) [43, 52, 53], whose
abstract elements are unions of blocks of a partition of the

state space Σ, abstract model checking [2, 12, 13] exploits the

existential abstract transition relation �♯ ⊆ 𝐴 ×𝐴 defined as

follows: for any 𝐵, 𝐵′ ∈ 𝐴, 𝐵 �♯ 𝐵′ iff ∃𝑥 ∈ 𝐵.∃𝑦 ∈ 𝐵′ .𝑥 � 𝑦.

The resulting abstract transition systemA = ⟨𝐴,�♯⟩ is then

434

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

model checked to prove the validity of a temporal specifica-

tion. Typically, a counterexample is a finite abstract path 𝜋 =

⟨𝐵1, ..., 𝐵𝑛⟩ such that 𝐵𝑖−1 �♯ 𝐵𝑖 for any 𝑖 ∈ [2, 𝑛] (for sim-

plicity, loop path counterexamples are not treated here). Its

underlying concrete paths are defined as follows: paths(𝜋) =△
{⟨𝑠1, ..., 𝑠𝑛⟩ ∈ Σ𝑛 | ∀𝑖 ∈ [1, 𝑛] . 𝑠𝑖 ∈ 𝐵𝑖 , ∀𝑖 ∈ [2, 𝑛] . 𝑠𝑖−1 � 𝑠𝑖 }.
An abstract path 𝜋 is spurious if paths(𝜋) = ∅ and we define

a corresponding sequence sp(𝜋) = ⟨𝑆1, ..., 𝑆𝑛⟩ ∈ ℘(Σ)𝑛 as:

𝑆1 =
△
𝐵1 ≠ ∅; ∀𝑖 ∈ [1, 𝑛 − 1] . 𝑆𝑖+1 =△ post(𝑆𝑖) ∩ 𝐵𝑖+1. (2)

Hence, 𝑆𝑖 is the set of states in a block 𝐵𝑖 that are reachable

(in 𝑖 −1 concrete steps) from a state in 𝐵1. As observed in [11,

Lemma 4.10], it turns out that 𝜋 is spurious iff there exists a

least𝑘 ∈ [1, 𝑛−1] such that 𝑆𝑘+1 = ∅. Fig. 2 depicts a spurious
counterexample 𝜋 = ⟨𝐵1, ..., 𝐵𝑛⟩, where for all 𝑖 ∈ [1, 𝑘], the
nodes in 𝑆𝑖 are black-filled. The partitioning abstract domain

𝐴 is refined by splitting the block 𝐵𝑘 , and, in turn, the model

checker is run on this refined abstract transition system.

The refinement of the block 𝐵𝑘 relies on the three following

subsets of states: dead-end states 𝐵dead
𝑘

=
△
𝑆𝑘 ≠ ∅ (black-filled

circles in Fig. 2, those reachable by some underlying concrete

trace, but with no arcs to nodes in 𝐵𝑘+1), must necessarily

be separated from bad states 𝐵bad
𝑘

=
△
𝐵𝑘 ∩ pre(𝐵𝑘+1) ≠ ∅

(crossed circles in Fig. 2, those with some arcs to nodes in

𝐵𝑘+1); all the other states 𝐵irr
𝑘

=
△
𝐵𝑘 ∖ (𝐵dead𝑘

∪ 𝐵bad
𝑘
) are

called irrelevant. However, when states arememory stores for

program variables, the problem of finding the coarsest (and

therefore cheapest) refinement of 𝐴 that separates dead-end

and bad states turns out to be NP-hard [11, Theorem 4.17].

This entails that, in practice, some refinement heuristics

must necessarily be used. According to the basic heuristics of

CEGAR [11, Section 4],𝐵𝑘 is split into𝐵
dead

𝑘
and𝐵bad

𝑘
∪𝐵irr

𝑘
. By

looking at Fig. 2, notice that other spurious counterexamples

may still arise after the refinement (due to the arcs from

nodes in 𝐵𝑘−1 to those in 𝐵bad
𝑘
∪ 𝐵irr

𝑘
).

CEGAR by Forward Repair. Given a finite abstract path

𝜋 = ⟨𝐵1, ..., 𝐵𝑛⟩ on a partitioning abstraction 𝐴, let

post𝜋𝑘
(𝑋) =△ post(𝑋) ∩ 𝐵𝑘+1 (3)

for any 𝑘 ∈ [1, 𝑛 − 1] and 𝑋 ∈ ℘(Σ). Obviously, for any 𝑘 ,
we have that 𝑆𝑘+1 = post𝜋𝑘

(𝑆𝑘).
Lemma 6.1. 𝜋 is not spurious iff for all 𝑘 ∈ [1, 𝑛 − 1],

𝐴(post𝜋𝑘
(𝑆𝑘)) = 𝐴(post𝜋𝑘

(𝐴(𝑆𝑘))) . (4)

Notably, (4) expresses the local completeness of the ab-

straction𝐴 for post𝜋𝑘
on the concrete set of states 𝑆𝑘 ∈ ℘(Σ).

For applying the forward repair of Section 5 to abstract model

checking we consider 𝑐 = 𝐵1, 𝑓𝑖 = post𝜋𝑖
and 𝑎 = ∅. To dis-

charge the counterexample 𝜋 , we have to guarantee that

there is no underlying path from states in 𝑐 = 𝐵1 to states

in 𝐵𝑛 , i.e., 𝜋 is spurious iff 𝑓𝑛 ...𝑓1 (𝐵1) ⊆ ∅. For a spurious

B1 Bh Bn

Figure 3. Backward repair from block 𝐵𝑛 to block 𝐵ℎ .

counterexample we then have a least 𝑘 ∈ [1, 𝑛− 1] such that:

∅ = 𝐴(∅) = 𝐴(post𝜋𝑘
(𝑆𝑘)) ≠

𝐴(post𝜋𝑘
(𝐴(𝑆𝑘)) = 𝐴(post𝜋𝑘

(𝐵𝑘)) = 𝐵𝑘+1.
To repair this local incompleteness of𝐴, we need to compute

for 𝑆𝑘 a more precise abstraction than the current block 𝐵𝑘 .

Recall that 𝑆𝑘 = 𝐵dead
𝑘

and that any state in 𝐵bad
𝑘

cannot be

part of the abstraction of 𝑆𝑘 (otherwise local incompleteness

persists). Thus, our forward repair strategy takes the pointed

shell refinement 𝐴 ⊞ {𝐵dead
𝑘
∪ 𝐵irr

𝑘
} = 𝐴 ⊞ {𝐵dead

𝑘
∪ 𝐵irr

𝑘
, 𝐵bad
𝑘
}.

Again, other spurious counterexamples may still arise (see

the arcs in Fig. 2 from 𝐵𝑘−1 to crossed nodes in 𝐵bad
𝑘

).

Theorem 6.2. Let 𝑘 ∈ [1, 𝑛 − 1] such that 𝑆𝑘 ≠ ∅ and 𝑆𝑘+1 =
∅. Then, 𝐴 ⊞ {𝐵dead

𝑘
∪ 𝐵irr

𝑘
} is the pointed shell of 𝐴 on 𝑆𝑘 .

