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Federated Self-training for Semi-supervised Audio

Recognition

VASILEIOS TSOUVALAS, AAQIB SAEED, and TANIR OZCELEBI, Eindhoven University of

Technology, The Netherlands

Federated Learning is a distributed machine learning paradigm dealing with decentralized and personal
datasets. Since data reside on devices such as smartphones and virtual assistants, labeling is entrusted to
the clients or labels are extracted in an automated way. Specifically, in the case of audio data, acquiring se-
mantic annotations can be prohibitively expensive and time-consuming. As a result, an abundance of audio
data remains unlabeled and unexploited on users’ devices. Most existing federated learning approaches fo-
cus on supervised learning without harnessing the unlabeled data. In this work, we study the problem of
semi-supervised learning of audio models via self-training in conjunction with federated learning. We pro-
pose FedSTAR to exploit large-scale on-device unlabeled data to improve the generalization of audio recog-
nition models. We further demonstrate that self-supervised pre-trained models can accelerate the training
of on-device models, significantly improving convergence within fewer training rounds. We conduct exper-
iments on diverse public audio classification datasets and investigate the performance of our models under
varying percentages of labeled and unlabeled data. Notably, we show that with as little as 3% labeled data
available, FedSTAR on average can improve the recognition rate by 13.28% compared to the fully supervised
federated model.
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• Human-centered computing→ Ubiquitous and mobile computing;
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1 INTRODUCTION

The emergence of smartphones, wearables, and modern Internet of Things (IoT) devices results
in a massive amount of highly informative data generated continuously from a multitude of
embedded sensors and logs of user interactions with various applications. The ubiquity of these
contemporary devices and the exponential growth of the data produced on edge provides a
unique opportunity to tackle critical problems in various domains, such as healthcare, well-being,
manufacturing, and infrastructure monitoring. Notably, the advent of deep learning has enabled
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us to leverage these raw data directly for learning models while leaving ad hoc (hand-designed)
approaches largely redundant. The improved schemes for learning deep networks and the
availability of massive labeled datasets have brought tremendous advancements in several areas,
including language modeling, audio understanding, object recognition, image synthesis, and
more. Traditionally, developing machine learning models or performing analytics in a data center
context requires the data from IoT devices to be pooled or aggregated in a centralized repository
before processing it further for the desired objective. However, the rapidly increasing size of
available data, in combination with the high communication costs and possible bandwidth limita-
tions, render the accumulation of data in a cloud-based server unfeasible [24]. Additionally, such
centralized data aggregation schemes could also be restricted by privacy issues and regulations
(e.g., General Data Protection Regulation). Due to these factors and the growing computational
and storage capabilities of distributed devices, it is appealing to leave the data decentralized and
perform operations directly on the device that collects that data through primarily utilizing local
resources. The rapidly evolving Federated Learning (FL) field is concerned with distributed
training of machine learning models on the decentralized data residing on remote devices such as
smartphones and wearables. The key idea behind FL is to bring the computation (or code) closer
to where the data reside to harness data locality extensively. Specifically, in a federated setting,
minimal updates to the models (e.g., parameters of a neural network) are performed entirely
on-device and communicated to the central server, which aggregates these updates from all partic-
ipating devices to produce a unified global model. Unlike the standard way of learning models, the
salient differentiating factor is that the data never leaves the user’s device, which is an appealing
property for privacy-sensitive data. This strategy has been applied on a wide range of tasks in
recent years [10, 23, 34, 44]. Nevertheless, a common limitation of existing approaches is that
they primarily focus on a supervised learning regime. The implicit assumption that the labeled
data is widely available on the device, or it can be easily labeled through user interaction or pro-
grammatically, such as for keyword prediction or photo categorization, is in most pragmatic cases
unrealistic.

