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Implementing embedded neural network processing at the edge requires efficient hardware acceleration that

combines high computational throughput with low power consumption. Driven by the rapid evolution of net-

work architectures and their algorithmic features, accelerator designs are constantly being adapted to support

the improved functionalities. Hardware designers can refer to a myriad of accelerator implementations in the

literature to evaluate and compare hardware design choices. However, the sheer number of publications and

their diverse optimization directions hinder an effective assessment. Existing surveys provide an overview

of these works but are often limited to system-level and benchmark-specific performance metrics, making it

difficult to quantitatively compare the individual effects of each utilized optimization technique. This com-

plicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress.

In contrast to previous surveys, this work provides a quantitative overview of neural network accelerator

optimization approaches that have been used in recent works and reports their individual effects on edge

processing performance. The list of optimizations and their quantitative effects are presented as a construction

kit, allowing to assess the design choices for each building block individually. Reported optimizations range

from up to 10,000×memory savings to 33× energy reductions, providing chip designers with an overview of

design choices for implementing efficient low power neural network accelerators.
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1 INTRODUCTION

Machine learning (ML) algorithms, especially neural networks (NN), have been widely used
to provide smart systems with complex data analysis capabilities like visual object detection
[1] and audio key-word spotting [2]. While NNs enable algorithm developers to implement
difficult-to-model tasks, given that sufficient training data is available, their computational com-
plexity is challenging the design of processing hardware. Miniaturized and battery-powered ML
applications thus require high computational throughput while being limited to low power con-
sumption, rendering computing efficiency a key design objective for low power ML accelerators.
The rapid progress of ML algorithm research further challenges designers to quickly adopt newly
introduced network features, requiring fast development times. While fully-connected (FC)

and convolutional neural networks (CNN) like AlexNet [3] have dominated the field during
the past decade, residual networks (ResNet) [4], recurrent NNs (RNN) and derivations like
dense CNNs [5] have gained importance, claiming ever-improving algorithm performance. What
remains constant are the working horses of NNs, namely parallelized multiply-and-accumulate

(MAC) operations.
Improving computing efficiency has been a key driver for the invention of laptops (∼2000),

smartphones (∼2010) and high-performance server operation [6]. The current decade (∼2020)
strives for ubiquitous smart devices like wearables and internet-of-things (IoT) nodes [7],
capable of processing sensory data. Performing data analysis on the sensor nodes at the edge
of a connected network, so-called edge processing [8] or edge intelligence [9], can significantly
reduce latency and power consumption but requires efficient ML accelerators.

Thus, edge processing is increasingly used in applications where long battery lifetimes are
mandatory, e.g. in smart glasses with object detection [10], face detection [11], or hand-gesture
and speech recognition [12], as well as smart cameras with automatic acquisition using scene
classification [13], smart doorbells with face recognition [14], or tools that help blind people read
texts and recognize people [15]. Many more could benefit from edge ML in the future [16, 17].
An overview of ML applications that are feasible on current hardware platforms is summarized
in [18], illustrating the challenge of the limited edge processing power budget (<1W).

Existing ML accelerator chips cover the application domain from ultra-low power (ULP) and
low-complexity processing, implementing 18uW key-word spotting with 105kB on-chip memory
[19], to high-throughput server-grade acceleration, provided by chips like Google TPUv3 [20] or
Graphcore IPU [21], consuming more than 100W. Allowing edge processing devices to run more
complex ML applications, which can currently only be computed in cloud servers, requires more
efficient edge ML accelerators. To identify relevant accelerator designs among the vast number
and diversity of publications proposing efficient implementations, quantitative surveys are
necessary. However, existing surveys often only provide qualitative comparisons or benchmark
implementations on a system-level, obscuring the individual effects of each employed optimiza-
tion technique. Comparing these optimizations is essential for motivating design choices during
the development of new accelerators, currently requiring time-consuming literature research.

This work summarizes and, for the first time, quantitatively compares design optimizations
of existing NN accelerators for tiny (<10mW) and edge (<1W) processing applications. It is
presented as a construction kit, listing optimization options for each building block along with
their reported quantitative effects, enabling application-specific integrated circuits (ASIC)

designers to evaluate and assess optimizations for new implementations. Figure 1 illustrates
the covered building blocks on a generic end-to-end edge processing system and localizes
optimizations within the edge ML design flow.

The paper is organized as follows: Section 2 presents related surveys that complement this
work. Section 3 introduces basic notations used throughout the paper, followed by an overview
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Fig. 1. Overview of the edge ML tool flow with a summary of the discussed hardware optimizations for NN

accelerators (with chapter numbers of the paper).

of architectures in Section 4, technological optimizations in Section 5, dataflow optimizations in
Section 6, data handling optimizations in Section 7, computation optimizations in Section 8, and
finally, the quantitative comparison of all relevant optimizations in Section 9.

2 RELATED WORK

Various surveys have been conducted to summarize existing NN accelerator designs and imple-
mentations, explaining their techniques, and comparing their system-level performance.

To keep track of the vast number of academic and industrial ML hardware accelerators proposed
every year, a periodically updated online list [22] is provided, listing the main performance met-
rics for each chip to compare them in terms of power, throughput, and computational efficiency.
A similar survey in paper form was presented in 2019 [23] and updated in 2020 [24]. It lists the
computational performance and precision of academic research works and commercially available
devices. A survey from 2017 claims to cover the past 35 years of works in neuromorphic comput-
ing, listing more than 2,600 references that accelerated the research field since the 1980s [25]. It
covers models, learning approaches and hardware ranging from analog to digital implementations,
covering programmable FPGAs and custom ASICs.

Sze et al. [26] provide a thorough survey on efficient processing of deep NNs (DNN), covering
historic aspects, common layer types, training frameworks and popular datasets, extending their
previous work [27]. The sections on hardware platforms and energy efficient dataflows are moti-
vated in their preceding work [28], proposing edge processing for extracting meaningful informa-
tion to reduce the extreme amount of data produced by the ever-increasing number of sensors in
connected devices. A similar summary is presented in [29] and a more FPGA-focused one in [30].

Another well-structured and exhaustive survey on DNN acceleration is presented in [31], cov-
ering existing hardware acceleration approaches including software optimizations, and a chapter
on security of DNN approaches and their benchmarking. Survey [32] presents a broad overview of
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Table 1. Selected ML Accelerator Chips from Previous Years

Work (Year) Optimizations Throughput [GOPS] Efficiency

[TOPS/W]

ShiDianNao (2015) Local data reuse 194 (16b) 0.606

EIE (2016) Sparsity, weight sharing, compression, zero skipping 102 (16b)(∼3’000 *) 0.17 (5.0 *)

Envision (2017) Multi-precision, DVFAS, body biasing 76 (4b) 10

Eyeriss (2017) Local data reuse, zero compression, zero skipping 84 (16b) 0.166

YodaNN (2018) Binary weights, standard-cell memory, voltage scaling 1’500 (1b w., 12b a.) 1,1

UNPU (2018) Multi-precision, LUT-based bit-serial MAC (1-16b) 346/7372 (16b/1b w., 16b a.) 3.1/50.6

Eyeriss v2 (2019) Local data reuse, sparsity, compressed computing 202 (8b) 0.963

*including skipped operations.

the ML field, focusing on big data, training techniques, and applications. A similarly broad view,
additionally covering the transition from modelling biological NNs to implementing artificial NNs
in hardware is presented in [33], focusing on novel memories and their use-cases in the field.

In the survey of [34], various ML accelerators and processing blocks are presented and com-
pared to their research group’s own works. They list neuromorphic processors, including spiking
NN engines, ranging from fully digital to fully analog computations, and discuss possible future
directions. Survey [35] also discusses the architectures of selected DNN accelerators and explains
their working principles and supported networks.

Surveys [9] and [36] present an extended view on edge intelligence, covering pure edge process-
ing and combinations with cloud processing. They discuss related optimization strategies, namely
compression and early model exit.

While the listed related works give an excellent overview of existing ML accelerators and op-
timization techniques, none of them attempted to quantitatively compare used optimization ap-
proaches, as covered in this work, allowing designers to evaluate and assess optimizations for new
implementations.

This work focuses on (deep) NN inference, noting that the field of ML is much broader, contain-
ing other approaches like support vector machines, decision trees and many others.

3 CONSTRUCTION KIT FOREWORD

ML accelerators often combine multiple optimization techniques, as shown in Table 1, summariz-
ing a selection of relevant accelerator chips from the past six years. This complicates the assess-
ment of individual optimizations as their effects are obscured by system-level benchmarking. Thus,
we only add individual optimizations to the comparison and only if sufficient quantitative infor-
mation is reported. We focus on five performance indicators, namely (1) energy/power, (2) area
(cost), (3) memory size, (4) computational throughput, and (5) impact on algorithmic accuracy.

In the following sections, we briefly discuss the importance of a system-level view for meaning-
ful optimization evaluations and introduce some basic performance indicators and notations that
are used throughout the paper.

3.1 System-Level View

Edge ML devices process sensory data onboard, communicating with sensors (and memories)
for subsequent analysis in an ML engine. Regardless of this fact, publications on low-power ML
accelerator designs often neglect the impact of such off-chip communication on system-level
power consumption and performance. Analyzing system-level power-breakdown helps to identify
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Fig. 2. Power break-down of mobile/edge systems (smartphones [44], presence detection IoT node [45], and

face recognition IoT node [46]).

Fig. 3. Roofline plot showing two operating points, constrained by the available memory bandwidth and the

computational throughput.

power-dominating sub-systems, allowing to optimize them based on the Pareto principle. Figure 2
shows the power breakdown of four mobile system implementations: two smartphone analyses
were taken from a smartphone battery usage review [44], showing dominating communication
power, while two IoT nodes were evaluated in a visual presence detection system [45] and an
always-on face recognition system [46], reporting dominating sensor and processing power. While
core optimizations would only enable marginal system improvements in the first three systems, the
fourth example shows a typical edge ML IoT node with processing-dominated power distribution,
enabling significant system improvements through core optimizations.

3.2 Meaningful Performance Indicators and Metrics

To identify useful optimization strategies, relevant performance indicators and benchmarks must
be chosen. Parameter quantization, for example, can easily reduce memory size but also heavily
impacts accuracy [47, 48]. Similarly, the throughput is subject to large variations across differ-
ent workloads as pointed out in [23], reporting 20× lower throughput than stated in the datasheet.
Thus, application-relevant benchmarks are indispensable. For a fair cross-device comparison, stan-
dard ML benchmarks have been created for smartphones [49] and for general purpose devices
(MLPerf) [50] and are now adopted to edge devices (TinyMLPerf) [51]. This is similar to micro-
controller benchmarks (e.g. CoreMark [52]).

