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Abstract
We investigate the algebraic reasoning of quantum programs

inspired by the success of classical program analysis based

on Kleene algebra. One prominent example of such is the fa-

mous Kleene Algebra with Tests (KAT), which has furnished

both theoretical insights and practical tools. The succinctness

of algebraic reasoning would be especially desirable for scal-

able analysis of quantum programs, given the involvement

of exponential-size matrices in most of the existing methods.

A few key features of KAT including the idempotent law

and the nice properties of classical tests, however, fail to

hold in the context of quantum programs due to their unique

quantum features, especially in branching. We propose Non-

idempotent Kleene Algebra (NKA) as a natural alternative

and identify complete and sound semantic models for NKA

as well as their quantum interpretations. In light of appli-

cations of KAT, we demonstrate algebraic proofs in NKA

of quantum compiler optimization and the normal form of

quantum while-programs. Moreover, we extend NKA with

Tests (i.e., NKAT), where tests model quantum predicates

following effect algebra, and illustrate how to encode propo-

sitional quantum Hoare logic as NKAT theorems.

CCS Concepts: • Theory of computation → Algebraic
language theory; Equational logic and rewriting.

Keywords: non-idempotent Kleene algebra, compiler opti-

mization, normal form theorem, quantum Hoare logic.
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1 Introduction
1.1 Background and Motivation
Kleene algebra (KA) [35] that establishes the equivalence

of regular expressions and finite automata is an important

connection built between programming languages and ab-

stract machines with a wide range of applications. One very

successful extension of KA, called Kleene algebra with tests

(KAT), was introduced by Kozen [37] that combines KA with

Boolean algebra (BA) to model the fundamental constructs

arising in programs: sequencing, branching, iteration, etc.

More importantly, the equational theory of KAT, which can

be finitely axiomatized [41], allows algebraic reasoning about

corresponding classical programs.

The mathematical elegance and succinctness of algebraic

reasoning with KAT have furnished deep theoretical insights

as well as practical tools. A lot of topics can be investigated

with KAT including, e.g., program transformations [4], com-

piler optimization [40], Hoare logic [38], and so on. An im-

portant recent application of KAT is NetKAT [3] that reasons

about the packet-forwarding behavior of software-defined

networks, with both a solid theoretical foundation [25] and

scalable practical performance [3]. An efficient fragment

of KAT, called Guarded KAT (GKAT), has also been iden-

tified [59] to model typical imperative programs with an

almost linear time equational theory. In contrast, KAT’s equa-

tional theory is PSPACE-complete [17].

Quantum computation has been a topic of significant re-

cent interest. With breakthroughs in experimental quantum

computing and the introduction of many quantum program-

ming languages such as Quipper [30], Scaffold [1], QWIRE

[50], Microsoft’s Q# [62], IBM’s Qiskit [2], Google’s Cirq

[28], Rigetti’s Forest [52], there is an imperative need for the

analysis and verification of quantum programs.

Indeed, program analysis and verification have been a

central topic ever since the seminal work on quantum pro-

gramming languages [29, 49, 53, 54, 57]. There have been

many attempts of developing Hoare-like logic [32] for veri-

fication of quantum programs [5, 13, 15, 22, 33, 67]. In par-

ticular, D’Hondt and Panangaden [18] proposed the notions

of quantum predicate and weakest precondition. Ying [67]

established the quantumHoare logic with (relative) complete-

ness for reasoning about a quantum extension of the while-
language with many subsequent developments [45, 70, 73].

We refer curious readers to surveys [27, 56, 69] for details.
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Quantum while-programs have similar (yet semantically

different) fundamental constructs (e.g., sequencing, branch-

ing, iterations) like classical ones, which gives rise to a nat-

ural question of the possibility of using KA/KAT to alge-

braically reason about quantum programs. Existing methods

for quantum program analysis and verification usually in-

volve exponential-size matrices in terms of the system size,

which hence significantly limits the scalability. In contrast,

a succinct KA-based algebraic reasoning, if possible, would

greatly increase the scalability of such analyses for quantum

programs due to its mathematical succinctness.

1.2 Research Challenges and Solutions
Let us first revisit KAT-based algebraic reasoning and high-

light the challenges in extending the framework to the quan-

tum setting. We assume a few self-explanatory quantum

notations with detailed quantum preliminaries in Section 3.1.

KAT-based Reasoning. A typical reasoning framework

based on KAT, similarly for NetKAT and GKAT, will establish

that KAT models the targeted computation by showing

⊢KAT 𝑒 = 𝑓 ⇔ ∀int,Kint (𝑒) = Kint (𝑓 ), (1.2.1)

whereKint is an interpretation mapping from expressions to

a language (or semantic) model of the desired computation.

In reasoning about while programs, one encodes them as

KAT expressions as in Propositional Dynamic Logic [23]:

𝑝;𝑞 := 𝑝𝑞 (1.2.2)

if 𝑏 then 𝑝 else 𝑞 := 𝑏𝑝 + 𝑏𝑞 (1.2.3)

while 𝑏 do 𝑝 done := (𝑏𝑝)∗𝑏, (1.2.4)

where 𝑏 is a classical guard/test and 𝑏 is its Boolean negation.

Intuitively, if one can derive the equivalence of encodings

of two classical programs in KAT, then through the sound-

ness direction (⇒), one can also establish the equivalence

between the semantics of the original programs by applying

an appropriate interpretation.

QuantumBranching.One critical difference between quan-
tum and classical programs lies in the branching statement.

The quantum branching statement,

case𝑀 [𝑞] →𝑖 𝑃𝑖 end, (1.2.5)

refers to a probabilistic procedure to execute branch 𝑃𝑖 de-

pending on the outcome of quantum measurement 𝑀 on

quantum variable 𝑞 (of which the state is denoted by a den-

sity operator 𝜌). Consider the two-branching case (𝑖=0,1),

and let 𝑀 = {𝑀0, 𝑀1} be the quantum measurement op-

erators. Measurement 𝑀 will collapse 𝜌 to the state 𝜌0 =

𝑀0𝜌𝑀
†
0
/tr(𝑀0𝜌𝑀

†
0
) with probability 𝑝0 = tr(𝑀0𝜌𝑀

†
0
), and

the state 𝜌1 = 𝑀1𝜌𝑀
†
1
/tr(𝑀1𝜌𝑀

†
1
) with probability 𝑝1 =

tr(𝑀1𝜌𝑀
†
1
) respectively (here tr(·) is the matrix trace). After

the measurement𝑀 , the program will execute 𝑃𝑖 on state 𝜌𝑖
with probability 𝑝𝑖 (𝑖 = 0, 1).

There are two important differences between quantum

and classical branching. The first is that quantum branching

allows probabilistic choices over different branches. Even

though random choices also appear in probabilistic programs,

the probabilistic choices in quantum branching are due to

quantum mechanics (i.e., measurements). In particular, their

distributions are determined by the underlying quantum

states and the corresponding quantum measurements, and

hence implicit in the syntax of quantum programs, whereas

specific probabilities are usually explicitly encoded in the syn-

tax of probabilistic programs. Moreover, different quantum

measurements do not necessarily commute with each other,

which could hence lead to more complex probability distri-

butions in quantum branching than ones allowed in classical

probability theory and hence probabilistic programs.

The second difference lies in the different roles played by

classical guards and quantum measurements in branching.

Note that classical guards serve two functionalities simulta-

neously: (1) first, their values are used to choose the branches

before the control; (2) second, they can also be deemed as

property tests (i.e. logical propositions) on the state of the

program after the control but before executing each branch.

These two points might be so natural that one tends to forget

that they are based on an assumption that observing the guard

won’t change the state of the program, which is also naturally

held classically. The classical guards, when deemed as tests

in KAT, enjoy further the Boolean algebraic properties so

that they can be conveniently manipulated.

This natural assumption, however, fails to hold in quan-

tum branching since quantum measurements will change

underlying states in the branching statement. This is mathe-

matically evident as we see 𝜌 is collapsed to either 𝜌0 or 𝜌1

for different branches. Therefore, it is conceivable that quan-

tum branching (and hence quantum programs) should refer

to a different semantic model and quantum measurements

should be deemed different from the tests in KAT.

Issues with directly adopting KAT/KA. Aforementioned

differences make it hard to directly work with KAT/KA for

quantum programs. First, there is a well-known issue when

combining non-determinism, which is native to KAT, with

probabilistic choices [47, 64], the latter of which is however

essential in quantum branching. A similar issue also showed

up in the probabilistic extension of NetKAT [24], which does

not satisfy all the KAT rules, especially the idempotent law.

One might wonder about the possibility of using GKAT [59],

which is designed to mitigate this issue by restricting KAT

with guarded structures. Unfortunately, the classical guarded

structure modeled in GKAT is semantically different from

quantum branching, which makes it hard to connect GKAT

with appropriate quantum models.

Solution with NKA and NKAT. Our strategy is to work

with the variant of KA without the idempotent law, namely,

the non-idempotent Kleene algebra (NKA). This change will



Algebraic Reasoning of Quantum Programs via Non-idempotent Kleene Algebra (Extended Version) PLDI ’22, June 13–17, 2022, San Diego, CA, USA

help model the probabilistic nature of quantum programs

in a natural way, however, at the cost of losing properties

implied by the idempotent law. Fortunately, thanks to the

existing research on NKA [21, 44], many properties of KA are

recovered in NKA for its applications to quantum programs.

Since there is no single "test" in quantum programs that

can serve two purposes like classical guards, we simply sep-

arate the treatments for them. The branching functionality

of quantum measurements can hence be expressed in NKA

by treating them as normal program statements. Precisely,

any quantum two-branching can be encoded as

𝑚0𝑝0 +𝑚1𝑝1, (1.2.6)

where 𝑚0/1 are encodings of measurements and 𝑝0/1 are

encodings of programs in each branch. Comparing with the

classical encoding (1.2.3),𝑚0/1 no longer enjoy the Boolean

algebraic properties and should be treated separately.

It turns out that many classical applications of KAT such

as compiler optimization [40] and the proof of the normal

form of while-programs [37] can be implemented in NKA

for quantum programs with branching functionality only.

However, one needs to extend NKA to recover other appli-

cations of KAT which makes essential use of the proposition

functionality of tests. A prominent example in KAT is its ap-

plication to propositional Hoare logic [38]. Indeed, a typical

Hoare triple {𝑏}𝑝{𝑐} asserts that whenever 𝑏 holds before

the execution of the program 𝑝 , then if and when 𝑝 halts, 𝑐

will hold of the output state, where 𝑏, 𝑐 are both tests in KAT

leveraging their proposition functionality.

A similar triple {𝐴}𝑃{𝐵} is also used in quantum Hoare

logic [67], where 𝑃 is the quantum program and𝐴, 𝐵 become

quantum predicates [18]. To encode quantum Hoare logic,

we extend NKA with the "test", denoted NKAT, which mim-

ics the behavior of quantum predicates following the effect

algebra [26]. With quantum predicates, we develop a more

delicate description of measurements in quantum branching,

called partitions, which allow us to reason about the relation-

ship among quantum branches caused by the same quantum

measurement, e.g., the𝑚0 and𝑚1 branches in (1.2.6).

Quantum Path Model. One of our main technical contri-

butions is the identification of the so-called quantum path

model, a complete and sound semanticmodel for NKA. Namely,

⊢NKA 𝑒 = 𝑓 ⇔ ∀int,Qint (𝑒) = Qint (𝑓 ), (1.2.7)

where Qint is an interpretation mapping from NKA expres-

sions to quantum path actions, which can be deemed as

quantum evolution in the path integral formulation of quan-

tum mechanics. Qint will connect the NKA encoding of any

quantum program 𝑃 with its denotational semantics ⟦𝑃⟧. 1
The key motivation of the quantum path model is to ad-

dress the infinity issue in NKA. For an intuitive understand-

ing, one can deem any KA or NKA expression as a collection

1
Since we relate NKA to quantum models which imply the probabilistic

feature inherently, there is no need to explicitly add probability to NKA.

of potentially infinitely many traces, where "infinitely many"

is caused by ∗ operations. In the case of KA, by the idempo-

tent law, every single trace is either in or out of the collection.

However, in the case of NKA, each trace is associated with a

weight, which by itself could be infinite. To distinguish be-

tween nonequivalent NKA expressions, one needs to build a

semanticmodel that can characterize a collection of weighted

traces with potentially infinite weights. We also require the

quantum nature of this semantic model for connection with

the denotational semantics of quantum programs.

The path integral formulation becomes very natural in this

regard: it formulates quantum evolution as the accumulative

effect of a collection of evolutions on individual trajecto-

ries. Our quantum path model basically characterizes the

accumulative quantum evolution over a collection of poten-

tially infinite evolutions over individual traces. By identify-

ing quantum path actions representing quantum predicates

and quantum measurements in the quantum path model, a

soundness theorem is proved for NKAT as well.

Quantum-Classical differences as exhibited inNKAand
NKAT. The quantum-classical difference is not explicit in

the syntax of NKA, as there is no special symbol for quan-

tum measurements. This is also reflected in the proof of the

completeness of NKA where an interpretation of essentially

classical probabilistic processes is constructed (Remark 4.1).

However, the difference becomes explicit in NKAT: the two

functionalities of the quantum guards are characterized sep-

arately by effects and partitions, in contrast with the classical

guards in KAT. The general noncommutativity of quantum

measurements in NKAT demonstrates its quantumness and

distinguishes itself from any classical model.

1.3 Contributions
To our best knowledge, we contribute the first investigation

of Kleene-like algebraic reasoning of quantum programs and

demonstrate its feasibility. We introduce the non-idempotent

Kleene algebra (NKA) and existing results on the semantic

model of NKA in Section 2. Our contributions include:

• We illustrate the quantum path model and its relation

with normal quantum superoperators in Section 3.

• We prove that the NKA axioms are sound and complete

with respect to the quantum path model, given encodings

of quantum programs in NKA and an appropriate inter-

pretation of NKA to the quantum path model in Section 4.

• We demonstrate several applications of NKA for quantum

programs, including: (1) the verification of optimization in

quantum compilers (Section 5); (2) an algebraic equational

proof of the quantum counterpart of the classic Böhm-

Jacopini theorem [11] (Section 6).

• We extend NKA with the effect algebra to obtain the Non-

idempotent Kleene Algebra with Tests (NKAT), which

is proven sound for the quantum path model. We also

encode the entire propositional quantum Hoare logic as

NKAT theorems in light of Kozen [38] (Section 7).
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Non-idempotent Kleene algebra

Section 2

Quantum path model

Section 3

Quantum program

Section 4

sound and complete

Theorem 4.2

encode

Theorem 4.5

embedded in

Lemma 3.8

Applications

Compiler optimizations rules

Section 5

Normal form theorem

Section 6

NKAT

Section 7.2

Propositional QHL

Section 7.4

Figure 1. The structure and main results of this paper.

Main Theorem. Our main theorem presented below for-

mally guarantees that quantum program equivalences are

implied if we can algebraically derive the corresponding

NKA theorems. This approach is similar to deriving classical

program equivalence via KAT.

Theorem 1.1. Given two quantum programs 𝑃,𝑄 and sub-

program pairs {⟨𝑃𝑖 , 𝑄𝑖⟩} where ⟦𝑃𝑖⟧ = ⟦𝑄𝑖⟧, if Horn theorem

⊢NKA

(∧
𝑖
Enc(𝑃𝑖 ) = Enc(𝑄𝑖 )

)
→ Enc(𝑃) = Enc(𝑄)

is derivable, then we have ⟦𝑃⟧ = ⟦𝑄⟧ . Here Enc is the encod-

ing of quantum program in a similar manner of (1.2.2)-(1.2.4).

We display the essential concepts leading to this theorem

in Figure 1, illustrating how our efforts in later sections

connect to it, and its applications and extensions.

Related Works. It is worthwhile comparing quantum al-

gebraic reasoning based on NKA with other techniques on

quantum program analysis, e.g., quantum Hoare logic [67].

As we see, classical algebraic reasoning is extremely good

at certain tasks (e.g, equational proofs). However, since it

abstracts away a lot of semantic information, it cannot tell

about detailed specifications on the state of programs, which

can otherwise be reasoned by Hoare logic [32].

Our quantum algebraic reasoning inherits the advantages

and disadvantages of its classical counterpart. It allows ele-

gant applications in Section 5 & 6, which is very hard (e.g.,

involving exponential-size matrices) to solve with the quan-

tum Hoare logic [67] or its relational variants [6, 63]. How-

ever, it cannot replace quantum Hoare logic to reason about,

e.g., specifications on the state of quantum programs either.

A recent result of quantum abstract interpretation [72]

contributes to another promising approach to verifying quan-

tum assertionswith succinct proofs, although its applicability

and technique are incomparable to ours.

There are many other verification tools developed for

quantum programs. Hietala et al. [31] built VOQC, an infras-

tructure for quantum circuits in Coq with numerous verified

programs and compiler optimization rules. Another theory

for equational reasoning of quantum circuits is introduced

in [60]. They serve as good complements of our framework

when loops are absent.

Future Directions. One interesting question is the automa-

tion related toNKA, e.g., through co-algebra and bi-simulation

techniques, in light of [12, 39, 58, 59]. This could lead to effi-

cient symbolic algorithms for algebraic reasoning of quan-

tum programs in light of [51]. Kiefer et al. [34] proposed

an algorithm checking Q−weighted automata equivalences,

which works for NKA when no infinity presents.

Another direction is to include quantum-specific rules to

NKA to ease the expression of practical quantum applica-

tions. For example, one may embed unitary superoperators

into NKA as a group to encode their reversibility.

Given the promising applications of KAT in network pro-

gramming (e.g., NetKAT [24]), an exciting opportunity is to

investigate the possibility of a quantum version of NetKAT

in the software-defined model of the emerging quantum

internet (e.g., [14, 42]) based on our work.

2 Non-idempotent Kleene Algebra
In this section, we introduce the theory of a Kleene algebraic

system without the idempotent law, which is called non-

idempotent Kleene algebra (NKA).

We inherit Kozen’s axiomatization for Kleene algebra (KA)

in [36] with several weakenings.

Definition 2.1. A non-idempotent Kleene algebra (NKA) is a

7-tuple (K, +, ·, ∗, ≤, 0, 1), where + and · are binary operations,
∗ is a unary operation, and ≤ is a binary relation. It satisfies

the axioms in Figure 3.

The most essential weakening is the deletion of the idem-

potent law. The partial order in KA cannot directly fit in

the scenario when the idempotent law is absent. We hence

generalize the KA partial order to any partial order that is

preserved by + and ·. Therefore, ∗ also preserves this partial

order. Moreover, we did not include the symmetric fixed

point inequality 1+𝑝∗𝑝 ≤ 𝑝∗ because it is derivable by other
axioms, both in KA and in NKA [21].