CEGAR by Backward Repair. In backward repair, the el-

ements 𝑉𝑘 = 𝐵𝑘 ∩wlp(post𝜋𝑘
,𝑉𝑘+1) (with 𝑉𝑛 = ∅) can just

be defined as𝑉𝑘 =
△
𝐵𝑘 ∖𝑇𝑘 , where𝑇𝑘 ⊆ 𝐵𝑘 is the set of states

with a path of length 𝑛 − 𝑘 to some state in 𝐵𝑛 . Formally:

𝑇𝑛 =
△
𝐵𝑛 ≠ ∅; ∀𝑖 ∈ [1, 𝑛 − 1] . 𝑇𝑖 =△ pre(𝑇𝑖+1) ∩ 𝐵𝑖 .

Lemma 6.3. 𝜋 is spurious iff there exists 𝐴′ ⊑ 𝐴 such that
𝐴′ (𝑉1) = 𝐵1 and for all 𝑘 ∈ [1, 𝑛 − 1],

𝐴′ (post𝜋𝑘
(𝑉𝑘)) = 𝐴′ (post𝜋𝑘

(𝐴′ (𝑉𝑘))). (5)

Since𝑉𝑘 is the largest subset of 𝐵𝑘 such that post𝜋𝑘
(𝑉𝑘) ⊆

𝑉𝑘+1, when𝑉𝑘+1 is expressible (as𝑉𝑛 = ∅), condition (5) boils

down to 𝐴′ (𝑉𝑘) = 𝑉𝑘 , so that 𝐴 ⊞ {𝑉𝑘 } is the pointed shell.

Theorem 6.4. Let 𝑘 ∈ [1, 𝑛 − 1] be the largest index s.t. (5)
does not hold. Then, 𝐴′ ⊞ {𝑉𝑘 } is the pointed shell of 𝐴′ on 𝑉𝑘 .

Fig. 3, where nodes in𝑇𝑖 are black-filled, shows how back-

ward repair iterates on the example of Fig. 2: notably, no
residual spurious abstract path abides in the abstract model.

7 Program Verification Repair
Notation. In the following, we overload the abstract se-

mantic function JrK♯
𝐴

: 𝐴 → 𝐴 to also denote the function

JrK♯
𝐴
◦𝐴 : 𝐶 → 𝐴 applicable to concrete input properties.

Moreover, we write a simpler C𝐴
𝑅
(r) instead of C𝐴

𝑅
(JrK) for

local completeness proof obligations. Note that when 𝐴 is

repaired to 𝐴𝑢 then the new transfer functions for 𝐴𝑢 can

be computed in terms of those for 𝐴 by letting JeK♯
𝐴𝑢
𝑎 =

𝑢 ∧ JeK♯
𝐴
𝑎 if JeK𝑎 ≤ 𝑢 and JeK♯

𝐴𝑢
𝑎 = JeK♯

𝐴
𝑎 otherwise.

The verification problem for a program r ∈ Reg on input

𝑃 ∈ 𝐶 and correctness specification Spec ∈ 𝐶 , consists in

435

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

checking whether JrK𝑃 ≤ Spec holds. Abstract interpretation
exploits over-approximations to interpret r on a (tractable)

abstract domain 𝐴. By soundness of JrK♯
𝐴
, if JrK♯

𝐴
𝑃 ≤ Spec

holds then JrK𝑃 ≤ Spec follows, but the reverse implication

is not necessarily true. Nevertheless, if the abstraction 𝐴 is

locally complete for JrK on 𝑃 and Spec is expressible in 𝐴

then JrK𝑃 ≤ Spec implies JrK♯
𝐴
𝑃 ≤ Spec. In this section we

apply AIR to iteratively repair an initial, possibly incomplete,

abstract domain 𝐴 to get a refined domain 𝐴𝑁 such that

JrK𝑃 ≤ Spec ⇔ JrK♯
𝐴𝑁
𝑃 ≤ Spec (6)

To see the analogy with abstract model checking, given

a CEGAR abstract counterexample 𝜋 = ⟨𝐵1, ..., 𝐵𝑛⟩, assume

that we define a regular command r𝜋 =
△ e1; e2; ...; e𝑛 such

that the semantics Je𝑘K of each basic expression is exactly

the function post𝜋𝑘
defined in (3). Then, if we take the input

property 𝑃 =
△
𝐵1 and a trivial specification Spec =

△ ⊥𝐶 , it turns
out that Jr𝜋 K𝑃 ≤ Spec holds iff 𝜋 is spurious. The correspon-

dence with the general scenario presented in Section 5 is

recovered by taking 𝑐 = 𝑃 , 𝑎 = Spec and 𝑓𝑘 = post𝜋𝑘
= Je𝑘K.

7.1 Program Verification by Forward Repair
The forward repair strategy is described by the pseudocode

in Algorithm 1. Here, we do not commit to a specific method-

ology to detect local incompleteness, because the approach

is independent of the way in which such completeness coun-

terexamples are found. Thus, we merely assume that an

oracle function find𝐴 is available for the abstraction𝐴, which

takes as input a refinement 𝐴𝑁 = 𝐴 ⊞ 𝑁 , simply passed as

𝑁 , a current set of stores 𝑃 and a command r and, either
returns an under-approximation 𝑄 satisfying 𝑄 ≤ JrK𝑃 and

𝐴𝑁 (𝑄) = 𝐴𝑁 (JrK𝑃) — thus meaning that 𝐴𝑁 is locally com-

plete for JrK on 𝑃 — or returns a pair ⟨𝑅, e⟩ for some set of

stores 𝑅 and basic command e occurring in r such that a local

completeness proof obligation C𝐴𝑁

𝑅
(e) is not met.

The procedure fRepair calls the oracle find𝐴, and if this

returns a pair ⟨𝑅, e⟩ for a failed proof obligation C𝐴
𝑅
(e), then

the abstraction 𝐴 is repaired by taking the pointed shell

returned by refine𝐴 (𝑁, 𝑅, e). More precisely, refine𝐴 (𝑁, 𝑅, e)
takes as input the current domain refinement 𝐴𝑁 = 𝐴 ⊞ 𝑁 ,

the current set of stores 𝑅 and a basic expression e, and
outputs a finite set 𝑁 ′ ⊇ 𝑁 such that C

𝐴𝑁 ′
𝑅
(e) holds. This

oracle function find𝐴 is iteratively called until an under-

approximation𝑄 is eventually output by find𝐴. Summing up,

fRepair𝐴 (𝑁, 𝑃, r) takes as input a refinement 𝐴𝑁 = 𝐴 ⊞ 𝑁 , a

command r and a concrete input 𝑃 , and returns a pair ⟨𝑁 ′, 𝑄⟩
such that 𝑁 ′ ⊇ 𝑁 , 𝑄 ≤ JrK𝑃 , and 𝐴𝑁 ′ (𝑄) = 𝐴𝑁 ′ (JrK𝑃).
Theorem 7.1 (fRepair is Sound). For all 𝐴 ∈ Abs(𝐶), finite
𝑁 ⊆ 𝐶 , 𝑃 ∈ 𝐶 , and r ∈ Reg, if fRepair𝐴 (𝑁, 𝑃, r) = ⟨𝑄, 𝑁 ′⟩,
then 𝑁 ′ ⊇ 𝑁 , C𝐴𝑁 ′

𝑃
(r) and𝑄 ≤ JrK𝑃 ≤ 𝐴𝑁 ′ (𝑄) = 𝐴𝑁 ′ (JrK𝑃).