In reality, on-device data is largely unlabeled and constantly expanding in size. It cannot be
labeled to the same extent as standard datasets, which are annotated via crowd-sourcing or other
means for training deep neural networks. Due to the prohibitive cost of annotation, users have
little to no incentives, and notably for various important tasks, the domain knowledge missing to
perform the annotation process appropriately leaves most of the data residing on devices to remain
unlabeled. This is especially true when considering the utilization of audio data to perform var-
ious audio recognition tasks, which have recently attracted increasing interest from researchers.
As a result, numerous audio recognition systems have been developed, such as for wildlife
monitoring [28, 36] and surveillance [5]. In addition to monitoring applications, highly accurate
acoustic models are utilized for keyword spotting for virtual assistants [23], anomaly detection
for machine sounds [18], and in the development of health risk diagnosis systems, such as cardiac
arrest detection [4]. However, in the majority of such applications, there is no straightforward
manner for the annotation process. For instance, suppose that we have a sleep tracker application
that assesses a person’s risk of obstructive sleep apnea using breathing and snoring sounds during
sleep. In this case, the end-users may not be able to evaluate their sleeping sounds sufficiently, and
clinicians may need to analyze and annotate the samples. Even in cases where no human expertise
is required, like in a music tagging application, the correct labeling of songs requires effort on the
user’s end. Additionally, there are cases where distributed devices host models with no human-
in-the-loop to annotate the audio data, such as surveillance devices, making the labeling process
infeasible. Thus, in many realistic scenarios for FL, local audio data will be primarily unlabeled.
This leads to a novel FL problem, namely, semi-supervised federated learning, where users’ devices
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Fig. 1. Illustration of FedSTAR for label-efficient learning of audio recognition models in a federated setting.

collectively hold a massive amount of unlabeled audio samples and only a fraction of labeled audio
examples.

Semi-supervised learning techniques have been widely deployed in a centralized learning set-
ting to utilize readily available unlabeled data and could also be applied in federated learning
settings. In particular, with semi-supervision of models, available unlabeled data can be exploited
during the training phase, improving the overall performance of the resulting model [40]. Pseudo-
labeling is a widely applied semi-supervised learning method, which relies on the predictions of a
model on unlabeled data, i.e., pseudo labels, to utilize unlabeled data during the learning phase [22].
With no structural requirements from the input modalities and tiny computational overhead,
pseudo-labeling is an ideal candidate to be applied in federated learning settings, where device het-
erogeneity and computational resources vary across devices. To this end, we propose a federated
self-training approach, named FedSTAR (Federated Self-Training for Audio Recognition), to
unify semi-supervision with federated learning to leverage large-scale unlabeled audio data. With
the exploitation of unannotated audio samples that reside on clients’ devices, we aim to improve
the generalization of federated models on a wide range of audio recognition tasks under a prag-
matic scenario, where scarcity of labels poses a significant challenge for learning useful models.

Apart from the labels’ deficiency, FL introduces other challenges of the system and statistical
heterogeneity [17]. These challenges lead to device hardware and data collection diverseness
that can significantly affect the number of devices participating in each federated round as
well as the on-device data distribution. Several FL techniques provide flexibility in selecting
a fraction of clients in each training round and address the non-i.i.d. nature of client’s data
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distributions, such as FedAvg [30] and FedProx [25]. The training convergence properties of
such distributed optimization methods are discussed in Reference [17], where a clear reduction
in the convergence rates is reported. In a centralized setting, self-supervised pre-training can
improve the model’s convergence and generalization through leveraging pre-training on mas-
sive unlabeled datasets [35]. With self-supervised learning, the model is able to learn useful
representations from unlabeled data; thus, when used for the downstream task, self-supervised
model can significantly improve the training efficiency and predictive performance [35]. To
address the issue of slow training convergence in federated settings, we propose the utilization of
self-supervised pre-trained models as model initialization for the FL procedure as compared to the
naive random initialization of model parameters. Through extensive evaluation, we demonstrate
that the convergence rate of our proposed semi-supervised federated algorithm, i.e., FedSTAR, can
be greatly improved by using a pre-trained model learned in a self-supervised manner.

To the best of our knowledge FedSTAR is the first FL approach that learns models for audio
recognition tasks by utilizing not only labeled but also unlabeled samples on user devices while
not being dependent on any data (labeled or unlabeled) on the server side. Just like the labeled sam-
ples, the on-device unlabeled samples are utilized locally by self-training based on our proposed
pseudo-labeling with dynamic prediction confidence thresholding. As FedSTAR is not altering ei-
ther the utilized model’s architecture or the global model averaging process, the underlined hard-
ware requirements are similar to the chosen federated learning algorithm (e.g., FedAvg), while the
on-device storage demand is unaffected, since FedSTAR essentially uses already stored unlabeled
data that are left unexploited. In addition, with the utilization of unlabeled data, FedSTAR models
are less sensitive to the non-i.i.d. nature of the labeled data across clients (label distribution skew
and data sample imbalance across clients). As a result, it performs much better in typical non-
i.i.d. data federated settings. Furthermore, solutions in the literature focus on randomly initialized
models at the server side. We for the first time employ self-supervised pre-training on the server
side using publicly available audio data to further improve the efficiency of training, which means
fewer training rounds are needed for convergence.