Definition 2.2. For an alphabet Σ, an expression over Σ is

inductively defined by:

𝑒 ::= 0 | 1 | 𝑎 | 𝑒1 + 𝑒2 | 𝑒1 · 𝑒2 | 𝑒∗
1
, (2.0.1)

where 𝑎 ∈ Σ. We denote all the expressions over Σ by ExpΣ.
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1 + 𝑝𝑝∗ = 1 + 𝑝∗𝑝 = 𝑝∗ (fixed-point)

𝑝 ≤ 𝑞 → 𝑝∗ ≤ 𝑞∗ (monotone-star)

1 + 𝑝 (𝑞𝑝)∗𝑞 = (𝑝𝑞)∗ (product-star)

(𝑝𝑞)∗𝑝 = 𝑝 (𝑞𝑝)∗ (sliding)

(𝑝 + 𝑞)∗ = (𝑝∗𝑞)∗𝑝∗ = 𝑝∗ (𝑞𝑝∗)∗ (denesting)

0 ≤ 𝑝 (positivity)

(a) Commonly used theorems of NKA

(𝑝𝑝)∗ (1 + 𝑝) = 𝑝∗ (unrolling)

𝑝𝑞 = 𝑞𝑝 → 𝑝∗𝑞 = 𝑞𝑝∗ (swap-star)

𝑝𝑞 = 𝑟𝑝 → 𝑝𝑞∗ = 𝑟 ∗𝑝 (star-rewrite)

(b) Several theorems of NKA for applications

Figure 2. Derivable formulae in NKA.

A Horn formula 𝜙 is defined as the form (∧𝑖 𝑒𝑖 ≤ 𝑓𝑖 ) →
𝑒 ≤ 𝑓 . One may also substitute equation for inequality in 𝜙

since 𝑒 = 𝑓 ↔ 𝑒 ≤ 𝑓 ∧ 𝑓 ≤ 𝑒 .
We write ⊢NKA 𝜙 if 𝜙 is derivable in NKA with equational

logic. Any derivable formula in NKA is a theorem of NKA.

Apparently, every theorem in NKA is derivable in KA,

since the partial order in KA is monotone. The reverse direc-

tion is not true in general. Indeed, the idempotent law, for

example, is nowhere derivable from the NKA axioms. It is

thus natural to ask what important theorems in KA are still

derivable in NKA. We provide affirmative answers to many

of them in the following. (Proofs in Appendix C.1.)

Lemma 2.3. The following formulae are derivable in NKA.

Axioms of KA

Semiring Laws

𝑝 + (𝑞 + 𝑟 ) = (𝑝 + 𝑞) + 𝑟 ;
𝑝 + 𝑞 = 𝑞 + 𝑝;

𝑝 + 0 = 𝑝;

𝑝 (𝑞𝑟 ) = (𝑝𝑞)𝑟 ;
1𝑝 = 𝑝1 = 𝑝;

0𝑝 = 𝑝0 = 0;

𝑝 (𝑞 + 𝑟 ) = 𝑝𝑞 + 𝑝𝑟 ;
(𝑝 + 𝑞)𝑟 = 𝑝𝑟 + 𝑞𝑟 ;
𝑝 + 𝑝 = 𝑝;

Partial Order Laws

𝑝 ≤ 𝑞 ↔ 𝑝 + 𝑞 = 𝑞;

Star Laws

1 + 𝑝𝑝∗ ≤ 𝑝∗;

𝑞 + 𝑝𝑟 ≤ 𝑟 → 𝑝∗𝑞 ≤ 𝑟 ;
𝑞 + 𝑟𝑝 ≤ 𝑟 → 𝑞𝑝∗ ≤ 𝑟 ;

Axioms of NKA

Semiring Laws:

𝑝 + (𝑞 + 𝑟 ) = (𝑝 + 𝑞) + 𝑟 ;
𝑝 + 𝑞 = 𝑞 + 𝑝;

𝑝 + 0 = 𝑝;

𝑝 (𝑞𝑟 ) = (𝑝𝑞)𝑟 ;
1𝑝 = 𝑝1 = 𝑝;

0𝑝 = 𝑝0 = 0;

𝑝 (𝑞 + 𝑟 ) = 𝑝𝑞 + 𝑝𝑟 ;
(𝑝 + 𝑞)𝑟 = 𝑝𝑟 + 𝑞𝑟 ;

Partial Order Laws

𝑝 ≤ 𝑝;

𝑝 ≤ 𝑞 ∧ 𝑞 ≤ 𝑝 → 𝑝 = 𝑞;

𝑝 ≤ 𝑞 ∧ 𝑞 ≤ 𝑟 → 𝑝 ≤ 𝑟 ;
𝑝 ≤ 𝑞 ∧ 𝑟 ≤ 𝑠 → 𝑝 + 𝑟 ≤ 𝑞 + 𝑠;
𝑝 ≤ 𝑞 ∧ 𝑟 ≤ 𝑠 → 𝑝𝑟 ≤ 𝑞𝑠;

Star Laws

1 + 𝑝𝑝∗ ≤ 𝑝∗;

𝑞 + 𝑝𝑟 ≤ 𝑟 → 𝑝∗𝑞 ≤ 𝑟 ;
𝑞 + 𝑟𝑝 ≤ 𝑟 → 𝑞𝑝∗ ≤ 𝑟 ;

Figure 3. Axioms of KA and NKA. Axioms marked in blue

(red) only present in NKA (KA).

1. The formulae in Figure 2a due to [21].

2. The formulae in Figure 2b.

It is known that NKA also has a natural semantic model,

called rational power series, which is a special class of for-

mal power series over N = N ∪ {∞}. We present a brief

introduction to them in Appendix A for interested readers.

Remark 2.1 (Complexity related to NKA). Bloom and Ésik

[10] have proposed an algorithm to determine the equivalence

of two rational power series, so the equational theory of NKA

is decidable. Meanwhile, a subset 1
∗K = {1∗𝑝 : 𝑝 ∈ K}

satisfies the Kleene algebra axioms, and the equational theory

of KA is PSpace-complete [61], thus equational theory of NKA

is also PSpace-hard. However, by linking formal power series

to weighted finite automata, Eilenberg [20] shows that it is

undecidable whether a given inequality 𝑒 ≤ 𝑓 holds in NKA.

3 Quantum Path Model
To address the infinity issue, we introduce a generalization

of quantum superoperators in this section, named quantum

path model, a sound model of NKA. We include detailed

quantum preliminaries in Section 3.1, introduce extended

positive operators as a generalization of quantum states in

Section 3.2, define the quantum path model as an analog of

the path integral in quantum mechanics in Section 3.3, and

embed quantum superoperators in the quantum path model

in Section 3.4. We recommend that first-time readers skip

technical construction details in this section.

3.1 Quantum Preliminaries
We review basic notations from quantum information that

are used in this paper. Curious readers should refer to [48, 65]

for more details.

An 𝑛-dimensional Hilbert spaceH is essentially the space

C𝑛 of complex vectors. We use Dirac’s notation, |𝜓 ⟩, to de-
note a complex vector inC𝑛 . The inner product of |𝜓 ⟩ and |𝜑⟩
is denoted by ⟨𝜓 |𝜑⟩, which is the product of the Hermitian

conjugate of |𝜓 ⟩, denoted by ⟨𝜓 |, and the vector |𝜑⟩.
Linear operators between 𝑛-dimensional Hilbert spaces

are represented by 𝑛 × 𝑛 matrices. For example, the zero

operator𝑂H and the identity operator 𝐼H can be identified by

the zero matrix and the identity matrix onH . The Hermitian

conjugate of operator 𝐴 is denoted by 𝐴†
. Operator 𝐴 is

positive semidefinite if for all vectors |𝜓 ⟩ ∈ H , ⟨𝜓 |𝐴|𝜓 ⟩ ≥ 0.

The set of positive semidefinite operators overH is denoted
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by PO(H) . This gives rise to the Löwner order ⊑ among

operators: 𝐴 ⊑ 𝐵 ⇔ 𝐵 −𝐴 is positive semidefinite.

A density operator 𝜌 is a positive semidefinite operator

𝜌 =
∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | where

∑
𝑖 𝑝𝑖 = 1, 𝑝𝑖 > 0. A special case

𝜌 = |𝜓 ⟩⟨𝜓 | is conventionally denoted as |𝜓 ⟩. A positive semi-

definite operator 𝜌 on H is a partial density operator if

tr(𝜌) ≤ 1, where tr(𝜌) is the matrix trace of 𝜌 . The set of

partial density operators is denoted by D(H).
The evolution of a quantum system can be characterized

by a completely-positive and trace-non-increasing linear su-

peroperator E2
, which is a mapping from D(H) to D(H ′)

for Hilbert spacesH ,H ′
. We denote the set of such super-

operators by QC(H ,H ′) . The special case when H ′ = H
is denoted by QC(H).

For two superoperators E1, E2 ∈ QC(H), the composition

is defined as (E1 ◦ E2) (𝜌) = E2 (E1 (𝜌)) . If there exists E and

E𝑖 ∈ QC(H) satisfying E(𝜌) =
∑
𝑖 E𝑖 (𝜌) for every 𝜌 ∈

PO(H), then we define E as

∑
𝑖 E𝑖 . For every superoperator

E ∈ QC(H ,H ′), by [43] there exists a set of Kraus operators
{𝐸𝑘 }𝑘 such that E(𝜌) = ∑

𝑘 𝐸𝑘𝜌𝐸
†
𝑘
for any input 𝜌 ∈ D(H).

The Schrödinger-Heisenberg dual of a superoperator E(𝜌) =∑
𝑘 𝐸𝑘𝜌𝐸

†
𝑘
is E† (𝜌) = ∑

𝑘 𝐸
†
𝑘
𝜌𝐸𝑘 .

A quantum measurement on a system over Hilbert space

H can be described by a set of linear operators {𝑀𝑚}𝑚 where∑
𝑚𝑀

†
𝑚𝑀𝑚 = 𝐼H . The measurement outcome𝑚 is observed

with probability 𝑝𝑚 = tr(𝑀𝑚𝜌𝑀†
𝑚) for each𝑚, which will

collapse the pre-measure state 𝜌 toM𝑚 (𝜌) = 𝑀𝑚𝜌𝑀†
𝑚/𝑝𝑚 .

A quantum measurement is projective if𝑀𝑖𝑀 𝑗 = 𝑀𝑖 if 𝑖 = 𝑗

and 𝑂H otherwise. Namely, all𝑀𝑖 are projective operators

orthogonal to each other.

3.2 Extended Positive Operators
The set PO(H) does not contain any infinity. We need to

incorporate different infinities into it to distinguish different

path sets which may lead to different divergent summations.

Definition 3.1. A series of PO(H) is a countable multiset of

PO(H), and can be written as

⊎
𝑖∈𝐼 𝜌𝑖 , where 𝐼 is a countable

index set. Symbol

⊎
𝑖∈𝐼 enumerates every element 𝜌𝑖 in the

multiset. The set of series of PO(H) is denoted by S(H).
The union of countably many series is denoted by:⊎

𝑖∈𝐼

(⊎
𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗

)
=

⊎
(𝑖, 𝑗) :𝑖∈𝐼 , 𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗 . (3.2.1)

Note

⊎
𝑖∈𝐼

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 ∈ S(H) since the index set is countable.

A binary relation ≲ over S(H) is defined by:

⊎
𝑖∈𝐼 𝜌𝑖 ≲⊎

𝑗 ∈𝐽 𝜎 𝑗 if and only if for every 𝜖 > 0 and finite 𝐼 ′ ⊆ 𝐼 , there

exists a finite 𝐽 ′ ⊆ 𝐽 , such that∑︁
𝑖∈𝐼 ′

𝜌𝑖 ⊑ 𝜖𝐼H +
∑︁

𝑗 ∈𝐽 ′
𝜎 𝑗 . (3.2.2)

2
A superoperator E is positive if it maps from D(H) to D(H′) for Hilbert
spaces H,H′

. It is completely-positive if for any Hilbert space A, the super-

operator E ⊗ 𝐼A is positive. It is trace-non-increasing if for any initial state

𝜌 ∈ D(H) , the final state E(𝜌) ∈ D(H′) satisfies tr(E (𝜌)) ≤ tr(𝜌) .

We induce another binary relation ∼ from ≲ on S(H) by:⊎
𝑖∈𝐼

𝜌𝑖 ∼
⊎
𝑗 ∈𝐽

𝜎 𝑗 ⇔
⊎
𝑖∈𝐼

𝜌𝑖 ≲
⊎
𝑗 ∈𝐽

𝜎 𝑗 ∧
⊎
𝑗 ∈𝐽

𝜎 𝑗 ≲
⊎
𝑖∈𝐼

𝜌𝑖 .

Symbol

⊎
𝑖∈𝐼 is employed to distinguish the series from

the normal summation

∑
𝑖∈𝐼 over PO(H). We will build

connections between these two notions so that

⊎
𝑖∈𝐼 can

readily help us in the analysis of convergence, and more.

We represent a finite series by enumerating its elements.

Like a series with one element 𝑂H , we denote it by {|𝑂H |}.
The definition of ≲ aims at a generalization to the Löwner

order inS(H) that distinguishes the different infinities while
preserving relations like {|𝐼H |} ≲ ⊎

𝑖>0

1

2
𝑖 𝐼H, whose corre-

spondence in PO(H) holds.

Lemma 3.2. ≲ is a preorder, so ∼ is an equivalence relation.

The proof of this lemma along with several basic facts

about S(H) is in Appendix C.2.

Definition 3.3. We define the extended positive operators

PO∞ (H) = S(H)/∼ as the set of equivalence classes of ∼.
Let the equivalence class including

⊎
𝑖∈𝐼 𝜌𝑖 be[⊎

𝑖∈𝐼
𝜌𝑖

]
=

{⊎
𝑗 ∈𝐽

𝜎 𝑗

⊎
𝑗 ∈𝐽

𝜎 𝑗 ∼
⊎

𝑖∈𝐼
𝜌𝑖

}
, (3.2.3)

where on the right hand side is a set of series.

A partial order ≤ over PO∞ (H) is induced from the pre-

order ≲ over S(H) by:[⊎
𝑖∈𝐼
𝜌𝑖

]
≤

[⊎
𝑗 ∈𝐽

𝜎 𝑗

]
⇔

⊎
𝑖∈𝐼
𝜌𝑖 ≲

⊎
𝑗 ∈𝐽

𝜎 𝑗 . (3.2.4)

We define countable summation over PO∞ (H) from the

union in S(H) by∑︁
𝑖∈𝐼

[⊎
𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗

]
=

[⊎
𝑖∈𝐼

⊎
𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗

]
. (3.2.5)

The summation defined above is independent of the choices

of

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 because of Lemma C.1.(i).

We slightly abuse notation, writing [𝜌] to represent [{|𝜌 |}]
for 𝜌 ∈ PO(H). A frequently used case of (3.2.5) is to write

the equivalence class of a series as[⊎
𝑖∈𝐼
𝜌𝑖

]
=

∑︁
𝑖∈𝐼

[𝜌𝑖 ] , (3.2.6)

where we can intuitively deem the countable summation

over PO∞ (H) as a generalized summation over PO(H) .
For example, we have

∑
𝑖>0

[
1

2
𝑖 𝐼H

]
=

[∑
𝑖>0

1

2
𝑖 𝐼H

]
= [𝐼H]

according to Lemma C.1.(iii).

Remark 3.1. PO(H) is embedded in PO∞ (H) by 𝜌 ↦→
[𝜌] as finite positive operators. Besides these, PO∞ (H) con-
tains distinguishable divergent summations unattainable by

PO(H): e.g.,∑𝑖>0
[|0⟩⟨0|] is different from∑

𝑖>0
[|1⟩⟨1|], and

less than

∑
𝑖>0

[𝐼H2
] . These divergent summations are leveraged

to depict the domain and the range of our extended quantum

superoperators.
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3.3 Quantum Actions
We are now ready to introduce quantum actions, a generaliza-

tion of superoperators in the quantum path model, inspired

by the path integral formulation of quantum mechanics.

Definition 3.4. A quantum action, or action for simplicity,

over PO∞ (H) is a mapping from PO∞ (H) to PO∞ (H).
A quantum action A is linear if for series

∑
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

]
,

A
(∑︁

𝑖∈𝐼

∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑖∈𝐼

A
(∑︁

𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
. (3.3.1)

A quantum action A is monotone if for any two series∑
𝑖∈𝐼 [𝜌𝑖 ] ≤

∑
𝑗 ∈𝐽

[
𝜎 𝑗

]
,

A
(∑︁

𝑖∈𝐼
[𝜌𝑖 ]

)
≤ A

(∑︁
𝑗 ∈𝐽

[
𝜎 𝑗

] )
. (3.3.2)

We denote the set of linear and monotone quantum actions

over PO∞ (H) by P(H) as the set of quantum path actions.

The zero action OH maps everything to [𝑂H] , and the

identity action is denoted by IH .

Aphysical interpretation of quantumpath actions inP(H)
is the collection of quantum evolution along a single or many

possible trajectories of the underlying system. Thus, one can

readily define the composition and the sum of quantum path

actions, as the concatenation and the union of trajectories.

Definition 3.5. We define the operations in P(H) by:(∑︁
𝑖∈𝐼

A𝑖

) (∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
=

∑︁
𝑖∈𝐼

A𝑖

(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
, (3.3.3)

(A1;A2)
(∑︁

𝑗 ∈𝐽

[
𝜌 𝑗

] )
= A2

(
A1

(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] ))
, (3.3.4)

A∗ =
∑︁

𝑖≥0

A𝑖 . (3.3.5)

Here A𝑖 = IH ;A;A; · · · ;A where A repeats 𝑖 times.

Additionally, we define A1 ⋄A2 = A2;A1 .

A point-wise partial order ⪯ in P(H) is induced point-

wisely: A1 ⪯ A2 if and only if

∀
∑︁

𝑖∈𝐼
[𝜌𝑖 ] , A1

(∑︁
𝑖∈𝐼

[𝜌𝑖 ]
)
≤ A2

(∑︁
𝑖∈𝐼

[𝜌𝑖 ]
)
. (3.3.6)

Our main result is that P(H) with the above partial order

and operations satisfies the axioms of NKA. The proof is

postponed to Appendix C.3. Since infinite summations are

well-defined over quantum path actions, any NKA deriva-

tion safely induces a derivation over quantum path actions

without worrying about the infinity issue.

Theorem 3.6. The NKA axioms are sound for the quantum

path model, defined by (P(H), +, ; , ∗, ⪯,OH,IH). Here + is

the

∑
𝑖 operation restricted on two operands.

3.4 Embedding of QC(H) in P(H)
We mentioned the intuition that quantum path actions are

generalizations of quantum superoperators in the quantum

path model. We now make it precise by building an embed-

ding from quantum superoperators to quantum path actions

(and hence the quantum path model), which allows us to

prove superoperator equations via NKA theorems.

Definition 3.7. Path lifting is a mapping from E ∈ QC(H)
to a quantum path action ⟨E⟩↑ :

∑
𝑖∈𝐼 [𝜌𝑖 ] ↦→

∑
𝑖∈𝐼 [E(𝜌𝑖 )] .

⟨E⟩↑ is well-defined (it does not depend on the choices of∑
𝑖∈𝐼 [𝜌𝑖 ]) because of Lemma C.1.(v).

The path lifting embedsQC(H) inP(H) by the following
lemma, whose proof is routine and in Appendix C.4.

Lemma 3.8. The path lifting has the following properties:

(i) ⟨E⟩↑ ∈ P(H), for E ∈ QC(H).
(ii) E1 = E2 ⇔ ⟨E1⟩↑ = ⟨E2⟩↑, for E1, E2 ∈ QC(H).
(iii) operations ◦ and

∑
𝑖 (when defined) in QC(H) are pre-

served by path lifting as ; and

∑
𝑖 operations in P(H).

4 Quantum Interpretation and Quantum
Programs

In this section, we link expressions, quantum path actions

and quantum programs by quantum interpretation (Sec-

tion 4.1) and encoding (Section 4.2).