Example 7.2. Consider the regular command for AbsVal:

rAbs (𝑥) =△ ((𝑥 ≥ 0)?; skip) ⊕ ((𝑥 < 0)?;𝑥 := −𝑥)

Algorithm 1: Forward repair procedure fRepair𝐴
1 Function fRepair𝐴 (𝑁, 𝑃, r)
2 found := false;
3 do
4 out := find𝐴 (𝑁, 𝑃, r) ;
5 switch out do
6 case𝑄 do found := true; // underapprox.

7 case ⟨𝑅, e⟩ do 𝑁 := refine𝐴 (𝑁,𝑅, e) ; // incompl.

8 while (¬found) ;
9 return ⟨𝑁, out⟩;

As discussed in Section 1, the analysis on Int of rAbs on input

𝐼 =
△ {𝑥 | 𝑥 is odd} and Spec =△ [1, +∞] raises an alarm for the

allowed output 𝑥 = 0 ⊈ Spec. To recognize whether this is a

true- or false-alarm, we apply the forward repair Algorithm 1,

where the oracle findInt (∅, 𝐼 , rAbs) returns, as expected, the
proof obligation CInt

𝐼
((𝑥 ≥ 0)?). Therefore, at line 7 the func-

tion refineInt (∅, 𝐼 , (𝑥 ≥ 0)?) is called. By Theorem 4.11, this

refinement adds the new concrete element:

(Int(𝐼 ∩ (𝑥 ≥ 0)) ∩ (𝑥 ≥ 0))∪(Int(𝐼 ∩ (𝑥 < 0)) ∩ (𝑥 < 0))
= [1, +∞] ∪ [−∞,−1] = Z≠0,

and consequently, by meet closure, all the intervals with a

hole in 0. In the next iteration, findInt ({Z≠0}, 𝐼 , rAbs) is called
and this returns 𝑄 = {𝑥 ∈ Z | 𝑥 > 0, 𝑥 is odd}. By Theo-

rem 7.1, we know that JrK𝑃 ≤ Int{Z≠0 } (𝑄) = [1, +∞] holds,
so that we infer that 𝑥 = 0 was a false-alarm. □

Whenever the abstract domain is refined, at the next itera-

tion the procedure find𝐴 performs a new full analysis in the

refined domain. Backward repair will overcome this issue.

7.2 Program Verification by Backward Repair
The key idea of backward repair is to exploit as much as possi-

ble the abstract reasoning, disregarding the concrete input 𝑃

and the actual elements traversed by a concrete computation.

To achieve this, the target equivalence (6) is replaced by the

following stronger condition (7), guaranteeing that the re-

finement 𝐴𝑁 is precise enough to decide the (in)correctness

of r not only for input 𝑃 but also for any 𝑃 ′ ≤ 𝐴(𝑃):
∀𝑃 ′ ≤ 𝐴(𝑃) ⇒

(
JrK♯

𝐴𝑁
𝑃 ′ ≤ Spec ⇔ JrK𝑃 ′ ≤ Spec

)
(7)

This condition (7) admits an equivalent formulation in terms

of weakest liberal precondition (see Theorem 7.4).

Definition 7.3 (Valid Input). Given r ∈ Reg, an input set

𝑃 ∈ 𝐶 , and Spec ∈ 𝐶 , we let:
V⟨𝑃, r, Spec⟩ =△ ∨𝐶 {𝑃 ′ ∈ 𝐶 | 𝑃 ′ ≤ 𝑃, JrK𝑃 ′ ≤ Spec}

denote the greatest valid input set. □

It turns out that V⟨𝑃, r, Spec⟩ = 𝑃 ∧ wlp(JrK, Spec). As an
example, for the basic expressions in Exp we have that:

V⟨𝑃, skip, 𝑆⟩ =△ 𝑃 ∩ 𝑆, V⟨𝑃, b?, 𝑆⟩ =△ 𝑃 ∩ (𝑆 ∪ ¬b),
V⟨𝑃, 𝑥 := a, 𝑆⟩ =△ {𝜎 ∈ 𝑃 | 𝜎 [𝑥 ↦→ {|a|} 𝜎] ∈ 𝑆}.

436

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Algorithm 2: Backward repair procedure bRepair𝐴.

1 Function bRepair𝐴 (𝑁, 𝑃, r, 𝑆)
2 if (JrK♯

𝐴⊞𝑁 𝑃 ≤ 𝑆) then return ⟨𝑃, 𝑁 ⟩;
3 switch r do
4 case e do // basic expression
5 𝑉 := V⟨𝑃, e, 𝑆 ⟩; 𝑄 := 𝑆 ∧ JeK♯

𝐴⊞𝑁 𝑃 ;

6 return ⟨𝑉 , 𝑁 ∪ {𝑉 ,𝑄 }⟩;
7 case r0; r1 do // sequential
8 ⟨𝑉1, 𝑁1 ⟩ := bRepair𝐴 (𝑁, Jr0K

♯

𝐴⊞𝑁 𝑃, r1, 𝑆) ;
9 ⟨𝑉0, 𝑁0 ⟩ := bRepair𝐴 (𝑁, 𝑃, r0,𝑉1) ;

10 return ⟨𝑉0, 𝑁0 ∪ 𝑁1 ⟩;
11 case r0 ⊕ r1 do // choice
12 ⟨𝑉0, 𝑁0 ⟩ := bRepair𝐴 (𝑁, 𝑃, r0, 𝑆) ;
13 ⟨𝑉1, 𝑁1 ⟩ := bRepair𝐴 (𝑁, 𝑃, r1, 𝑆) ;
14 𝑄 := 𝑆 ∧ JrK♯

𝐴⊞𝑁 𝑃 ;

15 return ⟨𝑉0 ∧𝑉1, 𝑁0 ∪ 𝑁1 ∪ {𝑄 }⟩;
16 case r∗

0
do // Kleene star

17 𝑅 := Jr0K
♯

𝐴⊞𝑁 𝑃 ;

18 if (𝑅 ≤ 𝑃) then return inv𝐴 (𝑁, 𝑃, r0, 𝑆) ;
19 else // unroll
20 ⟨𝑉1, 𝑁1 ⟩ := bRepair𝐴 (𝑁, 𝑃 ∨𝐴⊞𝑁 𝑅, r∗

0
, 𝑆) ;

21 return ⟨𝑃 ∧𝑉1, 𝑁1 ⟩

22 Function inv𝐴 (𝑁, 𝑃, r,𝑉1) // loop invariants

23 do
24 𝑉0 := 𝑃 ∧𝑉1; 𝑁0 := 𝑁 ∪ {𝑉0};
25 ⟨𝑉1, 𝑁1 ⟩ := bRepair𝐴 (𝑁0,𝑉0, r,𝑉0) ;
26 while (𝑉1 ≠ 𝑉0) ;
27 return ⟨𝑉1, 𝑁1 ⟩;

Theorem 7.4. Let r ∈ Reg, 𝐴 ∈ Abs(𝐶), 𝑃, Spec ∈ 𝐶 , and
𝐴𝑁 =

△
𝐴 ⊞ 𝑁 . Then, condition (7) holds if and only if

JrK♯
𝐴𝑁

V⟨𝐴(𝑃), r, Spec⟩ ≤ Spec. (8)

Checking this latter condition (8) requires computing the

set V⟨𝐴(𝑃), r, Spec⟩, which can be as expensive as computing

JrK𝑃 . Thus, we provide a necessary condition for (8) that can

help to prove the validity of Specwithout necessarily comput-

ing V⟨𝐴(𝑃), r, Spec⟩. In the following, the hat-notation 𝑃 is

used for abstract elements ranging in the abstract domain 𝐴.