The main contributions of this work are as follows:

• We study on the practical problem of semi-supervised federated learning for audio recog-
nition tasks to address the lack of labeled data that presents a major challenge for learning
on-device models.
• We design a simple yet effective approach based on self-training, called FedSTAR. It exploits

large-scale unlabeled distributed data in a federated setting with the help of a novel adaptive
confidence thresholding mechanism for effectively generating pseudo-labels.
• We exploit self-supervised models pre-trained on FSD-50K corpus [6] for significantly im-

proving training convergence in federated settings.
• We demonstrate through extensive evaluation that our technique is able to effectively learn

generalizable audio models under a variety of federated settings and label availability on
diverse public datasets, namely, Speech Commands [41], Ambient Context [33], and Vox-
Forge [29].
• We show that FedSTAR, with as few as 3% labeled data, on average can improve recognition

rate by 13.28% across all datasets compared to the fully supervised federated models.

The rest of the article is organized as follows: In Section 2, an overview of the related work is pro-
vided. Section 3 presents an overview of related paradigms and methodologies as background in-
formation, Section 4 introduces the proposed federated self-training approach for semi-supervised
audio recognition. Section 5 presents an evaluation of FedSTAR on publicly available datasets.
Section 6 concludes the article and lists future directions for research.
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2 RELATED WORK

Federated Learning. FL has been attracting growing attention, thanks to its unique character-
istic of collaboratively training machine learning models without actually sharing local data and
compromising users’ privacy [19]. The most popular and simplistic approach to learning models
from decentralized data is the Federated Averaging (FedAvg) algorithm [30]. Specifically, Fe-
dAvg performs several local stochastic gradient descent (SGD) steps on a sampled subset of
devices’ data in parallel and aggregates the locally learned model parameters on a central server
to generate a unified global model through weighted averaging. This strategy has proved to work
relatively well for a wide range of tasks in i.i.d. settings [23, 44]. At the same time, the performance
can decrease substantially when FedAvg is exposed to non-i.i.d. data distribution [17, 45]. Authors
in Reference [45] proposed globally sharing a portion of the dataset to improve FL performance
under non-i.i.d settings. In addition to the challenge introduced by data distribution, communica-
tion efficiency is another critical problem in FL. The communication challenges could be alleviated
by increasing the number of local SGD steps between sequential communication stages. However,
with the increase of SGD steps, the device’s model may begin to diverge, and the aggregation of
such models can affect the generalization of global models [25]. FedProx was proposed to tackle
this issue by adding a loss term to restrict the local models’ updates to be closer to the existing
global model [25]. Nevertheless, a typical limitation of existing work is the focus on a supervised
learning regime with the implicit assumption that the local private data is fully labeled or could be
labeled simplistically through labeling functions. However, in the majority of pragmatic scenarios,
a straightforward annotation process is non-existent.

Recently, performing on-device federated training of acoustic models has attracted considerable
attention [7, 9, 12, 23, 44]. In Reference [23], FL was employed for a keyword spotting task and the
development of a wake-word detection system, whereas, References [7, 9] investigated the effect
of non-i.i.d. distributions on the same task. In Reference [7], a highly skewed data distribution sce-
nario was considered, where a large set of speakers used their devices to record a set of sentences.
To address the challenges introduced due to the non-i.i.d. distribution of data, a word-error-rate
model aggregation strategy was developed. In addition, a training scheme with a centralized model,
pre-trained on a small portion of the dataset, was also examined. Furthermore, Reference [9] con-
sidered a scenario where devices might hold unlabeled audio samples and used a semi-supervised
federated scheme based on a teacher-student architecture to exploit unlabeled audio data. How-
ever, the teacher model relied on additional high-quality labeled data for training in a centralized
setting. Likewise, Reference [12] introduced a framework for privacy-preserving training of user
authentication models with FL using labeled audio data. Nonetheless, all prior approaches consider
only semantically annotated audio examples or require supplementary labeled data on the server-
side to utilize the available unlabeled audio data that reside on devices. To address these problems,
we propose a self-training approach to exploit unlabeled audio samples residing on clients’ devices.
In addition, as servers often possess the computational resources to efficiently pre-train a model on
a massive unlabeled dataset, we employ self-supervision to develop a model that can be used as a
highly effective starting point for federated training instead of using randomly initialized weights.

