
RunTime-Assisted Convergence
in Replicated Data Types

Gowtham Kaki
University of Colorado Boulder

Boulder, USA
gowtham.kaki@colorado.edu

Prasanth Prahladan
University of Colorado Boulder

Boulder, USA
prasanth.prahladan@colorado.edu

Nicholas V. Lewchenko
University of Colorado Boulder

Boulder, USA
nile1033@colorado.edu

Abstract

We propose a runtime-assisted approach to enforce conver-
gence in distributed executions of replicated data types. The
key distinguishing aspect of our approach is that it guaran-
tees convergence unconditionally ś without requiring data
type operations to satisfy algebraic laws such as commu-
tativity and idempotence. Consequently, programmers are
no longer obligated to prove convergence on a per-type ba-
sis. Moreover, our approach lets sequential data types be
reused in a distributed setting by extending their implemen-
tations rather than refactoring them. The novel component
of our approach is a distributed runtime that orchestrates
well-formed executions that are guaranteed to converge.
Despite the utilization of a runtime, our approach comes at
no additional cost of latency and availability. Instead, we
introduce a novel tradeoff against a metric called staleness,
which roughly corresponds to the time taken for replicas to
converge. We implement our approach in a system called
Quark and conduct a thorough evaluation of its tradeoffs.

CCSConcepts: ·Computingmethodologies→Distributed

programming languages; · Computer systems organi-

zation→ Availability; · Software and its engineering

→ Formal software verification.

Keywords: Replication, MRDT, CRDT, Runtime, Conver-
gence, Concurrent Revisions, Causal Consistency, Decen-
tralized Systems

ACM Reference Format:

Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko.

2022. RunTime-Assisted Convergence in Replicated Data Types.

In Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI ’22),

June 13ś17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3519939.3523724

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523724

1 Introduction

Large-scale web services and decentralized applications of-
ten rely on geo-distributed state replication to meet their
latency and availability needs. An application’s state is repli-
cated asynchronously in such a setting, meaning that opera-
tions are independently executed at each replica, and updates
are applied asynchronously at other replicas after a possible
network delay. Asynchronous execution complicates pro-
gramming and reasoning about distributed applications as it
induces the possibility of conflicting updates leading to non-
convergence and application integrity violations. Two basic
approaches have been proposed to address this problem. The
first approach is to selectively strengthen the system con-
sistency to pre-empt the conflicting updates. The second is
to redefine the application state in terms of Replicated Data
Types (RDTs) that are specially engineered to handle conflict-
ing updates. Strengthening system consistency necessarily
entails inter-replica coordination, therefore applications pre-
fer to utilize RDTs as much as possible, resorting to consis-
tency strengthening only when it is necessary to maintain
application integrity. The common design principle guiding
the development of replicated data types is commutativity.
The idea is that if the replicated state is only updated by
commutative operations, then updates can be applied in any
order and the replica states are still guaranteed to converge.
Indeed, there exist common use cases in web applications
that can be implemented using Commutative Replicated Data
Types (CRDTs) [23]. For instance, a video view counter on a
streaming application such as YouTube can be implemented
as a Counter CRDT that supports commutative increments.
In general, however, commutativity is not a common oc-

currence among data types. Most common data type defi-
nitions come with at least a pair of operations that do not
commute. For instance add and remove operations on a set
do not commute if both are for the same element. Likewise
two insert operations for the same position in a list do
not commute. Such non-commutative operations translate
to conflicting updates in a distributed setting, whose cumu-
lative result cannot be determined by the sequential speci-
fication of the data type alone. To use a non-commutative
data type in a replicated setting, creative re-engineering
of its internal representation and algorithms is needed to
turn it into a bonafide CRDT with a sensible distributed se-
mantics. Indeed, most CRDTs have such carefully-crafted

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

364

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4189-3189
https://doi.org/10.1145/3519939.3523724
https://doi.org/10.1145/3519939.3523724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523724&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

implementations that rely on non-trivial technical devices to
keep track of causal dependencies and avoid or resolve con-
flicts. For instance, various CRDT variants of the set abstract
data type rely on vector clocks to identify conflicting adds
and removes [28, 29], Replicated Growable Array (RGA) ś
a CRDT for collaborative editing [20], and JSON CRDT ś a
CRDT variant of the JSON storage format, both use Lamport
timestamps [15, 20]; and TreeDoc, another CRDT for collab-
orative editing, makes use of dense linear orders [19]. Such
advanced implementations makes it hard to reason about
basic correctness properties of CRDTs, such as convergence.
Indeed, formal verification of strong eventual consistency (i.e.,
eventual convergence) for few of the aforementioned CRDTs
required considerable effort on behalf of multiple authors
who are experts in the field [11]. The extraordinary effort
and the expertise required to build CRDTs is a deterrent to-
wards using type-safe abstractions with strong guarantees
in distributed applications. To overcome this deterrent, there
is a need for an alternative approach that lets developers
reuse their sequential abstractions in a distributed setting
with little to no additional overhead of reasoning about their
correctness properties such as convergence.

In this paper we describe an alternative approach to build-
ing convergent replicated data types that realizes the afore-
mentioned virtues. Our approach is based on Mergeable
Replicated Data Types (MRDTs) [14] ś an alternative take
on RDTs that is inspired by the Git version control system.
MRDTs adopt a state-centric model of replication based on
version-controlled mergeable states instead of an operation-
centric model based on commutative operations. Unlike com-
mutativity, mergeability does not require a data type defini-
tion to be refactored to suit distributed execution. Instead, the
type definition only needs to be extended with a merge func-
tion to reconcile concurrent versions of the type in presence
of their common ancestor version. However, mergeability it-
self doesn’t guarantee convergence; there exist MRDTs with
well-defined and intuitive merge semantics that nonetheless
admit divergent executions.While constraining the data type
semantics to conform to algebraic laws such as monotonicity
might restore convergence, it would burden the developer
with the task of enforcing such constraints, which we would
like to avoid. We therefore propose an alternative approach
to convergence ś one that is based on runtime orchestra-
tion rather than static enforcement. In particular, we extend
MRDTs with a distributed runtime that orchestrates only the
well-formed executions which are guaranteed to converge.
Notably, our approach guarantees convergence of MRDTs
regardless of their merge semantics, thus obviating the need
to constrain the type semantics or their implementations.
The key insight behind our approach is the observation that
a data type’s merge is a complete function, and thefore can
be safely invoked to merge concurrent versions of the type
notwithstanding their individual operation histories. Thus,
a replica’s current version can always be made available

for user operations with the guarantee that it can be safely
merged with a concurrent version at a later point of time.
The ability to arbitrarily delay merges gives us the oppor-
tunity to orchestrate them in a way that is effectively linear,
which inturn guarantees convergence.

Note that it is easy to construct a trivial runtime that guar-
antees convergence of all executions. Such a runtime would
make an extensive use of inter-replica coordination to syn-
chronize the execution of every operation and thus induce a
sequentially-consistent behavior. This would however defeat
the purpose of state replication as the latency incurred for
synchronized execution of an operation is prohibitively high,
and the availability of the system during the execution is cor-
respondingly low. It is therefore important for a distributed
runtime of RDTs to not interfere with the execution of RDT
operations. Orchestrating a well-formed convergent execu-
tion without impacting latency and availability is possible
despite the the CAP theorem [9]. While CAP theorem does
rule out linearizability, it does not prohibit enforcing weaker
consistency constraints on distributed executions. Our ap-
proach exploits this observation by (i). Identifying a novel set
of constraints on distributed executions that guarantee their
convergence, and (ii). Localizing such constraints on (asyn-
chronously executed) state merges such that per-operation
latency and system-wide availability remain unaffected. The
downside of interfering with merges, however, is that the
replicas may now take longer to converge ś a phenomenon
we quantify using a metric called staleness (Sec. 6). Our ap-
proach thus brings to fore a fundamental tradeoff that has
not been explored in the context of RDTs.

Contributions. The contributions of this paper are sum-
marized below:

• Wepresent a runtime-assisted approach toMRDT state
replication that sufficiently constrains distributed exe-
cutions so as to guarantee their convergence. This is
in contrast to the existing models of replication, where
each data type is obligated to prove its convergence
by discharging algebraic proof obligations.
• We formalize the aforementioned constraints in the
context of an abstract machine (named Quark) that
manifests distributed executions as version history
graphs similar to Git. We prove the convergence and
progress properties of theQuark abstract machine that
together guarantee its soundness. The formalization
has also beenmechanized in Ivy [18] and automatically
verified with the help of Z3 [27]. To the best of our
knowledge, this is the first time a formal system’s meta-
theory is proven completely inside an SMT solver.
• We formalizeQuark distributed machine that imple-
ments the semantics of theQuark abstract machine
in the context of an asynchronous distributed system.
The formalization addresses several practical concerns

365

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

of distribution and serves as a blueprint for an efficient
implementation.
• We describe an implementation of Quark as a light-
weight shim layer on top of Scylla ś an off-the-shelf
distributed key-value store [22]. We describe an exten-
sive evaluation to quantify the staleness metric and
novel tradeoffs in the context of case studies involving
a data structure benchmark and a collaborative editing
application.

While our focus in this paper is on RDTs, we believe our
contributions are also meaningful in the context of the long
line of work on programming models for shared-memory
concurrency. In particular, this work generalizes concur-
rent revisions [6] beyond fork-join parallelism and server-
client paradigm. Our approach demonstrates how causal
coherency-based semantics can be implemented more gen-
erally in decentralized systems while guaranteeing the con-
vergence of concurrent executions.

2 Motivation

In this section we motivate our runtime-assisted approach
to convergent RDTs with help of a set data structure.

module Set: sig

type t (* Abstract type of the set*)

type elt (* Abstract type of set elements *)

val add: elt -> unit (*Add an element *)

val remove: elt -> unit (* Remove an element *)

end

Figure 1. An OCaml interface to Set abstract data type.

{e} {e}

{}

{e}{e}

R
1

R
2

{e}

{}

R
3

remove(e)

add(e)

{}

(a)

{e} {e}

{}

{e}

{}

R
1

R
2

remove(e)

add(e)

{}

remove(e)

{}{e}

(b)

Figure 2. Anamolous executions from asynchronous repli-
cation of Set. Dashed lines denote effect propagation.

From Set ADT to Set RDT. Fig. 1 shows a simplified in-
terface of Set (abstract) data type in OCaml. The interface
hides a reference to a set (Set.t), which can be updated
in-place via add and remove operations. Set is an ordinary

data type meant for sequential execution. Under a concur-
rent execution with an asynchronously replicated state, Set
would exhibit anamolous behaviors such as those in Fig. 2.