Lemma 7.5. Let r ∈ Reg, 𝐴 ∈ Abs(𝐶), 𝑃 ∈ 𝐴, Spec ∈ 𝐶 , and
let 𝐴𝑁 =

△
𝐴 ⊞𝑁 be an abstraction refinement of 𝐴. If (8) holds

(for the case 𝐴(𝑃) = 𝑃) then V⟨𝑃, r, Spec⟩ is expressible in 𝐴𝑁 .
If we presume that JrK𝑃 ≤ Spec holds, then Lemma 7.5

suggests to consider an initial abstract domain 𝐴 where 𝑃 is

already expressible. In fact, when 𝑃 = 𝑃 = 𝐴(𝑃) and JrK𝑃 ≤
Spec holds, it turns out that V⟨𝑃, r, Spec⟩ = V⟨𝑃, r, Spec⟩ = 𝑃 ,
so that the necessary condition of Lemma 7.5 is already met

by 𝐴 and, therefore, by any of its refinements 𝐴𝑁 .

The backward repair strategy bRepair𝐴 is defined by the

pseudocode in Algorithm 2. It exploits the auxiliary function

inv𝐴 to deal with loop invariants of r∗. This function inv𝐴
has in input a refinement 𝐴 ⊞ 𝑁 ⊑ 𝐴, an abstract invariant

𝑃 ∈ 𝐴 for r∗, a command r and a concrete specification Spec
and finds the greatest concrete element 𝑉 ≤ 𝑃 such that r∗

will not yield alarms when executed on 𝑉 . In fact, similarly

to bRepair𝐴, inv𝐴 returns a pair ⟨𝑉 , 𝑁 ′⟩ that comprises the

greatest valid input 𝑉 = V⟨𝑃, r∗, Spec⟩ and some necessary

points 𝑁 ′ such that 𝑁 ′ ⊇ 𝑁 and Jr∗K♯
𝐴⊞𝑁 ′𝑉 ≤ 𝑉 ≤ Spec.

Theorem 7.6 (bRepair𝐴 and inv𝐴 are Sound). For any 𝐴 ∈
Abs(𝐶), r ∈ Reg, 𝑃 ∈ 𝐴, 𝑆,𝑉 ∈ 𝐶 , and 𝑁, 𝑁 ′ ⊆ 𝐶 :
(1) If bRepair𝐴 (𝑁, 𝑃, r, 𝑆) = ⟨𝑉 , 𝑁 ′⟩ then:

(a) 𝑉 ∈ 𝐴 ⊞ 𝑁 ′; (b) JrK♯
𝐴⊞𝑁 ′𝑉 ≤ 𝑆 ; (c) 𝑉 = V⟨𝑃, r, 𝑆⟩.

(2) If JrK♯
𝐴⊞𝑁𝑃 ≤ 𝑃 and inv𝐴 (𝑁, 𝑃, r, 𝑆) = ⟨𝑉 , 𝑁 ′⟩ then:

(a) 𝑉 ∈ 𝐴 ⊞ 𝑁 ′; (b) JrK♯
𝐴⊞𝑁 ′𝑉 ≤ 𝑉 ; (c) 𝑉 = V⟨𝑃, r∗, 𝑆⟩.

Corollary 7.7 (Program (In)Correctness). Let𝐴 ∈ Abs(𝐶),
r ∈ Reg, 𝑃 ∈ 𝐴, and Spec ∈ 𝐶 . For any 𝑉 ∈ 𝐶 , 𝑁 ′ ⊆ 𝐶 such
that bRepair𝐴 (∅, 𝑃, r, Spec) = ⟨𝑉 , 𝑁 ′⟩, we have that:

∀𝑃 ′ ≤ 𝑃 . JrK𝑃 ′ ≤ Spec ⇔ JrK♯
𝐴⊞𝑁 ′𝑃

′ ≤ Spec ⇔ 𝑃 ′ ≤ 𝑉 .
As a special case of Corollary 7.7, taking 𝑃 = 𝐴(𝑃) it turns

out that JrK𝑃 ≤ Spec if and only if 𝑃 ≤ 𝑉 .
The following examples, whose programs are taken from

well-known literature, show how backward repair actually

works. All of them have been automatically verified with a

proof-of-concept Haskell implementation that exploits finite
concrete domains and explicit enumerative representations

of new abstract elements. The symbolic representations of

the new elements added by pointed shells have been obtained

by inspecting the output of this tool. Let us remark that the

main goal of this work is to set the general foundations of

AIR, independently of any specific class of abstract domains

and of the symbolic representation of their elements. The

application of AIR to symbolic frameworks for representing

abstract elements — notably logical formulas whose SMT

problem is decidable — is left as a stimulating future work.

Example 7.8 (Intervals). Let us consider the analysis of the
following Imp program, adapted from [38, 57]:

c =△ while (𝑥 > 0) do {𝑥 := 𝑥 − 1; 𝑦 := 𝑦 − 1}

with input 𝑃 =
△

0 < 𝑥 ≤ 100 and Spec =△ 𝑦 = 0. The analysis

of c in the domain Int of intervals returns 𝑥 = 0, and the

same happens for octagons Oct, so, in both cases, obviously,

we cannot infer the validity (and certainly not the invalidity)

of Spec. We therefore apply backward repair to determine

the valid inputs for Spec. The Imp program c is encoded by

the following regular command:

r =△
(
(𝑥 > 0)?; 𝑥 := 𝑥 − 1; 𝑦 := 𝑦 − 1︸ ︷︷ ︸

r1

)∗
; (𝑥 ≤ 0)?

The call to bRepairInt (∅, 𝑃, r, Spec) selects the case for se-

quential composition and, letting 𝑅 =
△ Jr∗

1
K♯Int𝑃 = 𝑥 ∈ [0, 100],

invokes bRepairInt (∅, 𝑅, (𝑥 ≤ 0)?, Spec), which returns the

pair ⟨𝑄, {𝑄}⟩ with 𝑄 =
△
𝑥 ∈ [0, 100] ∧ (𝑥 = 0 ⇒ 𝑦 = 0).

In turn, bRepairInt (∅, 𝑃, r∗1, 𝑄) is then called. After one re-

cursive call to unroll the loop, we call invInt (∅, 𝑅, r1, 𝑄). It-
eratively, the largest invariant under 𝑅 ∧ 𝑄 = 𝑄 is found,

437

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is 𝑃 =
△
𝑥 ∈ [0, 100] ∧ 𝑦 = 𝑥 . Note that the addition

of 𝑃 to Int is not enough, because intermediate approx-

imations for the evaluation of basic commands in r1 are

also needed by compositionality. Hence, the new elements

𝑅1 =
△
𝑥 ∈ [1, 100] ∧ 𝑦 = 𝑥 , 𝑅2 =

△
𝑥 ∈ [0, 99] ∧ 𝑦 = 𝑥 + 1,

and 𝑅3 =
△
𝑥 ∈ [0, 99] ∧ 𝑦 = 𝑥 are also added. In the end,

the call to invInt returns ⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩, so that the origi-

nal call to bRepairInt returns ⟨𝑅1, {𝑃, 𝑅1, 𝑅2, 𝑅3, 𝑄}⟩ because
𝑅1 = 𝑃 ∧ 𝑃 . By Corollary 7.7, for any 𝑃 ′ ≤ 𝑃 , we have that
JrK𝑃 ′ ≤ Spec iff 𝑃 ′ ≤ 𝑅1. Remarkably, backward repair is able

to add the minimal relational information in a nonrelational

domain as needed to prove Spec. Since all the new elements

are octagons, incidentally, the analysis on Oct with input 𝑅1

(instead of 𝑃) is also able to prove that Spec holds. □

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian

predicate abstraction domain 𝐴 induced by 𝑝 =
△ (𝑧 = 0) and

𝑞 =
△ (𝑥 = 𝑦), as depicted below:

c =△ do { 𝑧 := 0; 𝑥 := 𝑦;

if (𝑤 ≠ 0) then {
𝑥 := 𝑥 + 1; 𝑧 := 1

}
} while (𝑥 ≠ 𝑦)