4.1 Quantum Interpretation
We endow equations in NKA with quantum interpretations.

Definition 4.1. A quantum interpretation setting over an

alphabet Σ is a pair int = (H , eval) where
1. H is a finite dimensional Hilbert space.

2. eval : Σ → QC(H) is a function to interpret symbols.

The quantum interpretation Qint w.r.t. a quantum interpre-

tation setting int is a mapping from ExpΣ to P(H) where
Qint (0) = OH, Qint (𝑒 + 𝑓 ) = Qint (𝑒) + Qint (𝑓 ),
Qint (1) = IH, Qint (𝑒 · 𝑓 ) = Qint (𝑒);Qint (𝑓 ),
Qint (𝑎) = ⟨eval(𝑎)⟩↑, Qint (𝑒∗) = Qint (𝑒)∗ .

Here 𝑎 ∈ Σ, and ⟨eval(𝑎)⟩↑ is the path lifting of eval(𝑎).

Theorem 4.2. The axioms of NKA are sound and complete

w.r.t. the quantum interpretation. That is, for any 𝑒, 𝑓 ∈ ExpΣ,

⊢NKA 𝑒 = 𝑓 ⇔ ∀int,Qint (𝑒) = Qint (𝑓 ) . (4.1.1)

The soundness comes directly from Theorem 3.6. The com-

pleteness proof makes use of formal power series and is post-

poned to Appendix C.5. This result indicates that equations

of NKA are all possible tautologies when atomic symbols

are interpreted as any (lifted) quantum superoperator. These

equations and interpretations do not necessarily correspond

to quantum programs, so further exploitation of algebraic

structures specifically for quantum programs is possible.

Remark 4.1. The completeness proof constructs interpreta-

tions with probabilistic processes only. It suggests that quantum

processes have similar algebraic behaviors to probabilistic pro-

cesses when probabilities are implicit (abstracted inside atomic
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operations). This is valid when measurements are not distin-

guished from other processes. We will discuss additional axioms

for quantum measurements in Section 7.

Most of the derived rules in our applications rely on ex-

ternal hypotheses aside from the NKA axioms. A formula

with inequalities as hypotheses is called a Horn clause. We

present the relation of the Horn theorems of NKA and quan-

tum interpretations by the following theorem.

Corollary 4.3. For expressions {𝑒𝑖 }𝑛𝑖=1
, {𝑓𝑖 }𝑛𝑖=1

⊂ ExpΣ and

𝑒, 𝑓 ∈ ExpΣ, if

⊢NKA

(
𝑛∧
𝑖=1

𝑒𝑖 ≤ 𝑓𝑖

)
→ 𝑒 ≤ 𝑓 , (4.1.2)

and int = (H , eval) satisfies Qint (𝑒𝑖 ) ⪯ Qint (𝑓𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛,
then Qint (𝑒) ⪯ Qint (𝑓 ).

Note that the inequalities above can be replaced by equa-

tions, using the fact that 𝑝 = 𝑞 ↔ 𝑝 ≤ 𝑞 ∧ 𝑞 ≤ 𝑝 .

Proof. The proof comes from Theorem 3.6 similarly. Along

the derivation of 𝑒 ≤ 𝑓 , we apply the NKA axioms and

premises 𝑒𝑖 ≤ 𝑓𝑖 for 1 ≤ 𝑖 ≤ 𝑛. The soundness of 𝑒 ≤ 𝑓

comes from the soundness of NKA axioms, proved in The-

orem 3.6, and the soundness of each premises, provided by

the assumption Qint (𝑒𝑖 ) ⪯ Qint (𝑓𝑖 ) for each 𝑒𝑖 ≤ 𝑓𝑖 . □

4.2 Encoding of Quantum Programs
The syntax of a quantum while program, also called a pro-

gram for simplicity, 𝑃 is defined as follows.
3

𝑃 ::= skip | abort | 𝑞 := |0⟩ | 𝑞 := 𝑈 [𝑞] | 𝑃1; 𝑃2 |

case𝑀 [𝑞] 𝑖−→ 𝑃𝑖 end | while𝑀 [𝑞] = 1 do 𝑃1 done.

The denotational semantics of 𝑃 is a quantum superoper-

ator, denoted by ⟦𝑃⟧. Ying [68] proves that:

⟦skip⟧ (𝜌) = 𝜌,
�
case𝑀 [𝑞] 𝑖−→ 𝑃𝑖 end

�
=

∑︁
𝑖

M𝑖 ◦ ⟦𝑃𝑖⟧ ,

⟦abort⟧ (𝜌) = 𝑂H, ⟦𝑞 := |0⟩⟧ (𝜌) =
∑︁
𝑖

|0⟩𝑞 ⟨𝑖 |𝜌 |𝑖⟩𝑞 ⟨0|,

⟦𝑃1; 𝑃2⟧ = ⟦𝑃1⟧ ◦ ⟦𝑃2⟧ , ⟦𝑞 := 𝑈 [𝑞]⟧ (𝜌) = 𝑈𝑞𝜌𝑈 †
𝑞
,

⟦while𝑀 [𝑞] = 1 do 𝑃 done⟧ =
∑︁
𝑛≥0

((M1 ◦ ⟦𝑃⟧)𝑛 ◦M0),

3
The skip statement does nothing and terminates. The abort statement

announces that the program fails, and halts the program without any

result. Statement 𝑞 := |0⟩ resets the register 𝑞 to |0⟩, and 𝑞 := 𝑈 [𝑞 ]
applies a unitary operation on register set 𝑞. These four statements’ de-

notational semantics are called elementary superoperators. Note that

there is no assignment statement due to the quantum no-cloning theo-

rem [66]. The loop while𝑀 [𝑞 ] = 1 do 𝑃1 done executes repeatedly. Each
time it measures 𝑞 by 𝑀 . If the measurement result is 1, it executes 𝑃1

and then starts over. Otherwise, it terminates. When there are only two

branches, we define syntax sugar if 𝑀 [𝑞 ] = 1 then 𝑃1 else 𝑃2 as an al-

ternative to case 𝑀 [𝑞 ] →𝑖 𝑃𝑖 end. Moreover, if 𝑃2 ≡ skip, we write

if 𝑀 [𝑞 ] = 1 then 𝑃1 .

where for a quantum measurement {𝑀𝑖 }𝑖∈𝐼 ,M𝑖 is defined

by M𝑖 (𝜌) = 𝑀𝑖𝜌𝑀
†
𝑖
. Both ◦ and

∑
𝑖 are operations over

quantum superoperators.

We formally define how to encode a quantum program as

an expression, and how to recover the denotational semantics

of a quantum program from an expression.

Definition 4.4. An encoder setting is a mapping 𝐸 from a

finite subset of QC(H) to Σ, that assigns a unique symbol

in Σ to the elementary superoperators (qubit resetting, uni-

tary application, and measurement branches) in the target

programs.

The encoder Enc of a program to ExpΣ with respect to an

encoder setting 𝐸 is defined inductively by:

Enc(skip) = 1; Enc(𝑞 := |0⟩) = 𝐸 (⟦𝑞 := |0⟩⟧);
Enc(abort) = 0; Enc(𝑞 := 𝑈 [𝑞]) = 𝐸 (⟦𝑞 := 𝑈 [𝑞]⟧);
Enc(𝑃1; 𝑃2) = Enc(𝑃1) · Enc(𝑃2);

Enc(case𝑀 [𝑞] 𝑖−→ 𝑃𝑖 end) =
∑︁
𝑖

𝐸 (M𝑖 ) · Enc(𝑃𝑖 );

Enc(while𝑀 [𝑞]=1do 𝑃 done)= (𝐸 (M1) ·Enc(𝑃))∗ ·𝐸 (M0),
where Σ𝑖 in (4.2.1) is an abbreviation of expression summation.

Theorem 4.5. For any quantum program 𝑃 and encoder set-

ting 𝐸, let int = (H , 𝐸−1), where 𝐸−1
maps back the unique

symbol for an elementary superoperator. Then

Qint (Enc(𝑃)) = ⟨⟦𝑃⟧⟩↑. (4.2.1)

A full proof by induction on 𝑃 is in Appendix C.6.

Note that in real applications, we usually define the en-

coder setting 𝐸 jointly for multiple programs {𝑃𝑖 } for tech-
nical convenience and easy comparison.

Now we have all the ingredients for Theorem 1.1.

Proof of Theorem 1.1. Wehave constructed the quantumpath

model and proved it a sound model of NKA in Theorem 3.6,

leading to the soundness of Horn theorems by Corollary 4.3.

We also show an embedding of quantum superoperators into

quantum path actions in Lemma 3.8.(ii), so Horn theorems

are interpreted as quantum superoperator equivalences. For

each quantum program, we encode it with a symbolic expres-

sion whose interpretation corresponds to its denotational

semantics, according to Theorem 4.5. Hence, if the NKA

equivalence of quantum programs’ encoding is derivable, the

equivalence of their denotational semantics is induced. □

In the next sections, we show applications of Theorem 1.1.

5 Validation of Quantum Compiler
Optimizing Rules

We demonstrate a few quantum compiler optimizing rules

and their validation in NKA, in light of a similar application

of KAT [40]. Note that many classical compiler optimizing

rules do not hold or make sense in the quantum setting. We
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have carefully selected those rules with reasonable quantum

counterparts, as well as quantum-specific rules found in real

quantum applications.

The validation of quantum program equivalence via NKA

consists of three steps: (1) program encoding: encode the

programs as expressions over an alphabet; (2) condition for-

mulation: identify necessary hypotheses and construct a

formula that encodes hypotheses and target equation; (3)

NKA derivation: derive the formula with the NKA axioms.

5.1 Loop Unrolling
Consider programsUnrolling1 andUnrolling2 in Figure 4

with a program 𝑃 and a projective measurement𝑀 .

Program Encoding: We encode the two programs by expres-

sions Enc(Unrolling1) = (𝑚0𝑝)∗𝑚1 and Enc(Unrolling2) =
(𝑚0𝑝 (𝑚0𝑝+𝑚1 ·1))∗𝑚1. The encoder setting is inferred easily.

Condition Formulation: Because𝑀 is a projective measure-

ment, M1 ◦M1 = M1 and M1 ◦M0 = OH can be encoded

by 𝑚1𝑚1 = 𝑚1 and 𝑚1𝑚0 = 0. Their equivalence can be

verified by the following formula:

⊢NKA 𝑚1𝑚1 =𝑚1 ∧𝑚1𝑚0 = 0 →
(𝑚0𝑝)∗𝑚1 = (𝑚0𝑝 (𝑚0𝑝 +𝑚1 · 1))∗𝑚1. (5.1.1)

NKA Derivation: This formula can be derived in NKA by:

(𝑚0𝑝 (𝑚0𝑝 +𝑚1 · 1))∗𝑚1

= (𝑚0𝑝𝑚0𝑝 +𝑚0𝑝𝑚1)∗𝑚1 (distributive-law)

= (𝑚0𝑝𝑚0𝑝)∗ (𝑚0𝑝𝑚1 (𝑚0𝑝𝑚0𝑝)∗)∗𝑚1 (denesting)

= (𝑚0𝑝𝑚0𝑝)∗ (𝑚0𝑝𝑚1 (1 +𝑚0𝑝𝑚0𝑝 (𝑚0𝑝𝑚0𝑝)∗))∗𝑚1

(fixed-point)

= (𝑚0𝑝𝑚0𝑝)∗ (𝑚0𝑝𝑚1)∗𝑚1 (𝑚1𝑚0 = 0)

= (𝑚0𝑝𝑚0𝑝)∗ (1 +𝑚0𝑝𝑚1 (1 +𝑚0𝑝𝑚1 (𝑚0𝑝𝑚1)∗))𝑚1

(fixed-point)

= (𝑚0𝑝𝑚0𝑝)∗ (1 +𝑚0𝑝𝑚1)𝑚1 (𝑚1𝑚0 = 0)

= (𝑚0𝑝𝑚0𝑝)∗ (1 +𝑚0𝑝)𝑚1 (𝑚1𝑚1 =𝑚1, distributive-law)

= (𝑚0𝑝)∗𝑚1 . (unrolling)

By Theorem 1.1, we have ⟦Unrolling1⟧ = ⟦Unrolling2⟧.

5.2 Loop Boundary
This rule is quantum-specific because it makes use of the re-

versible property of quantum operations. Consider programs

Boundary1 and Boundary2 in Figure 4, where 𝑃 is an ar-

bitrary program. Here the unitary 𝑈 acting on 𝑞 does not

affect the measurement on qubit𝑤 . In other words, quantum

measurement𝑀0 and𝑀1 commute with𝑈 .

Program Encoding: We encode these program by expressions

Enc(Boundary1) = (𝑚0𝑢𝑝𝑢
−1)∗𝑚1 and Enc(Boundary2) =

𝑢 (𝑚0𝑝)∗𝑚1𝑢
−1, where the encoder setting 𝐸 can be inferred.

Condition Formulation: The reversibility property 𝑈𝑈 −1 =

𝑈 −1𝑈 = 𝐼 can be encoded by 𝑢𝑢−1 = 𝑢−1𝑢 = 1 (at the level of

Unrolling1 ≡
while𝑀 [𝑞] = 0 do
𝑃

done.

Boundary1 ≡
while𝑀 [𝑤] = 0 do
𝑞 := 𝑈 [𝑞];
𝑃 ;

𝑞 := 𝑈 −1 [𝑞]
done.

Unrolling2 ≡
while𝑀 [𝑞] = 0 do
𝑃 ; if 𝑀 [𝑞] = 0 then 𝑃

done.

Boundary2 ≡
𝑞 := 𝑈 [𝑞];
while𝑀 [𝑤] = 0 do
𝑃 ;

done;

𝑞 := 𝑈 −1 [𝑞] .

Figure 4. Two pairs of equivalent programs with conditions.

quantum superoperators). Besides, the commutativity prop-

erty of measurement and 𝑈 is encoded as 𝑢𝑚0 = 𝑚0𝑢 and

𝑢𝑚1 =𝑚1𝑢. Then the formula we need to derive is

⊢NKA 𝑢𝑢
−1 = 𝑢−1𝑢 = 1 ∧ 𝑢𝑚0 =𝑚0𝑢 ∧ 𝑢𝑚1 =𝑚1𝑢 →
(𝑚0𝑢𝑝𝑢

−1)∗𝑚1 = 𝑢 (𝑚0𝑝)∗𝑚1𝑢
−1. (5.2.1)

NKA Derivation: The derivation of this formula in NKA is

(𝑚0𝑢𝑝𝑢
−1)∗𝑚1

= (𝑢𝑚0𝑝𝑢
−1)∗𝑚1 (𝑢𝑚0 =𝑚0𝑢)

= (1 + 𝑢 (𝑚0𝑝𝑢
−1𝑢)∗𝑚0𝑝𝑢

−1)𝑚1 (product-star)

= 𝑢 (𝑚0𝑝)∗𝑚1𝑢
−1 . (𝑢−1𝑢 = 1, fixed-point)

Then ⟦Boundary1⟧ = ⟦Boundary2⟧ by Theorem 1.1.

Due to space limitations, we showcase in Appendix B the

use of the Loop Boundary rule to optimize, as observed in

[16], one leading quantumHamiltonian simulation algorithm

called quantum signal processing (QSP) [46], as well as its

algebraic verification.

6 Normal Form of Quantum Programs
Here we use NKA to prove a quantum counterpart of the

classic Böhm-Jacopini theorem [11], namely, a normal form

of quantumwhile programs consisting of only a single loop.

The normal form of classical programs depends on the folk

operation, which copies the value of a variable to a new

variable. However, in quantum programs, the no-cloning

theorem prevents us from directly copying unknown states.

Our approach is to store every measurement result in an aug-

mented classical space and depends on the classical variables

to manipulate the control flow of the program. We note a

quantum version of the Böhm-Jacopini theoremwas recently

shown in [71], however, using a completely different and

non-algebraic approach.

Let us illustrate our idea with a simple example below

first. To unify the twowhile loops of Original into one, we
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redesign the control flow as in Constructed with a fresh

classical guard variable 𝑔 ∈ {0, 1, 2}.
Original ≡
while𝑀1 [𝑝] = 1 do 𝑃1 done;

while𝑀2 [𝑝] = 1 do 𝑃2 done;

𝑔 := |0⟩.

Constructed ≡
𝑔 := |1⟩;
while Meas[𝑔] > 0 do

if Meas[𝑔] > 1 then
if𝑀2 [𝑝] = 1 then 𝑃2 else 𝑔 := |0⟩

else
if𝑀1 [𝑝] = 1 then 𝑃1 else 𝑔 := |2⟩

done.
Here Meas[𝑔] is the computational basis measurement on

variable 𝑔. When 𝑔 is classical, Meas[𝑔] returns the value

of 𝑔, and does not modify 𝑔. The variable 𝑔 is used to store

the measurement results and decide which branch the pro-

gram executes in the next round. We prove ⟦Original⟧ =

⟦Constructed⟧ via NKA, using the outline in Section 5.

Program Encoding: We encode 𝑔 := |𝑖⟩ as 𝑔𝑖 , and Meas[𝑔] > 𝑖
as 𝑔>𝑖 and 𝑔≤𝑖 . Then the two programs are encoded as

Enc(Original) = (𝑚11𝑝1)∗𝑚10 (𝑚21𝑝2)∗𝑚20𝑔
0,

Enc(Constructed) = 𝑔1 (𝑔>0 (𝑔>1 (𝑚21𝑝2 +𝑚20𝑔
0)

+ 𝑔≤1 (𝑚11𝑝1 +𝑚10𝑔
2)))∗𝑔≤0.

Condition Formulation: Since 𝑔 is fresh, operations on 𝑔 com-

mutes with the quantum measurements𝑀1, 𝑀2 and subpro-

grams 𝑃1, 𝑃2 . This is encoded as 𝑔𝑖𝑚 𝑗𝑘 =𝑚 𝑗𝑘𝑔
𝑖 , 𝑔𝑖𝑝 𝑗 = 𝑝 𝑗𝑔

𝑖 .

Two consecutive assignment on 𝑔 will make the first one be

overwritten, which is encoded as 𝑔𝑖𝑔 𝑗 = 𝑔 𝑗 . On top of these,

𝑔𝑖𝑔> 𝑗 = 𝑔
𝑖
if 𝑖 > 𝑗 and 𝑔𝑖𝑔> 𝑗 = 0 if 𝑖 ≤ 𝑗 . Similarly, 𝑔𝑖𝑔≤ 𝑗 = 𝑔𝑖

if 𝑖 ≤ 𝑗 and 𝑔𝑖𝑔≤ 𝑗 = 0 if 𝑖 > 𝑗 .

NKA derivation: To simplify the proof, let

𝑋 = 𝑔>0𝑔>1 (𝑚21𝑝2 +𝑚20𝑔
0), 𝑌 = 𝑔>0𝑔≤1 (𝑚11𝑝1 +𝑚10𝑔

2).

Then Enc(Constructed) is equivalent to 𝑔1 (𝑋 + 𝑌 )∗𝑔≤0 .

We simplify 𝑔𝑖𝑋 ∗
first.