Fig. 2a shows an anamolous execution with three repli-
cas ś 𝑅1, 𝑅2, and 𝑅3, all of which start with a singleton set
containing the element 𝑒 . A client connects to the replica
𝑅3 and executes a remove(𝑒) operation, which is then asyn-
chronously propagated to other replicas. Some time after
applying 𝑅3’s remove at 𝑅2, another client connects to 𝑅2
and re-adds 𝑒 by issuing an add(𝑒) operation. Consequently,
the state at 𝑅2 is again the singleton set {𝑒}. Replica 𝑅3 how-
ever receives 𝑅2’s add ahead of 𝑅1’s remove, applies them in
the same order, and ends upwith an empty set. The execution
thus results in divergent replica states.

Note that if Set.add and Set.remove commute, then ex-
ecuting them in different order at 𝑅2 and 𝑅3 would not have
led to divergence. As such, Set is not a CRDT due to the
admittance of non-commutative operations. Nonetheless,
there exist approaches to transform Set into a CRDT by
re-engineering its interface and operations [23, 28, 29]. For
instance, the anomalous execution in Fig. 2a can be pre-
empted by ensuring that updates are only ever applied in the
causal order. This can be done by extending Set with vector
clocks to keep track of the causal history of each operation.
A set add (resp. remove) would now generate an Add (resp.
Remove) effect tagged with the vector clock of the origin
replica. Here, the vector clock simply records the sequence
number of last operation from each replica whose effect has
been received and applied at the current replica. When an ef-
fect is received at a replica, it is buffered until the time all its
causally-preceding effects (as captured by the tagged vector
clock) have already been received and applied. This strategy
would preempt the execution in Fig. 2a by buffering 𝑅2’s add
at 𝑅1 until the causally-preceding remove of 𝑅1 is received
and applied. An interface for such a causally-consistent set
RDT is shown in Fig. 3.

Add-Wins Set CRDT. Unfortunately, Set data type of
Fig. 3 still admits divergent executions due to concurrent
updates. Fig. 2b describes one such execution. Here, replicas
𝑅1 and 𝑅2 both start with a singleton set {𝑒}. Two distinct
clients connect to 𝑅1 and 𝑅2 respectively and issue two con-
current remove(𝑒) operations. Later, another client connects
to 𝑅2 and issues an add(𝑒) operation. The effects of these
operations are asynchronously applied at remote replicas as
shown in the figure, causing divergent states at 𝑅1 and 𝑅2.
Note that, unlike the execution in Fig. 2a, the conflict-

ing operations in Fig. 2b, namely 𝑅1’s remove and 𝑅2’s add,
are not causally related, hence their relative order is not
determined by the sequential specification of the data type.
Forcing a causal relationship between them requires syn-
chronization between adds and removes, which is expensive
in an asynchronous distributed setting. It therefore becomes
inevitable to ascribe semantics to concurrent executions to

366

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

module Set: sig

type t type elt

type r_id (* Replica Id *)

(* Vector Clock *)

type v_clock = (r_id ,int) HashTable.t

(* Set RDT Effects *)

type eff = Add of elt * v_clock

| Remove of elt * v_clock

(* This replica 's vector clock *)

val local_clock: v_clock

val add: elt -> eff

val remove: elt -> eff

val buf: eff list (* pending effects *)

(* Apply an effect to the local state *)

val apply_eff: eff -> unit

end

Figure 3. An OCaml interface to Set replicated data type

restore convergence. This is done by imposing an arbitra-
tion order among concurrent conflicting operations, which
are otherwise unordered. For example, in Fig. 2b, we might
let 𝑅2’s add override 𝑅1’s remove considering that add is
re-adding an element after a previous remove. Ordering con-
current removes ahead of adds uniformly on all replicas
leads to an implementation of Set RDT where concurrent
(re-)adds consistently win over removes. Such an add-wins
set is useful, for instance, in an online shopping cart where
two users can concurrently remove an item, but if one of
them re-adds it, then the item is present in the final cart1.
Extending the Set implementation from Fig. 3 with add-

wins semantics is however not trivial. The suggested ap-
proach involves tracking element-wise causal dependencies
between the removes and adds by maintaining a vector clock
for each element 𝑒 in the set [28]. The vector clock of 𝑒 records
the sequence number of the last add(𝑒) operation from each
replica whose effect has been received and applied at the
current replica. The Add and Remove effects on 𝑒 will now be
tagged with 𝑒’s vector clock. When a Remove effect on 𝑒 is
received at a replica, it is applied only if the tagged vector
clock is no less than 𝑒’s local vector clock, i.e., only if the ar-
riving Remove has seen (i.e., causally succeeds) at least those
add(𝑒) operations the current replica is aware of. Otherwise
the effect is simply a no-op. This strategy would result in
convergent states despite the execution in Fig. 2b as 𝑅2’s
remove effectively becomes a no-op at 𝑅1 due to there being
at least one add operation on 𝑒 that it hasn’t seen. The add-
wins Set interface is similar to Fig. 3, except that it requires
an additional data structure for element-wise vector clocks:

val e_clock: (elt , v_clock) HashTable.t

The resultant set RDT is assumed to be correct albeit a formal
proof of convergence could not be found in the literature.

1This is in fact the semantics of Amazon’s online shopping cart [8].

The problem with the CRDT approach. The above ex-
ercise demonstrates the considerable ingenuity and effort
involved in deriving a convergent RDT out of such simple
data type as Set. Such sophistication makes it quite hard for
non-expert developers to build, or even customize existing
replicated data types to suit the needs of their application.
Some of the effort can be mitigated by strengthening the un-
derlying system model insofar as it doesn’t affect the latency
and availability of the application. For instance, a system
that always delivers messages in the causal order would au-
tomatically preempt the execution in Fig. 2a without the
need for additional intervention on behalf of the developer.
This is a particularly attractive proposition considering that
causal consistency can be łbolted onž an existing implemen-
tation of an eventually consistent system without weakening
its guarantees [3]. Unfortunately, such strengthening of the
system model would deliver no benefits to the developer if
they still have to reason about fine-grained causal dependen-
cies to guarantee convergence, such as in the case of Fig. 2b.
As we observed earlier, the execution in Fig. 2b seems in-
evitable unless every pair of add and remove operations are
synchronized, which, regrettably, is not a practical option.
The developer therefore seems to be stuck.

{e} {e}

{}

{e}

{}

R
1

{e}

{}

remove(e)

add(e)

{e}

v
1

v
0

v
2

v
3

v
4

v
5

v
0

v
0

R
2

R
3

remove(e)

(a)

{e} {e}

{}

{e}

{}

R
1

R
2

remove(e)

add(e)

{}

remove(e)

{}{e}

v
0

v
1

v
2

v
3

v
4

v
5 v

6

(b)

Figure 4. Equivalent executions of Fig. 2 in state-centric
replication model. Dashed lines now denote state merges.

The MRDT Approach. Mergeable Replicated Data Types
(MRDTs) implement a state-centric model of replication that
is inspired by the Git version control system. Like in Git, the
state evolves in terms of versions, and concurrent versions of
the state can be merged. The semantics of merge depends on
the type of the state, so eachMRDT is required to be equipped
with a three-way merge function that merges concurrent
versions of that type in presence of their (lowest) common
ancestor version. In our running example, the state is a value
of type Set.t, hence Set.merge would have the signature:

Set.merge : Set.t→ Set.t→ Set.t→ Set.t

The three arguments of merge correspond to the lowest com-
mon ancestor (LCA) version and the two concurrent versions

367

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

that independently evolved from the LCA version. The LCA
is a causal ancestor of concurrent versions, hence causal
consistency is built into the replication model. The result of
set merge, intuitively, must contain the common elements
in the two concurrent versions along with any newly added
elements in either versions. Concretely:

let merge s(*lca*) s1 s2 =

(s1 ∩ s2) ∪ (s1 - s) ∪ (s2 - s)

Extending Set ADT with the above merge function results
in a SetMRDT.
Let us now reconsider the executions in Fig. 2, this time

on SetMRDT. The equivalent executions are shown in Fig. 4.
Due to causal consistency being built into the model, the
divergent execution of Fig. 2a is preempted in favor of the
convergent execution shown in Fig. 4a. The execution mani-
fests as follows. The initial version (𝑣0) on all three replicas is
the singleton set {𝑒}. Applying operations to replicas creates
new versions, e.g., 𝑣1 on 𝑅3, and 𝑣2 and 𝑣3 on 𝑅2. Changes can
be propagated by merging versions, e.g., version 𝑣2 on 𝑅2 is a
result of merging 𝑣1 into 𝑣0 for which 𝑣0 serves as the lowest
common ancestor (LCA) 2. Likewise 𝑣4 on 𝑅1 is created by
merging 𝑣2 into 𝑣0 in presence of their LCA 𝑣0. The next
version 𝑣5 on 𝑅1 is the result of merging 𝑅2’s 𝑣3 into 𝑅1’s 𝑣4.
The LCA for this merge is 𝑣2. By the end of the execution,
versions 𝑣5 and 𝑣3 on 𝑅1 and 𝑅2 (resp.) have witnessed the
same set of operations, hence are in agreement.

{e} {e}

{}

{e}

{}

R
1

R
2

remove(e)

add(e)
{}

remove(e)

{e}

v
0

v
1

v
5

v
2

v
4

v
6

{}v3

(a)

{e} {e}

{}

{}

R
1

remove(e)

{e}

v
0

v
1

v
4

v
5

v
6

{e}

{}
v
2

{e}

remove(e)

add(e)

{e}

{e}

{}

v
3

v
7

{}

v
8

R
2

R
3

R
4

(b)

Figure 5. Executions demonstrating the difference between
linearized (former) and concurrent (latter) merges.