Semi-Supervised Learning. In semi-supervised learning (SSL), we are provided with a dataset
containing both labeled and unlabeled examples, where the labeled fraction is generally tiny com-
pared to the unlabeled one and the curation of strong labels for the unlabeled dataset is impractical
due to time constraints, cost, and privacy-related issues [46]. While there is a wide range of SSL
methods and approaches that have been developed in the area of deep learning, we will mainly
focus on the self-training or pseudo-labeling approach [22]. Self-training uses the prediction
on unlabeled data to supervise the model’s training in combination with a small percentage of
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labeled data. Specifically, pseudo-labels are constructed by extracting one-hot labels from highly
confident predictions on unlabeled data. These are then used as training targets in a supervised
learning regime. This simplistic approach of utilizing unlabeled data has been combined with
various methods to further improve the training efficiency. In Reference [1], authors demonstrated
that setting a minimum number of labeled samples per training batch can be effective to reduce
over-fitting due to noise accumulation on generated predictions. In addition, the use of a scalar
temperature for scaling softmax output achieves a softer probability distribution over classes for
the predictions and urges models to generate the correct pseudo-labels without suffering from
over-confidence [11]. This temperature scaling approach can be highly beneficial in modern deep
neural networks architectures, which have shown to suffer from over-confident predictions [11].
Supplementary, authors in [2] proposed MixMatch, which sharpens the prediction’s distribution
to further improve the generated pseudo-labels predictions. The sharpening process is performed
by averaging the predictions’ distribution of augmentation versions of the same unlabeled sample.
Apart from self-training, alternative SSL approaches introduce a loss term, which is computed on
unlabeled data, to encourage the model to generalize better to unseen data. Based on the objective
of the loss term, we can classify these approaches in two categories: consistency regularization
techniques—which are based on the principle that a classifier should produce the same class
distribution for an unlabeled sample even after augmentation [31, 38]; and entropy minimization
techniques—which aim to motivate the model to produce low-entropy (high-confident) predic-
tions for all unlabeled data [8]. For a concise review and realistic evaluation of various deep
learning based semi-supervised techniques, we refer interested readers to Reference [32].

A recent study [16] has questioned the soundness of the assumption that devices have well-
annotated labels in a federated setting. Existing semi-supervised federated learning (SSFL)

approaches, such as FedMatch [15] and FedSemi [26], have only recently started to be examined
under the vision domain to exploit unlabeled data. FedMatch decomposes the parameters learned
from labeled and unlabeled on-device data and uses an inter-client consistency loss to enforce con-
sistency between the pseudo-labeling predictions made across multiple devices. In Reference [26],
FedSemi adapts a mean teacher approach to harvest the unlabeled data and proposes an adaptive
layer selection to reduce the communication cost during the training process. Apart from these
methods, many studies consider different data distribution schemes, including sharing an unla-
beled dataset across devices [14]. Last, it is important to note that recent works employ SSFL to
address problems in healthcare domain, namely, electronic health records [13] and for problems
like human activity recognition [39]. Nevertheless, none of the discussed approaches focuses on
learning models for audio recognition tasks by utilizing devices’ unlabeled audio samples.

3 BACKGROUND

In this section, we provide a brief overview of semi-supervised and federated learning paradigms,
as they act as fundamental building blocks of our federated self-training approach for utilizing
large-scale on-device unlabeled audio data in a federated setting.

3.1 Semi-supervised Learning

Given enough computational power and supervised data, deep neural networks have proven to
achieve human-level performance on a wide variety of problems [21]. However, the curation of
large-scale datasets is very costly and time-consuming, as it either requires crowd-sourcing or
domain expertise, such as in the case of medical imaging. Likewise, for several practical problems,
it is simply not possible to create a large enough labeled dataset (e.g., due to privacy issues) to
learn a model of reasonable accuracy. In such cases, SSL algorithms offer a compelling alternative
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to fully supervised methods for jointly learning from the fraction of labeled and a large number of
unlabeled instances.