𝑔1𝑋 ∗ = 𝑔1 (1 + 𝑔>0𝑔>1 (𝑚20𝑔
0 +𝑚21𝑝2)𝑋 ∗) (fixed-point)

= 𝑔1, (distributive-law)

𝑔2𝑋 ∗ = 𝑔2 (𝑔>0𝑔>1𝑚21𝑝2)∗ (𝑔>0𝑔>1𝑚20𝑔
0

· (1 + 𝑔>0𝑔>1𝑚21𝑝2 (𝑔>0𝑔>1𝑚21𝑝2)∗))∗
(denesting, fixed-point)

= (𝑚21𝑝2)∗𝑔2 (𝑔>0𝑔>1𝑚20𝑔
0)∗ (star-rewrite)

= (𝑚21𝑝2)∗𝑔2 (1 + 𝑔>0𝑔>1𝑚20𝑔
0) (fixed-point)

= (𝑚21𝑝2)∗ (𝑔2 +𝑚20𝑔
0). (distributive-law)

Consider 𝑔1 (𝑋 +𝑌 )∗ = 𝑔1𝑋 ∗ (𝑌𝑋 ∗)∗ = 𝑔1 (𝑌𝑋 ∗)∗, and then
𝑔1 (𝑌𝑋 ∗)∗ = 𝑔1 (𝑔>0𝑔≤1𝑚11𝑝1𝑋

∗)∗

· (𝑔>0𝑔≤1𝑚10𝑔
2𝑋 ∗ (𝑔>0𝑔≤1𝑚11𝑝1𝑋

∗)∗)∗
(denesting)

= (𝑚11𝑝1)∗𝑔1 (𝑔>0𝑔≤1𝑚10𝑚
∗
21
(𝑔2 +𝑚20𝑔

0)
· (1 + (𝑔>0𝑔≤1𝑚11𝑝1𝑋

∗) (𝑔>0𝑔≤1𝑚11𝑝1𝑋
∗)∗))

(star-rewrite, fixed-point)

= (𝑚11𝑝1)∗𝑚10 (𝑚21𝑝2)∗ (𝑔2 +𝑚20𝑔
0).

Insert the above equation into 𝑔1 (𝑋 + 𝑌 )∗𝑔≤0.

𝑔1 (𝑋 + 𝑌 )∗𝑔≤0 = (𝑚11𝑝1)∗𝑚10 (𝑚21𝑝2)∗ (𝑔2 +𝑚20𝑔
0)𝑔≤0

= (𝑚11𝑝1)∗𝑚10 (𝑚21𝑝2)∗𝑚20𝑔
0.

This is exactly Enc(Constructed) = Enc(Original).
Theorem 1.1 gives ⟦Constructed⟧ = ⟦Original⟧ . Hence
the two loops have been merged into one, with an additional

classical space which is restored to 0 at the end.

We employ a similar idea to arbitrary programs by induc-

tion. Note that our above example corresponds to the case

𝑆1; 𝑆2 in induction. And our analysis above, which results in

an equivalent program with one while-loop and additional

classical space, constitutes a proof in that case. The more

complicated cases are proved similarly, whose details are in

Appendix C.7.

Theorem6.1. For any quantumwhile program 𝑃 over Hilbert

space H , there are a classical space C and a quantum while

program

𝑃0; while𝑀 do 𝑃1 done; 𝑝C := |0⟩ (6.0.1)

equivalent to 𝑃 ; 𝑝C := |0⟩ over H ⊗ C, where 𝑃0, 𝑃1 are

while-free, 𝑝C := |0⟩ resets the classical variables in C to |0⟩.

7 Non-idempotent Kleene Algebra with
Tests

As we stated before, NKA is not specifically designed for

quantum programs: the measurements are treated as normal

processes. Further characterization of measurements will

grant finer algebraic structure. KAT introduces tests into KA,

relying on the ability to simultaneously represent branching

and predicates by Boolean algebra. However, for quantum

programs, there is a gap between branching and predicates,

which requires us to treat predicates and branching sepa-

rately. We introduce effect algebra as a subalgebra of NKA

to tackle quantum predicates in Section 7.1. As for branch-

ing, quantummeasurements are abstracted as algebraic rules

based on predicates. These lead to non-idempotent Kleene al-

gebra with tests (NKAT) in Section 7.2. As an application, we

show how propositional quantum Hoare logic is subsumed

into algebraic rules of NKAT in Section 7.3 and Section 7.4.

7.1 Effect Algebra
The notion of quantum predicates was defined in [18] as an

operator 𝐴 ∈ PO(H) satisfying ∥𝐴∥ ≤ 1, and its negation

𝐴 = 𝐼H −𝐴. In the quantum foundations literature, quantum

predicates are also called effects. Their algebraic properties

have been extensively studied as effect algebras.
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Definition 7.1 ([26]). An effect algebra (EA) is a 4-tuple

(L, ⊕, 0, 𝑒), where 0, 𝑒 ∈ L, and ⊕ : L × L → L is a partial

binary operation satisfying the following properties: for any

𝑎, 𝑏, 𝑐 ∈ L,

1. if 𝑎 ⊕𝑏 is defined then 𝑏 ⊕𝑎 is defined and 𝑎 ⊕𝑏 = 𝑏 ⊕𝑎;
2. if 𝑎 ⊕ 𝑏 and (𝑎 ⊕ 𝑏) ⊕ 𝑐 are defined, then 𝑏 ⊕ 𝑐 and
𝑎 ⊕ (𝑏 ⊕ 𝑐) are defined and (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐);

3. if 𝑎 ⊕ 𝑒 is defined, then 𝑎 = 0;

4. for every 𝑎 ∈ L there exists a unique 𝑎 ∈ L such that

𝑎 ⊕ 𝑎 = 𝑒 ;

5. for every 𝑎 ∈ L, 0 ⊕ 𝑎 = 𝑎.

The fourth rule of the effect algebra defines a unary oper-

ator, the negation over L, denoted by 𝑎 for 𝑎 ∈ L.

An effect algebra is easily embedded in NKA by viewing

⊕ as a restricted + of NKA. Then we need to identify the

correspondence of predicates in the quantum path model.

Definition 7.2. For a predicate 𝐴, a constant superoperator
C𝐴 ∈ QC(H) for 𝐴 ∈ PO(H) is defined by

C𝐴 (𝜌) = tr[𝜌]𝐴. (7.1.1)

We let PPred (H) = {⟨C𝐴⟩↑ : 𝐴 ∈ PO(H), ∥𝐴∥ ≤ 1} be the
subset of P(H) containing the lifted constant superoperator.
A partial binary addition ⊕ over PPred (H) inherits from

the addition in P(H), defined by:

⟨C𝐴⟩↑ ⊕ ⟨C𝐵⟩↑ =
{
⟨C𝐴⟩↑ + ⟨C𝐵⟩↑ ⟨C𝐴⟩↑ + ⟨C𝐵⟩↑ ⪯ ⟨C𝐼H ⟩↑,
undefined otherwise.

Lemma 7.3. (PPred (H), ⊕,OH, ⟨C𝐼H ⟩↑) forms an effect al-

gebra. Specifically, the negation of it satisfies ⟨C𝐴⟩↑ = ⟨C
𝐴
⟩↑.

The proof is straightforward and in Appendix C.8.

7.2 Non-idempotent Kleene Algebras with Tests
We can characterize quantum measurements with the help

of predicates, for which we propose partitions algebraically.

Definition 7.4. AnNKAT is amany-sorted algebra (K,L,N ,
+, ·, ∗, ≤, 0, 1, 𝑒) such that

1. (K, +, ·, ∗, ≤, 0, 1) is an NKA;

2. L is a subset of K , and (L, ⊕, 0, 𝑒) is an effect algebra,

where ⊕ is the restriction of + w.r.t. top element 𝑒 and

partial order ≤; that is, for any 𝑎, 𝑏 ∈ L

𝑎 ⊕ 𝑏 =

{
𝑎 + 𝑏 𝑎 + 𝑏 ≤ 𝑒,
undefined otherwise;

(7.2.1)

3. N is a set of tuples (𝑚𝑖 )𝑖∈𝐼 , where 𝐼 are finite index sets
and𝑚𝑖 ∈ K , satisfying:

a. each entry in the tuples satisfies𝑚𝑖L ⊆ L; that is, for

𝑎 ∈ L,𝑚𝑖𝑎 ∈ L .
b. for each tuple,

∑
𝑖∈𝐼 𝑚𝑖𝑒 = 𝑒.

The tuples in N are called partitions.

We use L to characterize quantum predicates, and N to

characterize branching in quantum programs. For a quan-

tum measurement {𝑀𝑖 }𝑖∈𝐼 , its dual superoperators trans-
form quantum predicates to quantum predicates: E†

𝑀𝑖
(𝐴) =

𝑀
†
𝑖
𝐴𝑀𝑖 . This is captured by 𝑚𝑖L ⊆ L . Besides, general

quantum measurements satisfies

∑
𝑖∈𝐼 𝑀

†
𝑖
𝑀𝑖 = 𝐼 , which is

captured by

∑
𝑖∈𝐼 𝑚𝑖𝑒 = 𝑒 , since 𝑒 represents predicate 𝐼H .

4

Definition 7.5. The set of quantum measurements lifted as

quantum path actions in the dual sense is PMeas (H) ={(
⟨M†

𝑖
⟩↑

)
𝑖∈𝐼

: M𝑖 (𝜌) = 𝑀𝑖𝜌𝑀
†
𝑖
,
∑
𝑖∈𝐼 𝑀

†
𝑖
𝑀𝑖 = 𝐼H

}
.

Then we augment the quantum path model in the NKAT

framework, supporting quantum predicates (PPred (H)) and
quantum measurements (PMeas (H)).

Theorem 7.6. The NKAT axioms are sound for the algebra

(P(H),PPred (H),PMeas (H), +,⋄, ∗, ⪯,OH,IH, ⟨C𝐼H ⟩↑).

Note we have substituted the right composition opera-

tion ⋄ for the left composition operation ; in P(H). This
is mainly because our interpretation now uses dual super-

operators. The verification of each axiom is standard. The

detailed proofs are included in Appendix C.8.

Several useful rules are derivable inNKAT, and their proofs

are in Appendix C.9.

Lemma 7.7. The following formulae are derivable in NKAT.

Here 𝐼 is a finite index set, 𝑎, 𝑏, 𝑎𝑖 are elements of the effect

subalgebra, (𝑚𝑖 )𝑖∈𝐼 is a partition.
1. 0 ≤ 𝑎 ≤ 𝑒 ; 2. 𝑎 + 𝑎 = 𝑒 ; 3. 𝑎 = 𝑎;

4. 𝑎 ≤ 𝑏 → 𝑏 ≤ 𝑎; (negation-reverse)

5.

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 =

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 . (partition-transform)

7.3 Encoding of Quantum Hoare Triples
A natural usage of classical predicates is reasoning via Hoare

triples. With an algebraic representation of quantum predi-

cates and programs, we can encode quantum Hoare triples

as algebraic formulae. A quantum Hoare triple is a judgment

of the form {𝐴}𝑃{𝐵} where𝐴, 𝐵 are quantum predicates and

𝑃 is a quantum program. It refers to partial correctness [68],

denoted by |=𝑝𝑎𝑟 {𝐴}𝑃{𝐵}, if for all input 𝜌 ∈ D(H) there
is

tr(𝐴𝜌) ≤ tr(𝐵 ⟦𝑃⟧ (𝜌)) + tr(𝜌) − tr (⟦𝑃⟧ (𝜌)) . (7.3.1)

4
Our characterization of measurements matches positive-operator-valued

measurements (POVM), the most general quantum measurements. We can

further classify structures inside N to depict specific classes of quantum

measurements. For example, projection-valued measurements (PVM) can be

modeled as tuples (𝑚𝑖 )𝑖∈𝐼 where𝑚𝑖𝑚 𝑗 =𝑚𝑖 if 𝑖 = 𝑗 , otherwise𝑚𝑖𝑚 𝑗 = 0.

Furthermore, a set of projective and pair-wise commutative measure-

ment superoperators, defined by 𝐶 (H) = {E ∈ QC(H) : E(𝜌) =

𝐷𝜌𝐷†, 𝐷 is diagonal, 𝐷2 = 𝐷 }, represents the measurement superoper-

ators in probabilistic programs. A Boolean algebra can be observed from

it. It would be an interesting future direction to investigate the algebraic

relation between NKAT and this Boolean algebra.



PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuxiang Peng, Mingsheng Ying, and Xiaodi Wu

(Ax.UT) {𝑈 †𝐴𝑈 } 𝑞 := 𝑈 [𝑞] {𝐴} (Ax.In)
{∑︁

𝑖

|𝑖⟩𝑞 ⟨0|𝐴|0⟩𝑞 ⟨𝑖 |
}
𝑞 := |0⟩ {𝐴}

(Ax.Sk) {𝐴} skip {𝐴} (R.OR) 𝐴 ⊑ 𝐴′ {𝐴′}𝑃{𝐵′} 𝐵′ ⊑ 𝐵
{𝐴}𝑃{𝐵}

(Ax.Ab) {𝐼H} abort {𝑂H} (R.IF) {𝐴𝑖 }𝑃𝑖 {𝐵} for all 𝑖

{∑𝑖 M†
𝑖
(𝐴𝑖 )}case𝑀

𝑖−→ 𝑃𝑖 end{𝐵}

(R.SC) {𝐴}𝑃1{𝐵} {𝐵}𝑃2{𝐶}
{𝐴}𝑃1; 𝑃2{𝐶}

(R.LP)
{𝐵}𝑃{𝐶} 𝐶 = M†

0
(𝐴) +M†

1
(𝐵)

{𝐶}while𝑀 = 1 do 𝑃 done{𝐴}

Figure 5. A proof system for partial correctness of quantum

programs. Propositional quantum Hoare logic includes the

rules marked red in this figure (the lower six rules).

Then partial correctness |=𝑝𝑎𝑟 {𝐴}𝑃{𝐵} can be encoded as

an inequality 𝑝𝑏 ≤ 𝑎, where 𝑝 is the encoding of program 𝑃 ,

and effect algebra elements 𝑎, 𝑏 are the encoding of constant

superoperators C𝐴 and C𝐵 . This encoding can be interpreted

by a dual interpretation Q†
int
.
5
By setting any non-zero in-

put for Q†
int
(𝑝𝑏) ⪯ Q†

int
(𝑎) and Lemma 3.8.(ii), it turns to

⟦𝑃⟧† (𝐼 − 𝐵) ⊑ 𝐼 −𝐴, which is equivalent to |=𝑝𝑎𝑟 {𝐴}𝑃{𝐵}.

7.4 Propositional Quantum Hoare Logic
An important feature of KAT is that KAT subsumes the de-

ductive system of propositional Hoare logic, which contains

the rules directly related to the control flow of classical while

programs but not the rule for assignments [38]. As a coun-

terpart, quantum Hoare logic is an important tool in the

verification and analysis of quantum programs. A sound and

(relatively) complete proof system for partial correctness of

quantum while programs presented in Figure 5 is discussed

in [67]. We aim to subsume in NKAT a fragment of quantum

Hoare logic, called propositional quantum Hoare logic.

Due to the no-cloning of quantum information, the role

of assignment is played by initialization and unitary trans-

formation together in quantum programming. In quantum

Hoare logic, the rule (Ax.In) and (Ax.UT) for them include

atomic transformations, which cannot be captured by alge-

braic methods. As such, propositional quantum Hoare logic

will treat these rules as atomic propositions and work with

the following program syntax

𝑃 ::= 𝑝 | skip | abort | 𝑃1; 𝑃2 |

case𝑀 [𝑞] 𝑖−→ 𝑃𝑖 end | while𝑀 [𝑞] = 1 do 𝑃1 done.

Therefore, the deductive system of propositional quantum

Hoare logic consists of the rules marked red in Figure 5. Its

relative completeness and soundness can be proved similarly

to the original quantumHoare logic [67] as a routine exercise.

5
A dual interpretation Q†

int
is defined similar to Qint except for Q†

int
(𝑒 · 𝑓 ) =

Q†
int

(𝑒) ⋄ Q†
int

(𝑓 ) and Q†
int

(𝑎) = ⟨eval(𝑎)† ⟩↑. It describes the dual su-

peroperators lifted to P(H) . Properties of Qint like Theorem 4.2, Corol-

lary 4.3 hold for the dual interpretation similarly. Analogous of Theorem 4.5,

Q†
int

(Enc(𝑃 )) = ⟨⟦𝑃⟧† ⟩↑, holds as well.

By the discussions in Section 7.3, the partial correctness of

quantum Hoare triples can be encoded in NKAT. For a quan-

tum measurement {𝑀𝑖 }𝑖∈𝐼 we have an additional normal-

ization rule

∑
𝑖 𝑀

†
𝑖
𝑀𝑖 = 𝐼 , which is encoded as

∑
𝑖𝑚𝑖𝑒 = 𝑒.

Then the encoding of these rules is

(Ax.Sk) : 1𝑎 ≤ 𝑎,
(Ax.Ab) : 00 ≤ 1,

(R.OR) : 𝑎 ≤ 𝑎′ ∧ 𝑝𝑏 ′ ≤ 𝑎′ ∧ 𝑏 ′ ≤ 𝑏 → 𝑝𝑏 ≤ 𝑎,
(R.IF) :

(∧
𝑖∈𝐼 𝑝𝑖𝑏 ≤ 𝑎𝑖

)
→ (∑𝑖∈𝐼 𝑚𝑖𝑝𝑖 )𝑏 ≤ ∑

𝑖𝑚𝑖𝑎𝑖 ,

(R.SC) : 𝑝1𝑏 ≤ 𝑎 ∧ 𝑝2𝑐 ≤ 𝑏 → 𝑝1𝑝2𝑐 ≤ 𝑎,
(R.LP) : 𝑝𝑚0𝑎 +𝑚1𝑏 ≤ 𝑏 → (𝑚1𝑝)∗𝑚0𝑎 ≤ 𝑚0𝑎 +𝑚1𝑏.

Here 𝐼 is a finite index set, 𝑝, 𝑝𝑖 ∈ K , elements𝑎, 𝑏, 𝑐, 𝑎′, 𝑏 ′, 𝑎𝑖 ∈
L, and (𝑚𝑖 )𝑖∈𝐼 are partitions.

Theorem 7.8. With partitions (𝑚𝑖 )𝑖∈𝐼 , the formulae above

are derivable in NKAT.

Proof.

1. (Ax.Sk): 1𝑎 = 𝑎.

2. (Ax.Ab): 00 = 0 ≤ 1 by positivity.

3. (R.OR): By negation-reverse, we have 𝑎′ ≤ 𝑎 and 𝑏 ≤
𝑏 ′. So 𝑝𝑏 ≤ 𝑝𝑏 ′ ≤ 𝑎′ ≤ 𝑎.

4. (R.IF): Applying partition-transform, (∑𝑖∈𝐼 𝑚𝑖𝑝𝑖 )𝑏 =∑
𝑖∈𝐼 𝑚𝑖𝑝𝑖𝑏 ≤ ∑

𝑖∈𝐼 𝑚𝑖𝑎𝑖 =
∑
𝑖𝑚𝑖𝑎𝑖 .

5. (R.SC): 𝑝1 (𝑝2𝑐) ≤ 𝑝1𝑏 ≤ 𝑎.
6. (R.LP): By partition-transform,𝑚0𝑎 +𝑚1𝑏 =𝑚0𝑎+𝑚1𝑏.

With 𝑝𝑚0𝑎 +𝑚1𝑏 ≤ 𝑏, we have

𝑚0𝑎 +𝑚1𝑝𝑚0𝑎 +𝑚1𝑏 ≤ 𝑚0𝑎 +𝑚1𝑏 =𝑚0𝑎 +𝑚1𝑏.