Well-formed executions and the Quark runtime. Con-
vergence however is not an inherent virtue of the state-
centric replication model. Fig. 4b shows the state-centric
analogue of the execution in Fig. 2b which diverges. Here 𝑅1
and 𝑅2 start with version 𝑣0 = {𝑒}. 𝑅2 performs a remove
and an add making versions 𝑣1 and 𝑣2 respectively. Simulta-
neously, 𝑅1 performs a remove to make 𝑣3. Replica 𝑅1 now

2Versions 𝑣0 and 𝑣1 are not concurrent as the former is an ancestor of the

latter. Merging 𝑣1 into 𝑣0 is nonetheless possible as 𝑣1 is ahead of 𝑣0 in

causal order. In Git parlance this is a fast forward merge.

obtains 𝑅2’s changes by merging versions 𝑣1 and 𝑣2 to make
new versions 𝑣4 and 𝑣5 respectively. LCAs for these merges
are 𝑣0 and 𝑣1. Concurrently, 𝑅2 obtains 𝑅1’s changes by merg-
ing 𝑣3 with 𝑣2 (LCA = 𝑣0) to make 𝑣6. Now 𝑅1 and 𝑅2 have
same set of changes yet their final versions differ.
Note that the anamolous execution in Fig. 4b could have

been avoided had the merges between 𝑅1 and 𝑅2 been lin-
earized. Fig. 5a shows an execution that only slightly differs
from the one in Fig. 4b. The difference is that the merges in
Fig. 5a happen linearly: first 𝑅1 is merged into 𝑅2 (bringing
𝑅1’s remove), then 𝑅2 into 𝑅1 (bringing 𝑅2’s remove), fol-
lowed again by 𝑅2 into 𝑅1 (bringing 𝑅2’s add). As a result
of such linearization, the final versions on 𝑅1 and 𝑅2 con-
verge to the singleton set {𝑒}. Note that there exist other
linearizations of merges; for instance, 𝑅1 → 𝑅2 merge could
be ordered between the two 𝑅2 → 𝑅1 merges. However, all
linearizations result in the same final state {𝑒}. Another im-
portant point to note is that only the merges are linearized;
not the entire execution. In Fig. 5a, both 𝑅1 and 𝑅2’s removes
remove the same element 𝑒 , which is not possible in a lin-
earized execution.

In the context of Fig. 5a, it is quite clear what linearization
of merges means and how to enforce it via synchronization
(for e.g., wrapping each merge within a global lock). In gen-
eral however, the semantics of merge linearization isn’t as
cut and dried. For instance, consider the execution in Fig. 5b.
The four replicas involved in the execution start with version
𝑣0 = {𝑒}. The replicas perform local operations as shown
in the figure to make versions 𝑣1 to 𝑣3. Next they perform
a series of merges to propagate local changes. The merges
can be ordered in time as following: first 𝑅2 → 𝑅1 (merg-
ing 𝑣1), then 𝑅3 → 𝑅1 twice (merging 𝑣2 and 𝑣3 resp.), then
𝑅3 → 𝑅4 (merging 𝑣3), and finally 𝑅2 → 𝑅4 (merging 𝑣1).
These merges collectively propagate the effects of add and
remove operations to 𝑅1 and 𝑅4. And despite being ordered
in time, they nonetheless result in a divergent execution
(𝑣6 ≠ 𝑣8). The problem here is that, although merges are
executed linearly, the execution graph does not reflect this
linearity; merges that end in 𝑅1 in Fig. 5b are effectively con-
current with those that end in 𝑅4. This shows that simply
synchronizing the execution of merges does not result in
convergence.

Our key insight to overcome this impasse is a novel well-
formedness condition on execution graphs that ensures con-
vergence of final states. To understand well-formedness, let
us contrast the bad executions in Figs. 4b and 5b against the
good execution in Fig. 5a. Observe that in Fig. 5a, every pair
of concurrent versions on 𝑅1 and 𝑅2 have a unique lowest
common ancestor (LCA). For instance, LCA of (𝑣5, 𝑣6) is 𝑣5,
(𝑣5, 𝑣4) is 𝑣3, (𝑣1, 𝑣2) is 𝑣0 and so on. By contrast in Fig. 4b,
versions 𝑣5 and 𝑣6 have two LCAs, namely 𝑣2 and 𝑣3. Both
these versions are common ancestors of 𝑣5 and 𝑣6, and both
are lowest in the sense that there do not exist versions lower
(in the execution graph) than 𝑣2 and 𝑣3 that are also common

368

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

ancestors of 𝑣5 and 𝑣6. Likewise in Fig. 5b, versions 𝑣6 and 𝑣8
have two LCAs ś 𝑣1 and 𝑣3. Multiple LCAs is an indication
that there exist merges prior in the execution graph that
are effectively concurrent. Considering that our approach to
convergence in the state-centric model crucially relies on the
linearity of merges, presence of multiple LCAs opens up the
possibility of divergence. We therefore define well-formed
execution graphs as those where LCAs for every pair of con-
current versions is unique. As we prove in Sec. 3, enforcing
this structural well-formedness condition indeed guarantees
the convergence of distributed executions. In Sec. 4, we for-
malize a distributed runtime calledQuark whose primary
purpose is to enforce the well-formedness condition on dis-
tributed executions. In Sec. 5, we describe its implementation.
The runtime makes it possible to automatically enforce con-
vergence, letting us promote ordinary sequential data types
to convergent replicated types by simply equipping them
with a merge function. Thus, extending the Set interface of
Fig. 1 with the two-line Set.merge function shown above is
sufficient to obtain a convergent replicated set data type.

3 Semantics of State-Centric Replication

In this section we present the formal semantics of our state-
centric replication scheme with linearized merges. As the
informal development from previous section suggests, our
replication scheme is strongly inspired by version control
systems (VCS) such as Git. We embrace this analogy in our
formal development to manifest distributed executions over
replicated state with help of an abstract łGitž machine build-
ing a well-formed version history graph. We show that the
version history graph thus generated has several desirable
properties including unique LCAs for every pair of versions,
and convergence of versions that include the same set of
commits. We are however not concerned about the practical
aspects of the system yet; the subsequent sections gradually
refine the abstract semantics described here into a practical
distributed system we callQuark. For convenience, we re-
fer to the abstract łGitž machine we describe here also as
Quark.
Fig. 6 shows the operational semantics of theQuark ab-

stract machine. The machine admits the usual version con-
trol operations, namely Commit, Fork, Merge, and Fast-

Fwd. Operation FastFwd is a special case of merge which
simply fast forwards a branch to a later version. A branch
is a linear sequence of versions, which intuitively denotes
the progressive evolution of the state on a replica. There is
thus a one-to-one mapping between replicas and branches.
The latest version of the branch, called its head, denotes
the current state of the corresponding replica. A new head
version is created either by an externally-initiated commit
(Commit) or by merging the current head with a concur-
rent or causally-succeeding version from a different branch
(Merge and FastFwd respectively). A new branch can be

created by forking off a version on an existing branch (Fork).
Although a version control system admits more operations
(e.g., łrebasež), we observe that these four basic actions are
sufficient to capture the behavior of an asynchronously repli-
cated multi-versioned state machine.
The state of Quark abstract machine is a tuple Δ =

(𝐺, 𝑁,𝐶, 𝐻, 𝐿), where:

• 𝐺 = (𝑉 , 𝐸) is the version history DAG generated by
the execution of the abstract machine. Vertices (𝑉) of
the graph are the set of all versions that ever existed
during the execution. Edges (𝐸) record the relation-
ships between various versions. In particular, there are
three kinds of edges corresponding to the three basic

operations: commit (
𝑐
−→), merge (

𝑚
−→), fork (

𝑓
−→). Fast

forward, being a special case of merge, is also denoted

by a merge edge (
𝑚
−→). Existence of an edge 𝑣0 → 𝑣1

denotes that versions 𝑣0 and 𝑣1 are related by some

operation. For e.g., 𝑣0
𝑓
−→ 𝑣1 denotes that 𝑣1 is a new

version forked-off from the version 𝑣0 using the Fork
rule. As usual, path relation is the reflexive transitive
closure of the edge relation, i.e,→∗.
• 𝑁 : Version → Value is a (partial) function (i.e., a
map) that maps versions to their values.We distinguish
versions from values as different versions on different
branches may store the same value (e.g., the same
string łhellož), yet need to be uniquely identified. The
domain of values is left uninterpreted except for the
requirement that it be mergeable, i.e., define a three-
way merge function.
• 𝐶 : Version→ P (CommitId) maps a version 𝑣 to the
set of commit ids included in that version. Each commit
event during the execution is uniquely identified by a
commit id (analogous to the Git’s commit hash). The
set of commit ids 𝐶 (𝑣) therefore denotes the commit
events that contributed to the version 𝑣 . Intuitively,
this represents the set of user-initiated operations that
affected the value of this version.
• 𝐻 : Branch→ Version is an injective (partial) func-
tion that maps each branch to its head version.
• 𝐿 : Branch × Branch → Version maps a pair of
branches to the lowest common ancestor (LCA) ver-
sion of their heads. We later prove the unique LCA
property, so 𝐿 is indeed a (partial) function. Note that
LCA of a pair of branches 𝑏1 and 𝑏2 need not neces-
sarily lie on 𝑏1 or 𝑏2; it could also be a version on a
different branch 𝑏. This happens, for e.g., if 𝑏1 and 𝑏2
alternatively merged the same version from 𝑏.

Notation. We let 𝑣⊙ denote the initial version (łrootž),
and 𝑏⊙ denote the initial branch (łmasterž). The execution
of the abstract machine progresses by adding to the sets 𝑉
and 𝐸, and updating the maps 𝑁 , 𝐶 , 𝐻 , and 𝐿. We adopt
the usual update notation, e.g., 𝐻 [𝑏 ↦→ 𝑣] is a map 𝐻 ′ such

369

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝑣 ∈ Versions/Vertices 𝑏 ∈ Branches 𝑐 ∈ CommitIds 𝑛 ∈ Values
𝑐
−→,

𝑓
−→,

𝑚
−−→∈ Edges 𝐺 ∈ (Vertices, Edges)

𝑁 : Version→ Value 𝐶 : Version→ P (CommitId) 𝐻 : Branch→ Version 𝐿 : Branch × Branch→ Version

(𝐺, 𝑁,𝐶, 𝐻, 𝐿) −→ (𝐺 ′, 𝑁 ′,𝐶 ′, 𝐻 ′, 𝐿′)

𝑏 ∈ 𝑑𝑜𝑚(𝐻) 𝑣 ∉ 𝑉 𝑖 ∉ 𝑐𝑜𝑑𝑜𝑚(𝐶)

((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) −→ (𝑉 ∪ {𝑣}, 𝐸 ∪ {𝐻 (𝑏)
𝑐
−→ 𝑣}, 𝑁 [𝑣 ↦→ 𝑛], 𝐶 [𝑣 ↦→ {𝑖} ∪𝐶 (𝐻 (𝑏))], 𝐻 [𝑏 ↦→ 𝑣], 𝐿)

[Commit]

𝑏 ∈ 𝑑𝑜𝑚(𝐻) 𝑏 ′ ∉ 𝑑𝑜𝑚(𝐻) 𝑣 ∉ 𝑉

((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) −→ (𝑉 ∪ {𝑣}, 𝐸 ∪ {𝐻 (𝑏)
𝑓
−→ 𝑣}, 𝑁 [𝑣 ↦→ 𝑁 (𝐻 (𝑏))], 𝐶 [𝑣 ↦→ 𝐶 (𝐻 (𝑏))],