Specifically, SSL aims to solve the problem of learning with partially labeled data where the ratio
of unlabeled training examples is usually much larger than that of the labeled ones. Formally, let

DL =
{ (
xli
,yi
)}Nl

i=1 represent a set of labeled data, where Nl is the number of labeled data, xli
is an

input instance,yi ϵ {1, . . . ,C} is the corresponding label, and C is the number of label categories for
the C-way multi-class classification problem. Besides, we have a set of unlabeled samples denoted

asDU =
{
xui

}Nu

i=1, whereNu is the number of unlabeled data. Letpθ (y | x ) be a neural network that
is parameterized by weights θ that predicts softmax outputs ŷ for a given input x . In the setting of
semi-supervised learning, where in general Nl � Nu , we need to simultaneously minimize losses
on both labeled and unlabeled data to learn the model’s parameters θ . Specifically, our objective is
to minimize the following loss function:

Lθ = Lsθ
(DL ) + Luθ

(DU ), (1)

where Lsθ
(DL ) and Luθ

(DU ) are the loss terms from supervised and unsupervised learning,
respectively.

The teacher-student self-training framework is a popular scheme to simultaneously learn from
both labeled and unlabeled data. In this approach, we first use the available labeled data to train
a good teacher model, which is then utilized to label any available unlabeled data. Consequently,
both labeled and unlabeled data are used to jointly train a student model. In this way, the model
assumes a dual role as a teacher and a student. In particular, as a student, it learns from the available
data, while as a teacher, it generates targets to help the learning process of student. Since the
model itself generates targets, they may very well be incorrect, thus, the learning experience of the
student model depends solely on the ability of teacher model to generate high-quality targets [43].

3.2 Federated Learning

FL is a novel collaborative learning paradigm that aims to learn a single, global model from data
stored on remote clients with no need to share their data with a central server. In particular, with
the data residing on clients’ devices, a subset of clients is selected to perform a number of local
SGD steps on their data in parallel in each communication round. Upon completion, clients ex-
change their models’ weights updates with the server, aiming to learn a unified global model by
aggregating these updates. Formally, the goal of FL is typically to minimize the following objective
function:

min
θ
Lθ =

K∑

k=1

γkLk (θ ), (2)

where Lk is the minimization function of the kth client and γk corresponds to the relative impact
of the kth client to the construction of the global model. For the FedAvg algorithm, parameter γk

is equal to the ratio of client’s local data Nk over all training samples (γk =
Nk

N
).

Specifically, let D = { (xli
,yi
)}N

i=1 be a dataset of N labeled examples, similarly to the previ-
ously discussed dataset DL in Section 3.1. Given K clients, D is decomposed into K sub-datasets

Dk =
{(
xli
,yi
)}Nk

i=1 corresponding to each clients’ privately held data. For an initial global model
G, the rth communication round starts with server randomly selecting a portion q (0 < q ≤ K )
of clients to participate in the current training round. Afterwards, each client’s local model re-
ceives the global parameters θG

r and performs supervised learning on their local dataset Dk to
minimize Lk (θk

r ). Subsequently, G aggregates over locally updated parameters by performing

θG
r+1 ←

∑q
i=1

Ni

N
θ i

r . The presented circular training process, comprising model weights’ exchanges

between server and clients, repeats until θG converges after R rounds.
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4 METHODOLOGY

In this section, we present our federated self-training learning approach, namely, FedSTAR, for au-
dio recognition tasks. First, we provide a formal overview of the problem, which FedSTAR aims to
solve. Next, we discuss the proposed self-training technique (i.e., pseudo-labeling with dynamic
prediction confidence thresholding) in detail, followed by the presentation of our FedSTAR algo-
rithm. Finally, we provide a thorough description of the self-supervised pre-training technique
used to train a model as an initialization point for the FedSTAR approach.

4.1 Problem Formulation

We focus on the problem of SSFL, where labeled data are scarce across users’ devices. At the same
time, clients collectively hold a massive amount of unlabeled audio data. In addition, in a typi-
cal federated learning setting, the on-device data distribution depends on the profile of the users
operating the devices. Thus, it is a common scenario for both labeled and unlabeled data to origi-
nate from the same data distribution. Based on the aforementioned assumption, with FedSTAR, we
aim to utilize the available unlabeled data on clients and further improve the generalization of FL
models, alleviating the need for clients to hold well-annotated data. In this way, we substantially
decouple the amount of available labeled from the predictive power of acoustic models trained
under federated settings.