Then (𝑚1𝑝)∗𝑚0𝑎 ≤ 𝑚0𝑎 +𝑚1𝑏 is concluded by apply-

ing 𝑞 + 𝑝𝑟 ≤ 𝑟 → 𝑝∗𝑞 ≤ 𝑟 .
□

It is clear that the NKAT subsumes the encoding of propo-

sitional quantum Hoare logic.
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Appendix

A From NKA to Formal and Rational
Power Series

Researches on formal power series date back to [55], and see

also some recent references [9, 19].

Formal power series generalize formal languages byweigh-

ing strings with the extended natural number N.

Definition A.1. The extended set of natural numbers is

N = N∪{∞}, where∞ is an added top element. The calculation

in this semiring follows the correspondences in N, and:

0 + ∞ = ∞, 0 · ∞ = ∞ · 0 = 0, 0
∗ = 1;

∀𝑛 ∈ N\{0} : 𝑛 + ∞ = ∞, 𝑛 · ∞ = ∞ · 𝑛 = ∞, 𝑛∗ = ∞.

A countable summation

∑
𝑖∈𝐼 𝑛𝑖 for 𝑛𝑖 ∈ N is defined to be

∞ if there exists an 𝑖0 ∈ 𝐼 such that 𝑛𝑖0 = ∞, or if there exists

infinitely many non-zero 𝑛𝑖 ’s. In other cases, it degenerates to

a finite summation and the definition follows naturally.

The partial order in N extends the natural partial order in

N by ∀𝑛 ∈ N, 𝑛 ≤ ∞.

Definition A.2 ([9, 19]). For a finite alphabet Σ, a formal

power series f over Σ is a function f : Σ∗ → N, and can

be represented by f =
∑
𝑤∈Σ∗ f [𝑤]𝑤 where f [𝑤] ∈ N is the

coefficient of string𝑤 . We denote the set of the formal power

series over Σ by N⟨⟨Σ∗⟩⟩.

For example, the zero mapping in N⟨⟨Σ∗⟩⟩ is represented
by f = 0. The unit mapping f = 1𝜖 maps the empty string 𝜖

to 1, and the others to 0. The mapping represented by f = 1𝑎

for 𝑎 ∈ Σ maps 𝑎 to 1, and the others to 0.

Definition A.3. Addition, multiplication and the star opera-

tion are defined on N⟨⟨Σ∗⟩⟩ by
(f + g) [𝑤] = f [𝑤] + g[𝑤], (A.0.1)

(f · g) [𝑤] =
∑︁
𝑢𝑣=𝑤

f [𝑢]g[𝑣], (A.0.2)

(f∗) [𝑤] =
∑︁
𝑛≥0

∑︁
𝑢1 · · ·𝑢𝑛=𝑤

f [𝑢1] · · · f [𝑢𝑛]𝑤. (A.0.3)

Here 𝑢𝑣 is the concatenation of strings in Σ∗
, and 𝑢𝑖 can be the

empty string 𝜖 in (A.0.3). Note also that f∗ =
∑
𝑛≥0

f𝑛 .
The partial order in N⟨⟨Σ∗⟩⟩ is defined by:

f ≤ g ↔ ∀𝑤 ∈ Σ∗, f [𝑤] ≤ g[𝑤] . (A.0.4)

With these operations in formal power series, it is possible

to interpret expressions over Σ as formal power series over

Σ by a semantic mapping {{−}}.

Definition A.4. {{−}} : ExpΣ → N⟨⟨Σ∗⟩⟩ is defined by
{{0}} = 0, {{𝑎}} = 1𝑎, {{𝑒 + 𝑓 }} = {{𝑒}} + {{𝑓 }},
{{1}} = 1𝜖, {{𝑒∗}} = {{𝑒}}∗, {{𝑒 · 𝑓 }} = {{𝑒}} · {{𝑓 }},

where 𝑎 ∈ Σ, and 𝑒, 𝑓 ∈ ExpΣ.

Then we are able to define rational power series as an

analogue to regular languages.

Definition A.5 ([9, 19]). The set of rational power series,

denoted by N
rat⟨⟨Σ∗⟩⟩, is the smallest subset of N⟨⟨Σ∗⟩⟩ con-

taining: (1) f = 0; (2) f = 1𝜖 ; (3) f = 1𝑎 for all 𝑎 ∈ Σ, and is
closed under +, ·, ∗.

A series of works from Béal et al. [7, 8], Bloom and Ésik

[10], Ésik and Kuich [21] demonstrates the rational power

series as a pivotal model for the NKA axioms.

Theorem A.6 ([10, 21]). The NKA axioms are sound and

complete for (Nrat⟨⟨Σ∗⟩⟩, +, ·, ∗,
≤, 0, 1𝜖). Namely, for any expression 𝑒 and 𝑓 over Σ, we have

⊢NKA 𝑒 = 𝑓 ⇔ {{𝑒}} = {{𝑓 }}. (A.0.5)

B Optimizing Quantum Signal Processing
Quantum signal processing (QSP) [46] is an advanced quan-

tum algorithm for Hamiltonian simulation problem. In [16]

an optimization is observed by canceling adjacent sub-processes.

The QSP implementation before (qsp) and after (qsp’) the

optimization is illustrated in Figure 6. The algorithm QSP

simulates the Hamiltonian 𝐻 =
∑𝐿
𝑙=1
𝛼𝑙𝐻𝑙 on qubit register

𝑞 with high probability. Let us explain the components in

QSP briefly, whose details imply some commutativity con-

ditions for our purpose. |𝐺⟩ = 1/
√︃∑𝐿

𝑙=1
𝛼𝑙

∑𝐿
𝑙=1

√
𝛼𝑙 |𝑙⟩ is a

state defined by 𝐻 . Φ =
∑𝑛
𝑗=1

| 𝑗⟩⟨ 𝑗 | ⊗ 𝑒−𝑖𝜙 𝑗𝜎
𝑍 /2

is an opera-

tion rotating qubit 𝑝 with a pre-defined angle 𝜙 𝑗 . Unitary 𝑆 =

(1−𝑖) |𝐺⟩⟨𝐺 |−𝐼 is a partial reflection operator about state |𝐺⟩,

qsp[𝑞] ≡
𝑐 := |𝑛⟩; 𝑝 := |+⟩; (𝑐0𝑝0)

𝑟 := |𝐺⟩; (𝑟0)

while𝑀 [𝑐] = 1 do ({𝑚𝑖 })

𝑐, 𝑝 := Φ[𝑐, 𝑝]; (𝜙)

𝑟 := 𝑆 [𝑟 ]; (𝑠)

𝑝, 𝑟, 𝑞 := C𝑊 [𝑝, 𝑟, 𝑞];(𝑤𝑐 )
𝑟 := 𝑆−1 [𝑟 ]; (𝑠−1

)

𝑐, 𝑝 := Φ−1 [𝑐, 𝑝]; (𝜙−1
)

𝑐 := Dec[𝑐] (𝑑)

done;

if 𝑀 |+⟩ |𝐺 ⟩ [𝑝, 𝑟 ] = 0

then abort (𝜏00 + 𝜏11)

qsp’[𝑞] ≡
𝑐 := |𝑛⟩; 𝑝 := |+⟩; (𝑐0𝑝0)

𝑟 := |𝐺⟩; (𝑟0)

while𝑀 [𝑐] = 1 do ({𝑚𝑖 })

𝑐, 𝑝 := Φ[𝑐, 𝑝]; (𝜙)

𝑝, 𝑟, 𝑞 := C𝑊 [𝑝, 𝑟, 𝑞];(𝑤𝑐 )
𝑐, 𝑝 := Φ−1 [𝑐, 𝑝]; (𝜙−1

)

𝑐 := Dec[𝑐] (𝑑)

done;

if 𝑀 |+⟩ |𝐺 ⟩ [𝑝, 𝑟 ] = 0

then abort (𝜏00 + 𝜏11)

Figure 6.The programqsp and qsp’. Themeasurement𝑀 [𝑐]
is {𝑀1 = |0⟩⟨0|, 𝑀0 = 𝐼𝑐−𝑀1} on register 𝑐 . Themeasurement

𝑀 |+⟩ |𝐺 ⟩ [𝑝, 𝑟 ] is {𝑀1 = |+⟩⟨+| ⊗ |𝐺⟩⟨𝐺 |, 𝑀0 = 𝐼𝑝,𝑟 − 𝑀1} on
register 𝑝 and 𝑟 jointly.
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and𝑊 = −𝑖 ((2|𝐺⟩⟨𝐺 | − 𝐼 ) ⊗ 𝐼 )∑𝐿
𝑙=1

|𝑙⟩⟨𝑙 | ⊗𝐻𝑙 , which defines
C𝑊 = |+⟩⟨+| ⊗ 𝐼 + |−⟩⟨−| ⊗𝑊 . Dec = |𝑛⟩⟨0| +∑𝑛

𝑗=1
| 𝑗 − 1⟩⟨ 𝑗 |

is the unitary implementing 𝑗 ↦→ ( 𝑗 − 1) mod 𝑛.

Program Encoding: We encode the programs in Figure 6 as

Enc(qsp) = 𝑐0𝑝0𝑟0 (𝑚1𝜑𝑠𝑤𝑐𝑠
−1𝜑−1𝑑)∗𝑚0 (𝜏00 + 𝜏11),

Enc(qsp’) = 𝑐0𝑝0𝑟0 (𝑚1𝜑𝑤𝑐𝜑
−1𝑑)∗𝑚0 (𝜏00 + 𝜏11).

The detailed encoder setting is self-explanatory.

Condition Formulation: One can derive commutative condi-

tions because 𝑐, 𝑝 := Φ[𝑐, 𝑝] and 𝑟 := 𝑆 [𝑟 ], similarly 𝑟 :=

𝑆−1 [𝑟 ] and 𝑐, 𝑝 := Φ−1 [𝑐, 𝑝]; 𝑐 := Dec[𝑐], apply on different

quantum variables and hence commute. Algebraically, we

hence have𝜑𝑠 = 𝑠𝜑 , and𝜑−1𝑑𝑠−1 = 𝑠−1𝜑−1𝑑 . Moreover,𝑀 [𝑐]
is commutable to 𝑟 := 𝑆 [𝑟 ], so𝑚1𝑠 = 𝑠𝑚1 and𝑚0𝑠 = 𝑠𝑚0 .

Since 𝑆 |𝐺⟩⟨𝐺 |𝑆† = |𝐺⟩⟨𝐺 |, we have 𝑟0𝑠 = 𝑟0. Similarly the

Kraus operator ( |+⟩⟨+|⊗ |𝐺⟩⟨𝐺 |) · (𝐼𝑝 ⊗ ((1+𝑖) |𝐺⟩⟨𝐺 |−𝐼𝑟 )) =
𝑖 |+⟩⟨+| ⊗ |𝐺⟩⟨𝐺 |, and the phases are cancelled when repre-

sented by superoperator. This is encoded as 𝑠−1𝜏1 = 𝜏1. Then

we need to show Enc(qsp) = Enc(qsp’) with these hypothe-

ses and the NKA axioms.

NKA derivation: By (5.2.1), we have

𝑐0𝑝0𝑟0 (𝑚1𝜑𝑠𝑤𝑐𝑠
−1𝜑−1𝑑)∗𝑚0 (𝜏00 + 𝜏11)

=𝑐0𝑝0𝑟0 (𝑠𝑚1𝜑𝑤𝑐𝜑
−1𝑑𝑠−1)∗𝑚0𝜏1 (commutativity)

=𝑐0𝑝0𝑟0𝑠 (𝑚1𝜑𝑤𝑐𝜑
−1𝑑)∗𝑚0𝑠

−1𝜏1 ((5.2.1))

=𝑐0𝑝0𝑟0 (𝑚1𝜑𝑤𝑐𝜑
−1𝑑)∗𝑚0𝜏1, (absorption-hypotheses)

=𝑐0𝑝0𝑟0 (𝑚1𝜑𝑤𝑐𝜑
−1𝑑)∗𝑚0 (𝜏00 + 𝜏11).

Notice that𝑚1 and 𝜑 do not commute, so we cannot apply

(5.2.1) further. By Corollary 4.3, Theorem 4.5 and Lemma 3.8.(ii),

⟦qsp⟧ = ⟦qsp’⟧. Note that in qsp’, 𝑆 and 𝑆−1
vanish, which

could largely reduce the total gate count.

C Proofs of Technical Results
We call the last two star laws (𝑞 + 𝑝𝑟 ≤ 𝑟 → 𝑝∗𝑞 ≤ 𝑟 and

𝑞 + 𝑟𝑝 ≤ 𝑟 → 𝑞𝑝∗ ≤ 𝑟 ) the inductive star laws. They are

ubiquitous in the proofs.

C.1 Detailed Proof of Lemma 2.3
Proof of Lemma 2.3. We rewrite the proofs in [21] for the

rules in Figure 2a.

• (1 + 𝑝𝑝∗ = 𝑝∗): By star laws there is 1 + 𝑝𝑝∗ ≤ 𝑝∗, so
we only need to prove the other side. Because ≤ is

monotone, we multiply 𝑝 and then plus 1 on the both

sides, leading to

1 + 𝑝 (1 + 𝑝𝑝∗) ≤ 1 + 𝑝𝑝∗ .
Applying the inductive star law gives 𝑝∗ ≤ 1 + 𝑝𝑝∗.

• (1 + 𝑝∗𝑝 = 𝑝∗): First we show ≥ side. Notice that

1 + 𝑝 (1 + 𝑝∗𝑝) = 1 + 𝑝 + 𝑝𝑝∗𝑝 = 1 + (1 + 𝑝𝑝∗)𝑝 = 1 + 𝑝∗𝑝.

Applying the inductive star law, we have 𝑝∗ ≤ 1 + 𝑝∗𝑝 .
Then we show ≤ side. Applying star law,

𝑝 + 𝑝𝑝𝑝∗ = 𝑝 (1 + 𝑝𝑝∗) ≤ 𝑝𝑝∗ .

So 𝑝∗𝑝 ≤ 𝑝𝑝∗ holds. Because ≤ is preserved by +, we
conclude 1 + 𝑝∗𝑝 ≤ 1 + 𝑝𝑝∗ ≤ 𝑝∗ .

• (𝑝 ≤ 𝑞 → 𝑝∗ ≤ 𝑞∗): We multiply 𝑞∗ and add 1 on both

sides, which gives

1 + 𝑝𝑞∗ ≤ 1 + 𝑞𝑞∗ ≤ 𝑞∗ .
By star laws, there is 𝑝∗ ≤ 𝑞∗.

• (1 + 𝑝 (𝑞𝑝)∗𝑞 = (𝑝𝑞)∗): We show ≥ side first. By semir-

ing laws there is

1 + (𝑝𝑞) (1 + 𝑝 (𝑞𝑝)∗𝑞) = 1 + 𝑝 (1 + 𝑞𝑝 (𝑞𝑝)∗)𝑞 = 1 + 𝑝 (𝑞𝑝∗)𝑞.
Because of the inductive star law, we get (𝑝𝑞)∗ ≤ 1 +
𝑝 (𝑞𝑝)∗𝑞.
Similarly for ≤ side, we consider

𝑞 + 𝑞𝑝𝑞(𝑝𝑞)∗ = 𝑞(1 + 𝑝𝑞(𝑝𝑞)∗ = 𝑞(𝑝𝑞)∗.
We know that (𝑞𝑝)∗𝑞 ≤ 𝑞(𝑝𝑞)∗ . Multiplying 𝑝 and

adding 1 on the both sides give

1 + 𝑝 (𝑞𝑝)∗𝑞 ≤ 1 + 𝑝𝑞(𝑝𝑞)∗ ≤ (𝑝𝑞)∗.
• ((𝑝𝑞)∗𝑝 = 𝑝 (𝑞𝑝)∗): Multiplying 𝑝 on product-star re-

sults in

(𝑝𝑞)∗𝑝 = 𝑝 + 𝑝 (𝑞𝑝)∗𝑞𝑝 = 𝑝 (𝑞𝑝)∗ .
• ((𝑝 + 𝑞)∗ = (𝑝∗𝑞)∗𝑝∗): To show (𝑝 + 𝑞)∗ ≤ (𝑝∗𝑞)∗𝑝∗,
we apply sliding twice, fixed-point twice, followed by

sliding once :

1 + (𝑝 + 𝑞) (𝑝∗𝑞)∗𝑝∗ = 1 + 𝑝 (𝑝∗𝑞)∗𝑝∗ + 𝑞(𝑝∗𝑞)∗𝑝∗

= 𝑝𝑝∗ (𝑞𝑝∗)∗ + (1 + (𝑞𝑝∗)∗𝑞𝑝∗)
= 𝑝𝑝∗ (𝑞𝑝∗)∗ + (𝑞𝑝∗)∗

= (1 + 𝑝𝑝∗) (𝑞𝑝∗)∗

= 𝑝∗ (𝑞𝑝∗)∗

= (𝑝∗𝑞)∗𝑝∗

Then by the inductive star law there is (𝑝 + 𝑞)∗ ≤
(𝑝∗𝑞)∗𝑝∗ .
The other side is by

(𝑝 + 𝑞)∗ = 1 + (𝑝 + 𝑞) (𝑝 + 𝑞)∗ = (1 + 𝑞(𝑝 + 𝑞)∗) + 𝑝 (𝑝 + 𝑞)∗ .
Because of the inductive star law there is

𝑝∗ + 𝑝∗𝑞(𝑝 + 𝑞)∗ = 𝑝∗ (1 + 𝑞(𝑝 + 𝑞)∗) ≤ (𝑝 + 𝑞)∗ .
Apply it once more, we eventually get (𝑝∗𝑞)∗𝑝∗ ≤
(𝑝 + 𝑞)∗ .

• ((𝑝 + 𝑞)∗ = 𝑝∗ (𝑞𝑝∗)∗): By sliding there is 𝑝∗ (𝑞𝑝∗)∗ =

(𝑝∗𝑞)∗𝑝∗ = (𝑝 + 𝑞)∗ .
• (0 ≤ 𝑝): Note that 0+1 ·𝑝 = 𝑝 ≤ 𝑝 . Apply the inductive

star law, and we have 0 = 1
∗ · 0 ≤ 𝑝.

Rules in Figure 2b can be derived by:
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• (unrolling): For ≤ side, applying fixed-point twice on

𝑝∗, we have

1 + 𝑝 + (𝑝𝑝)𝑝∗ = 𝑝∗ .
Applying the inductive star law, we have (𝑝𝑝)∗ (1 +
𝑝) ≤ 𝑝∗.
For ≥ side, applying fixed-point on (𝑝𝑝)∗ we have

1 + (𝑝𝑝)∗ (1 + 𝑝)𝑝 = (𝑝𝑝)∗𝑝 + (1 + (𝑝𝑝)∗𝑝𝑝) = (𝑝𝑝)∗ (1 + 𝑝).
Then by the inductive law, we have 𝑝∗ ≤ (𝑝𝑝)∗ (1+𝑝).

• (swap-star): Applying fixed-point there is

𝑝∗𝑞 = 𝑞 + 𝑝∗𝑝𝑞 = 𝑞 + 𝑝∗𝑞𝑝.
By the inductive star law there is 𝑞𝑝∗ ≤ 𝑝∗𝑞.
Similarly, the other side is by

𝑞𝑝∗ = 𝑞 + 𝑞𝑝𝑝∗ = 𝑞 + 𝑝𝑞𝑝∗,
which leads to 𝑝∗𝑞 ≤ 𝑞𝑝∗.