⊤

𝑞 𝑝 𝑝 𝑞

𝑝∧𝑞 𝑝∧𝑞 𝑝∧𝑞 𝑝∧𝑞

⊥
We want to prove that JcK⊤ ≤ 𝑝 , whereas it turns out that
JcK♯

𝐴
⊤ = 𝑞. The domain refinement used in [4, 5] is the

reduced disjunctive completion of 𝐴, which is isomorphic to

the Boolean abstraction 𝐵 =
△ ⟨℘({𝑝∧𝑞, 𝑝∧𝑞, 𝑝∧𝑞, 𝑝∧𝑞}), ⊆⟩.

The analysis with 𝐵 leads exactly to the same analysis with

𝐴1 =
△
𝐴 ⊞ {𝑝 ↔ 𝑞}, namely JcK♯

𝐴1

⊤ = 𝑝 ∧ 𝑞.
By invoking bRepair𝐴 (∅,⊤, c, 𝑝) we get as a result the pair
⟨⊤, {𝑞 → 𝑝}⟩. In fact, letting 𝐴2 =

△
𝐴 ⊞ {𝑞 → 𝑝} we get

JcK♯
𝐴2

⊤ = 𝑝 ∧ 𝑞 = 𝐴2 (𝑝 ∧ 𝑞) = 𝐴2 (JcK⊤). Let us remark that

the point 𝑞 → 𝑝 is indeed more abstract than 𝑝 ↔ 𝑞. □

Widening. It is well known that the convergence of fixpoint
computations in non-ACC domains can be forced or accel-

erated by means of widening operators [16, 17]. A widening

over-approximates an abstract join 𝑥 ∨𝐴𝑦 by a more abstract

element 𝑥∇𝐴𝑦. We show that backward repair is compatible

with widening operators, and that, in this case, the repaired

abstract interpreter is guaranteed to terminate.

Definition 7.10 (Widening Operator). Given 𝐴 ∈ Abs(𝐶),
a widening operator ∇𝐴 : 𝐴 × 𝐴 → 𝐴 is a function such

that: (i) for all 𝑥,𝑦 ∈ 𝐴, 𝑥,𝑦 ≤𝐴 𝑥 ∇𝐴 𝑦; and (ii) for every

sequence {𝑥𝑖 }𝑖∈N ⊆ 𝐴, the chain {𝑦𝑖 }𝑖∈N inductively defined

by 𝑦0 =
△
𝑥0 and 𝑦𝑖+1 =

△
𝑦𝑖 ∇𝐴 𝑥𝑖+1 finitely converges (i.e.,

∃𝑘 ∈ N. ∀𝑗 ∈ N. 𝑦 𝑗+𝑘 = 𝑦𝑘). □

The abstract semantics with widening of the Kleene star is

updated to (see, e.g., [45, Section 3.5]):

Jr∗K♯
𝐴
𝑆 =
△

lfp

(
𝜆𝑋 ∈ 𝐴. 𝑋 ∇𝐴 (𝑆 ∨𝐴 JrK♯

𝐴
𝑋)

)
.

⟨⊤, {𝑃, 𝑅1, 𝑅2, 𝑅3,𝑉 }⟩ ← bRepair(∅,⊤, r, Spec)
⟨𝑉 , {𝑉 }⟩ ← bRepair(· · · (𝑖 > 5)?, Spec)
⟨⊤, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← bRepair(· · · , r2,𝑉)
⟨𝑃1, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← bRepair(· · · , r∗

1
,𝑉)

· · ·
⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← bRepair(· · · , r∗

1
,𝑉)

⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← inv(∅, 𝑃, r1,𝑉)
⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← bRepair({𝑉 },𝑉 , r1,𝑉)
· · ·
⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩ ← bRepair({𝑃 }, 𝑃, r1, 𝑃)
⟨𝑅3, {𝑃, 𝑅3}⟩ ← bRepair(· · · , 𝑖 := 𝑖 + 1, 𝑃)
⟨𝑅1, {𝑃, 𝑅1, 𝑅2}⟩ ← bRepair(· · · , (𝑖 ≤ 5)?; 𝑗 := 𝑗 + 𝑖, 𝑅3)
⟨𝑅2, {𝑃, 𝑅2}⟩ ← bRepair(· · · , 𝑗 := 𝑗 + 𝑖, 𝑅3)
⟨𝑅1, {𝑃, 𝑅1}⟩ ← bRepair(· · · , (𝑖 ≤ 5)?, 𝑅2)

⟨⊤, ∅⟩ ← bRepair(· · · , r3, 𝑃1)

Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) of∇𝐴, the iteration sequence for
the least fixpoint of 𝜆𝑋 . 𝑋 ∇𝐴 (𝑆 ∨𝐴 JrK♯

𝐴
𝑋) always finitely

converges. We settle the problem of how a suitable widening

operator for 𝐴 ⊞ 𝑁 can be derived from a widening for 𝐴.

Definition 7.11 (Pointed Widening). Given a refinement

𝐴𝑁 =
△
𝐴 ⊞ 𝑁 of 𝐴 ∈ Abs(𝐶) and a widening ∇𝐴 on 𝐴, the

pointed widening ∇𝑁
𝐴

: 𝐴𝑁 ×𝐴𝑁 → 𝐴𝑁 is defined as follows:

𝑥 ∇𝑁
𝐴
𝑦 =
△ ∧𝐴𝑁

{𝑧 ∈ (𝑁 ∪ {𝐴(𝑥) ∇𝐴𝐴(𝑦)}) | 𝑥,𝑦 ≤𝐴𝑁
𝑧}. □

Theorem 7.12 (Soundness of Pointed Widening). If 𝑁 ⊆
𝐶 is finite, then ∇𝑁

𝐴
is a widening operator for 𝐴 ⊞ 𝑁 .

In Algorithm 2, line 20, we simply replace 𝑃 ∨𝐴⊞𝑁 𝑅 with

𝑃 ∇𝑁
𝐴
(𝑃 ∨𝐴⊞𝑁 𝑅) in the clause dealing with the unroll of

Kleene star. This change has no consequence in the proof

of Theorem 7.6, so the main results are seamlessly extended

to widening with the additional guarantee that whenever

bRepair𝐴 (𝑁, 𝑃, r, 𝑆) returns ⟨𝑉 , 𝑁 ′⟩, then termination of the

abstract interpreter for 𝐴𝑁 ′ is guaranteed by Theorem 7.12.

Example 7.13 (Widening). Let us revisit the illustrative

example in Section 2, where Spec =△ 𝑗 ≤ 15 and

r =△

r2︷ ︸︸ ︷
𝑖 := 1; 𝑗 := 0︸ ︷︷ ︸

r3

; ((𝑖 ≤ 5)?; 𝑗 := 𝑗 + 𝑖; 𝑖 := 𝑖 + 1︸ ︷︷ ︸
r1

)∗; (𝑖 > 5)︸ ︷︷ ︸
b

?.