Formally, under the setting of SSFL, each of theK clients holds a labeled set,Dk
L
= { (xli

,yi
) }Nl,k

i=1

and an unlabeled setDk
U
= {xui

}Nu,k

i=1 , where Nk = Nl,k +Nu,k is the total number of data samples
stored on the kth client and Nl,k � Nu,k . We desire to learn a global unified model G without

clients sharing any of their local data,Dk
L

andDk
U

. To this end, our objective is to simultaneously
minimize both supervised and unsupervised learning losses during each client’s local training step
on the rth round of the FL algorithm. Specifically, the minimization function, similar to the one
presented in Equation (2), is:

min
θ
Lθ =

K∑

k=1

γkLk (θ ) where Lk (θ ) = Lsθ
(Dk

L ) + βLuθ
(Dk

U ). (3)

Here, Ls (Dk
L

) is the loss terms from supervised learning on the labeled data held by the kth client,

and Lu (Dk
U

) represents the loss term from unsupervised learning on the unlabeled data of the
same client. We add the parameter β to control the effect of unlabeled data on the training proce-
dure, while γk is the relative impact of the kth client on the construction of the global model G.

4.2 Self-training with Pseudo Labeling

Self-training via pseudo-labeling has been widely used in semi-supervised learning [40]. The objec-
tive of highly effective teacher-student self-training approaches is to train a teacher model, which
supervises the learning process of a student model that learns from labeled and unlabeled data
jointly. First, a teacher model is built with the available labeled data and afterwards this is ex-
ploited to make predictions for the unlabeled samples. Subsequently, the student model is trained
on both labeled and predicted samples. We propose a self-training technique with a dynamic pre-
diction confidence threshold to learn from the unlabeled audio data residing on the client’s device,
thus boosting the performance of models trained in federated settings with varying percentages
of labeled examples. For audio classification tasks, to learn from the labeled datasetsDk

L
across all

participating clients, we apply cross-entropy loss as follows:

Ls (Dk
L ) = − 1

Nl,k

Nl,k∑

i=1

C∑

j=1

y j
i log(f θ k

i (xlj
)) = LCE

(
y,pθ k (y | xl )

)
. (4)
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Next, to learn from unlabeled data, we generate pseudo-labels ŷ for all available unlabeled data
xu on client k by performing:

ŷ = Φ (z,T ) = arg max
i ∈{1, ...,C}

�
�

ezi /T

∑C
j=1 e

zj /T
�
�
, (5)

where zi are the logits produced for the input sample xui
by the kth client model pθ k before the

softmax layer. In essence, Φ produces categorical labels for the given “soften” softmax values,
in which temperature scaling is applied with a constant scalar temperature T . As the maximum
of the softmax function remains unaltered, the predicted pseudo-label ŷ is identical as if the
original prediction (without scaling) for an unlabeled sample xu was used; however, the prediction
confidence is weakened. A dynamic threshold τ of confidence is proposed following a cosine
schedule to discard low-confidence predictions when generating pseudo-labels. For the obtained
pseudo-labels, we then perform standard cross-entropy minimization while using ŷ as targets in
the following manner:

Lu (Dk
U ) = − 1

Nu,k

Nu,k∑

i=1

C∑

j=1

ŷi
j log(f θ k

i (xuj
)) = LCE

(
ŷ,pθ k (xu )

)
. (6)

Revising the initial minimization goal of FedSTAR expressed in Equation (3), we can now repre-
sent local models’ loss function on the rth round of the FL algorithm for the kth client as:

Lk (θk ) = LCE
(
y,pθ k (y | xl )

)
+ βLCE

(
ŷ,pθ k (xu )

)
. (7)

4.3 Federated Self-training

The objective of federated self-training is to create a teacher model on each client to exploit la-
beled data resident on clients’ devices, which will be used to predict labels for the unlabeled in-
stances available in the device. As both labeled and unlabeled on-device samples originate from
the same data distribution, a student model can be constructed on each client device by collectively
training on labeled and pseudo-labeled data, the weights of whom will be returned to the server
for aggregation. Under federated settings, however, a more complicated analysis is required, as
clients’ local labeled data can be limited and can have a highly skewed distribution. In such set-
tings, teacher models may produce inaccurate pseudo-label predictions, and student classifiers
potentially amplify the mistakes further during training through using faulty pseudo-labels. To
ensure the proper construction of pseudo-labels and guarantee that the student model will learn
properly from unlabeled data, the confidence of the predictions is taken into consideration when
generating pseudo-labels to discard any low-confidence predictions.