Roofline models [53] are used to visualize the architectural boundaries of a system’s operating
points, namely the memory bandwidth and the peak computational throughput, as illustrated in
Figure 3. Depending on the operating point, the system operates in a memory- or a computation-
bound region.

NN accelerator performance metrics are often limited to the peak throughput, in tera opera-

tions per second (TOPS), and the computational power efficiency (TOPS/W). Figure 4 illustrates
that these metrics can be misleading in edge applications, operating in the low power region where
extrapolating the efficiency becomes inaccurate (idle power).
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Fig. 4. NN processing throughput versus power consumption.

Fig. 5. Generic CNN layer with dimension notations.

3.3 Neural Network Notations

Figure 5 illustrates a generic NN layer along with the notations of layer dimensions that we use
throughout the paper. The input activations in haveCin input channels and extendXin · Yin in spa-
tial dimensions. All Cout kernels contain Cin · kx · ky parameters and generate output activations
out of dimensionXout · Yout withCout output channels. While a generic convolution layer is shown
here, it also covers dense (FC) layers, which have restricted dimensions kx = ky = Xin = Yin and
Xout = Yout = 1. Other layer types can be described using the same notation, e.g. ResNets have ad-
ditional bypass inputs inby of the same dimension as in and are added point-wise. Depth-wise sep-
arable CNNs split kernels in theCin dimension, yieldingCout = Cin , avoiding cross-channel links.

4 HARDWARE ARCHITECTURES

Two main architectural concepts are dominating today’s NN accelerators [27]: temporal and spa-
tial architectures. This section discusses them and adds emerging in-memory computing as a third
concept, offering a distinct data flow. While temporal architectures sequentially access the mem-
ory, process the data, and finally return the results, spatial architectures aim at reducing these
data movements by sharing activations and parameters across neighboring processing elements.
In-memory computing offers an orthogonal concept that tries to entirely remove data movements
by computing data directly inside the memory.

4.1 Temporal Architecture

Temporal architectures comprise, among others, the wide-spread central processing units

(CPU) and graphic processing units (GPU), featuring a central control unit that schedules
tasks and distributes computations across arithmetic logic units (ALU). Data is moved from the
memory to the ALU and back, offering a high parallelization potential using single instruction,

multi-data (SIMD) instructions for vector processing. This is based on the traditional Von Neu-
man architecture [54], characterized through a generic single instruction, single data (SISD)

processing scheme that stores both instructions and data in the memory. It typically features a
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control unit that reads instructions and data from the memory, an ALU to perform the operations,
and a data bus to communicate across blocks and through a peripheral interface.

Multi-issue processors [55], e.g. super-scalar processors, extend this concept by enabling multi-
ple parallel operations through a single instruction, reducing the control overhead, to increase the
operational intensity (see Figure 3).

4.2 Spatial Architecture

In contrast to temporal architectures, spatial architectures allow their arithmetic units, often called
processing elements (PE), to move data between neighboring PEs, allowing to reduce memory
accesses by employing local buffers.

Systolic arrays are pipelined 2D spatial architectures that enable data reuse across neighboring
PEs. This can be exploited for implementing efficient general matrix multiplication (GEMM)

through contraction (“systole” in old Greek) of computations, reusing results from adjacent nodes,
and thus minimizing memory accesses. This is exploited in many prominent accelerators like
Google TPU [56] and Eyeriss [57]. Replacing single-PE systolic arrays with tensor-PEs, each one
computing an entire matrix multiplication per cycle, further allows reducing area and power in a
16nm process by 2.1× and 1.4x, respectively [58]. Increased intra-PE data reuse and fewer pipeline
buffer registers enable this improvement but require efficient load distribution to avoid low PE
utilization. SCALE-Sim [59] provides a simulation tool to evaluate such design parameters, com-
paring different dataflows and arrays.

4.3 In-memory Computing

The motivation behind in-memory computing, or compute-in-memory (CIM), is the data-
intensive nature of neural network inference, requiring high memory bandwidths which result
in memory-dominated performance [60], the so-called memory wall [61]. To mitigate this, com-
putations can be directly performed in the memory, where high data access rates are available at
a much lower power cost. While the computational efficiency can be largely increased with this
approach, it increases the overhead in the memory and limits the flexibility. Combined with analog
memory types, the efficiency can be further improved by computing directly in the analog domain.
Analog CIM computes matrix multiplications by breaking them down into vector dot products
[62], multiplying analog input voltages (activations) with NVM cell conductances (weights) and
accumulating the resulting column current (MAC result). Special design considerations to achieve
high accuracy inference along with high computational efficiency are discussed in [60].

SRAM-based CIM is presented in [63], using a 55nm 8T 3.8kb SRAM macro with support for 1–4b
input activation and 1–5b weights. The 130nm circuit in [64] demonstrates simple down-sampled
MNIST computations, reporting 13× system energy reduction for 1b weight and 5b activation
precision compared to a traditional (out-of-memory) computation. CIM integrated in the analog
SRAM periphery is evaluated in [65] on a simulated 65nm process, reporting 4.9× system energy
efficiency and 2.4× throughput improvement compared to digital processing. A 384kb SRAM-based
8b precision CIM in 28nm [66] is demonstrated to have 28% area overhead compared to a pure
SRAM array while achieving up to 22.75TOPS/W throughput.

Non-volatile memory (NVM)-based CIM implementations are summarized in [62]. Their pre-
vious survey [67] provides a comprehensive list of the utilized emerging NVMs, illustrating that
NVM can increase bit density and reduce leakage compared to SRAM and possibly store multiple
bits per cell. In [68] an MRAM-based 54×108 CIM crossbar is presented in a 180nm process (MRAM
on top of CMOS circuit). Over-lifetime variations of up to 4.2% and device-to-device variations of
4.5% have been reported, requiring special considerations (e.g. [69]).
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Among many other RRAM works, a 1Mb multibit CIM on a 55nm process [70] and a 128×64b
CIM array [71] on a 90nm process are presented. NVM-based CIM is an active field of research with
various directions, for example 3D CIM architectures [72], reporting up to 28.6× higher energy
efficiency compared to 2D chips. A CIM benchmarking tool [73] further reports advantages of
NVM- over SRAM-based CIM implementations in a 32nm process, while 7nm SRAM CIM still
outperforms any NVM-based work in throughput and both area and energy efficiency.

Note that also DRAM has been used for CIM [74], however, targeting high performance server
applications which goes beyond the scope of this work.

5 TECHNOLOGY

Integrated circuits (IC) for NN accelerators are strongly influenced by the underlying semicon-
ductor technology. This chapter introduces common process technologies and related power op-
timization techniques that are employed in various optimizations throughout the paper, followed
by an overview of memories, which are often linked to process technologies and tend to dominate
the performance of ML hardware accelerators (see Section 3.1).

5.1 Semiconductor Process Technology

Annual improvements in semiconductor manufacturing technology have been a major driving
force in the chip industry as indicated by the (now saturating) Moore’s law [75, 76], empirically
predicting the doubling of component density on chips every 1–2 years. However, the smaller
process nodes increased the static power consumption, resulting in the end of Dennard scaling
[77]. This related heuristic scaling trend factor describes the annual shrinking of the minimum
feature size in silicon chips and related power savings, culminating in the so-called power wall
[78], limiting process improvements because the increased power density has approached physical
limits of silicon-based circuits over the past few years.

This process scaling enables significant power reductions [79], as it yields lower supply voltages
and smaller switching capacitances. However, improved process technologies are often linked to
a significant cost increase and might not support all features of older technologies (e.g. special
memory types, photo diodes, etc.). Multi-die solutions can mitigate this problem, exploiting the
properties of multiple processes across the dies, each one optimized for a specific target like re-
duced cost, specialized memory support, or high logic density [17, 80]. Combining multi-process
solutions with 3D die stacking additionally provides short communication paths and increased
densities, as shown in the 8-die-stacked NN accelerator with 96MB of memory [81].

The following sub-sections give a brief introduction of the main semiconductor process tech-
nologies used today as they will be referred to throughout the paper. We limit the scope to com-

plementary metal-oxide-semiconductor (CMOS) technology, which dominates digital designs
and refer the interested reader to the annual IEEE white paper on future directions of semicon-
ductor technologies (e.g. the 2020 update [82]) for a look into possible future directions.

5.1.1 Bulk. Bulk technology is based on standard silicon wafers and mainly evolves through
spatial scaling. However, these annual scaling improvements are slowing down due to increasing
difficulties with electrostatic and short-channel effects [83].

Deeply depleted channel (DDC) technology improves bulk technology by introducing mul-
tiple vertical doping regions in the channel, forming a threshold setting region and a bias-
controllable screening region [84]. This enables reduced supply voltages, low leakage, low
process variation as well as improved body biasing characteristics, allowing to dynamically ad-
just the threshold voltage of the transistor.
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5.1.2 FinFET. The introduction of 3D gates in so-called FinFETs, improved on the performance
of bulk CMOS by enabling lower supply voltages, and thus reduced power consumption, as shown
for 22nm tri-gate FinFET [83] and later 14nm FinFET [85]. However, the improved performance
comes at a higher production cost due to the complex 3-dimensional structures, requiring more
fabrication masks than the bulk technology [86–88].

5.1.3 FD-SOI. Fully depleted silicon-on-insulator (FD-SOI) technology employs very thin
insulating layers in the substrate of the transistors, reducing leakage. In [87] a 22nm FD-SOI tech-
nology is presented, achieving on par power and performance efficiency compared to 16/14nm
FinFET technology while being lower cost due to the use of a planar processes, requiring fewer
masks. Thus, FD-SOI is more suitable for low-end mobile and IoT applications where cost is an
important factor. A detailed comparison between FD-SOI and FinFET is provided in [86], report-
ing superior performance of FinFETs in terms of power, delay, and density, for which FD-SOI can
compensate through body-biasing (BB). BB allows to dynamically adjust the threshold voltage,
boosting speed with a forward body bias or reducing leakage using reverse body biasing (higher
threshold).

5.1.4 Specialized Processes. Recent advances in materials and manufacturing technologies have
enabled the integration of novel memory technologies (both volatile and non-volatile) close to pro-
cessing logic. They offer advantageous characteristics that go beyond transistor density scaling.
However, most of them require special process technologies, making them more difficult to in-
tegrate within the widely available processes. More details on novel memories can be found in
Section 5.3.

5.2 Power Management

The power consumption of ICs [78] can be decomposed into dynamic and static power. Dynamic
power is described in Equation (1), taking the circuit switching operations into account. Variable
U is the supply voltage,C the switching capacitance, α the switching activity and f the frequency
of the circuit. Static power, often also called leakage power, is described in Equation (2), reflecting
the current consumption Ileak when no switching takes place.