The call to bRepairInt (∅,⊤, r, Spec) recursively computes

bRepairInt (∅, 𝑃, b?, Spec), where 𝑃 = Jr2K
♯

Int⊤ = 𝑖 ∈ [1, 6] ∧
𝑗 ∈ [0,∞] (using the widening on intervals for 𝑗), which re-

turns ⟨𝑉 , {𝑉 }⟩: the element𝑉 =
△ (𝑖 ∈ [1, 5]∧ 𝑗 ∈ [0,∞])∨(𝑖 =

6 ∧ 𝑗 ∈ [0, 15]) is introduced to repair b?. This leads to

call bRepairInt (∅,⊤, r2,𝑉), and, then, bRepairInt (∅, 𝑃1, r∗1,𝑉),
with 𝑃1 =

△ Jr3K
♯

Int⊤ = (𝑖 = 1 ∧ 𝑗 = 0). After unrolling r∗
1
to

reach the abstract invariant 𝑃 , the call to invInt (∅, 𝑃, r1,𝑉)
computes the largest invariant under 𝑃∧𝑉 for r∗

1
, which is 𝑃 =

△

𝑖 ∈ [1, 6]∧ 𝑗 ∈ [0, 𝑖 (𝑖−1)/2]. Then, bRepairInt ({𝑃}, 𝑃, r1, 𝑃) is
invoked, which adds the new abstract elements 𝑅1, 𝑅2 and 𝑅3

(cf. Section 2) to repair the local completeness of the instruc-

tions in r1. Thus, invInt (∅, 𝑃, r1,𝑉) returns ⟨𝑃, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩.
The point 𝑃 is then intersected with the approximations

438

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

computed by the unrolling of r∗
1
until bRepairInt (∅, 𝑃1, r∗1,𝑉)

outputs ⟨𝑃1, {𝑃, 𝑅1, 𝑅2, 𝑅3}⟩, so that bRepairInt (∅,⊤, r3, 𝑃1) re-
turns ⟨⊤, ∅⟩, because Jr3K

♯

Int⊤ = 𝑃1, and the original call to

bRepair outputs ⟨⊤, {𝑃, 𝑅1, 𝑅2, 𝑅3,𝑉 }⟩. By Corollary 7.7, for

all 𝑃 ′ ≤ ⊤, JrK𝑃 ′ ≤ Spec holds. The series of recursive calls is
sketched in Fig. 4, omitting most details for readability. □

8 Implementation Challenges
When shaping the application examples of AIR, we devel-

oped a pilot Haskell implementation to gain confidence in

our findings, although it was not conceived to scale up to

practical domains and real programs. This tool works on

finite integer domains, relies on an explicit enumeration of

the abstract elements and supports backward repair.

A prospective implementation of AIR must necessarily

be domain-dependent, namely, it has to rely upon the way

properties of states, i.e., sets in S, are represented. This is
a common feature of any abstraction refinement strategy.

Pointed shells, as well as completeness shells and other do-

main refinements, require the enhancement of an input ab-

stract domain with more concrete objects, in our case the

ones repairing the abstraction, that ineluctably belong to a

more concrete domain of program properties, e.g., the con-

crete domain itself S. For instance, Example 7.8 shows that

sometimes a nonrelational abstract domain as Int must be

enriched with some elements of a more concrete relational

domain like Oct in order to verify certain properties.

Of course, being concrete is a relative notion. Therefore, a
natural way for designing an implementation of AIR is to

build it on top of a “tractable” domain 𝐶 abstracting S, i.e.,
such that S ⊑ 𝐶 . This domain𝐶 can be itself a known abstract

domain which is deemed too concrete for the purposes of

our analysis. In this case, AIR for an abstract domain 𝐴 such

that S ⊑ 𝐶 ⊑ 𝐴 will isolate within 𝐶 , and not within S,
a locally complete refinement of 𝐴 which works for our

program and input. In all cases, it is necessary to figure out a

specification language and symbolic representations for the

concrete properties of interest, i.e., for the elements of 𝐶 . In

CEGAR, for instance, this comes as a consequence of the fact

that in abstract model checking (e.g., in predicate abstraction)

the properties of the state space in 𝐶 are partitions of the

same space. These can be represented by predicates in a

suitable restriction of classical first order logic. Both forward

and backward AIR instead use properties of states that do

not necessarily correspond to partitions, such as intervals,

octagons, and most domains used in abstract interpretation.

We therefore envision that the main implementation chal-

lenge of AIR is defining a specification language L for the

new concrete properties we want to express in such a way

that𝐶 is built as the set of models of formulae inL. For exam-

ple, for domains of SMT logical formulae, Cousot et al. [20]

show how to unify program analysis approaches based on

abstract interpretation and on SMT solvers/theorem provers,

so that they can be combined and adapted to a specific ap-

plication domain. In particular, the logical abstract domains

defined in [20, Section 7] as well as the quantified abstract

domains studied by Gulwani et al. [34, Section 2] can play

the role of specification language L, where in both cases the

domain elements are formulae of a logical theory that will be

computed and added by the locally complete refinements of

AIR. As a further example, abstract domains for polynomial

inequalities, such as those needed in Section 2, have been

studied in [55, 56] relying on algorithms for Gröbner bases.

9 Conclusion
AIR means finding the most abstract domain, called pointed

shell, that removes all the false-alarms along an incomplete

abstract computation. Because this operation depends upon

a specific execution trace, AIR features an inherent dynamic

flavor: we are not interested in refining an abstract domain for
all possible programs and all possible inputs. AIR generalizes

CEGAR to arbitrary abstract domains and transfer functions,

as those typically used in abstract interpretation.

Likewise CEGAR for predicate abstractions of infinite state

systems, termination of forward/backward-repair cannot be

guaranteed in general. Finding sufficient conditions to guar-

antee termination of AIR is an open research avenue. As

future work, we plan to incorporate AIR in the LCL𝐴 logic

defined in [8]: whenever a local completeness proof obliga-

tion emerges, we can repair the abstract interpreter to settle

such an obligation. We also plan to exploit different dynami-

cally selected abstract domains within the same proof and to

combine forward and backward repairs. We know that back-

ward repair, when it terminates, will always offer the most

abstract domain for our analysis. This leaves no choice for

the abstract elements that need to be added in the refinement.

On the contrary, forward repair may deal with non-optimal

refinements. Hence, whenever certain pointed shells are hard

to represent in the specification language L envisioned in

Section 8, it may still be the case that the forward repair can

select a less abstract but admissible representation in L, yet
satisfying local completeness and concluding the proof of

(in)correctness. For example, the use of generalized widen-

ing/narrowing, in the style of [15], is worth investigating.We

envisage that our research on AIR may result in the design

of a very first automatic self-adaptable program verification

tool based on abstract interpretation.

Acknowledgments
We thank Andrea Laretto for the tool development. This

research has been funded by the Italian MIUR, under the
PRIN2017 project no. 201784YSZ5 “AnalysiS of PRogram

Analyses (ASPRA)”, and by a Meta Research gift. The work

of Francesco Ranzato and Roberto Giacobazzi has been par-

tially funded by Facebook Research, under a “Probability and

Programming Research Award”.