Concisely, in the proposed FedSTAR algorithm, the clients’ local update step is altered to learn
from unlabeled datasetsDk

U
. As can be seen in Figure 2, a representative round r of FedSTAR starts

with the distribution of global models’ weights θG to a randomly selected subset of q clients. On
each client, equally sized batches l and u from the labeled and unlabeled sets are created, respec-
tively. The model’s weights update is performed, as in Equation (7). First, the classical supervised
categorical cross-entropy loss is minimized for batch l , as in Equation (4), to construct a teacher
model, and afterwards, with this model pseudo-labels are produced using Φ(·). With the creation of
pseudo-labels ŷ, the unlabeled batch u is then treated as a labeled batch u

′
=
{
(u, ŷ)

}
, in which the

client’s model is further trained with standard cross-entropy minimization. It is important to note
that we simultaneously optimize the cross-entropy loss on both l andu subsets by computing both
losses before performing backpropagation to update the local models’ parameters. Last, the locally
updated weights from all participating clients in the rth round are sent back to the server, where
the global model weights are calculated as a weighted average over all the local weights updates.
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Fig. 2. On-device self-training based on pseudo-labeling in a federated setting for an audio recognition task

shown for illustration proposes.

Since Nl � Nu holds for all clients, given a sufficient number of participating rounds, unlabeled
instances will be exposed to all the available labeled data. Additionally, we propose an adaptive

confidence thresholding method to diminish unsatisfactory performance due to training on faulty
pseudo-labels. In particular, in addition to using temperature scaling T to “soften” softmax output
and generated confident predictions, we employ an increasing confidence threshold τ to discard
low-confidence pseudo-labels during training following a cosine schedule. Cosine learning rate
schedulers rely on the observation that we might not want to decrease the learning rate too drasti-
cally in the beginning, while we might want to “refine” our solution in the end using a very small
learning rate. Along the same lines, with our cosine confidence thresholding, we allow clients to
explore the locally stored unlabeled data, Dk

U
, in the first few federated rounds, while considering

only highly confident predictions in a later stage of the training procedure. While other methods
could be explored for this purpose, such a study is outside the scope of the current work and we
mainly focus on cosine scheduler, which has proven to work well empirically across a variety
of tasks [27]. Further details and an overview of our approach for the semi-supervised training
procedure can be found in Algorithm 1.

4.4 Self-supervised Pretraining Strategy

Self-supervised learning aims to learn useful representations from unlabeled data by tasking a
model to solve an auxiliary task for which supervision can be acquired from the input itself. Given
an unlabeled data D = {x }Mm=1 and deep neural network fθ (.), the aim is to pre-train a model
through solving a surrogate task, where labels y for the standard objective function (e.g., cross-
entropy) are extracted automatically from x . The learned model is then utilized as a fixed feature
extractor or as initialization for rapidly learning downstream tasks of interest. The fields of com-
puter vision and natural language processing have seen tremendous progress in representation
learning with deep networks in a self-learning manner, with no human intervention in the la-
beling process. Here, the prominent techniques for audio representation learning from unlabeled
data include and audio-visual synchronization [20], contrastive learning [35], and other auxiliary
tasks [37].

In our work, we propose to leverage self-supervised pre-training on the server side to improve
training convergence of FedSTAR on client devices. Motivated by the fact that the server can often
hold a large amount of unlabeled data and has enormous computational resources available, we
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ALGORITHM 1: FedSTAR: Federated Self-training for Audio Recognition. In the algorithm, l and
u are equally sized batches from on-device labeled and unlabeled samples, respectively. Scalar β
controls the affect of unlabeled data in the training process, and η is the learning rate.

1: Server initialization of model G with model weights θG
0

2: for i = 1, . . . ,R do

3: Randomly select K clients to participate in round i
4: for each client k ∈ K in parallel do

5: θk
i ← θG

i

6: θk
i+1 ← ClientUpdate(θk

i )
7: end for

8: θG
i+1 ←

∑K
k=1

Nk

N
θk

i+1
9: end for

10: procedure ClientUpdate(θ )
11: for epoch e = 1, 2, . . . ,E do

12: for batch l ∈ DL and u ∈ DU do

13: ŷ ← Φ (pθ (xu ),T )
14: θ ← θ − η∇θ (LCE (y,pθ (y | xl )) + β · LCE (ŷ,pθ (xu )))
15: end for

16: end for

17: end procedure

employ contrastive learning for audio to develop a model that can be used as an effective starting
point for federated learning instead of using randomly initialized weights. Specifically, pre-training
is performed in a centralized setting with a separate publicly available dataset on the server side;
thus, it can be done once and be used repeatedly for different downstream tasks. To the best of our
knowledge, this is the first time self-supervised learning has been used to address the convergence
of federated models with fewer training rounds efficiently.