Pdynamic ∼
1

2
·U 2 ·C · α · f (1)

Pstatic ∼ U · Ileak (2)

Based on these equations, various optimizations have been proposed to reduce the overall power
consumption, using the supply voltage and the frequency as control knobs. The most prominent
techniques are listed in the following section, namely sub- and near-threshold operation, adaptive

body biasing (ABB), and dynamic voltage and frequency scaling (DVFS). If the application
permits, duty cycling (pausing the operations to reduce the switching activity α ) and power gating
(to reduce static current Ileak ) can be used to further reduce the power consumption.

5.2.1 Sub- and Near-Threshold Operation. Sub- and near-threshold operation exploits the sup-
ply voltage knob, operating transistors below or close to their threshold voltage, respectively, to
reduce power consumption [89]. This enables to reduce dynamic power quadratically and static
power linearly, as shown in Equations (1) and (2).

However, these savings come at the cost of slower transistor operation, limiting the application
frequency. In embedded IoT applications, energy is usually more important than power consump-
tion, as it directly determines the lifetime of the battery. Thus, the minimum energy point (MEP)

is identified for each application by adjusting the supply voltage such that the total energy for a
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specific workload is minimal. Sub- and near-threshold operation extends the supported supply
voltage range, reaching the MEP for a large set of workload scenarios.

Lowering the voltage implies higher sensitivity to process variations, which must be carefully
evaluated during the design phase to ensure robustness under all operating conditions. Special
layout considerations and compensation techniques (see ABB and DVFS) can reduce the effects.

The 180nm sub-threshold standard cell library developed in [89] demonstrates an extended 0.4–
1.0V supply voltage, reducing power by 5× compared to a standard low power library at 1.0V.
Their follow-up work presents 1kb sub-threshold SRAM [90] and a 32b microcontroller [91] de-
sign, achieving 0.84–3.2nW (3.8×) power scalability for 0.27–0.6V voltage scaling and 7× power
scalability for 0.37–1.8V voltage scaling, respectively.

5.2.2 ABB. Adaptive body biasing (ABB) [92] adjusts the bias voltage of the transistor body
to control its threshold voltage, influencing its speed and power consumption as discussed in
Section 5.2.1. FD-SOI and DDC can fully exploit BB, while the effect in bulk technology largely
depends on the design parameters. Adapting the BB to the operating point enables to reduce the
adverse effect of sub-threshold operation on timing across process and temperature variations
(e.g. worst case corner distance from 21× to 0.2× [93]). This allows to implement a wide range
of timing-clean operating points from fast to slow and low power. Note that increasing the speed
through a strong forward body bias also increases the leakage.

Publications on ABB report 30× frequency and 20× leakage scaling on a RISC microcontroller
core and SRAM [92].

5.2.3 DVFS. Dynamic voltage, frequency, (and accuracy) scaling (DVF(A)S) allows to
trade-off speed against power consumption through supply voltage scaling. The basic principle
was already evaluated in the 1990s, allowing CPUs to lower the frequency and voltage for low
intensity tasks, reporting power reductions of 1.05–4× [94], and 9.2× [95].

DVAS [96] extends the principle to dynamic accuracy scaling through adjustable arithmetic bit-
widths, allowing for lower supply voltages due to shortened critical paths. Demonstrated on a
simulated 40nm 16bit array multiplier, DVAS achieves 11.7× energy reduction for scaling down
to 8b precision, noting that the critical path length is reduced by 40%. Pipelined architectures
require bypassable pipeline registers to evenly distribute the path length reductions, adding area
and energy overhead. On a 16b multiplier, 11.1× energy reduction is reported for 8b operation at
8% energy overhead. Envision [39] also combines accuracy scaling with DVFS on a 28nm process,
running at constant throughput while scaling precision from 1·16b operations to 4·4b operations at
a quarter of the 16b frequency. Combined with body biasing to reduce leakage at low frequencies,
power is reduced by 25×.

5.3 Memory

Data handling is dominating today’s accelerator power consumption and area, requiring careful
selection of the memory type and the access strategies. Memory access energy is subject to large
variations across memory types and sizes, as summarized for a standard 45nm SRAM [79, 97] in
Table 2. DRAM is reported to have 200× higher access energy than a small 8kB SRAM (for 64b
word width) [79].

Figure 6 shows an overview of the existing memory types, distinguishing storage (e.g. non-
volatile hard disk) and memory (e.g. RAM) due to their significant difference in access times, den-
sity and power consumption [98]. Systems with long idle/sleep phases might not be dominated by
access power but (idle) leakage power. In that case, rare accesses to (power-intensive) non-volatile
memories could be cheaper than retaining data over a long period of time, constantly consuming
leakage power.
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Table 2. Energy Per Memory Access in 45nm SRAM

Size(kB)
Access energy per 16b word [pJ]
64b 128b 256b 512b

1 1.2 0.93 0.69 0.57
2 1.54 1.37 0.91 0.68
4 2.11 1.68 1.34 0.9
8 3.19 2.71 2.21 1.33
16 4.36 3.57 2.66 2.19
32 5.82 4.8 3.52 2.64
64 8.1 7.51 5.79 4.67
128 11.66 11.5 8.46 6.15
256 15.6 15.51 13.09 8.99
512 23.37 23.24 17.93 15.76
1024 36.32 32.81 28.88 25.22

Fig. 6. Overview of memory technologies.

The range of available memory technologies is rapidly increasing, being an active area of re-
search. A recent overview of novel memories used in neuromorphic computing [99] notes that the
memory technologies mostly differ in their writing speed, while the reading process is dominated
by the sensing circuit interfacing the memory cells. Survey [98] provides an overview of recent
non-volatile memories, focusing on PCM, STTRAM, RRAM, and FeFET.

In the following sections we summarize novel memory types, as they are important components
of CIM implementations, as well as the dominantly used SRAM and standard cell memories. Quan-
titative optimization results from the literature are mainly available for the more mature FeFET,
SRAM, SCM and DRAM types.

5.3.1 PCM. Phase change memory (PCM) [98] is based on the heat-induced reversible phase
transition of chalcogenides. It can switch between the low-resistance crystalline phase and the
high-resistance amorphous phase, implementing a bipolar switch. The relatively large switching
current requires powerful access circuits, dominating the size. Speed is limited by the transition
from amorphous to crystalline phase while the reverse process dominates the power consump-
tion. Endurance and speed are estimated around 1G cycles and <100ns, respectively [98]. TSMC
presents a 1Mb PCM memory array in 40nm [100], reporting 300uA write current at 100ns write
speed, achieving >200k cycles endurance.

5.3.2 STTRAM. Spin-transfer-torque RAM (STTRAM) [98] is based on a magnetic tunnel

junction (MTJ) with two ferromagnetic layers separated by an ultra-thin tunnel oxide layer. It
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uses the spin transfer torque of spin-polarized electrons to change the resistance of the memory
element, enabling non-volatile states. The access circuit dominates its size due to the relatively
high writing currents but is still smaller than SRAM.

STTRAM is demonstrated on 7–8Mb arrays (industrialized 1Gb cluster [101]) in 22–28nm [102,
103], reporting densities up to 10.6Mb/mm2 and write endurance of >1M–10G cycles.

5.3.3 RRAM. Resistive RAM (RRAM) [98] stores information by modulating the resistance
of a metal oxide and is therefore often called memristor. A similar approach is conductive-bridge

RAM (CBRAM), that forms a conductive metallic bridge in the on-state and interrupts it for the
off-state. Endurance of 1M–1G cycles have been reported. However, there are tradeoffs between
speed, power, and endurance.

Various RRAM implementations in 14–40nm have been shown [70, 104–107], reporting 0.9–
244.8Mb/mm2 density at supply voltages down to 0.7V for 1Mb–32Gb sizes.

5.3.4 FeFET. Ferroelectric FET (FeFET) [98] employs a ferroelectric gate dielectricum that
allows to change the resistance of the FET in a non-volatile fashion. This principle is similar to the
Flash technology, that uses a floating gate instead. While the power consumption is low due to the
low leakage through the gate oxide, the switching speed is high (∼20ns). However, its endurance
is relatively low, at 10k–100k cycles. Its similarity with standard CMOS transistors makes FeFET
compatible with many standard processes.

In [108], a 10Mb FeFET memory array is implemented in a 22nm process, reporting 200k cycles
endurance at 2.5–4.5V supply voltage. Their previous work [109] presents a 64×64b array in the
same 22nm process and compare it to a 6T SRAM array of the same size, reporting 74× lower static
power and >5.3× lower area for FeFET cells (without peripherals). Writing is 10× more energy-
intensive and 10× slower while reading costs 1.6× more energy but is 1.5× faster.

A similar, but less mature, type of ferroelectric memory is ferroelectric tunnel junction (FTJ).
The tunneling resistance of its ferroelectric layer between two metal electrodes can be adjusted
through ferroelectric polarization reversal [98].

5.3.5 SRAM. Static random-access memory (SRAM) is the most often used on-chip mem-
ory as it can be easily implemented along with digital circuits. It features higher memory density
than standard-cell memory as foundries use “layout pushed rules” to optimize SRAM bit-cell area
beyond standard layout rules.

Standard SRAM bit-cells use 6 transistors (6T), but many larger cell structures have been pro-
posed for power reductions. For low leakage operation a 7-transistor SRAM is presented in [17],
reducing area by 18% and 50% compared to standard low leakage 8-and 10-transistor designs, re-
spectively, while achieving similar performance and leakage power.

Power optimizations using non-uniform memory hierarchy in SRAM is presented in a 40nm
NN accelerator [110], allowing up to 60% power savings when accessing the smallest instead of
the largest level (32× smaller memory). The 67.5kB memory is split into four levels (1.5, 6, 12,
and 48kB). SRAM access energy is shown to increase nearly linearly with the memory size above
∼100kB [97] as shown in Table 2.

Low leakage SRAM sleep-mode retention is presented on a 55nm process [111], reporting 26×
lower retention power for a 16kB memory. Leakage is reduced by optimizing the design rules
(increasing area by 2.7×) and the process corner. An additional sleep controller with a charge-
pump for the retention voltage allows to power-gate the rest of the chip. Leakage is also reduced
in [80], using 180nm low leakage 10T SRAM along with a 65nm 8T SRAM for dense scratchpad
memory. The low-leakage memory consumes 4242× less standby power while being 11.3× larger
in area.
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To optimize the data access for 2D structures like CNNs, a transpose SRAM has been proposed
[112], allowing to selectively read a row vector or a column vector of data in parallel, reducing
power consumption by 47%.

5.3.6 SCM. Standard-cell memory (SCM) is implemented directly in digital logic using flip-
flops or latches. This allows exploiting voltage scaling capabilities and avoids dependencies on
vendor-specific memory generators.