𝐻 [𝑏 ′ ↦→ 𝑣], 𝐿[(𝑏 ′, 𝑏) ↦→ 𝐻 (𝑏)] [{(𝑏 ′, 𝑏 ′′) ↦→ 𝐿(𝑏, 𝑏 ′′) | 𝑏 ′′ ≠ 𝑏}])

[Fork]

𝑏, 𝑏 ′ ∈ 𝑑𝑜𝑚(𝐻) 𝐶 (𝐻 (𝑏)) ⊃ 𝐶 (𝐿(𝑏,𝑏 ′)) 𝐶 (𝐻 (𝑏 ′)) ⊃ 𝐶 (𝐿(𝑏,𝑏 ′))

∀(𝑏 ′′ ∈ 𝑑𝑜𝑚(𝐻)) . 𝐿(𝑏,𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′)

𝑛 = merge(𝑁 (𝐿(𝑏, 𝑏 ′)), 𝑁 (𝐻 (𝑏)), 𝑁 (𝐻 (𝑏 ′))) 𝑣 ∉ 𝑉

((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) −→ (𝑉 ∪ {𝑣}, 𝐸 ∪ {𝐻 (𝑏)
𝑚
−−→ 𝑣, 𝐻 (𝑏 ′)

𝑚
−−→ 𝑣},

𝑁 [𝑣 ↦→ 𝑛], 𝐶 [𝑣 ↦→ 𝐶 (𝐻 (𝑏)) ∪𝐶 (𝐻 (𝑏 ′))], 𝐻 [𝑏 ↦→ 𝑣],

𝐿[(𝑏,𝑏 ′) ↦→ 𝐻 (𝑏 ′)] [{(𝑏,𝑏 ′′) ↦→ 𝐿(𝑏 ′, 𝑏 ′′) | 𝐿(𝑏, 𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′)}])

[Merge]

𝑏, 𝑏 ′ ∈ 𝑑𝑜𝑚(𝐻) 𝐶 (𝐻 (𝑏)) = 𝐶 (𝐿(𝑏, 𝑏 ′)) 𝐶 (𝐻 (𝑏 ′)) ⊃ 𝐶 (𝐿(𝑏,𝑏 ′))

∀(𝑏 ′′ ∈ 𝑑𝑜𝑚(𝐻)) . 𝐿(𝑏,𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏,𝑏 ′′) 𝑣 ∉ 𝑉

((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) −→ (𝑉 ∪ {𝑣}, 𝐸 ∪ {𝐻 (𝑏)
𝑚
−−→ 𝑣, 𝐻 (𝑏 ′)

𝑚
−−→ 𝑣},

𝑁 [𝑣 ↦→ 𝑁 (𝐻 (𝑏 ′))], 𝐶 [𝑣 ↦→ 𝐶 (𝐻 (𝑏 ′))], 𝐻 [𝑏 ↦→ 𝑣],

𝐿[(𝑏,𝑏 ′) ↦→ 𝐻 (𝑏 ′)] [{(𝑏,𝑏 ′′) ↦→ 𝐿(𝑏 ′, 𝑏 ′′) | 𝐿(𝑏, 𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′)}])

[FastFwd]

Figure 6. The semantics ofQuark abstract machine inspired by the Git version control system

that 𝐻 ′(𝑏) = 𝑣 , and for all 𝑏 ′ ≠ 𝑏, 𝐻 ′(𝑏 ′) = 𝐻 (𝑏 ′). Multi-
ple updates to a map are parsed left-associatively. Map 𝐿 is
assumed to be commutative, so 𝐿[(𝑏,𝑏 ′) ↦→ 𝑣] is equal to
𝐿[(𝑏,𝑏 ′) ↦→ 𝑣] [(𝑏 ′, 𝑏) ↦→ 𝑣]; the former is used as a succinct
replacement of the latter. To update multiple bindings in 𝐿,
we use the set comprehension notation: given a branch 𝑏,
𝐿[{(𝑏, 𝑏 ′) ↦→ 𝑣 | 𝜙 (𝑏,𝑏 ′)}] updates all bindings (𝑏,𝑏 ′) in 𝐿

to 𝑣 , where 𝑏 ′ is any branch such that 𝜙 (𝑏,𝑏 ′) is true. Do-
main and co-domain of a map 𝑀 is denoted 𝑑𝑜𝑚(𝑀) and
𝑐𝑜𝑑𝑜𝑚(𝑀) respectively.

Definition 3.1 (Initial State and Version History Graph).
The graph 𝐺⊙ = ({𝑣⊙}, ∅) is the initial version graph. The
state Δ⊙ = (𝐺⊙, [𝑣⊙ ↦→ 𝑏⊙], [𝑏⊙ ↦→ 𝑣⊙], ∅) is the initial
state.

All executions of the abstract machine are assumed to start
from the initial state.

Definition 3.2 (Ancestor). In version history DAG 𝐺 =

(𝑉 , 𝐸), version 𝑣0 ∈ 𝑉 is said to be a (causal) ancestor of
𝑣1 ∈ 𝑉 iff 𝑣0 →

∗ 𝑣1. Versions 𝑣0, 𝑣1 ∈ 𝑉 are causally related
iff either 𝑣0 →

∗ 𝑣1 or 𝑣1 →
∗ 𝑣0.

Definition 3.3 (Lowest Common Ancestor (LCA)). In ver-
sion history DAG 𝐺 = (𝑉 , 𝐸), a version 𝑣 ∈ is a lowest
common ancestor of versions 𝑣1 ∈ 𝑉 and 𝑣2 ∈ 𝑉 iff:

• 𝑣 is a common ancestor of 𝑣1 and 𝑣2, i.e., 𝑣 →
∗ 𝑣1 and

𝑣 →∗ 𝑣2, and
• There does not exist a 𝑣 ′ ∈ 𝑉 such that 𝑣 ′ is a common
ancestor of 𝑣1 and 𝑣2, and 𝑣 →

∗ 𝑣 ′.

LCA of a pair of branches is defined as the LCA of their
heads.

Rules. The rule Commit (Fig. 6) describes committing a
new version 𝑣 onto the branch 𝑏 updating its head. The value
𝑛 for the new version is assumed to have been provided by
whoever has invoked the commit, e.g., the user. Intuitively,
user invokes an RDT operation (e.g., add(𝑒)) on the value
of the current version to create the new value 𝑛, and thus
the new version 𝑣 . A unique commit id 𝑖 is assigned to this
commit event and added to 𝐶 (𝑣). The set 𝐶 (𝑣) also contains
all the commit ids from the previous version 𝐻 (𝑏) since
the new value 𝑛 is assumed to have been derived from the
previous value 𝑁 (𝐻 (𝑏)). The edge 𝐻 (𝑏)

𝑐
−→ 𝑣 records this

dependency and also documents the progression of branch
𝑏. The LCA map 𝐿 does not change as the only new edge is
between the versions of the same branch 𝑏.
Fork describes the semantics of forking a new branch 𝑏 ′

from the head of an existing branch 𝑏. The head of 𝑏 ′ is a
new version 𝑣 that shares the same commit set (𝐶 (𝑣)) and
value (𝑁 (𝑣)) as its predecessor (𝐻 (𝑏)). The lowest common
ancestor (LCA) of 𝑏 ′ and its parent 𝑏 is clearly the head of

370

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

the parent 𝐻 (𝑏) as there does not exist a version 𝑣 lower
than 𝐻 (𝑏) that is an ancestor of both 𝐻 (𝑏) and 𝐻 (𝑏 ′). For
every other branch 𝑏 ′′, 𝐿(𝑏 ′, 𝑏 ′′) is same as 𝐿(𝑏,𝑏 ′′). Fork
operation could model, for e.g., creating a new replica by
forking off the current state of an existing replica.

b b’ b’’

L(b,b'')

L(b’,b’’)

Figure 7. Explanation for the premise 𝐿(𝑏,𝑏 ′′) →∗

𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′) on the Merge rule.

Merge describes the semantics of merging the head of a
branch𝑏 ′ into𝑏 resulting in an new version 𝑣 on𝑏. Intuitively,
Merge models the information exchange between replicas.
The two pre-conditions specified using the strict superset
relation (⊃) require each of the merging versions, 𝐻 (𝑏) and
𝐻 (𝑏 ′), to include at least one commit not present in their
common ancestor 𝐿(𝑏, 𝑏 ′). These conditions ensure that the
merge is not trivial (trivial merge is handled by FastFwd).
The next pre-condition is key to ensuring the uniqueness
of LCAs and the linearity of merges. It requires that, for
every branch 𝑏 ′′ in the system, the LCA of 𝑏 ′′ with merg-
ing branches 𝑏 and 𝑏 ′ be causally related, i.e, 𝐿(𝑏, 𝑏 ′′) →∗

𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′). Fig. 7 helps visualize
this condition in the most general case when (i). Branches
𝑏, 𝑏 ′, and 𝑏 ′′ are distinct, and (ii). Their LCAs 𝐿(𝑏,𝑏 ′′) and
𝐿(𝑏 ′, 𝑏 ′′) lie on a distinct pair of branches not equal to 𝑏, 𝑏 ′,
and 𝑏 ′′. In the figure, once you merge 𝑏 ′ into 𝑏, every version
𝑣 that is an ancestor of 𝐿(𝑏 ′, 𝑏 ′′), i.e., 𝑣 →∗ 𝐿(𝑏 ′, 𝑏 ′′), will be
a common ancestor of 𝐻 (𝑏) and 𝐻 (𝑏 ′′). Clearly, 𝐿(𝑏 ′, 𝑏 ′′) is
the lowest among such common ancestors. But the current
lowest common ancestor of 𝑏 and 𝑏 ′′ is 𝐿(𝑏, 𝑏 ′′). We there-
fore end up with two lowest common ancestors ś 𝐿(𝑏 ′, 𝑏 ′′)

and 𝐿(𝑏, 𝑏 ′′), unless both are ancestrally related. Thus the pre-
condition 𝐿(𝑏, 𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏,𝑏 ′′). If
𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′), then 𝐿(𝑏,𝑏 ′′), the current LCA of 𝑏
and 𝑏 ′′, is still the LCA after the merge. On the other hand,
if 𝐿(𝑏, 𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′), then 𝐿(𝑏 ′, 𝑏 ′′) becomes the lowest
common ancestor of 𝑏 and 𝑏 ′′ after the merge. Thus 𝐿(𝑏, 𝑏 ′′)
needs to be updated if and only if 𝐿(𝑏, 𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′).
The conclusion of the Merge captures this update using the
set comprehension notation. It also updates the LCA of the
merging branches 𝐿(𝑏,𝑏 ′) to 𝐻 (𝑏 ′) since the head of 𝑏 ′ is
merged into 𝑏. Updates to the other components of the state
(e.g., 𝐶) follow the same rationale as previous rules. Two

edges are added to 𝐸 as the new version 𝑣 is a descendant of
the two merging versions.