439

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Aws Albarghouthi and Kenneth L. McMillan. 2013. Beautiful Inter-

polants. In Proceedings of CAV 2013, 25th International Conference
on Computer Aided Verification (Lecture Notes in Computer Science,
Vol. 8044). Springer, 313–329. https://doi.org/10.1007/978-3-642-39799-
8_22

[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Check-
ing. The MIT Press.

[3] Thomas Ball, Todd D. Millstein, and Sriram K. Rajamani. 2005. Poly-

morphic predicate abstraction. ACM Trans. Program. Lang. Syst. 27, 2
(2005), 314–343. https://doi.org/10.1145/1057387.1057391

[4] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. 2001. Boolean

and Cartesian Abstraction for Model Checking C Programs. In Pro-
ceedings of TACAS 2001, 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (Lecture Notes
in Computer Science, Vol. 2031). Springer, 268–283. https://doi.org/10.
1007/3-540-45319-9_19

[5] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. 2003. Boolean

and Cartesian abstraction for model checking C programs. Int. J. Softw.
Tools Technol. Transf. 5, 1 (2003), 49–58. https://doi.org/10.1007/s10009-
002-0095-0

[6] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent

Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003.

A Static Analyzer for Large Safety-Critical Software. In Proceedings of
PLDI 2003, ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation. Association for Computing Machinery,

New York, NY, USA, 196–207. https://doi.org/10.1145/781131.781153
[7] Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-

Contreras, and Dusko Pavlovic. 2020. Abstract extensionality: on the

properties of incomplete abstract interpretations. Proc. ACM Program.
Lang. 4, POPL (2020), 28:1–28:28. https://doi.org/10.1145/3371096

[8] Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ran-

zato. 2021. A Logic for Locally Complete Abstract Interpretations. In

Proceedings of LICS 2021, 36th Annual ACM/IEEE Symposium on Logic
in Computer Science. IEEE, 1–13. https://doi.org/10.1109/LICS52264.
2021.9470608 Distinguished paper.

[9] EdmundM. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. 2000. Counterexample-guided abstraction refinement. In Pro-
ceedings of CAV 2000, 12th International Conference on Computer Aided
Verification (Lecture Notes in Computer Science, Vol. 1855). Springer-
Verlag, 154–169. https://doi.org/10.1007/10722167_15

[10] EdmundM. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. 2001. Progress on the State Explosion Problem in Model Check-

ing. In Informatics - 10 Years Back. 10 Years Ahead (Lecture Notes in Com-
puter Science, Vol. 2000). Springer, 176–194. https://doi.org/10.1007/3-
540-44577-3_12

[11] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-

mut Veith. 2003. Counterexample-guided abstraction refinement for

symbolic model checking. J. ACM 50, 5 (2003), 752–794. https:
//doi.org/10.1145/876638.876643

[12] Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model

checking and abstraction. ACM Trans. Program. Lang. Syst. 16, 5 (1994),
1512–1542. https://doi.org/10.1145/186025.186051

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model
Checking. The MIT Press.

[14] Patrick Cousot. 2007. Proving the absence of run-time errors in safety-

critical avionics code. In Proceedings of EMSOFT 2007, 7th ACM &
IEEE International conference on Embedded software. ACM, 7–9. https:
//doi.org/10.1145/1289927.1289932

[15] Patrick Cousot. 2015. Abstracting Induction by Extrapolation and

Interpolation. In Verification, Model Checking, and Abstract Interpre-
tation - 16th International Conference, VMCAI 2015, Mumbai, India,
January 12-14, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 8931), Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen

(Eds.). Springer, 19–42. https://doi.org/10.1007/978-3-662-46081-8_2
[16] Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press.

[17] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A

unified lattice model for static analysis of programs by construction

or approximation of fixpoints. In Proceedings of ACM POPL’77. ACM,

238–252. https://doi.org/10.1145/512950.512973
[18] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program

analysis frameworks. In Proceedings of ACM POPL’79. ACM, 269–282.

https://doi.org/10.1145/567752.567778
[19] Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,

Antoine Miné, David Monniaux, and Xavier Rival. 2005. The ASTRÉE

Analyzer. In Proceedings of ESOP 2005, 14th European Symposium on
Programming (Lecture Notes in Computer Science, Vol. 3444). Springer,
21–30. https://doi.org/10.1007/978-3-540-31987-0_3

[20] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 2012. Theo-

ries, solvers and static analysis by abstract interpretation. J. ACM 59,

6 (2012), 31:1–31:56. https://doi.org/10.1145/2395116.2395120
[21] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery

of linear restraints among variables of a program. In Proceedings of
POPL’78, the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM Press, 84–96. https://doi.org/10.1145/
512760.512770

[22] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. 1979. Social

Processes and Proofs of Theorems and Programs. Commun. ACM 22,

5 (1979), 271–280. https://doi.org/10.1145/359104.359106
[23] Edsger W. Dijkstra. 1972. The Humble Programmer. Commun. ACM

15, 10 (1972), 859–866. https://doi.org/10.1145/355604.361591
[24] Edsger W. Dijkstra. 1976. A discipline of programming. Prentice-Hall.
[25] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.

O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM
62, 8 (2019), 62–70. https://doi.org/10.1145/3338112

[26] Gilberto Filé, Roberto Giacobazzi, and Francesco Ranzato. 1996. A

unifying view of abstract domain design. ACM Comput. Surv. 28, 2
(1996), 333–336. https://doi.org/10.1145/234528.234742

[27] Luca Gazzola, DanielaMicucci, and LeonardoMariani. 2019. Automatic

Software Repair: A Survey. IEEE Trans. Software Eng. 45, 1 (2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[28] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015.

Analyzing Program Analyses. In Proceedings of POPL 2015, 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 261–273. https://doi.org/10.1145/2676726.2676987

[29] Roberto Giacobazzi and Elisa Quintarelli. 2001. Incompleteness, coun-

terexamples and refinements in abstract model-checking. In Proceed-
ings of SAS 2001, 8th International Static Analysis Symposium (Lec-
ture Notes in Computer Science, Vol. 2126). Springer, 356–373. https:
//doi.org/10.1007/3-540-47764-0_20

[30] Roberto Giacobazzi and Francesco Ranzato. 2002. States vs. Traces

in Model Checking by Abstract Interpretation. In Proceedings of the
9th International Static Analysis Symposium, SAS 2002 (Lecture Notes
in Computer Science, Vol. 2477). Springer, 461–476. https://doi.org/10.
1007/3-540-45789-5_32

[31] Roberto Giacobazzi and Francesco Ranzato. 2006. Incompleteness

of states w.r.t. traces in model checking. Inf. Comput. 204, 3 (2006),
376–407. https://doi.org/10.1016/j.ic.2006.01.001

[32] Roberto Giacobazzi and Franceso Ranzato. 2022. History of Abstract

Interpretation. IEEE Annals of the History of Computing 44 (2022),

13 pages. https://doi.org/10.1109/MAHC.2021.3133136
[33] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. 2000.

Making Abstract Interpretation Complete. Journal of the ACM 47, 2

(March 2000), 361–416. https://doi.org/10.1145/333979.333989
[34] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. 2008. Lifting

Abstract Interpreters to Quantified Logical Domains. In Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’08). Association for Computing

440

https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1145/1057387.1057391
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/s10009-002-0095-0
https://doi.org/10.1007/s10009-002-0095-0
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/1289927.1289932
https://doi.org/10.1145/1289927.1289932
https://doi.org/10.1007/978-3-662-46081-8_2
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/2395116.2395120
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/3338112
https://doi.org/10.1145/234528.234742
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1007/3-540-47764-0_20
https://doi.org/10.1007/3-540-47764-0_20
https://doi.org/10.1007/3-540-45789-5_32
https://doi.org/10.1007/3-540-45789-5_32
https://doi.org/10.1016/j.ic.2006.01.001
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1145/333979.333989

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Machinery, 235–246. https://doi.org/10.1145/1328438.1328468
[35] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.