• (star-rewrite): By fixed-point there is

𝑟 ∗𝑝 = 𝑝 + 𝑟 ∗𝑟𝑝 = 𝑝 + 𝑟 ∗𝑝𝑞.
Applying the inductive star law there is 𝑝𝑞∗ ≤ 𝑟 ∗𝑝.
To prove the other side, note that with fixed-point

there is

𝑝𝑞∗ = 𝑝 + 𝑝𝑞𝑞∗ = 𝑝 + 𝑟𝑝𝑞∗ .
The inductive star law gives 𝑟 ∗𝑝 ≤ 𝑝𝑞∗ .

□

C.2 Detailed Proofs of Lemma 3.2 and Several Facts
about S(H)

Proof of Lemma 3.2. Reflexivity is proved by choosing 𝐽 ′ = 𝐼 ′

in the definition. To prove transitivity, we assume

⊎
𝑖∈𝐼 𝜌𝑖 ≲⊎

𝑗 ∈𝐽 𝜎 𝑗 and
⊎
𝑗 ∈𝐽 𝜎 𝑗 ≲

⊎
𝑘∈𝐾 𝛾𝑘 . For 𝜖 > 0 and finite 𝐼 ′ ⊆ 𝐼 ,

there exists a finite 𝐽 ′ ⊆ 𝐽 such that

∑
𝑖∈𝐼 ′ 𝜌𝑖 ⊑ 𝜖

2
𝐼H +∑

𝑗 ∈𝐽 ′ 𝜎 𝑗 . Then there exists a finite𝐾
′ ⊆ 𝐾 such that

∑
𝑗 ∈𝐽 ′ 𝜎 𝑗 ⊑

𝜖
2
𝐼H +∑

𝑘∈𝐾 ′ 𝛾𝑘 as well. Because ⊑ is monotone with respect

to +, we have ∑
𝑖∈𝐼 ′ 𝜌𝑖 ⊑ 𝜖𝐼H + ∑

𝑘∈𝐾 ′ 𝛾𝑘 . □

LemmaC.1. Wedemonstrate several basic facts aboutS(H).
(i) If for all 𝑖 ∈ 𝐼 , ⊎𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 ≲

⊎
𝑘∈𝐾𝑖

𝜎𝑖𝑘 , then⊎
𝑖∈𝐼

⊎
𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗 ≲
⊎
𝑖∈𝐼

⊎
𝑘∈𝐾𝑖

𝜎𝑖𝑘 . (C.2.1)

(ii) Let 𝑛𝑖 ∈ N for all 𝑖 ∈ 𝐼 . Then for all

⊎
𝑗 ∈𝐽 𝜌 𝑗 ∈ S(H),

there is⊎
𝑖∈𝐼

⊎
0≤𝑘<𝑛𝑖

⊎
𝑗 ∈𝐽𝑖

𝜌 𝑗 ∼
⊎

0≤𝑘<∑
𝑖∈𝐼 𝑛𝑖

⊎
𝑗 ∈𝐽𝑖

𝜌 𝑗 . (C.2.2)

Here {𝑘 : 0 ≤ 𝑘 < ∞} = N.

(iii) If

∑
𝑖∈𝐼 𝜌𝑖 converges in PO(H), then⊎

𝑖∈𝐼
𝜌𝑖 ∼

{�����∑︁
𝑖∈𝐼

𝜌𝑖

�����
}
. (C.2.3)

(iv) For a series

⊎
𝑖∈N

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 ∈ S(H), if there exists⊎

𝑘∈𝐾 𝜎𝑘 such that for all 𝑛 ≥ 0,⊎
0≤𝑖<𝑛

⊎
𝑗 ∈𝐽𝑖

𝜌𝑖 𝑗 ≲
⊎
𝑘∈𝐾

𝜎𝑘 , (C.2.4)

then

⊎
𝑖∈N

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 ≲

⊎
𝑘∈𝐾 𝜎𝑘 .

(v) If

⊎
𝑖∈𝐼 𝜌𝑖 ≲

⊎
𝑗 ∈𝐽 𝜎 𝑗 , then for E ∈ QC(H), there is⊎

𝑖∈𝐼
E(𝜌𝑖 ) ≲

⊎
𝑗 ∈𝐽

E(𝜎 𝑗 ). (C.2.5)

Proof of Lemma C.1. W.l.o.g. we assume the index sets to be

subsets of N.

(i) For any 𝜖 > 0 and any finite subseries

⊎
𝑖∈𝐼 , 𝑗 ∈𝐽 ′

𝑖
𝜌𝑖 𝑗 of⊎

𝑖∈𝐼
⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 , there exists an 𝑁 such that for 𝑖 ≥ 𝑁 ,

there is 𝐽 ′𝑖 = 𝜙 . When 𝑁 = 0, then {(𝑖, 𝑗) : 𝑖 ∈ 𝐼 , 𝑗 ∈
𝐽 ′𝑖 } = 𝜙 and the inequality holds with an empty subset

chosen on the right hand side. Otherwise let 𝜖 ′ = 𝜖
𝑁
,

so there exist finite index set 𝐾 ′
𝑖 for each 0 ≤ 𝑖 < 𝑁

such that

∑
𝑗 ∈𝐽 ′

𝑖
𝜌𝑖 𝑗 ⊑ 𝜖 ′𝐼 + ∑

𝑘∈𝐾 ′
𝑖
𝜎𝑖𝑘 . Adding them

up gives

∑
0≤𝑖<𝑁,𝑗 ∈𝐽 ′

𝑖
𝜌𝑖 𝑗 ⊑ 𝜖𝐼 + ∑

0≤𝑖<𝑁,𝑘∈𝐾 ′
𝑖
𝜎𝑖𝑘 . This

concludes

⊎
𝑖

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 ≲

⊎
𝑖

⊎
𝑘∈𝐾𝑖

𝜎𝑖𝑘 .

(ii) By reordering the multisets it holds apparently.

(iii) (≲): Notice that for any finite 𝐼 ′ ⊆ 𝐼 ,
∑
𝑖∈𝐼 ′ 𝜌𝑖 ⊑

∑
𝑖∈𝐼 𝜌𝑖 .

Then this direction comes from the definition.

(≳): Since
∑
𝑖∈𝐼 𝜌𝑖 converges, for any 𝜖 > 0 there is

an 𝑁 > 0 such that



∑
𝑖∈𝐼 ,𝑖>𝑁 𝜌𝑖



 ≤ 𝜖, where ∥·∥ is

the spectral norm. Hence

∑
𝑖∈𝐼 𝜌𝑖 ⊑ 𝜖𝐼H +∑

𝑖∈𝐼 ,𝑖≤𝑁 𝜌𝑖 .
This gives ≳ direction.

(iv) Consider any finite subseries

⊎
𝑖∈N, 𝑗 ∈𝐽 ′

𝑖
𝜌𝑖 𝑗 selected

from

⊎
𝑖≥0

⊎
𝑗 ∈𝐽𝑖 𝜌𝑖 𝑗 . There exists 𝑁 such that for all

𝑖 ≥ 𝑁, 𝐽 ′𝑖 = 𝜙 . Let 𝑛 = 𝑁 in the assumption, then we

know that for any 𝜖 > 0 there exists a finite 𝐾 ′ ⊆ 𝐾

such that

∑
0≤𝑖<𝑁,𝑗 ∈𝐽 ′

𝑖
𝜌𝑖 𝑗 ⊑ 𝜖𝐼H + ∑

𝑘∈𝐾 ′ 𝜎𝑘 , and this

concludes the proof.

(v) If E(𝐼H) = 𝑂H, then E ≡ 𝑂H , and we are done by

definition. Now we assume E(𝐼H) ≠ 𝑂H . For every
finite 𝐼 ′ ⊆ 𝐼 and 𝜖 > 0, there exists 𝐽 ′ ⊆ 𝐽 such that∑
𝑖∈𝐼 ′ 𝜌𝑖 ⊑ 𝜖

∥E (𝐼H ) ∥ 𝐼H + ∑
𝑗 ∈𝐽 ′ 𝜎 𝑗 . Then∑︁

𝑖∈𝐼 ′
E(𝜌𝑖 ) = E

(∑︁
𝑖∈𝐼 ′

𝜌𝑖

)
⊑ E

(
𝜖

∥E(𝐼H)∥ 𝐼H +
∑︁
𝑗 ∈𝐽 ′

𝜎 𝑗

)
⊑ 𝜖𝐼H +

∑︁
𝑗 ∈𝐽 ′

E(𝜎 𝑗 ).

Here ∥·∥ is the spectral norm. This leads to

⊎
𝑖∈𝐼 E(𝜌𝑖 ) ≲⊎

𝑗 ∈𝐽 E(𝜎 𝑗 ).
□
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C.3 Detailed Proofs of Lemma C.2 and Theorem 3.6
Lemma C.2.

∑
𝑖 , ; and ∗ operations are closed in P(H).

Proof of Lemma C.2. Themonotone of

∑
𝑖 follows LemmaC.1.(i),

and the monotone of ; follows the definition. It suffices to

verify the linearity of them.

For

∑
𝑖 , notice that(∑︁

𝑘

A𝑘

) (∑︁
𝑖

∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑘

A𝑘

(∑︁
𝑖

∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑘

∑︁
𝑖

A𝑘

(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑖

∑︁
𝑘

A𝑘

(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑖

(∑︁
𝑘

A𝑘

) (∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
.

For ; operation, it is directly proved by

(A1;A2)
(∑︁
𝑖

∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
= A2

(∑︁
𝑖

A1

(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] ))
=

∑︁
𝑖

A2

(
A1

(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] ))
=

∑︁
𝑖

(A1;A2)
(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
.

□

Proof of Theorem 3.6. The proofs of monotone of + and ; op-

erations, the star laws are presented here.

• 𝑝 ≤ 𝑞 ∧ 𝑟 ≤ 𝑠 → 𝑝 + 𝑟 ≤ 𝑞 + 𝑠: First we show that +
and ≤ over PO∞ (H) follow this rule.

Let ⊎ be an abbreviation of

⊎
𝑖 where there are only

two operands.

For

∑
𝑖∈𝐼 [𝜌𝑖 ] ≤

∑
𝑗 ∈𝐽

[
𝜎 𝑗

]
and

∑
𝑘∈𝐾 [𝛾𝑘 ] ≤

∑
𝑙 ∈𝐿 [𝜒𝑙 ],

notice that

⊎
𝑖∈𝐼 𝜌𝑖 ≲

⊎
𝑗 ∈𝐽 𝜎 𝑗 and

⊎
𝑘∈𝐾 𝛾𝑘 ≲

⊎
𝑙 ∈𝐿 𝜒𝑙 .

By LemmaC.1.(i) there is

⊎
𝑖∈𝐼 𝜌𝑖⊎

⊎
𝑘∈𝐾 𝛾𝑘 ≲

⊎
𝑗 ∈𝐽 𝜎 𝑗⊎⊎

𝑙 ∈𝐿 𝜒𝑙 . Hence∑︁
𝑖∈𝐼

[𝜌𝑖 ] +
∑︁
𝑘∈𝐾

[𝛾𝑘 ] =
[⊎
𝑖∈𝐼

𝜌𝑖 ⊎
⊎
𝑘∈𝐾

𝛾𝑘

]
≤

[⊎
𝑗 ∈𝐽

𝜎 𝑗 ⊎
⊎
𝑙 ∈𝐿

𝜒𝑙

]
=

∑︁
𝑗 ∈𝐽

[
𝜎 𝑗

]
+

∑︁
𝑙 ∈𝐿

[𝜒𝑙 ] .

Then at P(H) level, the inequality holds by definition.
• 𝑝 ≤ 𝑞 ∧ 𝑟 ≤ 𝑠 → 𝑝𝑟 ≤ 𝑞𝑠: Because A ∈ P(H) is
monotone, by definition this law holds.

• 1 + 𝑝𝑝∗ ≤ 𝑝∗: For any A ∈ P(H), there is

IH + (A;A∗) = A0 +
(
A;

∑︁
𝑖≥0

A𝑖

)
= A0 +

∑︁
𝑖≥0

(A;A𝑖 )

=
∑︁
𝑖≥0

A𝑖 = A∗ .

The second equality comes from the definition of ;

operation.

• ∗-continuity: the ∗-continuity condition is defined as(
∀𝑛 ∈ N,

∑︁
0≤𝑖≤𝑛

𝑝𝑞𝑖𝑟 ≤ 𝑠
)
→ 𝑝𝑞∗𝑟 ≤ 𝑠 .

Lemma C.1.(iv) leads to the ∗-continuity in PO∞ (H):
for

∑
𝑖∈N

∑
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

]
, if there exists

∑
𝑘∈𝐾 [𝜎𝑘 ] such

that for all 𝑛 ≥ 0 :

∑
0≤𝑖<𝑛

∑
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

]
≤ ∑

𝑘∈𝐾 [𝜎𝑘 ] ,
then

∑
𝑖∈N

∑
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

]
≤ ∑

𝑘∈𝐾 [𝜎𝑘 ] .
Eventually we show the ∗-continuity of P(H). For
A𝑝 ,A𝑞,A𝑟 ,A𝑠 satisfying

∑
0≤𝑖<𝑛 (A𝑝 ;A𝑖

𝑞 ;A𝑟 ) ⪯ A𝑠

for all𝑛 ≥ 0, there is

∑
0≤𝑖<𝑛 (A𝑝 ;A𝑖

𝑞 ;A𝑟 ) (
∑
𝑗 ∈𝐽

[
𝜌 𝑗

]
) ≤

A𝑠 (
∑
𝑗 ∈𝐽

[
𝜌 𝑗

]
) for every ∑

𝑗 ∈𝐽
[
𝜌 𝑗

]
∈ PO∞ (H). By

the ∗-continuity in PO∞ (H) and linearity, inequality

(A𝑝 ;A∗
𝑞 ;A𝑟 )

(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
=

∑︁
𝑖≥0

(A𝑝 ;A𝑖
𝑞 ;A𝑟 )

(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
≤ A𝑠

(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
holds for every

∑
𝑗 ∈𝐽

[
𝜌 𝑗

]
∈ PO∞ (H). This concludes

the ∗-continuity rule in P(H) . Easily we have OH ⪯
A for any A ∈ P(H).
To derive the other star laws, we make use of 0 ≤ 𝑝

and the ∗-continuity. For 𝑞 + 𝑝𝑟 ≤ 𝑟 → 𝑝∗𝑞 ≤ 𝑟, note∑
0≤𝑖≤𝑛 1𝑝𝑖𝑞 ≤ 𝑝𝑛+1𝑟 +∑

0≤𝑖≤𝑛 𝑝
𝑖𝑞 = 𝑞 + 𝑝 (𝑞 + 𝑝 (...𝑞 +

𝑝 (𝑞 + 𝑝𝑟 )...)) ≤ 𝑟 . Then ∗-continuity gives 𝑝∗𝑞 ≤ 𝑟 .

The other side follows similarly.

□

C.4 Detailed Proof of Lemma 3.8
Proof of Lemma 3.8.

(i) By Lemma C.1.(v), ⟨E⟩↑ is monotone. Linearity is from

⟨E⟩↑
(∑︁
𝑖

∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
=

∑︁
𝑖

∑︁
𝑗 ∈𝐽𝑖

[
E(𝜌𝑖 𝑗 )

]
=

∑︁
𝑖

⟨E⟩↑
(∑︁
𝑗 ∈𝐽𝑖

[
𝜌𝑖 𝑗

] )
.

(ii) (⇒): By definition this direction holds.

(⇐): To prove the injectivity of path lifting, we as-

sume E1 ≠ E2 while ⟨E1⟩↑ = ⟨E2⟩↑, then there exists

𝜌 ∈ PO(H) such that E1 (𝜌) ≠ E2 (𝜌). ⟨E1⟩↑ = ⟨E2⟩↑
indicates that

[E1 (𝜌)] = ⟨E1⟩↑ ( [𝜌]) = ⟨E2⟩↑ ( [𝜌]) = [E2 (𝜌)] .
Hence {E1 (𝜌)} ∼ {E2 (𝜌)}. If E1 (𝜌) = 𝑂H , then for

every 𝜖 > 0, there is E2 (𝜌) ⊑ 𝜖𝐼H, resulting in E2 (𝜌) =
𝑂H = E1 (𝜌), which is a contradiction. If E1 (𝜌) ≠

𝑂H, for every 0 < 𝜖 < ∥E1 (𝜌)∥ , there is E1 (𝜌) ⊑
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𝜖𝐼H +E2 (𝜌). Hence E1 (𝜌) ⊑ E2 (𝜌). Similarly we have

E2 (𝜌) ⊑ E1 (𝜌). So E1 (𝜌) = E2 (𝜌) is the contradiction.
(iii) For E1, E2 ∈ QC(H) and∑

𝑖∈𝐼 [𝜌𝑖 ] ∈ PO∞ (H), there
is

(⟨E1⟩↑; ⟨E2⟩↑)
(∑︁
𝑖∈𝐼

[𝜌𝑖 ]
)
= ⟨E2⟩↑

(∑︁
𝑖∈𝐼

[E1 (𝜌𝑖 )]
)

=
∑︁
𝑖∈𝐼

[E2 (E1 (𝜌𝑖 ))]

= ⟨E1 ◦ E2⟩↑
(∑︁
𝑖∈𝐼

[𝜌𝑖 ]
)
.

Similarly, if

∑
𝑖 E𝑖 is defined in QC(H), then ∑

𝑖 E𝑖 (𝜌)
converges for any 𝜌 ∈ PO(H) . By Lemma C.1.(iii),

for every

∑
𝑗 ∈𝐽

[
𝜌 𝑗

]
∈ PO∞ (H), there is(∑︁

𝑖

⟨E𝑖⟩↑
) (∑︁

𝑗 ∈𝐽

[
𝜌 𝑗

] )
=

∑︁
𝑖

⟨E𝑖⟩↑
(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
=

∑︁
𝑗

∑︁
𝑖

[
E𝑖 (𝜌 𝑗 )

]
=

∑︁
𝑗

[∑︁
𝑖

E𝑖 (𝜌 𝑗 )
]

= ⟨
∑︁
𝑖

E𝑖⟩↑
(∑︁
𝑗 ∈𝐽

[
𝜌 𝑗

] )
.

□

C.5 Detailed Proof of Theorem 4.2
Proof of Theorem 4.2. (⇒): Formally we prove it by induction

on the derivation of ⊢NKA 𝑒 = 𝑓 . Practically it suffices to

prove the soundness of the NKA axioms on the quantum

path model, which is proved in Theorem 3.6.

(⇐): We will establish ⊢NKA 𝑒 = 𝑓 by first showing {{𝑒}} =
{{𝑓 }} and then applying Theorem A.6. To that end, let us

consider the case of any fixed 𝑛 ∈ N, and show that for

string𝑤 with length less than 𝑛, there is {{𝑒}}[𝑤] = {{𝑓 }}[𝑤] .
Let 𝑆 = {𝑠 ∈ Σ∗

: |𝑠 | ≤ 𝑛}. Because Σ and 𝑛 are finite,

𝑆 is a finite set. We set H = span{|𝑠⟩ : 𝑠 ∈ 𝑆} which is

finite dimensional, and eval(𝑎) (𝜌) = ∑
𝑠∈𝑆 𝐾𝑎,𝑠𝜌𝐾

†
𝑎,𝑠 , where

𝐾𝑎,𝑠 = 1√
#𝑎
|𝑠𝑎⟩⟨𝑠 | for 𝑠𝑎 ∈ 𝑆 , 𝐾𝑎,𝑠 = 𝑂H for 𝑠𝑎 ∉ 𝑆. Here

#𝑎 = |{𝑠 : 𝑠𝑎 ∈ 𝑆}| is a normalization factor to make sure

eval(𝑎) ∈ QC(H). For 𝑠 = 𝑎1𝑎2 · · ·𝑎𝑙 , we set #𝑠 =
∏𝑙
𝑖=1

#𝑎𝑖 .