Another notable aspect of theMerge rule is the invocation
of the merge function on the values of the merging versions
and their common ancestor to derive the result of the merge.
As explained above, our development is parameterized on
the domain of values for which a merge function is defined.
No further constraints are imposed on merge. We use an
uncurried version of merge to avoid clutter.

FastFwd generalizes merge to the case when the merging
version𝐻 (𝑏 ′) is a descendant of the version𝐻 (𝑏). In this case
𝐻 ′(𝑏), the new head of 𝑏, needs to have the same value and
same set of commits as 𝐻 (𝑏 ′). Other premises and conclu-
sions are similar to theMerge rule. Note that we don’t need
a separate rule for fast forward merge if merge satisfies the
invariant that ∀𝑛, 𝑛′. merge(𝑛, 𝑛, 𝑛′) = merge(𝑛, 𝑛′, 𝑛) = 𝑛.
Having a separate rule lets us elide this constraint.

Properties. We now formalize the notable properties of
the abstract machine and its executions3.

Lemma 3.4 (Uniqueness of LCA). In every reachable state
Δ = (𝐺, 𝑁,𝐶, 𝐻, 𝐿) of the abstract machine, every pair of
branches𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝐻) has a unique LCA given by𝐿(𝑏1, 𝑏2).

The intuition behind the proof is succinctly captured by
Fig. 7, which is explained above.

Lemma 3.5 (Commit sets grow monotonically). In every
reachable state Δ = ((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) of the abstract ma-
chine: For all 𝑣1, 𝑣2 ∈ 𝑉 , if 𝑣1 →

∗ 𝑣2 then 𝐶 (𝑣1) ⊆ 𝐶 (𝑣2).

Lemma 3.5 guarantees that merges never lose a commit.

Corollary 3.6 (Commit sets modulo LCA are disjoint). In
every reachable state Δ = ((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) of the abstract
machine: For all distinct𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝐻), and 𝑣0, 𝑣1, 𝑣2 ∈ 𝑉 s.t.
𝑣1 = 𝐻 (𝑏1) and 𝑣2 = 𝐻 (𝑏2) and 𝑣0 = 𝐿(𝑏1, 𝑏2), the following
is true: (𝐶 (𝑣2) −𝐶 (𝑣0)) ∩ (𝐶 (𝑣1) −𝐶 (𝑣0)) = ∅.

Corollary 3.6 follows from Lemmas 3.4 and 3.5.

Theorem 3.7 (Convergence). In every reachable state Δ
= ((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) of the abstract machine: For all distinct
𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝐻), and 𝑣1, 𝑣2 ∈ 𝑉 such that 𝑣1 = 𝐻 (𝑏1) and
𝑣2 = 𝐻 (𝑏2), the following is true: 𝐶 (𝑣1) = 𝐶 (𝑣2) ⇒ 𝑁 (𝑣1) =

𝑁 (𝑣2).

Theorem 3.7 is the key result of this section. It asserts that
any two branches that witnessed the same set of commits
have the same value. Intuitively, this means that any two
replicas that witnessed the same set of user actions arrive at
the same final state regardless of the order in which they are
witnessed.

Convergence is vacuously true if the abstract machine
never lets any merges to happen, i.e., if the premises of the
Merge rule are too strong to be never true. We prove that
this is not the case with help of the following theorem:

3Proofs can be found in the Appendix

371

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Theorem 3.8 (Progress). Every reachable state Δ = ((𝑉 , 𝐸),

𝑁 ,𝐶, 𝐻, 𝐿) of the abstract machine is either:

• A łquiescentž state, where:
∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝐻). 𝐶 (𝐻 (𝑏1)) = 𝐶 (𝐻 (𝑏2)), Or
• An łunstuckž state, where there exist 𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝐻)
that satisfy the pre-conditions of Merge or FastFwd

rules, i.e., 𝑏1 and 𝑏2 are mergeable.

Convergence and Progress together ensure the soundness
of theQuark abstract machine.

Ivy formalization. In addition to the manual proofs, we
also formalized the Quark abstract machine in Ivy [18] and
verified its properties automatically with help of Z3 [27]. Ivy
is a multi-modal verification tool, whose primary purpose
is to verify the design and implementations of distributed
protocols. The key differentiating aspect of Ivy is its onus
on predictable automation and decidable reasoning. Auto-
mated proofs in Ivy are restricted to logical fragments for
which the tool is a decision procedure. Consequently, the
creative aspect of proving a theorem in Ivy lies in discov-
ering decidable abstractions that characterize the system
being reasoned about, and crafting the inductive invariants
required to discharge the automated proof. This is in con-
trast to theorem provers such as Coq and Isabelle, and their
extensions such as Sledgehammer [4], where automation is
used on a best-effort basis to aid interactive theorem proving.
Our formalization of theQuark abstract machine in Ivy

follows the formal development in Fig. 6 but uses slightly
different abstractions to obtain decidable reasoning. Maps
𝐶 , 𝑁 , 𝐻 , and 𝐿 are modeled as relations instead of functions
since reasoning about quantifier-bound function application
is in general undecidable.𝑉 and 𝐸 are relations by definition.
Their initial values are as specified by Δ⊙ in Def. 3.1. The
system admits four actions corresponding to the four transi-
tion rules in Fig. 6. Each action łupdatesž the system state
Δ = ((𝑉 , 𝐸), 𝑁 ,𝐶, 𝐻, 𝐿) as defined by the corresponding rule
in Fig. 6. Commit, version, and branch identifiers aremodeled
as totally ordered sets of uninterpreted values from which
new values can be chosen sequentially. This lets us capture
these identifiers as monotonically increasing integers while
avoiding undecidable reasoning with quantifier-bound in-
teger arithmetic. Lemmas/Theorems 3.4 to 3.8 are asserted
as inductive properties of theQuark abstract machine. Ivy
succesfully verifies each of these properties with help of Z3,
thus certifying the soundness of Quark’s meta-theory.

4 Concrete Semantics

TheQuark abstract machine of the previous section deliber-
ately ignores system-level concerns to focus on the seman-
tics of version-controlled state replication. In this section
we present the Quark distributed machine that addresses
the key system-level concerns and provides a blueprint for
a practical version-controlled replicated state machine. We

first reify the one-to-one correspondence between replicas
and branches we assumed informally in the previous section.
This requires us to relax the assumption of the state Δ being
shared synchronously across all replicas. Next we present an
efficient method to track the version history with the help of
vector clocks. Finally, we outline an algorithm for garbage
collecting older versions so that the version history need not
grow unboundedly.
Fig. 8 shows the operational semantics of the distributed

machine. The key difference from the abstract semantics of
Fig. 6 is the presence of ReplicaId indexing the components
of the system state. We thus admit the possibility of different
replicas having different conceptions of the state. Another
major difference is the use of version vectors [16] as iden-
tifiers and placeholders for versions. A version vector of a
version 𝑣 records the sequence number of the last version
from each branch that causally precedes 𝑣 (as per Def. 3.2).
Concretely, version vector is a map from branches to natural
numbers:

VersionVector = Branch→ N

The state of the distributed machine is the triple 𝛿 =

(𝐵, 𝑁,𝐻). Components 𝐵 and 𝐻 are indexed by ReplicaId

to let us denote their replica-local copies. For instance, replica
𝑖’s copy of the head map 𝐻 is given by (𝐻 𝑖), which we ab-
breviate to 𝐻𝑖 for notational convenience. Like 𝐻 in Fig. 6,
𝐻𝑖 maps each branch to the version vector of its head. Note
that two replicas may be out of sync w.r.t the information
in 𝐻 and 𝐵. For instance, 𝐻𝑖 (𝑏) may not be equal to 𝐻 𝑗 (𝑏) if
replicas 𝑖 and 𝑗 are out of sync. On a replica 𝑖 , branch map
𝐵𝑖 gives the version vector corresponding to a particular se-
quence number on a branch. For instance, the version vector
of the first version on branch 𝑏 is given by 𝐵𝑖 (𝑏, 1) on replica
𝑖 . The value map 𝑁 maps version vectors to their values.
We assume a single copy of 𝑁 to simplify the presentation.
Generalizing Fig. 8 to allow for replica-local copies of 𝑁 is
straightforward.
Conspicuous by its absence in Fig. 8 is the LCA map 𝐿,

which we previously used to track the LCA version for every
pair of branches. The use of version vectors, coupled with
the unique LCA guarantee, obviates the need for an LCA
map. We can instead identify the LCA of a pair of versions
𝑣1 and 𝑣2 by computing the greatest lower bound (GLB) of
their version vectors 𝑡1 and 𝑡2. Concretely:

𝑡𝑙 = 𝑡1 ⊓ 𝑡2

Where 𝑡𝑙 is the version vector of the LCA and⊓ is the GLB op-
erator. Conversely, the version vector identifying the result
of a merge can be computed as the least upper bound (LUB)
of the two version vectors involved in the merge. Concretely:

𝑡𝑚 = 𝑡1 ⊔ 𝑡2

Where 𝑡1 and 𝑡2, and 𝑡𝑚 are the version vectors of the merg-
ing versions and the result of the merge, respectively. For
technical reasons, however, we increment the component

372

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

𝑖, 𝑗 ∈ ReplicaIds 𝑏𝑖 , 𝑏 𝑗 ∈ Branches 𝑡 ∈ VersionVectors 𝑛 ∈ Values 𝑁 : VersionVector→ Value

𝐻 : ReplicaId→ Branch→ VersionVector 𝐵 : ReplicaId→ (Branch × N) → VersionVector

(𝐵, 𝑁,𝐻) −−→→ (𝐵′, 𝑁 ′, 𝐻 ′)

𝑏𝑖 ∈ 𝑑𝑜𝑚(𝐻𝑖) 𝑡 = 𝐻𝑖 (𝑏𝑖) 𝑡 ′ = 𝑡 [𝑏𝑖 ↦→ 𝑡 (𝑏𝑖) + 1]

(𝐵, 𝑁,𝐻) −−→→ (𝐵𝑖 [(𝑏𝑖 , 𝑡
′(𝑏𝑖)) ↦→ 𝑡 ′], 𝑁 [𝑡 ′ ↦→ 𝑛], 𝐻𝑖 [𝑏𝑖 ↦→ 𝑡 ′])

[Commit]

𝑏𝑖 , 𝑏 𝑗 ∈ 𝑑𝑜𝑚(𝐻𝑖) ∀(𝑘 ∈ 𝑑𝑜𝑚(𝐻)) . 𝑏𝑘 ∈ 𝑑𝑜𝑚(𝐻𝑖) ∧ 𝐻𝑖 (𝑏𝑘) = 𝐻𝑘 (𝑏𝑘)