A dedicated placement strategy for SCM (instead of standard logic place-and-route (P&R)) is
presented in [113], reporting area and power savings on a 28nm process. Their experiments on
256b–32kb SCM macros show area reductions of >35% compared to standard P&R with access
energy reduction of up to 65% for reading and 50% for writing. SCM macro sizes of up to 1kb are
shown to be smaller than SRAM, but are already 2–3× larger for 4kb macros (larger area of D-latch
cell compared to 6T SRAM bit-cell starts dominating).

A BNN accelerator [114] with a hybrid memory consisting of 456kB SRAM and 8kB SCM demon-
strates power savings of SCM compared to SRAM. It reduces the supply voltage to 0.4V when SCM
is used, while SRAM requires 0.6V, leading 3× energy savings in 22nm post-layout measurements.

5.3.7 DRAM. Dynamic RAM (DRAM) is a volatile high-density memory that stores infor-
mation as a capacitor charge, which is periodically refreshed. DRAM is usually not compatible
with standard logic processes, requiring separate DRAM dies. However, the hybrid memory cube

(HMC) architecture [115] proposes high density DRAM access to standard logic processes through
3D stacking of DRAM dies on top of a logic die using through-silicon vias. HMC is implemented
in TETRIS [116], providing DRAM access to a 45nm processing die. 3D DRAM is shown to con-
sume 3.5–4.2×more energy compared to on-chip 256kB SRAM, but 1.5× less than a planar baseline
DRAM at 4.1× higher throughput.

Embedded DRAM (eDRAM) [117] is a CMOS-compatible derivative of DRAM, targeting high
density volatile memory. A 4-transistor 8kb eDRAM array is presented in 28nm [117], reporting
17% lower area and 23% lower static power consumption compared to 6T SRAM at equal voltage.
The same author also evaluates a 2T design [118], showing slightly lower retention power than
low power SRAM cells but 2.5–3.8× lower size for a simulated 28nm 4kb array.

5.3.8 Flash. Flash memory [119] dominates NVM technology on the market, being embedded
in most commercial chips where data retention during off-state is required. It can be implemented
using standard logic process flows by adding a few additional masking layers, e.g. three extra
masks on a 65nm process [120].

6 DATAFLOW AND CONTROL OPTIMIZATIONS

NNs have a relatively simple structure, their efficient implementation on hardware accelerators of-
ten complicates the dataflow. Efficient parallelization requires smart workload distribution among
processing elements while ensuring coherent algorithmic functionality. Thus, this chapter dis-
cusses algorithm blocking optimizations, efficient scheduling, selective execution, and early data
reduction.

6.1 Dataflow and Blocking

NN accelerators have optimized memory allocation and access patterns for efficient computation,
splitting a task into smaller blocks that fit on the available resources. The utilized blocking (sched-
uling) strategy impacts the data access order and thus possible data reuse within the computation
blocks. Higher reuse can reduce the number of memory accesses, decreasing the total power con-
sumption [97].
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6.1.1 Layer-wise Processing. Traditionally, NNs are processed layer-by-layer, also called layer-
wise or layer-first approach. This enables the reuse of layer parameters (e.g. convolution weights),
as they are repeatedly used across the layer. However, this also implies that at least one complete
layer is always buffered in memory, as explained in more detail in Section 7.1.

6.1.2 Depth-first Processing. The increasing size of feature maps (e.g. higher resolution images)
requires large activation buffers to be allocated for layer-wise processing. However, networks can
be processed in a “depth-first” streaming fashion instead [121], allowing each layer to buffer only a
minimum set of input activations that are needed for computing the next set of output activations.
Up to 200× memory bandwidth reduction or alternatively up to 10,000× memory space reduction
is reported for this approach. In a follow-up work [122] depth-first processing is implemented on a
FPGA and benchmarked on five models reporting throughput increase of 0.91–1.27× and memory
bandwidth reduction of 3.9–81×.

A similar work on “fused layers” [123] observes that each output of a convolution layer only
depends on a small region of input values. Tracking these dependencies back through multiple
layers, results in a pyramid-shaped region. The paper proposes to compute the entire pyramid
until the final output while only storing the computed intermediate features instead of buffering
each complete. The additional cost for buffering intermediate results locally is traded-off against
external memory accesses, achieving up to 95% reduction in off-chip memory traffic for running
VGGNet-E.

6.1.3 Loop Ordering and Optimization. Neural network can generally be described using nested
loops, with the outer most one looping through the layers of the network. The ordering of these
loops influences the possible parallelisms and the required memory size. To process larger net-
works on limited on-chip memory resources, loop tiling is used: the workload of each layer can be
split into overlapping tiles, which are processed sequentially. Parallelization and data reuse can be
increased by unrolling parts of the sequential loops and thus parallelizing their computations. Un-
rolling the entire kernel computation is shown in [124], achieving unprecedented power efficiency
at the cost of larger area and limited layer size support.

Various tools have been proposed to optimize loop ordering [97, 125–127], improving energy ef-
ficiency and memory size. Commonly implemented microcontrollers provide specialized libraries
to make NN processing more efficient. For example, ARM provides the CMSIS-NN library for its
Cortex-M microcontrollers [128], supporting CNN, FC, and pooling layers, as well as 8b or 16b
fixed point precision. Evaluated on a network running the CIFAR-10 task, a 4.6× improvement in
throughput and 4.9× in energy efficiency is reported, compared to a DSP-functions-limited baseline
code. A biomedical signal analysis application [129] reports energy savings of 41.6% for enabling
8 core processing instead of single core, noting that the overhead of multi-core execution is fully
compensated by efficiency improvements above a certain throughput. Block and memory power
gating shows 16.8% energy savings but must be traded off against restart time and related energy
and storage implication.

6.2 Early Data Reduction

The high cost of data access during NN inference motivated to reduce the data flow from the
sensor, condensing information early and thus minimizing costly data transfers.

One approach is to process the first layer(s) of an NN in the sensor itself. In [130] diffraction
gratings above the pixels are used to optically detect Gabor filter-like patterns, as they are often
found in the first layer of NNs. Evaluated on the MNIST and CIFAR-10 tasks, sensor communi-
cation bandwidth reductions of 10× are reported, with moderate accuracy impacts of −0.1% and
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Fig. 7. Selective execution and early exiting approaches: (a) scalable-effort execution, (b) early exiting, and

(c) selective execution.

−4.6%, respectively. However, the first layer of the employed LeNet-5 only accounts for 3.8% of all
operations, rendering the computation reduction negligible.

Another study implements the first CNN layer in the optical domain using a controllable
(grayscale) mask [131]. All filters (output channels) are displayed in the same plane, allowing
the image sensor behind to capture all convolution results in parallel, forwarding them to the
last layers implemented in the digital domain. Evaluated on MNIST and EMNIST tasks, operation
reductions of 250× and 460× are reported while accuracy drops by 0.4% and 1.7%, respectively.

The analog nature of most sensor signals requires analog-to-digital conversion (ADC) which
can be exploited by implementing matrix multiplication directly in the ADC [132]. An algorith-
mic reformulation is shown to implement a simple classification task using boosted linear classi-
fiers, embedded in a single matrix transformation. The matrix multiplication is implemented in the
feedback path of the SAR ADC, reporting 13× and 29× energy savings compared to SVM-based
implementation with similar accuracy for ECG arrhythmia detection and 160×120 pixel gender
classification tasks.

RedEye [133] implements an image sensor with analog on-die CNN processing capabilities on a
simulated 180nm process. It uses SAR ADCs and tunable capacitors to implement weighted sum-
mation to mimic MAC operations, reporting 73% system energy reductions for running the first
1–5 layers of an 8bit GoogleNet on the ImageNet task.

Early data reduction is also implemented in distributed computing [134, 135], splitting the DNN
computation across the edge and the cloud to reduce costly data communications, latency and
preserve privacy by keeping raw data at the edge.

Furthermore, application-specific early data reduction mechanisms exist: visual attention [10] is
shown to reduce the object recognition workload in smart glasses by limiting the analyzed region
to the detected eye-gaze direction.

6.3 Selective Execution and Early Abortion

This section presents techniques to dynamically adapt the network complexity to the input, en-
abling “simple” inputs to be analyzed with a fraction of the network capacity without decreasing
the accuracy for complex ones. Average latency and power consumption can thus be reduced if
simple inputs dominate the execution. Figure 7 illustrates the techniques, covering (a) hierarchi-
cally scalable effort [39, 136], (b) early exiting [137, 138], and (c) selective execution [139].

6.3.1 Hierarchically Scalable Effort. Identifying early exits during training enables 2–6× latency
reduction on MNIST and CIFAR-10 tasks [136]. A scalable-effort approach [140] proposes to use
a chain of networks with increasing complexity, allowing simple inputs to complete processing
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with smaller networks than more complex ones. Evaluated on various classification tasks, they
achieve 1.2–9.8× average reduction of operations per benchmark. The Envision NN accelerator
[39] demonstrates this on a face recognition task, hierarchically increasing the network complex-
ity, starting with a 12MOP network for presence detection (6.4mW, active 98% of time), followed
by a network recognizing the owner, a set of 10 identities, 100 identities, and finally 5,760 different
identities (77mW, 0.01% of time).

6.3.2 Early Exiting. Adding special output classifiers after every few layers allows for termi-
nating an NN execution early if classifiers report a high confidence [137]. The trained network is
analyzed after each layer to estimate a gain metric, quantifying the ratio between reduced num-
ber of operations and increased overhead due to the added classifier. Benchmarked on two 6-and
8-layer networks with one and two early exits, respectively, 1.73× and 1.91× reduction in number
of operations are reported at iso accuracy. The same technique is used in the 12-class keyword
spotting accelerator [138], reporting 69% of the inputs exiting early, reducing the average power
consumption by 22% compared to always executing the complete network.

6.3.3 Selective Execution. Selective execution [139] enables different execution paths that can
be selected depending on the input provided: an embedded selector network decides which branch
to execute, providing less complex network branches for simpler inputs to reduce the average
number of computations.

7 DATA HANDLING OPTIMIZATIONS

The data-intensive nature of NNs challenges the memories and related access energy efficiencies.
In many systems more than 50% of the total power consumption is related to memories and data
handling [79]. This chapter discusses optimizations for efficient memory utilization and compres-
sion, reducing the amount of data to be accessed. Related sections cover the efficient reuse of
data across computation elements (Section 8.3) and the reduction of data through computational
optimizations (Section 8).

7.1 Efficient Memory Mapping

Efficient memory utilization reduces the required memory space, saving power, chip area and thus
IC cost.