Let int = (H , eval). We claim for 𝑠 ∈ 𝑆 and 𝑟 ∈ R, there is

Qint (𝑒) ( [𝑟 · |𝑠⟩⟨𝑠 |]) =
∑︁
𝑠𝑡 ∈𝑆

{{𝑒 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |] . (C.5.1)

The proof is based on the induction on expression 𝑒 , and its

proof is left to the last.

Then we consider two expressions 𝑒, 𝑓 such that Qint (𝑒) =
Qint (𝑓 ). We apply this action on 𝜖 and 𝑟 = 1, resulting in∑︁

𝑠∈𝑆

{{𝑒 }} [𝑠 ]∑︁
𝑘=1

[1/#𝑠 · |𝑠⟩⟨𝑠 |] =
∑︁
𝑠∈𝑆

{{𝑓 }} [𝑠 ]∑︁
𝑘=1

[1/#𝑠 · |𝑠⟩⟨𝑠 |] .

If there exists 𝑡 ∈ 𝑆 : {{𝑒}}[𝑡] < {{𝑓 }}[𝑡], then there exists

𝑚 ∈ N such that {{𝑒}}[𝑡] < 𝑚 ≤ {{𝑓 }}[𝑡] . By selecting 𝐼 ′ =

{(𝑡, 𝑘) : 0 ≤ 𝑘 < 𝑚} in the definition of

⊎
𝑠∈𝑆

⊎{{𝑓 }} [𝑠 ]
𝑘=1

1/#𝑠 ·
|𝑠⟩⟨𝑠 | ≲ ⊎

𝑠∈𝑆
⊎{{𝑒 }} [𝑠 ]
𝑘=1

1/#𝑠 · |𝑠⟩⟨𝑠 |, it is impossible to find a

𝐽 ′ to satisfy definition inequality (3.2.2), because there are

at most {{𝑒}}[𝑡] operators that are non-zero in basis |𝑡⟩⟨𝑡 |.
The cases where {{𝑒}}[𝑠] > {{𝑓 }}[𝑠] can be ruled out similarly.

Then ∀𝑠 ∈ 𝑆, {{𝑒}}[𝑠] = {{𝑓 }}[𝑠] .
Notice that the above argument holds for any 𝑛 ∈ N.

Hence {{𝑒}} = {{𝑓 }}. By Theorem A.6, ⊢NKA 𝑒 = 𝑓 .

Now we come back to (C.5.1). Let us prove it by induction

on 𝑒 . For the base cases, notice that

Qint (0) = OH, Qint (1) = IH,

Qint (𝑎) ( [𝑟 · |𝑠⟩⟨𝑠 |]) =
{
[𝑟/#𝑎 · |𝑠𝑎⟩⟨𝑠𝑎 |] , 𝑠𝑎 ∈ 𝑆,
[𝑂H] , 𝑠𝑎 ∉ 𝑆.

Combined with {{0}} = 0, {{1}} = 1𝜖 and {{𝑎}} = 1𝑎, the equa-

tion holds for the base cases.

Consider the case 𝑒 + 𝑓 . For any 𝑠 ∈ 𝑆 and 𝑟 ∈ R, by
inductive hypotheses and Lemma C.1.(ii),

Qint (𝑒 + 𝑓 ) ( [𝑟 · |𝑠⟩⟨𝑠 |])
= Qint (𝑒) ( [𝑟 · |𝑠⟩⟨𝑠 |]) + Qint (𝑓 ) ( [𝑟 · |𝑠⟩⟨𝑠 |])

=
∑︁
𝑠𝑡 ∈𝑆

({{𝑒 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |] +
{{𝑓 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |]
)

=
∑︁
𝑠𝑡 ∈𝑆

{{𝑒+𝑓 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |] .

Consider the case 𝑒 · 𝑓 . For any 𝑠 ∈ 𝑆 and 𝑟 ∈ R, by
inductive hypotheses and Lemma C.1.(ii),

Qint (𝑒 · 𝑓 ) ( [𝑟 · |𝑠⟩⟨𝑠 |])
= Qint (𝑓 ) (Qint (𝑒) ( [𝑟 · |𝑠⟩⟨𝑠 |]))

= Qint (𝑓 )
(∑︁
𝑠𝑡 ∈𝑆

{{𝑒 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |]
)

=
∑︁
𝑠𝑡𝑤∈𝑆

{{𝑒 }} [𝑡 ]∑︁
𝑘=1

{{𝑓 }} [𝑤 ]∑︁
𝑙=1

[𝑟/(#𝑡 · #𝑤) · |𝑠𝑡𝑤⟩⟨𝑠𝑡𝑤 |]

=
∑︁
𝑠𝑡 ∈𝑆

{{𝑒 ·𝑓 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |] .
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Consider the case 𝑒∗. For any 𝑠 ∈ 𝑆 , by inductive hypothe-

sis, Lemma C.1.(ii) and the above proofs for 𝑒 + 𝑓 and 𝑒 · 𝑓 ,
Qint (𝑒∗) ( [𝑟 · |𝑠⟩⟨𝑠 |])

= Qint (𝑒)∗ ( [𝑟 · |𝑠⟩⟨𝑠 |])

=
∑︁
𝑖≥0

Qint (𝑒)𝑖 ( [𝑟 · |𝑠⟩⟨𝑠 |])

=
∑︁
𝑖≥0

Qint (𝑒𝑖 ) ( [𝑟 · |𝑠⟩⟨𝑠 |])

=
∑︁
𝑖≥0

∑︁
𝑠𝑡 ∈𝑆

{{𝑒𝑖 }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |]

=
∑︁
𝑠𝑡 ∈𝑆

{{𝑒∗ }} [𝑡 ]∑︁
𝑘=1

[𝑟/#𝑡 · |𝑠𝑡⟩⟨𝑠𝑡 |] .

□

C.6 Detailed Proof of Theorem 4.5
Proof of Theorem 4.5. We prove them by induction on 𝑃 .

• For the base cases 𝑃 ≡ skip, abort, the equation holds

by definition. For 𝑃 ≡ 𝑞 := |0⟩ and 𝑞 := 𝑈 [𝑞], we
know Enc(𝑃) ∈ Σ by the encoder setting 𝐸. With

𝐸−1 (Enc(𝑃)) = ⟨⟦𝑃⟧⟩↑, the equation holds.

• For 𝑃 = 𝑃1; 𝑃2, by inductive hypotheses there are

Qint (Enc(𝑃1)) = ⟨⟦𝑃1⟧⟩↑ andQint (Enc(𝑃2)) = ⟨⟦𝑃2⟧⟩↑.
Then by Lemma 3.8.(iii),

Qint (Enc(𝑃)) = Qint (Enc(𝑃1));Qint (Enc(𝑃2))
= ⟨⟦𝑃1⟧⟩↑; ⟨⟦𝑃2⟧⟩↑ = ⟨⟦𝑃1⟧ ◦ ⟦𝑃2⟧⟩↑.

• For 𝑃 ≡ case𝑀 [𝑞] 𝑖−→ 𝑃𝑖 end, the inductive hypotheses
are Qint (Enc(𝑃𝑖 )) = ⟨⟦𝑃𝑖⟧⟩↑. Then by Lemma 3.8.(iii),

Qint (Enc(𝑃)) =
∑︁
𝑖

(Qint (𝐸 (M𝑖 ));Qint (Enc(𝑃𝑖 ))

=
∑︁
𝑖

(⟨M𝑖⟩↑; ⟨⟦𝑃𝑖⟧⟩↑) =
∑︁
𝑖

(⟨M𝑖 ◦ ⟦𝑃𝑖⟧⟩↑)

= ⟨
∑︁
𝑖

(M𝑖 ◦ ⟦𝑃𝑖⟧)⟩↑.

• For 𝑃 ≡ while 𝑀 [𝑞] = 1 do 𝑆 done, the inductive

hypothesis becomes Qint (Enc(𝑆)) = ⟨⟦𝑆⟧⟩↑. By [68]∑
𝑛≥0

((M1 ◦ ⟦𝑆⟧)𝑛 ◦ M0) exists in QC(H), so by

Lemma 3.8.(iii) and linearity of transformations in

P(H),
Qint (Enc(𝑃)) = (Qint (𝐸 (M1));Qint (Enc(𝑆)))∗Qint (𝐸 (M0))

= (⟨M1⟩↑; ⟨⟦𝑆⟧⟩↑)∗; ⟨M0⟩↑

=

(∑︁
𝑛≥0

(⟨M1⟩↑; ⟨⟦𝑆⟧⟩↑)𝑛
)

; ⟨M0⟩↑

=
∑︁
𝑛≥0

((⟨M1⟩↑; ⟨⟦𝑆⟧⟩↑)𝑛 ; ⟨M0⟩↑)

=
∑︁
𝑛≥0

⟨(M1 ◦ ⟦𝑆⟧)𝑛 ◦M0⟩↑

= ⟨
∑︁
𝑛≥0

((M1 ◦ ⟦𝑆⟧)𝑛 ◦M0)⟩↑.

□

C.7 Detailed Proof of Theorem 6.1
Proof of Theorem 6.1. We prove the normal form theorem by

induction on the program 𝑃 . For each step we introduce a

classical guard variable𝑔whose value is limited in a finite set

{0, 1, ..., 𝑛 − 1}, and denote the space of 𝑔 by C𝑛 . We encode

𝑔 := |𝑖⟩ as 𝑔𝑖 , the measurement Meas[𝑔] = 𝑖 as 𝑔𝑖 and the

reset of space C as 𝑐 . Each time 𝑔 is independent of the

existing space, so the following assumptions hold for any 𝑖, 𝑗

in the value set:

• 𝑔𝑖 commutes with every elements except for 𝑔 𝑗 .

• 𝑔𝑖𝑔 𝑗 = 𝛿𝑖 𝑗𝑔
𝑖 , where 𝛿𝑖 𝑗 = 1 when 𝑖 = 𝑗, and 𝛿𝑖 𝑗 = 0

when 𝑖 ≠ 𝑗 .

• 𝑔𝑖𝑔 𝑗 = 𝑔 𝑗 .

(a) For the base case where 𝑃 = skip | abort | 𝑞 := |0⟩ | 𝑞 =

𝑈 [𝑞], they are while-free. Let C = C1 the space with only one

value.We claim 𝑃 ;𝑔 := |0⟩;whileMeas[𝑔] = 1 do skip done;𝑔 :=

|0⟩ is equivalent to 𝑃 ;𝑔 := |0⟩. The NKA encoding of these

two programs are 𝑝𝑔0 (𝑔11)∗𝑔0𝑔
0
and 𝑝𝑔0

. This motivates the

following derivation:

𝑔0 (𝑔11)∗𝑔0 = 𝑔
0𝑔0 + 𝑔0𝑔1𝑔

∗
1
𝑔0 = 𝑔

0.

Hence 𝑝𝑔0 (𝑔11)∗𝑔0𝑔
0 = 𝑝𝑔0𝑔0 = 𝑝𝑔0 .

(b) For the 𝑆1; 𝑆2 case, by inductive hypothesis we have

two external space C1
and C2

such that 𝑆𝑖 ; 𝑝C𝑖 := |0⟩ is
equivalent to 𝑃𝑖0;while 𝑀𝑖 do 𝑃𝑖1 done; 𝑝C𝑖 := |0⟩, where
𝑃𝑖 𝑗 is while-free. We claim 𝑆1; 𝑆2;𝑝C1⊗C2⊗C3

:= |0⟩ and
𝑃10;𝑔 := |1⟩;
while Meas[𝑔] > 0 do
if Meas[𝑔] = 1 then

if 𝑀1 then 𝑃11

else 𝑃20;𝑔 := |2⟩
else

if 𝑀2 then 𝑃21

else 𝑔 := |0⟩
done;

𝑝C1⊗C2⊗C3
:= |0⟩,

are equivalent, whose encodings are 𝑠1𝑠2𝑐1𝑐2𝑔
0
and𝑝10𝑔

1 ((𝑔1+
𝑔2) (𝑔1 (𝑚11𝑝11+𝑚12𝑝20𝑔

2)+(𝑔0+𝑔2) (𝑚21𝑝21+𝑚22𝑔
0)))∗𝑔0𝑐1𝑐2𝑔

0.

Notice that 𝑐1 acts on C1
, so 𝑐1 is commutable to those

operators acting onH ⊗ C2 ⊗ C3. By inductive hypothesis,
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there is 𝑠𝑖𝑐𝑖 = 𝑝𝑖0 (𝑚𝑖1𝑝𝑖1)∗𝑚𝑖2𝑐𝑖 , so

𝑠1𝑠2𝑐1𝑐2𝑔
0 = 𝑠1𝑐1𝑠2𝑐2𝑔

0

= 𝑝10 (𝑚11𝑝11)∗𝑚12𝑐1𝑝20 (𝑚21𝑝21)∗𝑚22𝑐2𝑔
0

= 𝑝10 (𝑚11𝑝11)∗𝑚12𝑝20 (𝑚21𝑝21)∗𝑚22𝑐1𝑐2𝑔
0 .

Let𝑋 = (𝑔1+𝑔2) (𝑔1 (𝑚11𝑝11+𝑚12𝑝20𝑔
2)+(𝑔0+𝑔2) (𝑚21𝑝21+

𝑚22𝑔
0)) = 𝑔1 (𝑚11𝑝11 +𝑚12𝑝20𝑔

2) + 𝑔2 (𝑚21𝑝21 +𝑚22𝑔
0), and

𝑌 = 𝑔1 (𝑚11𝑝11 +𝑚12𝑝20𝑔
2). Then by denesting rule:

𝑔1𝑋 ∗ = 𝑔1 (𝑔1 (𝑚11𝑝11 +𝑚12𝑝20𝑔
2))∗

· (𝑔2 (𝑚21𝑝21 +𝑚22𝑔
0) (𝑔1 (𝑚11𝑝11 +𝑚12𝑝20𝑔

2))∗)∗

= 𝑔1𝑌 ∗ (𝑔2 (𝑚21𝑝21 +𝑚22𝑔
0)𝑌 ∗)∗ .

𝑔1𝑌 ∗ = 𝑔1 (𝑔1𝑚11𝑝11)∗ (𝑔1𝑚12𝑝20𝑔
2 (𝑔1𝑚11𝑝11)∗)∗

= (𝑚11𝑝11)∗𝑔1

· (𝑔1𝑚12𝑝20𝑔
2 + 𝑔1𝑚12𝑝20𝑔

2𝑔1𝑚11𝑝11 (𝑔1𝑚11𝑝11)∗))∗

= (𝑚11𝑝11)∗𝑔1 (𝑔1𝑚12𝑝20𝑔
2)∗

= (𝑚11𝑝11)∗𝑔1 (1 + 𝑔1𝑚12𝑝20𝑔
2

+ 𝑔1𝑚12𝑝20𝑔
2𝑔1𝑚12𝑝20𝑔

2 (𝑔1𝑚12𝑝20𝑔
2)∗)

= (𝑚11𝑝11)∗ (𝑔1 +𝑚12𝑝20𝑔
2).

𝑔2𝑌 ∗ = 𝑔2 .

By star-rewrite , we have:

𝑔2 (𝑔2 (𝑚21𝑝21 +𝑚22𝑔
0)𝑌 ∗)∗

= 𝑔2 (𝑔2𝑚21𝑝21𝑌
∗)∗ (𝑔2𝑚22𝑔

0𝑌 ∗ (𝑔2𝑚21𝑝21𝑌
∗)∗)∗

= 𝑔2 (𝑔2𝑚21𝑝21)∗ (𝑔2𝑚22𝑔
0 + 𝑔2𝑚22𝑔

0𝑔2𝑚21𝑝21𝑌
∗ (𝑔2𝑚21𝑝21𝑌

∗)∗)
= (𝑚21𝑝21)∗𝑔2 (𝑔2𝑚22𝑔

0)∗

= (𝑚21𝑝21)∗𝑔2 (1 + 𝑔2𝑚22𝑔
0 + 𝑔2𝑚22𝑔

0 (𝑔2𝑚22𝑔
0)∗)

= (𝑚21𝑝21)∗ (𝑔2 +𝑚22𝑔
0).

Hence we have:

𝑝10𝑔
1 ((𝑔1 + 𝑔2) (𝑔1 (𝑚11𝑝11 +𝑚12𝑝20𝑔

2)
+ (𝑔0 + 𝑔2) (𝑚21𝑝21 +𝑚22𝑔

0)))∗𝑔0𝑐1𝑐2𝑔
0

= 𝑝10 (𝑚11𝑝11)∗ (𝑔1 +𝑚12𝑝20𝑔
2) (𝑔2 (𝑚21𝑝21 +𝑚22𝑔

0)𝑌 ∗)∗𝑔0𝑐1𝑐2𝑔
0

= 𝑝10 (𝑚11𝑝11)∗𝑔1𝑔0𝑐1𝑐2𝑔
0

+ 𝑝10 (𝑚11𝑝11)∗𝑚12𝑝20𝑔
2 (𝑔2 (𝑚21𝑝21 +𝑚22𝑔

0)𝑌 ∗)∗𝑔0𝑐1𝑐2𝑔
0

= 𝑝10 (𝑚11𝑝11)∗𝑚12𝑝20 (𝑚21𝑝21)∗ (𝑔2 +𝑚22𝑔
0)𝑔0𝑐1𝑐2𝑔

0

= 𝑝10 (𝑚11𝑝11)∗𝑚12𝑝20 (𝑚21𝑝21)∗𝑚22𝑐1𝑐2𝑔
0

= 𝑠1𝑠2𝑐1𝑐2𝑔
0.

(c) For the case𝑀
𝑖−→ 𝑆𝑖 end case, w.l.o.g. we assume the

measurement results are {1, 2, ..., 𝑛}. By inductive hypothesis
we have two external spaces {C𝑖 }1≤𝑖≤𝑛 such that 𝑆𝑖 ; 𝑝C𝑖 :=

|0⟩ is equivalent to 𝑃𝑖0;while 𝑀𝑖 do 𝑃𝑖1 done;𝑝C𝑖 := |0⟩,

where 𝑃𝑖 𝑗 is while-free. Let C =
(⊗

1≤𝑖≤𝑛 C𝑖
)
⊗ C𝑛+1. We

claim case𝑀
𝑖−→ 𝑆𝑖 end;𝑝𝐶 = |0⟩ and

case𝑀
𝑖−→ 𝑃𝑖0;𝑔 := |𝑖⟩ end

while Meas[𝑔] > 0 do

case Meas[𝑔] 𝑖>0−−→
if 𝑀𝑖 then 𝑃𝑖1
else 𝑔 := |0⟩

end
done;

𝑝C := |0⟩
are equivalent, whose encodings are (∑𝑛

𝑖=1
𝑚𝑖𝑠𝑖 ) (

∏𝑛
𝑖=1
𝑐𝑖 )𝑔0

and(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0𝑔
𝑖

) ((
𝑛∑︁
𝑖=1

𝑔𝑖

) (
𝑛∑︁
𝑖=1

𝑔𝑖 (𝑚𝑖1𝑝𝑖1 +𝑚𝑖2𝑔
0)

))∗
𝑔0

(
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0.