McMillan. 2004. Abstractions from proofs. In Proceedings of POPL 2004,
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 232–244. https://doi.org/10.1145/964001.964021

[36] Krystof Hoder, Laura Kovács, and Andrei Voronkov. 2012. Playing

in the grey area of proofs. In Proceedings of POPL 2012, 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, 259–272. https://doi.org/10.1145/2103656.2103689

[37] Ranjit Jhala and Rupak Majumdar. 2009. Software Model Checking.

ACM Comput. Surv. 41, 4, Article 21 (Oct. 2009), 54 pages. https:
//doi.org/10.1145/1592434.1592438

[38] Ranjit Jhala and Kenneth L. McMillan. 2006. A Practical and Complete

Approach to Predicate Refinement. In Proceedings of TACAS 2006, 12th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Lecture Notes in Computer Science, Vol. 3920).
Springer, 459–473. https://doi.org/10.1007/11691372_33

[39] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,

and David Pichardie. 2015. A Formally-Verified C Static Analyzer.

In Proceedings of POPL 2015, 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 247–259.

https://doi.org/10.1145/2676726.2676966
[40] Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program.

Lang. Syst. 19, 3 (May 1997), 427–443. https://doi.org/10.1145/256167.
256195

[41] Dexter Kozen. 2000. On Hoare Logic and Kleene Algebra with Tests.

ACM Trans. Comput. Logic 1, 1 (July 2000), 60–76. https://doi.org/10.
1145/343369.343378

[42] Xavier Leroy. 2006. Formal certification of a compiler back-end or:

programming a compiler with a proof assistant. In Proceedings of POPL
2006, 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, 42–54. https://doi.org/10.1145/1111037.
1111042

[43] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and

Saddek Bensalem. 1995. Property preserving abstractions for the

verification of concurrent systems. Formal Methods Syst. Des. 6 (1995),
11–44. https://doi.org/10.1007/BF01384313

[44] Antoine Miné. 2006. The octagon abstract domain. High. Order Symb.
Comput. 19, 1 (2006), 31–100. https://doi.org/10.1007/s10990-006-8609-
1

[45] Antoine Miné. 2017. Tutorial on Static Inference of Numeric Invariants

by Abstract Interpretation. Foundations and Trends in Programming
Languages 4, 3-4 (2017), 120–372. https://doi.org/10.1561/2500000034

[46] David Monniaux and Julien Le Guen. 2012. Stratified Static Analysis

Based on Variable Dependencies. Electron. Notes Theor. Comput. Sci.
288 (2012), 61–74. https://doi.org/10.1016/j.entcs.2012.10.008

[47] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography.

ACM Comput. Surv. 51, 1 (2018), 17:1–17:24. https://doi.org/10.1145/
3105906

[48] Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang.
4, POPL (2020), 10:1–10:32. https://doi.org/10.1145/3371078

[49] Benjamin Pierce. 2002. Types and Programming Languages. MIT Press.

[50] Benjamin Pierce. 2004. Advanced Topics in Types and Programming
Languages. The MIT Press.

[51] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W.

O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence

of Bugs: Incorrectness Separation Logic. In Proc. CAV 2020 (LNCS,
Vol. 12225). Springer, 225–252. https://doi.org/10.1007/978-3-030-
53291-8_14

[52] Francesco Ranzato and Francesco Tapparo. 2004. Strong Preservation

as Completeness inAbstract Interpretation. In Proceedings of ESOP 2004,
13th European Symposium on Programming (Lecture Notes in Computer
Science, Vol. 2986). Springer, 18–32. https://doi.org/10.1007/978-3-540-
24725-8_3

[53] Francesco Ranzato and Francesco Tapparo. 2007. Generalized Strong

Preservation by Abstract Interpretation. J. Log. Comput. 17, 1 (2007),
157–197. https://doi.org/10.1093/logcom/exl035

[54] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis –
An Abstract Interpretation Perspective. MIT Press.

[55] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Automatic gen-

eration of polynomial invariants of bounded degree using abstract

interpretation. Sci. Comput. Program. 64, 1 (2007), 54–75. https:
//doi.org/10.1016/j.scico.2006.03.003

[56] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Generating all

polynomial invariants in simple loops. J. Symb. Comput. 42, 4 (2007),
443–476. https://doi.org/10.1016/j.jsc.2007.01.002

[57] Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants as

Classifiers. In Proceedings of CAV 2012, 24th International Conference
on Computer Aided Verification (Lecture Notes in Computer Science,
Vol. 7358). Springer, 71–87. https://doi.org/10.1007/978-3-642-31424-
7_11

[58] Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2014. Bias-variance

tradeoffs in program analysis. In Proceedings of POPL 2014, 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 127–138. https://doi.org/10.1145/2535838.2535853

[59] Tachio Terauchi and Hiroshi Unno. 2015. Relaxed Stratification: A New

Approach to Practical Complete Predicate Refinement. In Proceedings
of ESOP 2015, 24th European Symposium on Programming (Lecture Notes
in Computer Science, Vol. 9032). Springer, 610–633. https://doi.org/10.
1007/978-3-662-46669-8_25

[60] Hiroshi Unno and Tachio Terauchi. 2015. Inferring Simple Solutions to

Recursion-Free Horn Clauses via Sampling. In Proceedings of TACAS
2015, 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Lecture Notes in Computer Science,
Vol. 9035). Springer, 149–163. https://doi.org/10.1007/978-3-662-46681-
0_10

[61] Moshe Y. Vardi. 2021. Program Verification: Vision and Reality. Com-
mun. ACM 64, 7 (2021), 5. https://doi.org/10.1145/3469113

[62] GlynnWinskel. 1993. The Formal Semantics of Programming Languages:
an Introduction. MIT press.

441

https://doi.org/10.1145/1328438.1328468
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/2103656.2103689
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/11691372_33
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/343369.343378
https://doi.org/10.1145/343369.343378
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/BF01384313
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1561/2500000034
https://doi.org/10.1016/j.entcs.2012.10.008
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-540-24725-8_3
https://doi.org/10.1007/978-3-540-24725-8_3
https://doi.org/10.1093/logcom/exl035
https://doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1145/2535838.2535853
https://doi.org/10.1007/978-3-662-46669-8_25
https://doi.org/10.1007/978-3-662-46669-8_25
https://doi.org/10.1007/978-3-662-46681-0_10
https://doi.org/10.1007/978-3-662-46681-0_10
https://doi.org/10.1145/3469113

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Background
	3.1 Abstract Interpretation
	3.2 Regular Commands

	4 Making AI Locally Complete
	4.1 Local Completeness
	4.2 Exact Locally Complete Shells
	4.3 Pointed Locally Complete Shells
	4.4 Boolean Guards

	5 Repair Strategies
	6 CEGAR as AIR
	7 Program Verification Repair
	7.1 Program Verification by Forward Repair
	7.2 Program Verification by Backward Repair

	8 Implementation Challenges
	9 Conclusion
	Acknowledgments
	References