The traditionally used buffering scheme for layer-wise NN processing is often called ping-pong
buffering [126], following a double buffing approach to allow simultaneous reading of input ac-
tivations and writing to output activations. It maps the activations of subsequent layers to two
disjunctive memory regions, which must therefore allocate at least the maximum sum of any two
subsequent layers. By allowing the activation memory regions to overlap during layer-wise pro-
cessing, memory savings of up to 50% compared to standard ping-pong double buffering can be
achieved [141]. The extent of savings depends on the layer dimensions and increases for large
layers with small kernel sizes.

7.2 Data Compression

Compression reduces the memory footprint of data content and can be adopted in NN accelerator
designs.

Run-length compression (RLC) of zero values is used in Eyeriss [40] to reduce the mem-
ory footprint and bandwidth. It encodes the number of zero entries in 5b, followed by the next
non-zero value, reporting 1.2–1.9× reduced memory accesses for AlexNet. Eyeriss v2 [43] uses
a “compressed sparse column format” for both weights and activations, allowing to skip sparse
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operations directly in the compressed form, reducing memory bandwidth and energy. Compared
to RLC, it simplifies the addressing of sliding window striding.

Loss-less Huffman coding [142], is shown to reduce weight memory by 20–30%. It employs
variable-length codewords, providing smaller bit-widths for more common values, reducing the
overall memory. An edge ML Huffman-coding DMA is shown to reduce data bandwidth by up to
5.8× [39].

Weight sharing is used in [142], replacing weights with table indices, referencing a limited num-
ber of physically stored values. The upper bound of memory savings is defined by the weight
bit-width Nwidth,w and the number of table entries Nvalues as shown in Equation (3). The 45nm
accelerator EIE [38] reports 8× energy savings through weight sharing (4b indices referring to 16
16b weight values).

Nwshar e,max = Nwidth,w/log2 (Nvalues ) (3)

8 COMPUTATION OPTIMIZATIONS

NNs contain millions of MAC operations, requiring fast and efficient accelerator designs. This
chapter discusses computation optimizations ranging from operation reductions (optimized con-
volution operations, sparsity, or data reuse) to arithmetic simplifications (quantization, approxi-
mate computing, energy-quality scaling, or non-conventional arithmetic) and circuit optimizations
(mixed-signal arithmetic, non-conventional arithmetic).

8.1 Optimized Convolution Implementations

The dominance of convolution operations in many network architectures [143, 144] motivated
optimized convolution implementations, aiming for similar algorithmic behavior while reducing
computational complexity and resources.

8.1.1 Separable Convolutions. Separable convolutions are based on a separable filter approxi-
mation, splitting higher dimensional kernels (e.g. a kx · ky 2D convolution) into multiple lower-
dimensional ones (e.g. 2 1D convolutions of kx · 1 and 1 · ky ), significantly reducing the number of
operations.

A 2D approach is used in [112], replacing a 5×5 convolution layer with a horizontal and a vertical
5×1 and 1×5 layer, reducing the number of operations by 4×. Evaluated on an LFW face recognition
NN, the total number of operations is reduced by 1.7x, while accuracy was decreased by 1%. To
optimize parallel data access for the vertical direction, a transpose SRAM (T-SRAM) is proposed,
enabling both row and column vector readout, reducing power by 47%.

Depth-wise separable convolutions (DSC) separate the kernel only in the depth dimension,
convolving inputs in the spatial directions, followed by a pointwise (across depth) convolution
that combines the filtered inputs to an output. In contrast to standard convolutions that combine
the filtering and output generation, DSCs enable memory savings and reduces MAC operations.
MobileNets [145] use such DSCs, reporting computation and parameter size reductions according
to Equation (4). Evaluated for the ImageNet task, parameters can be reduced by 7× while the
number of MAC operations is reduced by 8.5× at an accuracy drop of just 1%.

reduction =
1

cout
+

1

kx · ky
(4)

8.1.2 Frequency Domain Computation of CNN (FDC). Transforming a convolution operation
into the Fourier domain results in a point-wise multiplication as shown in Equation (5) [146]. This
property can be exploited to reduce the number of operations for computing CNNs. While the
forward and backward transformations, using fast Fourier transformation (FFT), increase the
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computational effort and memory needs, the operation count can be significantly reduced for large
input and kernel sizes, achieving 1.75–5.3× faster computation at iso-accuracy for 3×3 and 11×11
kernels in experiments on various layer sizes [146]. The reported speedup s , in terms of operation
counts, is shown in Equation (6) for batch size B. However, this method requires large memories for
the FFT and the subsequent matrix multiplication. A recent study [147] builds up on the FFT-based
approach, additionally exploiting tiling, result-reuse, and symmetry of real-valued FFTs, roughly
cutting the number of operations and Fourier outputs in half. It demonstrates 0.96–1.74× increase
in throughput compared to the pure FFT-base approach on 9×9–3×3 kernel sizes.

f ∗ д = F −1 {F { f } · F {д}} (5)

s =

(
B · cin · cout · x2

out

)

(
2 · x2

out · log (xout ) · (cout · B + cin · B + cin · cout ) + 4B · cin · cout · x2
out

) (6)

8.1.3 Winograd Algorithm. For highly parallelized convolution computations, the sliding win-
dow operation can be flattened to convert it into a large point-wise matrix multiplication. The
overlapping windows create significant redundancy with neighboring data, allowing to combine
certain kernel-weights offline, which reduces the number of multiplications at the cost of more
additions [144]. This so-called Winograd convolution achieves 1.4–2.26 speedup for computing
3×3 convolutions.

8.1.4 Strassen Algorithm. Large matrix multiplications, as used in NNs with large kernels, can
be efficiently computed using the recursive Strassen algorithm, reducing the number of operations
[148]. Evaluated on AlexNet, operations are reduced by 47%: while the dominating 3×3 and 5×5
convolutions are reduced in terms of operations, the 11×11 convolution in the first layer suffers
from an increase of 18% compared to standard multiplication.

8.2 Sparsity Exploitation and Pruning

Le Cun et al. [149] observed more than three decades ago that a significant number (75%) of NN
parameters can be removed without affecting its algorithmic accuracy. A recent exhaustive survey
[150] provides explanations to this phenomenon and estimates 10-100× model size reduction for
various networks. It focuses on sparsification methods that set parts of a network to zero (prun-
ing), while keeping its complexity constant. They reduce a network’s size to its minimum required
complexity by creating a (too) high dimensional representation to improve the training, knowing
that the network can be reduced again through pruning. Previous works, report weight sparsity
ratios of up to 99.996% for a LeNet-5 network with 99.3% accuracy on the MNIST task [151]. We
refer the interested reader to the literature for more details on the main reduction techniques:
model down-sizing through neural architecture search [152], operator factorization [153], quanti-
zation (Section 8.4.3), compression (Section 7.2), parameter sharing [154], and sparsification [150].
A survey on hardware acceleration of compressed models can be found in [155].

To create more sparse models, a three-step approach is proposed [156], first learning the im-
portance of each connection, then dropping low-weight ones and finally fine-tuning the training.
Evaluated on AlexNet and VGG16 running the ImageNet task, they report 9× and 13× parameter
reduction at iso-accuracy. Energy-aware pruning [157] optimizes the pruning strategy to achieve
a minimum energy cost. Observing that layers which are pruned in an early stage, tend to have
larger sparsity, they start pruning energy-intensive layers first, estimating their cost based on the
number of computations and memory accesses. Evaluated on AlexNet running the ImageNet task,
reports 3.7× energy reduction and 11× weight reduction at <1% accuracy drop.
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Envision [39] exploits sparsity by skipping sparse memory accesses and MAC operations using
a sparsity map (1b entries per value). It reports 1.6× system energy saving for 30–60% activa-
tion sparsity. Similarly, NullHop [158] exploits sparsity by skipping sparse computations using a
sparsity map combined with non-zero value list compression, achieving up to 3.68× throughput
increase in 28nm synthesis results.

Zero-value skipping logic using a zero-free neuron array format is evaluated on a 65nm accel-
erator [159], reporting 1.37× average throughput increase for various networks at the cost of 25%
memory increase (for zero sparsity).

A special form of temporal sparsity is proposed in CBinfer [160] and discussed in Section 8.3.

8.3 Data Reuse

Memory data that is used multiple times within a short period of time can be buffered in a lo-
cal cache memory to allow cheaper and faster access. Special focus is set on data that has been
fetched from energy expensive external memory. Three main structures of such data reuse have
been studied extensively [27] and are summarized below, namely row-stationary (RS), weight

stationary (WS) and output stationary (OS) approaches. While a WS setup minimizes move-
ments of weights, as it is used in CIM architectures, OS keeps the partial sums for computing each
output feature local, and RS approaches combine weight and activation data reuse.

Eyeriss [40, 57] implements an RS approach to maximize on-chip data-reuse and reduce costly
external memory accesses. The 65nm chip can buffer one activations row (up to 224 16b values)
and one weight row (up to 12 16b values), increasing energy efficiency by 1.4–2.5×.

A weight stationary approach is presented in [161], reducing the weight memory accesses by
moving activations along cached weights during convolution computations.

OS processing is used in ShiDianNao [37], computing one output per processing element in
its 8×8 array (64 outputs of the same output channel). This avoids moving partial sums to the
memory and allows sharing inputs with neighboring PEs, reducing the memory bandwidth by up
to 10×. Compared to their prior work DianNao [162], featuring no local data reuse, it allows to
reduce power consumption by more than 1.66x, while increasing throughput by 1.87×. CORAL
[163] employs coarse-grained reconfigurable MAC arrays that allow programming different OS
data reuse options. Another output stationary approach is used in Hyperdrive [164], keeping the
feature maps stored entirely on-chip and streaming in weights. This is motivated by the use of
binary weights, consuming 16× less memory bandwidth than the 16b float activations.

Eyeriss v2 [43] implements a flexible network-on-chip (NoC) that can be reconfigured into
four main reuse modes, enabling high activation and weight reuse in convolution layers while the
dense layer mode can maximize activations broadcast because weights cannot be reused. Evaluated
on MobileNet, they report a throughput increase of 5.6×.

Temporal data reuse is proposed in CBinfer [160], demonstrating that CNN-based CV applica-
tions with a static field of view can reuse large portions of each CNN layer and only compute
those features that changed over time. They first detect changes in the input, generating a tempo-
ral sparsity map to update the connected output features for which the inputs exceed a calibrated
threshold and buffer the new feature map. Evaluated on a 5-layer CNN for 10-class scene segmen-
tation, this achieves an average speed-up of 8.6×.

8.4 Hardware/Software Co-optimization

A recent publication proposes less artificial intelligence [165], suggesting that today’s networks are
too high dimensional and thus prone to overfitting limited datasets, providing some intuition why
high sparsity and quantization are viable optimization strategies. Today’s NN algorithms exploit
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this observation, being developed with the challenges of resource-constrained edge ML hardware
in mind. Thus, optimized algorithms like MobileNets [145] or SqueezeNets [166], reducing com-
plexity through separable convolutions and kernel size minimization, have been introduced. These
co-optimization strategies are covered in this section.