𝑡𝑖 = 𝐻𝑖 (𝑏𝑖) 𝑡 𝑗 = 𝐻𝑖 (𝑏 𝑗) 𝑡𝑙 = 𝑡𝑖 ⊓ 𝑡 𝑗 𝑡𝑙 < 𝑡𝑖 𝑡𝑙 < 𝑡 𝑗 𝑡 ′ = 𝑡 𝑗 ⊔ 𝑡𝑖 [𝑏𝑖 ↦→ 𝑡𝑖 (𝑏𝑖) + 1]

∀(𝑘 ∈ 𝑑𝑜𝑚(𝐻)) . (𝑡𝑖 ⊓ 𝐻𝑖 (𝑏𝑘)) ⋚ (𝑡 𝑗 ⊓ 𝐻𝑖 (𝑏𝑘)) 𝑛 = merge(𝑁 (𝑡𝑙), 𝑁 (𝐻𝑖 (𝑏𝑖)), 𝑁 (𝐻𝑖 (𝑏 𝑗)))

(𝐵, 𝑁,𝐻) −−→→ (𝐵𝑖 [(𝑏𝑖 , 𝑡
′(𝑏𝑖)) ↦→ 𝑡 ′], 𝑁 [𝑡 ′ ↦→ 𝑛], 𝐻𝑖 [𝑏𝑖 ↦→ 𝑡 ′])

[Merge]

𝑏𝑘 ∈ 𝑑𝑜𝑚(𝐻𝑖) 𝑏𝑘 ∈ 𝑑𝑜𝑚(𝐻 𝑗) 𝑡 = 𝐻𝑖 (𝑏𝑘) 𝑡 ′ = 𝐻 𝑗 (𝑏𝑘) 𝑡 ′ > 𝑡

(𝐵, 𝑁,𝐻) −−→→ (𝐵𝑖 [(𝑏𝑘 , 𝑡 (𝑏𝑘) + 𝑛) ↦→ 𝐵 𝑗 (𝑏𝑘 , 𝑡 (𝑏𝑘) + 𝑛) | 𝑛 ∈ {1, . . . , 𝑡
′(𝑏𝑘) − 𝑡 (𝑏𝑘)}], 𝑁 , 𝐻𝑖 [𝑏𝑘 ↦→ 𝑡 ′])

[Sync]

Figure 8. The semantics of Quark distributed machine

of 𝑡𝑚 corresponding to the current branch 𝑏 to signify that
this is a new version on 𝑏. So the actual version vector of the
merge is 𝑡 ′𝑚 = 𝑡𝑚 [𝑏 ↦→ 𝑡𝑚 (𝑏) + 1]. The GLB and LUB opera-
tions on version vectors are standard [16] ś GLB is computed
by taking the component-wise minimum, and LUB by tak-
ing their maximum. The comparison of version vectors is
also standard ś 𝑡1 < 𝑡2 iff ∀𝑏. 𝑡1 (𝑏) < 𝑡2 (𝑏). Clearly, not all
version vectors are comparable. We write 𝑡1 ⋚ 𝑡2 if vectors
𝑡1 and 𝑡2 are comparable.

Notation and Conventions. We enforce a one-to-one
mapping between replicas and branches by adopting the
convention that branch 𝑏𝑖 always corresponds to replica 𝑖 .
Concretely this means that replica 𝑖 only ever creates new
versions on branch 𝑏𝑖 . Also, replica 𝑖 can only update its local
copies of𝐻 and 𝐵, i.e.,𝐻𝑖 and 𝐵𝑖 . For e.g.,𝐻𝑖 [𝑏𝑖 ↦→ 𝑡] updates
the head of branch 𝑏𝑖 to 𝑡 on replica 𝑖 . Since 𝐻𝑖 is simply an
abbreviation of 𝐻 𝑖 in the formalism, 𝐻𝑖 [𝑏𝑖 ↦→ 𝑡] actually
expands to𝐻𝑖 [𝑖 ↦→ 𝑏𝑖 ↦→ 𝑡]. We exploit this notation in Fig. 8.
We let 𝛿⊙ denote the initial concrete state which is defined
on the similar lines as the initial abstract state (Def. 3.1).

Rules. The transition relation −−→→ of the Quark dis-
tributed machine is defined in Fig. 8. Every transition rule of
the abstract machine (Fig. 6) has a corresponding rule for the
abstract machine. Fig. 8 however elides Fork and FastFwd

in the interest of space. The rule Commit describes replica 𝑖
committing a new version on the branch 𝑏𝑖 with the given
value 𝑛. The vector 𝑡 ′ for the new version is obtained from
that of the previous version 𝑡 by incrementing the compo-
nent 𝑏𝑖 . The sequence number of the new version on 𝑏𝑖 is
𝑡 ′(𝑏𝑖) and the branch map 𝐵𝑖 is updated to reflect that. Note
that for all 𝑗 ≠ 𝑖 , 𝐻 𝑗 and 𝐵 𝑗 remain unchanged indicating
that other replicas are not (yet) aware of this commit. Fork
forks off a new branch 𝑏 𝑗 from 𝑏𝑖 . A new replica 𝑗 is assumed
to take over 𝑏 𝑗 . The version vector 𝑡 ′ of the branch head now
has a new component 𝑏 𝑗 mapped to 1 to denote this is the

first version on 𝑏 𝑗 . Map 𝐵 𝑗 is updated accordingly. Value
𝑁 (𝑡 ′) is same as its parent 𝑁 (𝑡).
Merge describes the semantics of replica 𝑖 merging a

concurrent version from a (remote) replica 𝑗 . The merg-
ing versions are heads of their respective branches 𝑏𝑖 and
𝑏 𝑗 . Like its counterpart in Fig. 6, Merge insists that the
LCAs of every other branch 𝑏𝑘 with 𝑏𝑖 and 𝑏 𝑗 be causally
related. This condition is however expressed in terms of
version vectors with help of the GLB (⊓) and comparison
(⋚) operators. For the LCA determination to be sound, the
merging replica 𝑖 needs to have an accurate conception
of the current version history. Furthermore, there cannot
be a concurrent merge happening elsewhere that under-
mines the judgment of replica 𝑖 (reg. the safety of 𝑖 ← 𝑗

merge). These requirements are enforced by the premise
∀(𝑘 ∈ 𝑑𝑜𝑚(𝐻)). 𝑏𝑘 ∈ 𝑑𝑜𝑚(𝐻𝑖) ∧ 𝐻𝑖 (𝑏𝑘) = 𝐻𝑘 (𝑏𝑘), which
insists that replica 𝑖’s knowledge of every other branch 𝑘

be current. This condition effectively linearizes merges by
requiring a merge to either see or be seen by every other
merge. In practice this is achieved through global coordina-
tion (Sec. 5). Note thatMerge only preempts a concurrent
Merge, not a concurrent Commit. A remote replica 𝑘 is al-
lowed to keep committing new versions on to 𝑏𝑘 even as it
remains unaware of the merge on replica 𝑖 . Such leniency
is imperative if the system were to retain the performance
benefits of asynchronous replication.

The rule Sync captures asynchronous communication be-
tween a pair of replicas (𝑖 and 𝑗) to get one of them (𝑖) up-
to-date with the other (𝑗). Unlike the other rules, Sync does
not extend the version history graph, and therefore has no
counterpart in Fig. 6. It merely updates replica 𝑖’s knowledge
of branch 𝑏𝑘 if replica 𝑗 happens to have later updates from 𝑘 ,
i.e.,𝐻 𝑗 (𝑏𝑘) happens to be ahead of𝐻𝑖 (𝑏𝑘). The new versions
on 𝑏𝑘 known to 𝑗 but not 𝑖 are then simply replicated at 𝑖 .

373

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Refinement. The relationship between the Quark ab-
stract (Sec. 3) and distributed (Fig. 8) machines is stated thus:

Theorem 4.1 (Refinement). There exists a refinement rela-
tion 𝑅 relating abstract and concrete states such that:

• 𝑅 relates the initial abstract and concrete states, i.e.,
𝑅(Δ⊙, 𝛿⊙).
• Forall 𝛿, 𝛿 ′,Δ, if 𝑅(𝛿,Δ) and 𝛿 −−→→ 𝛿 ′, then there exists
a Δ′ such that Δ −→ Δ

′ and 𝑅(𝛿 ′,Δ′).

The proof is done in Ivy. The refinement relation 𝑅 essen-
tially relates the version vectors of concrete semantics to the
version histories of abstract semantics. A happens-before re-
lation has been defined as a ghost state in concrete semantics
to help us establish the refinement relation in Ivy.

Garbage Collection. One downside of the distributed se-
mantics in Fig. 8 is that maps 𝐵 and 𝑁 that together track
the version history grow monotonically as the execution
progresses and new versions are created. Fortunately, this
is easy to address as the execution only needs finite version
history to compute LCAs. Since LCA version vectors mono-
tonically increase, older versions with vectors less than the
least known LCA vector can simply be garbage-collected.
Moreover, a replica can make this decision locally without
having to synchronize with its peers. In practice, applica-
tions may prefer to flush out older version history to a stable
storage from where it can be re-created as necessary.

5 Implementation

We realize a prototype of Quark runtime for MRDTs as a
lightweight shim layer on top of Scylla ś an off-the-shelf
distributed data store [22]. We rely on Scylla for inter-replica
communication, data replication, persistence, and fault tol-
erance. Quark translates the high-level MRDT implemen-
tations in OCaml to their low-level representations in the
backing store and orchestrates their well-formed distributed
executions. Fig. 9 illustrates the overall architecture.

The implementation of Quark largely follows the design
ofQuark distributed machine described in Sec. 4. We man-
ifest each component of the state, namely the branch map
𝐵, the value map 𝑁 , and the head map 𝐻 , as a column fam-
ily (i.e., a table) in Scylla. The synchronization needed to
linearize merges is implemented with help of Scylla’s sup-
port for conditional updates (CAS operations) and expiring
columns. The total order amongmerges is enforced with help
of Quorum reads and writes. Each user process is assigned
its own branch containing a replica of the MRDT. Version
vectors are realized as associative lists and stored in Scylla
as blobs.
The implementation however differs from the formaliza-

tion in two significant ways. First is in the treatment of
MRDT values. Formalization assumes values to be atomic
with no sharing in between them. In practice, however, an
MRDT could be a linked data structure such as a binary tree,

Distributed StoreReplication •
Persistence •

Fault tolerance •
Communication •

Quark Runtime

insert select

• Background merges
• Version history
• Content-addressability

RDTs

• Application Logic

write

read

Figure 9. Quark implementation architecture

and two such values could share a significant amount of
internal structure. Consequently, the size of the diff between
two consecutive versions of a value could be asymptotically
less then the size of the data structure itself, in which case
it unreasonable to transfer the entire data structure over
the network. To facilitate the efficient computation of diffs
between versions of data structures, we implement a content-
addressable store as a key-value table in Scylla where key is
simply the SHA256 hash of the value. A linked data structure
is stored as a collection of nodes, where each node links to
the other by referring to its hash. The diff between two con-
secutive versions of a data structure would simply manifest
as new entries in the content-addressable store reachable
from the root of the new version. The new entries, being new
data, are automatically replicated by Scylla, thus letting us
reconstruct the new version at a remote location. The root
hash of the new version is obtained from the value map 𝑁 ,
which now maps version vectors to the hashes of values.