First we show case𝑀
𝑖−→ 𝑆𝑖 end;𝑝𝐶 = |0⟩ is equivalent to

case𝑀
𝑖−→ 𝑆𝑖 ;𝑝𝐶𝑖 := |0⟩ end;

𝑝𝐶 = |0⟩.(∑
1≤𝑖≤𝑛𝑚𝑖𝑠𝑖

) (∏𝑛
𝑖=1
𝑐𝑖
)
𝑔0 =

(∑
1≤𝑖≤𝑛𝑚𝑖𝑠𝑖𝑐𝑖

) (∏𝑛
𝑖=1
𝑐𝑖
)
𝑔0

is

what we need to derive. Because each C𝑖 and𝐶3 are disjoint,

we have 𝑐𝑖 commutes each other for 1 ≤ 𝑖 ≤ 𝑛, and 𝑐𝑖𝑐𝑖 =

𝑐𝑖 . With these assumptions added, the two expressions are

equivalent by distributive law.

Thenwe could apply inductive hypothesis 𝑝𝑖0 (𝑚𝑖1𝑝𝑖1)∗𝑚𝑖2𝑐𝑖 =

𝑠𝑖𝑐𝑖 on each branch. Let𝑋 =
(∑𝑛

𝑖=1
𝑔𝑖

) (∑𝑛
𝑖=1
𝑔𝑖 (𝑚𝑖1𝑝𝑖1 +𝑚𝑖2𝑔

0)
)
=∑𝑛

𝑖=1
𝑔𝑖 (𝑚𝑖1𝑝𝑖1 +𝑚𝑖2𝑔

0), 𝑌𝑖 = 𝑔𝑖𝑚𝑖1𝑝𝑖1 + 𝑔𝑖𝑚𝑖2𝑔
0
for conve-

nience. By denesting rule:

𝑔𝑖𝑋 ∗ = 𝑔𝑖𝑌 ∗
𝑖

((∑︁
𝑗≠𝑖

𝑔 𝑗 (𝑚 𝑗1𝑝 𝑗1 +𝑚 𝑗2𝑔
0)

)
𝑌 ∗
𝑖

)∗
.

Notice that for 1 ≤ 𝑖 ≤ 𝑛,
𝑔𝑖𝑌 ∗

𝑖 = 𝑔𝑖 (𝑔𝑖𝑚𝑖1𝑝𝑖1)∗ (𝑔𝑖𝑚𝑖2𝑔
0 (𝑔𝑖𝑚𝑖1𝑝𝑖1)∗)∗

= (𝑚𝑖1𝑝𝑖1)∗𝑔𝑖 (𝑔𝑖𝑚𝑖2𝑔
0 + 𝑔𝑖𝑚𝑖2𝑔

0𝑔𝑖𝑚𝑖1𝑝𝑖1 (𝑔𝑖𝑚𝑖1𝑝𝑖1)∗)∗

= (𝑚𝑖1𝑝𝑖1)∗𝑔𝑖 (𝑔𝑖𝑚𝑖2𝑔
0)∗

= (𝑚𝑖1𝑝𝑖1)∗𝑔𝑖 (1 + 𝑔𝑖𝑚𝑖2𝑔
0 + 𝑔𝑖𝑚𝑖2𝑔

0𝑔𝑖𝑚𝑖2𝑔
0 (𝑔𝑖𝑚𝑖2𝑔

0)∗)
= (𝑚𝑖1𝑝𝑖1)∗ (𝑔𝑖 +𝑚𝑖2𝑔

0),
Meanwhile, for all 1 ≤ 𝑖 ≤ 𝑛,

𝑔0

((∑︁
𝑗≠𝑖

𝑔 𝑗 (𝑚 𝑗1𝑝 𝑗1 +𝑚 𝑗2𝑔
0)

)
𝑌 ∗
𝑖

)∗
= 𝑔0,

𝑔𝑖

((∑︁
𝑗≠𝑖

𝑔 𝑗 (𝑚 𝑗1𝑝 𝑗1 +𝑚 𝑗2𝑔
0)

)
𝑌 ∗
𝑖

)∗
= 𝑔𝑖 .
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Combining them up results in 𝑔𝑖𝑋 ∗ = (𝑚𝑖1𝑝𝑖1)∗ (𝑔𝑖 +𝑚𝑖2𝑔
0)

for 1 ≤ 𝑖 ≤ 𝑛. Thus(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0𝑔
𝑖

) ((
𝑛∑︁
𝑖=1

𝑔𝑖

) (
𝑛∑︁
𝑖=1

𝑔𝑖 (𝑚𝑖1𝑝𝑖1 +𝑚𝑖2𝑔
0)

))∗
· 𝑔0

(
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0𝑔
𝑖𝑋 ∗

)
𝑔0

(
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0 (𝑚𝑖1𝑝𝑖1)∗ (𝑔𝑖 +𝑚𝑖2𝑔
0)

)
𝑔0

(
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0 (𝑚𝑖1𝑝𝑖1)∗𝑚𝑖2𝑔
0

)
𝑔0

(
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑝𝑖0 (𝑚𝑖1𝑝𝑖1)∗𝑚𝑖2𝑐𝑖

) (
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑠𝑖𝑐𝑖

) (
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0

=

(
𝑛∑︁
𝑖=1

𝑚𝑖𝑠𝑖

) (
𝑛∏
𝑖=1

𝑐𝑖

)
𝑔0.

(d) For the while 𝑀1 do 𝑆 done case, by inductive hy-

pothesis we have C such that 𝑆 ; 𝑝C := |0⟩ is equivalent to
𝑃1;while𝑀2 do 𝑃2 done;𝑝C := |0⟩, where 𝑃𝑖 is while-free.

We claim while𝑀1 do 𝑆 done; 𝑝C⊗C3
:= |0⟩ and

𝑔 := |1⟩;
while Meas[𝑔] > 0 do
if Meas[𝑔] = 1 then
if 𝑀1 then 𝑃1;𝑔 := |2⟩
else 𝑔 := |0⟩

else
if 𝑀2 then 𝑃2

else 𝑔 := |1⟩
𝑝C⊗C3

:= |0⟩,
are equivalent, whose encodings are (𝑚11𝑠)∗𝑚12𝑐𝑔

0
and𝑔1 ((𝑔1+

𝑔2) (𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0) + (𝑔0 +𝑔2) (𝑚21𝑝2 +𝑚22𝑔
1)))∗𝑔0𝑐𝑔

0 .

Similarly to the above case, utilizing inductive hypothesis,

we have 𝑠𝑐 = 𝑝1 (𝑚21𝑝2)∗𝑚22𝑐. Let𝑋 = (𝑔1+𝑔2) (𝑔1 (𝑚11𝑝1𝑔
2+

𝑚12𝑔
0) + (𝑔0 +𝑔2) (𝑚21𝑝2 +𝑚22𝑔

1)) = 𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0) +
𝑔2 (𝑚21𝑝2 +𝑚22𝑔

1). By denesting rule:

𝑔1𝑋 ∗ = 𝑔1 (𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0))∗

· (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1) (𝑔1 (𝑚11𝑝1𝑔

2 +𝑚12𝑔
0))∗)∗

Let 𝑌 = 𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0), 𝑍 =𝑚11𝑝1 (𝑚21𝑝2)∗𝑚22. So

𝑔1𝑋 ∗ = 𝑔1𝑌 ∗ (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1)𝑌 ∗)∗ .

𝑔1𝑌 ∗ = 𝑔1 (1 + 𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0) (𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0))∗)
= 𝑔1 +𝑚12𝑔

0 +𝑚11𝑝1𝑔
2

𝑔2𝑌 ∗ = 𝑔2

Hence 𝑔2 (𝑔2𝑚21𝑝2𝑌
∗)∗ = 𝑔2 (𝑔2𝑚21𝑝2)∗ = (𝑚21𝑝2)∗𝑔2. By

star-rewrite, there is

𝑔2 (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1)𝑌 ∗)∗𝑔0

= 𝑔2 (𝑔2𝑚21𝑝2𝑌
∗)∗ (𝑔2𝑚22𝑔

1𝑌 ∗ (𝑔2𝑚21𝑝2𝑌
∗)∗)∗𝑔0

= (𝑚21𝑝2)∗𝑔2 (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0 +𝑚11𝑝1𝑔

2) (𝑔2𝑚21𝑝2𝑌
∗)∗)∗𝑔0

= (𝑚21𝑝2)∗𝑔2 (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0) + 𝑔2𝑚22𝑚11𝑝1 (𝑚21𝑝2)∗𝑔2)∗𝑔0

= (𝑚21𝑝2)∗𝑔2 (𝑔2𝑚22𝑚11𝑝1 (𝑚21𝑝2)∗𝑔2)∗

· (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0) (𝑔2𝑚22𝑚11𝑝1 (𝑚21𝑝2)∗𝑔2)∗)∗𝑔0

= (𝑚21𝑝2)∗ (𝑚22𝑚11𝑝1 (𝑚21𝑝2)∗)∗𝑔2 (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0))∗𝑔0

Expand the star expression twice:

𝑔2 (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0))∗𝑔0

= 𝑔2 [1 + 𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0)

+ 𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0)𝑔2𝑚22 (𝑔1 +𝑚12𝑔

0) (𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0))∗]𝑔0

= 𝑔2 (1 + 𝑔2𝑚22 (𝑔1 +𝑚12𝑔
0))𝑔0

=𝑚22𝑚12𝑔
0.

By sliding

𝑔2 (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1)𝑌 ∗)∗𝑔0

= (𝑚21𝑝2)∗ (𝑚22𝑚11𝑝1 (𝑚21𝑝2)∗)∗𝑚22𝑚12𝑔
0

= (𝑚21𝑝2)∗𝑚22 (𝑚11𝑝1 (𝑚21𝑝2)∗𝑚22)∗𝑚12𝑔
0

= (𝑚21𝑝2)∗𝑚22𝑍
∗𝑚12𝑔

0.

Combining them up gives

𝑔1𝑋 ∗𝑔0 = (𝑔1 +𝑚12𝑔
0 +𝑚11𝑝1𝑔

2) (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1)𝑌 ∗)∗𝑔0

=𝑚12𝑔
0 +𝑚11𝑝1𝑔

2 (𝑔2 (𝑚21𝑝2 +𝑚22𝑔
1)𝑌 ∗)∗𝑔0

= (1 +𝑚11𝑝1 (𝑚21𝑝2)∗𝑚22𝑍
∗)𝑚12𝑔

0

= (1 + 𝑍𝑍 ∗)𝑚12𝑔
0

= 𝑍 ∗𝑚12𝑔
0

Hence we have

𝑔1 ((𝑔1 + 𝑔2) (𝑔1 (𝑚11𝑝1𝑔
2 +𝑚12𝑔

0)
+ (𝑔0 + 𝑔2) (𝑚21𝑝2 +𝑚22𝑔

1)))∗𝑔0𝑐𝑔
0

= 𝑔1𝑋 ∗𝑔0𝑐𝑔
0

= 𝑍 ∗𝑚12𝑐𝑔
0

= (𝑚11𝑝1 (𝑚21𝑝2)∗𝑚22)∗𝑐𝑚12𝑔
0

= (𝑚11𝑝1 (𝑚21𝑝2)∗𝑚22𝑐)∗𝑐𝑚12𝑔
0

= (𝑚11𝑠𝑐)∗𝑐𝑚12𝑔
0

= (𝑚11𝑠)∗𝑚12𝑐𝑔
0.
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□

C.8 Proof of Lemma 7.3, Theorem 7.6
Proof of Lemma 7.3.

1. If ⟨C𝐴⟩↑ ⊕ ⟨C𝐵⟩↑ is defined, then ⟨C𝐴⟩↑ + ⟨C𝐵⟩↑ ⪯
⟨C𝐼H ⟩↑.Commutativity of additionmakes ⟨C𝐵⟩↑+⟨C𝐴⟩↑ ⪯
⟨C𝐼H ⟩↑ and leads to ⟨C𝐵⟩↑ ⊕ ⟨C𝐴⟩↑ = ⟨C𝐵⟩↑ + ⟨C𝐴⟩↑.

2. If ⟨C𝐴⟩↑ ⊕ ⟨C𝐵⟩↑ and (⟨C𝐴⟩↑ ⊕ ⟨C𝐵⟩↑) ⊕ ⟨C𝐶⟩↑ are

defined, then ⟨C𝐴⟩↑ + ⟨C𝐵⟩↑ ⪯ ⟨C𝐼H ⟩↑ and (⟨C𝐴⟩↑ +
⟨C𝐵⟩↑) + ⟨C𝐶⟩↑ ⪯ ⟨C𝐼H ⟩↑. Hence ⟨C𝐵⟩↑ + ⟨C𝐶⟩↑ ⪯
⟨C𝐼H ⟩↑ and ⟨C𝐴⟩↑ + (⟨C𝐵⟩↑ + ⟨C𝐶⟩↑) ⪯ ⟨C𝐼H ⟩↑. By def-

inition, ⟨C𝐵⟩↑ + ⟨C𝐶⟩↑ and ⟨C𝐴⟩↑ + (⟨C𝐵⟩↑ + ⟨C𝐶⟩↑)
are defined, and ⟨C𝐴⟩↑ + (⟨C𝐵⟩↑ + ⟨C𝐶⟩↑) = (⟨C𝐴⟩↑ +
⟨C𝐵⟩↑) + ⟨C𝐶⟩↑.

3. If ⟨C𝐴⟩↑ ⊕ ⟨C𝐼H ⟩↑ is defined in PPred (H), we assume

⟨C𝐴⟩↑ + ⟨C𝐼H ⟩↑ = ⟨C𝐵⟩↑. Apply the quantum actions

on [|0⟩⟨0|], we have [𝐴 + 𝐼H] = [𝐵]. Meanwhile,

∥𝐴∥ , ∥𝐵∥ ≤ 1. This forces 𝐴 = 0 so ⟨C𝐴⟩↑ = ⟨C𝑂H ⟩↑ =
OH .

4. For ⟨C𝐴⟩↑ ∈ PPred (H), there is ⟨C𝐴⟩↑+⟨C𝐴⟩↑ = ⟨C𝐼H ⟩↑,
hence ⟨C𝐴⟩↑ ⊕ ⟨C

𝐴
⟩↑ = ⟨C𝐼H ⟩↑.Meanwhile, if ⟨C𝐴⟩↑ ⊕

⟨C𝐵⟩↑ = ⟨C𝐼H ⟩↑, we apply these quantum actions on

[|0⟩⟨0|], resulting in [𝐴+𝐵] = [𝐼H] .Hence 𝐵 = 𝐼−𝐴 =

𝐴. That is, ⟨C𝐴⟩↑ = ⟨C
𝐴
⟩↑ is the unique negation of

⟨C𝐴⟩↑ in PPred (H) .
5. For ⟨C𝐴⟩↑ ∈ PPred (H), OH + ⟨C𝐴⟩↑ = ⟨C𝐴⟩↑ ⪯ ⟨C𝐼H ⟩↑,

whose left hand side then equals to OH ⊕ ⟨C𝐴⟩↑ by
definition.

□
Proof of Theorem 7.6. Notice that the NKA axioms are sym-

metric for operands of ·. That is, if we define 𝑎★𝑏 = 𝑏 ·𝑎, any
axiom substituting★ for · has a corresponding axiom. Hence

if (K, +, ·, ∗, 0, 1) forms an NKA, (K, +,★, ∗, 0, 1) also forms

an NKA. Hence Theorem 3.6 has verified (1) in Definition 7.4.

Meanwhile, Lemma 7.3 has verified (2) in Definition 7.4.

We only need to verify (3) here.

• By definition, ⟨M†
𝑖
⟩↑ are elements of P(H) .

• Note ⟨M†
𝑖
⟩↑⋄⟨C𝐴⟩↑(

∑
𝑗 [𝜌 𝑗 ]) =

∑
𝑗 [tr(𝜌 𝑗 )M†

𝑖
𝐴M𝑖 ] =

⟨CM†
𝑖
𝐴M𝑖

⟩↑(∑𝑗 [𝜌 𝑗 ]).Hence ⟨M†
𝑖
⟩↑⋄⟨C𝐴⟩↑ = ⟨CM†

𝑖
𝐴M𝑖

⟩↑

and it is in PPred (H) .
• Similarly, we have(∑︁

𝑖∈𝐼
⟨M†

𝑖
⟩↑ ⋄ ⟨C𝐼H ⟩↑

) (∑︁
𝑗

[𝜌 𝑗 ]
)

=
∑︁
𝑗

[
tr(𝜌 𝑗 )

∑︁
𝑖∈𝐼

M†
𝑖
M𝑖

]
=

∑︁
𝑗

[
tr(𝜌 𝑗 )𝐼H

]
= ⟨C𝐼H ⟩↑

(∑︁
𝑗

[𝜌 𝑗 ]
)
.

This gives

(∑
𝑖∈𝐼 ⟨M†

𝑖
⟩↑ ⋄ ⟨C𝐼H ⟩↑

)
= ⟨C𝐼H ⟩↑.

□

C.9 Proof of Lemma 7.7
Proof of Lemma 7.7.

• (0 ≤ 𝑎 ≤ 𝑒): Notice that 0 ⊕ 𝑎 = 𝑎 is defined by the

definition of effect algebra. There is 0 ≤ 0 + 𝑎 = 𝑎 ≤ 𝑒.
• (𝑎 + 𝑎 = 𝑒): Because 𝑎 ⊕ 𝑎 = 𝑒 is defined, we have

𝑒 = 𝑎 ⊕ 𝑎 = 𝑎 + 𝑎.
• (𝑎 = 𝑎): Notice that there exists a unique 𝑎 ∈ L satisfy-

ing 𝑎 ⊕ 𝑎 = 𝑒. Then there exists a unique 𝑎 satisfying

𝑎 ⊕ 𝑎 = 𝑒. Therefore 𝑎 = 𝑎.

• (negation-reverse): Because𝑎 ≤ 𝑏, 0 ≤ 𝑎+𝑏 ≤ 𝑏+𝑏 = 𝑒.

Hence 𝑎 ⊕ 𝑏 ∈ L . Let 𝑐 = 𝑎 ⊕ 𝑏 ∈ L, there is 0 ≤ 𝑐. So
𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑒 = 𝑎 ⊕ 𝑎. Thence 𝑎 = 𝑏 ⊕ 𝑐 = 𝑏 + 𝑐, and
𝑎 ≤ 𝑏.

• (partition-transform): By 0 ≤ 𝑎𝑖 ≤ 𝑒 , monotone prop-

erties and 𝑚𝑖𝑎𝑖 ∈ L,

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 ≤ ∑

𝑖∈𝐼 𝑚𝑖𝑒 = 𝑒. So⊕
𝑖∈𝐼 𝑚𝑖𝑎𝑖 =

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 ∈ L by the definition of ⊕.

Similarly

⊕
𝑖∈𝐼 𝑚𝑖𝑎𝑖 =

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 ∈ L . Adding them

together, 𝑒 =
∑
𝑖∈𝐼 𝑚𝑖𝑒 =

∑
𝑖∈𝐼 𝑚𝑖 (𝑎𝑖+𝑎𝑖 ) =

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖+∑

𝑖∈𝐼 𝑚𝑖𝑎𝑖 . Hence
∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 =

∑
𝑖∈𝐼 𝑚𝑖𝑎𝑖 .

□
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