8.4.1 Complexity Scaling. The growing number of network architectures created a large design
space, shifting the design strategies from hand-crafted architectures to (semi) automatic network

architecture search (NAS), identifying optimal trade-offs between design constraints like ac-
curacy and computational complexity. Frameworks like adaDeep [167] provide multi-dimensional
model selection strategies to find the optimal model scaling strategies for a specific model and use-
case. Dynamic complexity scaling is proposed by once-for-all networks [168], which are trained
once but can then be deployed in various down-scaled complexities (in depth, width, kernel size,
and resolution) without re-training. This allows deploying them on platforms ranging from high-
performance cloud servers to low-power edge devices, with low accuracy degradations for the
reduced-size versions.

8.4.2 Energy-quality-scaling. Energy-quality (EQ) scalable systems [169] introduce a quality
metric that describes a network’s complexity. This allows to identify the knobs for power-scaling
through (acceptable) quality degradations. The presented framework for EQ-scalable systems and
EQ architectures [169] helps identifying applications where sensing and/or processing quality
degradation is acceptable, for example in noise-resilient applications like computer vision. The
list of quality knobs for dynamically adjusting EQ scaling encompasses arithmetic precision, bit
error rates, sampling rates, algorithmic complexity and more. Follow-up works exploit this concept
for implementing ULP voice activity detection [170] or always-on computer vision system [171].
Voice activity detection is shown to support EQ scaling [170], achieving 3.5× lower energy for 2%
accuracy degradation using decision trees on a 28nm chip. Joint voltage and EQ scaling applied to
a traditional computer vision task [171] is shown to achieve 3× lower energy through EQ scaling
and 3.4× lower energy through VDD scaling on a 40nm process.

8.4.3 Quantization and Reduced Precision. NNs can tolerate significant parameter and activa-
tion quantization with negligible effects on accuracy [47]. To reduce the effect of reduced precision,
quantization-aware training techniques are used (e.g. straight-through estimators [172]) to keep
the model derivable for back-propagation. Quantization works especially well in networks which
are limited in training data, while the accuracy degradation increases for smaller (complexity-
limited) networks, which cannot compensate for the loss of information [173]. Lowering precision
reduces memory size, simplifies computational arithmetic, and lowers the power consumption,
which also motivated Google to add 8bit support in their TPUs [56]. The viability of fully binary

NNs (BNNs) [174], limiting activation and weight precision to 1bit, finally demonstrates the full
range of quantization possibilities. BNNs have considerable accuracy degradations but allow to
process multiplications using simple XNOR logic, reducing area and power needs.

Survey [48] provides an in-depth analysis of quantization schemes with a special section on
sub-8bit quantization and a short overview of quantization-optimized hardware. Weight sharing is
another form of quantization, limiting the number of supported values, as discussed in Section 7.2.

Energy and area savings of reduced precision arithmetic have motivated quantization optimiza-
tions. The energy for additions and multiplications are evaluated on a 45nm process [79], reporting
14× and 20× MAC energy reduction for 8b int compared to 32b int and 32b float, respectively, as
summarized in Table 3. A 45nm overview [175] reports power and area increase with bit-width
for adders (linear increase) and multipliers (quadratic increase), as shown in Table 4. Comparing
a MAC-combination, total area and power are reduced by 13× and 10.8x, respectively, for 32b to
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Table 3. 45nm Energy per Operation for Different Precisions

Precision Int8 Int32 Float16 Float32
Addition energy [pJ] 0.03 0.1 0.4 0.9
Multiplication energy [pJ] 0.2 3.1 1.1 3.7
Total energy/MAC [pJ] 0.23 3.2 1.5 4.6

Table 4. 45nm Adders/Multipliers

for Different Precisions

Precision Int8 Int16 Int32

Adder
Area [um2] 212 322 1117
Power [uW] 753 2235 4819

Multiplier
Area [um2] 1038 4209 15126
Power [uW] 2830 10816 34034

Table 5. 65nm Multipliers

for Different Precisions

Precision Int16 Float32

Multiplier
Area [um2] 1309 7998
Power [uW] 577 4230

8b, and by 3.6× and 3.6x, respectively, for 16b to 8b. Similarly, this was shown on multipliers for a
65nm process [162] as illustrated in Table 5.

The 65nm accelerator in [162], achieves 6.1× reduction in area and 7.33× in power consump-
tion for implementing 16b fixed point multipliers instead of baseline 32b floating point arithmetic
while maintaining comparable accuracy. Envision [39] exploits 1–16b dynamic precision scaling
combined with DVFS, reporting reductions in energy per MAC operation (relative to 16b) of >5×
for 8b and >50× for 4b precision using sub-word parallel computations in a 28nm process.

UNPU [176] employs a non-linear quantization support that replaces a 16b multiplier by a 2×4-
bit lookup table, indexing 16 16b activations and 16 16b weights, with the result of each combina-
tion stored in the table. They report 79% power reduction and 93% lower latency while the area is
reduced by 1.3× compared to instantiating a 16b multiplier.

A review on scalable precision MAC architectures [177] compares recent 2-8b scalable imple-
mentations, discussing spatial and temporal MAC architectures and benchmarking them on a 28nm
process using a data-gated 8b-input MAC as baseline. Throughput is roughly increased quadrati-
cally for cutting precision by a factor of 2, reaching up to 14.5× for 2b precision. Area is increased
1.1-4.4× for parallel precision-scalable designs while bit-serial implementations can reduce area
by up to 40%. The overhead for scalability-support increases the energy per operation in full pre-
cision modes by up to 52% for single level, up to 94% for dual level scalability, and up to 14× for
multi-cycle bit-serial MACs. The energy per operation only reduces linearly with precision in the
baseline but decreases supra-linearly for the scalable MACs, achieving up to 4× lower energy at
2b precision (overhead compensated at 6-4b precision for parallel and at 2b for bit-serial MACs).

An XNOR-based 22nm BNN accelerator [114] exploits the reduced precision by utilizing SCM
instead of SRAM, enabling lower power consumption. Similarly, the 65nm binary-weight (12b
activation) CNN accelerator YodaNN [41], reports improved performance using voltage-scalable
SCM. Combining binary weights (instead of 12b) with SCM (replacing SRAM) allows them to
reduce the power by 11.6×.
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Cross-layer bit-width optimization [178], shows more than 20% parameter size reduction com-
pared to homogeneous bit-width fixed-point quantization at iso-accuracy on the CIFAR-10 task.
Furthermore, knowledge distillation can be used for low-precision quantization [179], improving
the accuracy of a highly quantized model using “distilled” knowledge from a larger (higher preci-
sion) teacher network during training.

8.5 Approximate Computing

Approximate computing trades power consumption, speed, and area off against arithmetic accu-
racy [180]. Approximation approaches are either based on voltage over-scaling (VOS) below the
technology’s threshold voltage or on functional modifications ranging from algorithm- to circuit-
level [181]. It differs from energy-quality-scaling (Section 8.4.2, due to its circuit-based scaling
approach.

A 2020 survey [182] on approximate computing for DNNs reports power, delay and area num-
bers from synthesized approximate adders, multipliers and dividers using a 28nm process at 1V. It
reports up to 69% energy savings (power-delay product) for an image sharpening task while for
JPEC compression only 20% savings are achieved.

An earlier survey [181] reports an approximate integer data format and related arithmetic oper-
ation implementations in 45nm [175], limiting values and computation precisions to a dynamically
selected range of most significant non-zero bits. This achieves 55-65% power reduction compared
to accurate computations at <0.5% accuracy drop in KNN and SVM tasks. Approximate computing
using 2- and 3-bit adder designs [183] reports further power and accuracy improvements.

VOS introduces bit errors due to missed timing constraints and other unwanted effects but re-
duces power consumption as shown on a 28nm CNN accelerator [184]. Reducing the SRAM voltage
from nominal 1.0V to 0.51V enables 3.12×memory and 2.13× system power reduction for running
a 9-layer fully binary CNN at <1% accuracy drop. They report stronger effects on accuracy from
weight errors than activation errors, enabling further activation memory voltage scaling.

8.6 Non-Conventional Arithmetic

To further optimize NN computations, non-conventional computer arithmetic has been surveyed
[185], comparing currently used CMOS technology and alternative emerging technologies for im-
plementing computer arithmetic. Also alternative number systems are evaluated, for example a
logarithmic system on a 65nm process [186], showing 3× higher energy per addition compared to
floating point, but 1.5× lower for multiplications, 17× lower for divisions and 38× lower for square
root computations.

8.6.1 Spiking Arithmetic. Biological neurons in the human brain function with spike-based sig-
naling and computing, inspiring researchers to rethink the traditional level-based arithmetic in
ICs [187]. Neuromorphic spiking arithmetic is employed in IBM’s 28nm TrueNorth [188], imple-
menting a total of one million digital spiking neurons, and Intel Loihi [189], implementing 131k
neurons in a 14nm process. Due to the significantly different computing paradigm, which can-
not be directly compared with other optimization approaches, we refer the reader to the specific
literature for more details [187, 190, 191].

8.6.2 Hyperdimensional Computing. Hyperdimensional computing is another brain-inspired
computing approach that encodes information in very high-dimensional binary vectors with thou-
sands of entries, called hypervectors. The similarity of information contained in hypervectors is
encoded in a distance metric, making them robust against bit errors and thus suitable for VOS.
Tasks like image recognition are performed by comparing the distance of an input vector (e.g. fea-
tures of an image) with a known reference vector. We refer to the specific literature [185, 192] for
more details as this goes beyond the++ scope of this work.
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8.7 Mixed Precision Arithmetic

The analog nature of most sensor signals and power-advantages of computing in the analog do-
main motivated mixed signal arithmetic for computing DNN [193, 194].

Survey [34] compares a set of analog DNN accelerator architectures, reporting 40-80% lower
area as well as 70% and 40% reduced power compared to digital implementations for 130nm and
65nm designs, respectively. This shows that analog circuits do not scale equally well with reduced
process nodes as their digital counterparts. Other properties, like the intrinsic computation paral-
lelism from Kirchhoff’s law can compensate for this reduce advantage in smaller node sizes.