The second significant difference between the implemen-
tation and the formalization is the timing of merges. Opera-
tional Semantics in Sec. 3 and Sec. 4 interleave commits and
merges such that only one of them executes at any given
time. Since commits are initiated by the user in practice, in-
terleaving them with strongly consistent merges increases
their latency as perceived by the user. For the user-perceived
latency to remain unaffected, it is important that a replica
be always available to execute user requests.Quark ensures
this by handling user requests in a foreground thread that
is always allowed to commit to the local branch. Merges,
on the other hand, are relegated to the background. A back-
ground thread constantly scans the remote branches for new
versions, and if there are any, merges them into the latest
version on the local branch after checking the necessary
preconditions (Sec. 3).
Quark’s background merges however pose a new prob-

lem as they create new versions on the local branch in the
background while a user operation is manipulating an older
version in the foreground. When the user attempts to write
their version to the store, simply committing it would ef-
fectively override the concurrent updates from other users
obtained via background merges. The solution, fortunately,
is straightforward:Quarkmerges the user-submitted version

374

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

with the latest version on the local branch to create a new
version that includes the updates from either direction. Since
this merge is fully confined to the local replica, it is guaran-
teed to not affect the LCA of the local branch in relation to
any remote branch. To the external world, it appears as if the
local branch has simply committed a new version that was
derived from the older version. Since the commit operation
now entails a merge, the merged version has to be returned
to the user as the result of the commit. Consequently the
write operation exposed by Quark is a function of type
Value→ Value, where Value is any MRDT.

6 Evaluation

In this section we present an empirical evaluation of Quark

on two case studies. First is a collaborative document edit-
ing application ś a common usecase addressed by several
CRDT proposals [19, 20, 23]. Second is a replicated key-value
store implemented using a mergeable Red-Black tree data
structure.

6.1 Collaborative Editing

Quark’s MRDT approach obviates the need to build a ded-
icated replicated data type for collaboratively-edited docu-
ments; an ordinary document format extended with a merge
operation would suffice. While many data structures exist
to represent text documents (e.g., ropes [5]), we decided to
adopt the simplest representation of a document as a list of
characters.

type doc = char list

While being simple, the advantage of this presentation is that
we can simply reuse the three-way List.merge function of
the list data type to merge documents. List.merge is a sim-
ple implementation of list merge algorithm (in 60 lines of
OCaml) inspired by the GNU diff3 algorithm [10]. We thus
adopt a straightforward approach to building a collaborative
document editor with the intention to keep the development
effort low enough to be easily replicated. The convergence
guarantee ofQuark ensures that the simplicity of our imple-
mentation doesn’t come at the expense of correctness. The
aim of the experimental evaluation is to quantify the impact
ofQuark on the performance.
Our experiment setup consists of multiple collaborators

simultaneously editing a 10000+ line document obtained
from the Canterbury Corpus [7]. Each user holds a replica of
the document and is assumed to be editing the document at
the speed of 240 characters per minute or 1 character every
0.25s. At 6 characters per word, this amounts to 40 words
per minute, which is the average typing speed of humans.
Each edit is immediately persisted to the disk by creating
a new version in the backing store. Thus there are at least
as many versions of the document as there are edits. Such
extensive versioning may be considered excessive in practice
and could be disabled.

Latency. To measure the impact of Quark runtime on
user writes, we measure the latency of the write operation,
which includes the time spent merging the user version with
the current version, and persisting the resultant version to
the store. We conduct the experiments on a three-node clus-
ter of i3.largemachines located in Amazon us-west2 data
center. Each user connects to one of the machines, forks a
new branch, and performs 1000 edits in succession, saving
the document after each edit. We progressively increase the
number of concurrent users editing the document from 3 to
60 and measure the impact of the increased concurrency on
write latency. Fig. 10 shows the 10th, 50th (median), and 90th
percentile latency values. The median and 10th percentile
latencies remain more-or-less constant with a slight increase
between 3 and 60 concurrent users. This is expected consid-
ering thatQuark does not constrain the execution of user
operations. The slight increase, we confirmed, is due to the
increased latency of concurrent database writes. The 90th
percentile latencies, however, show an initial increase before
adopting a pattern similar to median latencies. We attribute
this behavior to an idiosyncrasy of our multi-threading im-
plementation, which is more likely to affect measurements
at the extreme. In particular, we use OCaml v4.12 extended
with Lightweight Threads (LWT) library, which offers con-
currency but not parallelism. At lower number of replicas,
the merge thread’s lock requests succeed more often, result-
ing in the process spending more time merging than editing.
We expect this pattern to smoothen out in OCaml v5.0, which
introduces true multi-core parallelism. Notwithstanding this
idiosyncrasy, the maximum value of 90th percentile latency
measured (32ms) remains well below the the time between
consecutive edits (0.25s), making it hard to perceive by a
human user.

0 10 20 30 40 50 60
concurrent users

0.00

0.01

0.02

0.03

0.04

0.05

tim
e

(s
)

quark (10 percentile)
quark (50 percentile)
quark (90 percentile)

Figure 10. Latency of writes to a shared document under
Quark.

375

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

For comparison against a baseline, we have implemented
an łSCž approach which achieves convergence by synchro-
nizing each operation, i.e., executing it under strong con-
sistency (SC). The SC implementation shares most of its
code withQuark with the only change being that it wraps
commits instead of merges inside a lock. As with Quark,
we measured the write latency of the SC implementation
while increasing the number of concurrent users (𝑛). The
median SC write latency increases super-linearly from 10ms
for 𝑛 = 3 to 63s (i.e., >1m) for 𝑛 = 60, which is considerably
more than the inter-edit latency of 0.25s.

Staleness. Our implementation of Quark relies on Scylla
to replicate the contents of each branch across all the repli-
cas as fast as the network allows. However, for a user 𝐴
to see the changes made by the other user 𝐵, the changes
have to be reflected in 𝐴’s local version, which can only hap-
pen through a merge operation. Since Quark synchronizes
merge operations globally, it induces additional delay before
𝐴 can see 𝐵’s changes. We call this additional delay staleness
as with the progression of time, 𝐵’s version known to 𝐴 be-
comes increasingly stale. At the system-level, an increase
in staleness effectively delays the convergence (but doesn’t
preempt it, as proved by Theorem 3.8).

0 10 20 30 40 50 60
concurrent users

10−2

10−1

100

101

102

tim
e

(s
)

quark (10 percentile)
quark (50 percentile)
quark (90 percentile)

Figure 11. Staleness increases as the number of concurrent
editors increase.

To understand the effect of Quark on staleness, we quan-
tify and measure it along with latency in the experiment
setup described above. Staleness is defined as the time taken
for a version committed on one replica to be merged into a
concurrent version on a remote replica. To measure staleness,
we annotate every version 𝑣 with the timestamp 𝑡 of the wall
clock time of its creation. When 𝑣 is is merged into a remote
branch 𝑏 at a later time 𝑡 ′, the difference 𝑡 ′ − 𝑡 denotes the
staleness of 𝑣 w.r.t the new version on 𝑏. One such staleness
measurement is recorded for every merge that ever happens
during the experiment. We compute 10th, 50th, and 90th
percentiles of staleness values thus obtained. Fig. 11 shows

the results. As evident, staleness increases steadily with the
increasing number of concurrent replicas, which is expected
considering that merges are synchronized, and increasing
the number of replicas reduces the number of opportunities
for a replica to merge. The increase is roughly linear in the
number of replicas as our implementation passes the lock
around in a round-robin fashion. Despite the steady increase,
the 90th percentile staleness values remain low ś less than
1s with the number of replicas under 30, and less than 2s for
number of replicas under 60. While further optimizations
might reduce staleness, a non-trivial staleness overhead is
inevitable in Quark due to our use of synchronized merges
to guarantee convergence.

6.2 Key-Value Store

Our second case study involves a mergeable key-value store,
which, unlike a text editor, is expected to work in the back-
ground supporting applications such as e-Commerce. The
store is mergeable in the sense that it can merge conflicting
values assigned to equal keys using value-specific merge
functions. For instance, an e-Commerce application might
store shopping carts as values, in which case the merge func-
tion on shopping carts is used to merge concurrent conflict-
ing updates to a user’s shopping cart. The key-value store is
implemented using a Red-Black tree MRDT [14], which is
a standard Red-Black tree implementation extended with a
merge function. The merge function implements set merge
semantics (Sec. 2) for concurrent insertions and deletions of
keys, and defers to the value merge function for concurrent
updates against a key. Concretely, RBTree is an OCaml func-
tor parameterized on the Key and Valuemodules, where the
latter is required to provide a merge function. We use integer
keys and mergeable counter values in our experiments.

0 10 20 30 40 50 60
concurrent users

10−2

10−1

100

101

tim
e

(s
)

quark (10 percentile)
quark (50 percentile)
quark (90 percentile)

Figure 12. Staleness of key-value store merge operations.

We use the same experimental setup as before ś an in-
creasing number of concurrent processes perform a random

376

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko

operation on the local version of the tree while merging with
the remote versions in the background. Each process forks
off a branch with an initial version of an RBTree of size 1000,
performs an insertion, updatation, or deletion with proba-
bilities of 0.5, 0.25, and 0.25. A new version of the tree is
committed after each operation. Each process performs 1000
operations with an inter-operation delay of 100ms. We mea-
sure the latency of each tree operation and the staleness of
each merge. Latency measurements follow the same pattern
as those for collaborative editing (Fig. 10), and have been
elided. The median latency remains around 50ms for most
of the experiment. Staleness measurements are plotted in
Fig. 12. As before, staleness increases steadily in proportion
to the increasing number of concurrent processes. The 90th
percentile staleness exceeds 1s for 15 concurrent processes,
and 7s for 54 concurrent processes. Unlike the collaborative
applications, however, the number of replicas in a conven-
tional web application tends to be low, which could limit stal-
eness to a tolerable range. For instance, in the e-Commerce
application described above, 3 replicas of the shopping cart
can be kept in sync with each other with a 90th percentile
lag (staleness) of 30ms.
Our experiments bring to the fore an inherent tradeoff

among the competing concerns of Convergent RDTs, namely
(i). The ease of programming, (ii) Latency, and (iii). Staleness.
While CRDTs try to optimize for latency and staleness, they
require a significant amount of development and verification
effort to be expended to ensure convergence. In contrast,
Quark lets developers derive convergent-by-construction
MRDTs from ordinary data types that are optimized for la-
tency, but incur a non-trivial staleness overhead that delays
the time to convergence.