Analog implementations usually require peripheral circuits that can diminish analog compu-
tation advantages at increasing design efforts, as illustrated in [195, 196], implementing the same
accelerator in a 28nm process but using analog or digital MAC-accumulation circuits, respectively.
Evaluated on a fully binary CIFAR-10 network at iso-accuracy, the energy per inference dropped
from 14.4uJ (digital) down to 3.79uJ (analog), which is a system-level energy improvement of 3.8x,
while the energy for the underlying MAC computation dropped by nearly 12.9× (>3× more). The
28nm analog-domain computations (8b dot product) are presented in [197], reporting nearly 75%
energy spent on ADC and control logic. Bong et al. [198] implement a hierarchical analog-digital
hybrid binary decision tree engine on a 65nm image sensor, running 60% of the algorithm in the
analog domain, reducing the inference energy by 39% compared to digital computation. A 130nm
32×32 analog MAC array multiplying a DAC-converted vector with a 32×32 matrix is presented in
[199]. Compared to a multi-core processor baseline, power and area are reduced by 71% and 43%,
increasing throughput by 10.3×. The CIM approaches discussed in Section 4.3 exploit the advan-
tages of mixed signal processing, keeping the data in memory to avoid losses data movement and
digitalization losses. An RRAM-based analog crossbar [200], compares performance to equivalent
implementations with digital RRAM-usage and SRAM-based memory. It reports 270× energy and
540× latency improvements over digital RRAM, and 430× energy and 34× latency improvements
over SRAM implementations, showing latency issues for digital RRAM.

8.8 Arithmetic Implementations

NN training is usually executed with 32bit floating point precision, that can be significantly low-
ered during inference. Each layer has a specific sensitivity to quantization and can thus be imple-
mented with adapted (minimal) bit-widths [201]. Selecting the arithmetic precision and the data
types allows to optimize implementations, increasing throughput and energy efficiency as shown
in Section 8.4.3.

Motivated by the finding that the required precision varies across DNN layers [201], a 65nm bit-
serial DNN engine is implemented based on the 16bit DaDianNao architecture [202]. Evaluated on
nine common DNNs with per-layer-minimized precision, it reports 1.2×–4.76× (2.0× on average)
increased energy efficiency at iso-accuracy compared to the baseline accelerator.

Variable-precision bit-serial MAC can also be implemented using look-up tables [42], reporting
energy savings of 23%, 27%, 41% and 54% with respect to standard fixed-point MAC for 16-, 8-,
4-, and 1-bit weight precision, respectively (16b activation). A similar, Booth-Wallace multiplier-
based multi-precision implementation was shown in [39], supporting 16b multiplications, that can
be split into 4×4b multiplications.

9 QUANTITATIVE COMPARISON OF OPTIMIZATIONS

This chapter summarizes the quantitative effects of the discussed edge ML accelerator optimiza-
tions. Table 6 lists each optimization approach with a brief description of the implementation
setup that was used to demonstrate the effect in the referenced publication. Five performance in-
dicators quantify each technique: the memory usage impacts the (often dominating) energy for
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Table 6. Overview of Optimization Strategies and Reported Advantages

Field

(ch.)

Optimization

approach

Reported impact Reference work
Remarks

Mem.
reduction

Throughp.
increase

Area
reduction

Power/E.
reduction

Algo.
accuracy

Work
(Year)

Implementation
performance

A
rc

h
it

ec
tu

re
(4

)

Replace sys.
array PEs with
tensor PEs

– – 2.1× 1.4×
system

–
[58]

(2020)

16nm accelerator running
various nets (e.g. ResNet-50,
MobileNetV1)

Replace MAC
with CIM-MAC

– improved unknown
13×
system

declined
[64]

(2017)

128×128 CIM array in
130nm running MNIST task
(1b w., 5b act.)

Tiny nets
only

Replace MAC
with SRAM
CIM-MAC

– 2.4× unknown
4.9×
system

declined
[65]

(2018)

LeNet5 network running
MNIST task on simulated
65nm accelerator

Add 8b CIM to
pure SRAM

– improved
0.78× (28%
lar.)

unknown –
[66]

(2021)
384kB SRAM with 8b CIM in
28nm process

P
o
w

er
m

an
ag

em
en

t
(5

.2
)

Sub-threshold
operation

–
0.23× (4.4×
low.)

0.53× (1.87×
lar.)

5× power –
[89]

(2013)

180nm sub-threshold
standard cell compared to
standard 180nm library

Sub-threshold
operation

– declined – 7× power –
[91]

(2016)
180nm MCU: 13kHz @ 0.48V
vs. 25MHz @ 1.8V

Sub-threshold
operation

– declined –
3.8×
power

–
[90]

(2015)

180nm 1kb SRAM @ March
test: 530Hz @ 0.27V vs.
200kHz @ 0.6V

ABB – −30× low. –
≤ 20×
leakage

–
[92]

(2019)
55nm RISC MCU and SRAM

DVFS – – – 1.05–4× –
[94]

(1994)
CPU @ varying intensity
using DVFS

DVFS – – – 9.2× –
[95]

(1996)

CPU @ 1.5V and 1/10
frequency DVFS vs. CPU @
3V and 90% idle

DVFAS – – – 25× declined
[39]

(2017)

28nm acc.: 4·4b with DVFAS
vs. 1 · 16b @ constant
throughput

0.65–1.1V,
(BB<1.2V)

DVAS – improved
0.85–0.9×
(lar.)

11.1/0.9×
(8b/16b)

declined
[96]

(2015)

40nm 16b Baugh-Wooley
multiplier with DVAS vs.
gating unused bits

Overhead:
add. logic

M
em

o
ry

(5
.3

)

Reduce mem
size for lower
access energy

improved – improved
Lin. with
size

–
[97]

(2016)
45nm SRAM
implementations: 1-1024kB

Non-lin. if
small size

Replace 6T
SRAM with
FeFET

–
R/W: 1.5x/
0.1× >5.3× R/W:

0.6/0.1× –
[109]
(2019)

22nm 64×64b array: FeFET
vs. 6T SRAM (FeFET
read/write: @4V/1V)

Stat. pow.
74× lower

Reduce SRAM
area: low leak.
7T vs. 8/10T

– unknown
18%
50%

unknown –
[17]

(2019)

8kB SRAM in 180nm using
7T vs. 8T and 10T low
leakage SRAM

Non-uniform
SRAM instead
of uniform

– –
0.98 (2%
larger)

60% (1.5
vs. 48kB)

–
[110]
(2017)

4-level SRAM memory
(1.5-48kB) in 40nm at 0.65V
and 3.9MHz

ULP SRAM
sleep mode

– declined
0.37× (2.7×
larger)

26× –
[111]
(2020)

16kB SRAM with charge
pump for low power
retention in 55nm

Slow proc.
corner use

Reduce SRAM
leakage 10T vs.
8T

– unknown
0.09× (11.3×
lar.)

4242×
retention

–
[80]

(2013)
Low leakage 180nm 10T
SRAM vs. 65nm 8T SRAM

Transpose
SRAM vs.
row-only SRAM

– – declined 1.9× .
[112]
(2018)

65nm accelerator with
T-SRAM vs. SRAM for 5×1
& 1×5 sep. conv.

Overhead:
add. logic

(Continued)
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Table 6. Continued

Field

(ch.)

Optimization

approach

Reported impact Reference work
Remarks

Mem.
reduction

Throughp.
increase

Area
reduction

Power/E.
reduction

Algo.
accuracy

Work
(Year)

Implementation
performance

M
em

o
ry

(5
.3

)

Replace SRAM
with SCM

– unknown
2–3×(<1kb)
<0.3× else

>2× –
[113]
(2016)

8kb SCM vs. SRAM in 28nm
using dedicated SCM
placement

Optimized
placement
strategy for
SCM

– unknown >35%
R:≤65%,
W:≤50%

–
[113]
(2016)

256b–32kb SCM macros in
28nm: special placement vs.
standard

R/W:Read/
Write

Replace SRAM
with SCM

– – unknown 2-3× –
[114]
(2018)

BNN accelerator in 22nm
using SRAM@0.6V or
SCM@0.4V

3D HMC
DRAM instead
of 2D DRAM

– 4.1× improved 1.5× –
[116]
(2017)

HMC DRAM dies on 45nm
logic die running various
networks

Replace SRAM
with eDRAM
(4T)

– – 17% 23% –
[117]
(2018)

28nm 8kb eDRAM array vs.
SRAM (both@0.7V and
room temperature)

Replace ULP
SRAM with
eDRAM (2T)

– unknown 2.5–3.8× unknown –
[118]
(2019)

28nm 4kb eDRAM memory
array at 0.4Vvs. SRAM

Simulation
only

D
at

afl
o
w

&
C

o
n

tr
o

l
(6

)

Depth-first
instead of
layer-wise
processing

Size/BW:104/200× improved – –
[121]
(2019)

Mem. reduct.: e.g. SRGAN
(UHD): 19’633×1,
MobileNetV2: >20×1

Limits
#layers

Depth-first
instead of
layer-wise
processing

chip:0.8×
Ext.: 20× (0.94×) – improved –

[123]
(2016)

VGGNet-E on FPGA
(AlexNet: only 28% ext.
reduc.)

Less ext.
memory

Optical
convolution
implementing
1st layer

2.5–10×
E/MNIST

250×–460×
E/MNIST 2 – improved

1.7/0.4%
E/MNIST

[131]
(2020)

CNN layer in front of 4
dense layers on MNIST and
EMNIST task

Only on
first layer

In-sensor
processing of
first CNN layers

– – –
73/45%
sys/CNN

declined
[133]
(2016)

Sim. 180nm SAR ADCs and
tunable cap. running 8b
GoogleNet

first 1–5
layers

Add
hierarchically
scalable effort

declined improved – ∼10× –
[39]

(2017)

28nm DNN accelerator
running 12MOP–30.8GOP
networks

Overhead:
more nets

Add
hierarchically
scalable effort

declined
1.2–9.8×
(avg.)

– improved –
[140]
(2015)

Hier. scaled SVM, NN, and
dec. tree on MNIST and
other tasks

Overhead
for diff.
inp

Introduce early
exit for
conditional ex.

declined 1.73–1.91× – improved improved
[137]
(2016)

6- and 8-layer NN for MNIST
task with 1 and 2 early exits

Overhead:
add. lay.

Introduce early
exit for
conditional ex.

declined – – 1.22× declined
[138]
(2020)

12-class Google speech
command task with early
exit on 22nm acc.

Overhead:
add. lay.

D
at

a
h

an
d

li
n

g
(7

)

Replace
ping-pong
buffering

Up to 2× – improved – –
[141]
(2020)

Act. (total) memory
reduction e.g. DMCNN-VD:
48.8% (48.2%)

Compression
using Huffman
coding

1.2-1-3×
(weights)

– improved – –
[142]
(2016)

Encode weights using
Huffman coding in AlexNet
and VGG16

Compression
using Huffman
coding

Up to 5.8× – improved – –
[39]

(2017)

28nm DNN accelerator
running face recognition
CNNs

(Continued)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 5, Article 56. Publication date: October 2022.

mailto:mailto:both@0.7V


56:26 P. Jokic et al.

Table 6. Continued

Field

(ch.)

Optimization

approach

Reported impact Reference work
Remarks

Mem.
reduction

Throughp.
increase

Area
reduction

Power/E.
reduction

Algo.
accuracy

Work
(Year)

Implementation
performance

D
at

a
h

an
d

li
n

g
(7

) Compression
using RLC
coding

1.2–1.9× – improved – –
[40]

(2016)
65nm process running
AlexNet

Weight sharing
<4× for
weights

– – 8× declined
[38]

(2016)

45nm accelerator with
weight sharing (16 entries of
16b values)

C
o

m
p

u
ta

ti
o

n
(8

.1
)

Replace CNN
with
depth-wise sep.
conv.

>7× 8.5× improved – −1.1%
[145]
(2017)

Depth-wise sep. MobileNet
vs. pure CNN on ImageNet
task

Sep. conv.
instead of 5×5:
1×5 & 5×1

improved
4× (1.7×
tot. net.)

– – −1%
[112]
(2018)

5-layer CNN for LFW face
recog. with sep. conv. vs.
normal conv.

FFT-based
convolution

declined 1.75-5.3× declined improved –
[146]
(2014)

Computing 3×3 – 11×11
CNN kernels via FFT vs.
conventional

Small ker.
profit less

Opt. FFT-based
conv. using
fine-grain FFT

improved 0.93–1.74× – improved –
[147]
(2020)

Fine-grained FFT-based
conv. vs. pure FFT conv.
(9×9–3×3 kernels)

Use Winograd
fast convolution

– 1.48–2.26× – – declined
[144]
(2016)

Winograd 3×3 convolution
on VGG E network (batch
size 64-1)

Errors for
large kern.

Use Strassen
algo. for CNN
matrix mult.

– 24-47% – – –
[148]
(2014)

Strassen algo. on AlexNet
conv. layers 2–5 (5×5, 3×3)
on CPU

More eff. If
large mat.

C
o

m
p

u
ta

ti
o

n
(8

.2
)

Sparsity
exploitation +
Pruning
approach

Weights:
9×–13× improved – – –

[156]
(2015)

Network pruning on
AlexNet and VGG16 for
ImageNet

Sparsity expl.:
skip mem. acc.
& MAC op.

– improved – 1.6× –
[39]

(2017)

28nm DNN accelerator with
1b sparsitiy map (16b
activations)

30◦C60%
sparsity

Sparsity expl.
with
energy-aware
pruning

11×
weights

unknown improved 3.7× 0–(−1)%
[157]
(2017)

AlexNet on ImageNet task

Skipping sparse
operations

improved 3.68× – – declined
[158]
(2019)

28nm CNN acc. with sparsity
map and NZVL compression

Simulation
only

Add zero-value
skipping logic

improved 1.37× unknown improved –
[159]
(2016)

65nm acc. with
zero-skipping logic and
zero-free data encoding

Overhead:
add. logic

C
o

m
p

u
ta

ti
o

n
(8

.3
)

Add data reuse:
row-stationary
processing

declined improved declined 1–4–2.5× –
[40]

(2016)
65nm 168 PE row-stationary
accelerator running AlexNet

SRAM and
ext. DRAM

Add data reuse:
output
stationary

declined 1.87× 0.3 (5.5×
larger)

1.66× –
[37]

(2015)

65nm 64PE OS acc, with vs.
without reuse on various
CNNs

Network-
dependent

Add data reuse:
NoC for flex.
reuse modes

declined 5.6× declined 1.8× –
[43]

(2019)
65nm NN accelerator with
192 PEs running MobileNet

Data reuse:
change-based
temp. sparsity

declined 8.6× declined – –
[160]
(2017)

On 5-layer CNN for 10-class
scene segmentation

Entire net
in memory

(Continued)
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Table 6. Continued

Field

(ch.)

Optimization

approach

Reported impact Reference work
Remarks

Mem.
reduction

Throughp.
increase

Area
reduction

Power/E.
reduction

Algo.
accuracy

Work
(Year)

Implementation
performance

C
o

m
p

u
ta

ti
o

n
(8

.4
)

Reduce
precision
int32/float32 to
int8

improved unknown Unknown
14x/20×
(int/float)

declined
[79]

(2014)
45nm arithmetic compared

Reduce
precision
int32/int16 to
int8

improved unknown
13x/3.6×
(32/16b)

10.8/3.6×
(32/16b)

declined
[175]
(2017)

45nm arithmetic compared

Reduced
precision(16b
→ 8/4b)

Up to 4× Up to 4× –
>5x/50×
(8b/4b)

declined
[39]

(2017)
28nm acc. with sub-word
parallel 1-16b MAC precision

Replace 16b
mult. with
4bx4b LUT

– 14.3× 1.3× 4.7× declined
[176]
(2018)

65nm acc running ImageNet
task (quantized vs. 32b
baseline)

LUT: 256
16b result

Replace MAC
with scal. prec.
(8b→8-2b)

–
Up to 14.5×
(2b)

>0.2/<1.4×
(para./ser.)

up to 4×
(2b)

declined
[177]
(2019)

28nm scalable prec. MAC
designs (parallel and serial)
vs. 8b MAC

<14× Pow.
overh@8b

Reduce w. prec-
12b→1b,
SRAM→SCM

Weights:
12× unknown 1.2× 11.6× declined

[41]
(2018)

Binary weight accelerator in
65nm with SCM

SCM repl.
SRAM

Energy-quality
scaling

– – – 3.5× −2%
[170]
(2020)

Voice activity detection
using decision trees on 28nm
chip

Energy-quality
scal.: acc.,
feat./mem. size

– – – 3× declined
[171]
(2020)

40nm image feature
detection with controllable
det. thresh. (accuracy)

C
o

m
p

u
t.

(8
.5

)

Approx.
computing

– – improved 20–69% declined
[182]
(2020)

28nm approx. mult./adders
run. image sharpening, JPEG
compr.

Approx.
computing

– – improved
55/65%
knn/SVM

declined
[175]
(2017)

45nm approx. comp. engine
vs. accurate 32bit
implementation

Approx.
computing:
SRAM VOS

–
0.095×
(10.5× sl.)

– 3.12× 0–(−1)%
[184]
(2018)

28nm fully binary CNN acc.
running 9-layer CNN

C
o

m
p

u
ta

ti
o

n
(8

.7
)

Replace dig.
with mixed-sig.
arithmetic

– 1.58× 0.31 (3.2×
larger) 3.8/12.9xsys/MAC

–
[195]
(2018)

28nm fully binary CNN acc.
with analog MAC vs. digital

Ana. peri.
limit gains

Replace float
arith. with
logarithmic

– unknown unknown
0.33/1.5×
add,mul.

[186]
(2016)

65nm logarithmic arithmetic
system vs. conventional float

Replace dig.
with
mixed-signal
arith.

– – – 1.39× declined
[198]
(2017)

65nm mixed analog/digital
comp. vs. pure digital face
detection

60% algo.
in analog

Replace dig.
with
mixed-signal
arith.

– 10.3× 1.7× 3.4×
power

–
[199]
(2011)

130nm 32×32 analog MAC
array for matrix-vector
multiplication

In/output
in digital

Replace dig.
MAC with ana.
RRAM- CIM

– 34× 11× 430× declined
[200]
(2018)

Simulated accelerator design
in 16nm, running MNIST
task

Dig. acc.:
SRAM

(Continued)
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Table 6. Continued

Field

(ch.)

Optimization

approach

Reported impact Reference work
Remarks

Mem.
reduction

Throughp.
increase

Area
reduction

Power/E.
reduction

Algo.
accuracy

Work
(Year)

Implementation
performance

C
o

m
p

u
t.

(8
.8

)

Replace dig.
with
mixed-sign.
arithmetic

improved 1.3–5.3 0.95× 1.2×–4.8×
(2.0× av.)

–
[201]
(2017)

65nm var. perc. bit-serial
acc. vs. 16b baseline (on 9
common DNNs)

Replace MAC
with var. prec.
LUT MAC

– – –
16-1b w.:
1.2-1.54× –

[42]
(2019)

65nm NN acc. with var. prec.
bit-serial LUT MAC vs. fixed
16b MAC

Activation:
16b

data handling, the throughput determines the processing latency, the chip area directly impacts
manufacturing cost, and the power/energy reductions translate into longer battery lifetimes. How-
ever, optimizations might influence the algorithmic accuracy, which is therefore listed in the fifth
impact column. Note that optimization effects might significantly differ across varying implemen-
tation setups (e.g. other network models utilized) and must thus be carefully evaluated for other
implementation options. Where none or only qualitative information was available, we noted “un-
known”, or “improved”/”declined” performance, respectively.

Architectural optimizations (Section 4) report up to 13× power savings with increased through-
put using CIM. However, most CIM implementations only support small networks. Power man-
agement (Section 5.2) allows for significant leakage and dynamic power reductions, but negatively
impacts the throughput due to the reduced operating frequency. Optimizing the memory offers re-
duced access energy and mainly lower static power, while affecting the required area. Optimized
placement and low-leakage SRAM types allow trading area off against power. Various dataflow
and data handling options (Sections 6–7) offer improved throughput or reduced memory require-
ments (up to 10,000× lower size). Computation improvements (Section 8) higher throughput and
efficiency using quantization but must be traded off against accuracy deteriorations.

As an example, the designer of a new edge ML accelerator, requiring to run low-complexity ML
tasks at a very low power consumption, could identify DVFAS [39] in Table 6 as useful optimiza-
tion, reporting 25× power reduction at constant throughput. The reported accuracy impact must be
considered but might be acceptable for simple tasks. To further improve the power consumption,
SCM can be chosen instead of standard SRAM, adding another 2–3× reduction in (memory) power
consumption [114]. If the selected network tolerates sparsity, the support of weight and activation
sparsity from Table 6 might be another option to drastically decrease the power further. However,
replacing the digital processing with a mixed-signal implementation promises lower power gains
and probably comes at the cost of increased area, as reported in the literature [195].

10 CONCLUSION

We presented a survey of design optimization strategies for low power neural network accelera-
tors. The compiled list of optimization approaches provides quantitative performance impact mea-
sures for each approach, allowing accelerator designer to estimate their impact in future designs.
Covered optimization approaches encompass a wide range of components in ML accelerators.
They range from architectural and technological options to dataflow, data handling and compu-
tation optimizations. Each approach was evaluated based on five performance metrics, namely
energy/power reduction, area (cost) reduction, memory size savings, computational throughput
increase, and impact on algorithmic accuracy. The reported optimizations provide up to 10,000×
memory savings and up to 33× energy reductions.
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