7 Related Work

Mergeable Replicated Data Types (MRDTs) were introduced
in [14], where authors also demonstrate an approach for
deriving merge functions from first principles. Despite re-
sulting in sensible merge semantics for several data types,
their approach was never shown to guarantee the conver-
gence of the resultant MRDTs. Indeed, as we demonstrate in
Sec. 2, convergence of unrestricted MRDT executions can-
not be guaranteed due to the presence of anomalies such as
Fig. 4b and Fig. 5b.Quark fixes this problem by extending
MRDTs with a runtime that limits their executions to those
that are guaranteed to converge.

State-centric replication was also explored in the context
of CRDTs [23]. However, such state-based CRDTs require
the replicated state to be organized as a lattice with the
merge function acting as as a least upper bound operator.
We eliminate this restriction in our setting with help of the
Quark runtime. A thorough comparison of our approach
with the operation-based CRDTs can be found in Secs. 1
and 2.

Several verification techniques, program analyses, and
tools have been proposed to reason about the program behav-
ior in a weakly-consistent distributed setting [1, 2, 12, 17, 24].
These techniques treat replicated storage as a black box with
a fixed pre-defined consistency models. The focus is on as-
signing appropriate consistency levels to operations so as to
preserve application integrity. Such an approach results in
assigning sequential consistency (SC) to all operations since
the next weaker consistencymodel ś causal consistency, is in-
sufficient to guarantee convergence (as Sec. 2 demonstrates).
Conversely, Quark cannot reason about application-level
invariants, such as balance ≥ 0 in a banking application.
Thus both approaches confer complimentary benefits on
application developers.

The meta-theory of Quark abstract machine (Sec. 3 bears
resemblance to the type safety proofs carried out in Wright
and Felleisen’s style [26]. Theorem 3.8 (Progress) is analo-
gous to the Progress lemma of type safety, and Theorem 3.7
(Convergence) is analogous to Preservation. However, un-
like the type-based approaches, safety in Quark is enforced
through run-time monitoring. Static enforcement of conver-
gence in MRDTs using, for e.g., Session Types [13], is an
interesting direction for future work.
Quark’s programming model is inspired by distributed

version control systems in general, and Git in particular. To
the best of our knowledge, operational semantics of Git has
never been formalized. This is not a serious concern consid-
ering that humans are heavily involved in Git workflows,
and the complexity of version histories manifest by Git is
bound by the limits of human cognition. Nonetheless, it is
possible to construct Git version histories that result in non-
convergent and counter-intuitive final states [21, 25]. Such
anomalies are more likely to occur if Git version histories
are manifest commensurately with distributed executions
of computer programs. Quark’s run-time monitoring pre-
empts this possibility in our case.

Finally, the implementation of Quark bears resemblance
to Quelea [24] as both systems offload low-level concerns
to an underlying data store. While Quelea enforces high-
level invariants on applications built with CRDTs that are
assumed to be convergent, Quark enforces convergence of
data types that are otherwise not guaranteed to converge.

Acknowledgments

We thank the anonymous reviewers and our shepherd Doug
Lea for their thoughtful comments. First author has benefited
from discussions with Anmol Sahoo and Suresh Jagannathan.
Anmol has also developed and maintained the OCaml-Scylla
library, which is a key piece of infrastructure underlying
Quark.

References
[1] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.

2011. Consistency Analysis in Bloom: a CALM and Collected Approach.

377

RunTime-Assisted Convergence in Replicated Data Types PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings.

249ś260.

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.

Hellerstein, and Ion Stoica. 2014. Coordination Avoidance in Database

Systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185ś196. https://doi.org/

10.14778/2735508.2735509

[3] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.

Bolt-on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data (New York, New

York, USA) (SIGMOD ’13). ACM, New York, NY, USA, 761ś772. https:

//doi.org/10.1145/2463676.2465279

[4] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.

2011. Extending Sledgehammer with SMT Solvers. In Automated De-

duction ś CADE-23, Nikolaj Bjùrner and Viorica Sofronie-Stokkermans

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 116ś130.

[5] Hans-J. Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: An

Alternative to Strings. Softw. Pract. Exper. 25, 12 (Dec. 1995), 1315ś1330.

https://doi.org/10.1002/spe.4380251203

[6] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010.

Concurrent Programming with Revisions and Isolation Types. In Pro-

ceedings of the ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications (Reno/Tahoe, Nevada,

USA) (OOPSLA ’10). ACM, New York, NY, USA, 691ś707. https:

//doi.org/10.1145/1869459.1869515

[7] Canterbury 2021. The Canterbury Corpus. https://corpus.canterbury.

ac.nz/descriptions/ Accessed: 2021-11-18 13:21:00.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-

ramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Ama-

zon’s Highly Available Key-value Store. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles (Stevenson,

Washington, USA) (SOSP ’07). ACM, New York, NY, USA, 205ś220.

https://doi.org/10.1145/1294261.1294281

[9] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-tolerant Web Services.

SIGACT News 33, 2 (June 2002), 51ś59. https://doi.org/10.1145/564585.

564601

[10] GNU Diffutils 2021. GNU Diffutils. https://www.gnu.org/software/

diffutils/ Accessed: 2021-11-18 13:21:00.

[11] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and

Alastair R. Beresford. 2017. Verifying Strong Eventual Consistency in

Distributed Systems. Proc. ACM Program. Lang. 1, OOPSLA, Article

109 (oct 2017), 28 pages. https://doi.org/10.1145/3133933

[12] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,

and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning About

Consistency Choices in Distributed Systems. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (St. Petersburg, FL, USA) (POPL 2016). ACM, New

York, NY, USA, 371ś384. https://doi.org/10.1145/2837614.2837625

[13] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty

Asynchronous Session Types. J. ACM 63, 1, Article 9 (mar 2016),

67 pages. https://doi.org/10.1145/2827695

[14] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagan-

nathan. 2019. Mergeable Replicated Data Types. Proc. ACM Pro-

gram. Lang. 3, OOPSLA, Article 154 (oct 2019), 29 pages. https:

//doi.org/10.1145/3360580

[15] Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free

Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-

tributed Systems 28, 10 (Oct 2017), 2733ś2746. https://doi.org/10.1109/

tpds.2017.2697382

[16] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21, 7 (jul 1978), 558ś565. https:

//doi.org/10.1145/359545.359563
[17] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno

Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-replicated Sys-

tems Fast As Possible, Consistent when Necessary. In Proceedings of the

10th USENIX Conference on Operating Systems Design and Implemen-

tation (Hollywood, CA, USA) (OSDI’12). USENIX Association, Berke-

ley, CA, USA, 265ś278. http://dl.acm.org/citation.cfm?id=2387880.

2387906

[18] Kenneth L. McMillan and Oded Padon. 2020. Ivy: A Multi-modal Verifi-

cation Tool for Distributed Algorithms. In Computer Aided Verification,

Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International

Publishing, Cham, 190ś202.

[19] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.

2009. A Commutative Replicated Data Type for Cooperative Editing. In

Proceedings of the 2009 29th IEEE International Conference on Distributed

Computing Systems (ICDCS ’09). IEEE Computer Society, Washington,

DC, USA, 395ś403. https://doi.org/10.1109/ICDCS.2009.20

[20] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated Abstract Data Types: Building Blocks for Collaborative

Applications. J. Parallel Distrib. Comput. 71, 3 (mar 2011), 354ś368.

https://doi.org/10.1016/j.jpdc.2010.12.006

[21] Russell O’Connor’s Blog 2011. Git is Inconsistent. http://r6.ca/blog/

20110416T204742Z.html Accessed: 2022-03-19 12:21:00.

[22] Scylla 2021. A Real-Time Big Data Database. https://www.scylladb.

com/ Accessed: 2021-11-18 13:21:00.

[23] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. Conflict-free Replicated Data Types. In Proceedings of the 13th

International Conference on Stabilization, Safety, and Security of Dis-

tributed Systems (Grenoble, France) (SSS’11). Springer-Verlag, Berlin,

Heidelberg, 386ś400. http://dl.acm.org/citation.cfm?id=2050613.

2050642

[24] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015.

Declarative Programming over Eventually Consistent Data Stores. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Portland, OR, USA) (PLDI 2015).

ACM, New York, NY, USA, 413ś424. https://doi.org/10.1145/2737924.

2737981

[25] Tycon Blog 2019. Vagaries of Git Merge. http://tycon.github.io/git-

inconsistencies.html Accessed: 2022-03-03 12:21:00.

[26] A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type

Soundness. Inf. Comput. 115, 1 (nov 1994), 38ś94. https://doi.org/10.

1006/inco.1994.1093

[27] Z3 2022. The Z3 Theorem Prover. https://github.com/Z3Prover/z3

Accessed: 2022-03-20 13:21:00.

[28] Marek Zawirski. 2015. Dependable Eventual Consistency with Replicated

Data Types. Ph.D. Dissertation.

[29] Yuqi Zhang, Yu Huang, Hengfeng Wei, and Jian Lu. 2019. Remove-

Win: a Design Framework for Conflict-free Replicated Data Collections.

arXiv:1905.01403 [cs.DC]

378

https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1002/spe.4380251203
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.1145/1869459.1869515
https://corpus.canterbury.ac.nz/descriptions/
https://corpus.canterbury.ac.nz/descriptions/
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/diffutils/
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2827695
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1016/j.jpdc.2010.12.006
http://r6.ca/blog/20110416T204742Z.html
http://r6.ca/blog/20110416T204742Z.html
https://www.scylladb.com/
https://www.scylladb.com/
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
http://tycon.github.io/git-inconsistencies.html
http://tycon.github.io/git-inconsistencies.html
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://github.com/Z3Prover/z3
https://arxiv.org/abs/1905.01403

	Abstract
	1 Introduction
	2 Motivation
	3 Semantics of State-Centric Replication
	4 Concrete Semantics
	5 Implementation
	6 Evaluation
	6.1 Collaborative Editing
	6.2 Key-Value Store

	7 Related Work
	Acknowledgments
	References