Formally, we pre-train our model with contrastive learning [35] using FSD-50K [6] dataset. On
a high level, the objective is to train a model to maximize the similarity between related audio seg-
ments while minimizing it for the rest. Similar samples are generated through stochastic sampling
from the same audio clip, while other segments in a batch are treated as negatives. In particular,
we use bilinear similarity formulation and pre-train our model with a batch size of 1, 024 for 500
epochs. Moreover, we utilize a network architecture, as described in Section 5.2 as an encoder with
the addition of a dense layer containing 256 hidden units on top, which is discarded after the pre-
training stage. In this way by using a same architecture, we are able to draw proper conclusions
for the effects of utilizing a pre-trained model as an initial global model and directly compare with
the randomly initialized FedSTAR approach.

5 EXPERIMENTS

In this section, we conduct an extensive evaluation of our approach on publicly available datasets
for various audio recognition tasks to determine the efficacy of FedSTAR in learning generalizable
models under a variety of federated settings and label availability. First, the federated learning
framework and datasets utilized for validation are presented, followed by a detailed description of
the network architecture. Next, we introduce our experiments in centralized and fully supervised
federated settings, which serve as a baseline for evaluating our approach. Finally, we provide a
thorough evaluation of FedSTAR , which is structured in the form of several research questions.
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Table 1. Key Details of the Datasets Used in Evaluation

Dataset Task Classes

Ambient Context [33] Event classification 10
Speech Commands [41] Keyword spotting 12
VoxForge [29] Language identification 6

5.1 Datasets and Audio Pre-processing

We use publicly available datasets to evaluate our models on a range of audio recognition tasks. For
all datasets, we use the suggested train/test split for comparability purposes. For ambient sound
classification, we use the Ambient Acoustic Contexts dataset [33], in which sounds from 10 dis-
tinct events are present. For the keyword spotting task, we use the second version of the Speech
Commands dataset [41], where the objective is to detect when a particular keyword is spoken out
of a set of 12 target classes. Likewise, we use VoxForge [29] for the task of spoken language clas-
sification, which contains audio recordings in six languages—English, Spanish, French, German,
Russian, and Italian. It is one of the largest available datasets for language identification problems;
it is valuable for benchmarking the performance of the supervised FL model. We resampled the
Ambient Acoustic Contexts samples from 48 kHz to 16 kHz to utilize the same sampling frequency
across all our datasets samples. In Table 1, we present a description of each dataset.

5.2 Model Architecture and Optimization

The network architecture of our global model is inspired by Reference [37] with a key distinction
that instead of batch normalization, we utilize group normalization [42] after each convolutional
layer and employ a spatial dropout layer. We use log-Mel spectrograms as the model’s input, which
we compute by applying a short-time Fourier transform on the one-second audio segment with a
window size of 25 ms and a hop size equal to 10 ms to extract 64 Mel-spaced frequency bins for
each window. To make an accurate prediction on an audio clip, we average over the predictions of
non-overlapping segments of an entire audio clip. Our convolutional neural network architecture
consists of four blocks. In each block, we perform two separate convolutions, one on the temporal
and another on the frequency dimension, outputs of which we concatenate afterward to perform
a joint 1 × 1 convolution. Using this scheme, the model can capture fine-grained features from
each dimension and discover high-level features from their shared output. Furthermore, we apply
L2 regularization with a rate of 0.0001 in each convolution layer and group normalization [42]
after each layer. Between blocks, we utilize max-pooling to reduce the time-frequency dimensions
by a factor of two and use a spatial dropout rate of 0.1 to avoid over-fitting. We apply ReLU as a
non-linear activation function and use Adam optimizer with the default learning rate of 0.001 to
minimize categorical cross-entropy.

To simulate a federated environment, we use the Flower framework [3] and utilize FedAvg [30]
as an optimization algorithm to construct the global model from clients’ local updates. Addition-
ally, a number of parameters were selected to control the federated settings of our self-training
strategy fully. Those parameters are: (1) N - number of clients, (2) R - number of rounds, (3) q -
clients’ participation percentage in each round, (4) E - number of local train steps per round, (5) σ -
data distribution variance across clients, (6) L - dataset’s percentage to be used as labeled samples,
(7) U - dataset’s percentage to be used as unlabeled samples (excluding L% of the data used as
labeled), (8) β - influence of unlabeled data over training process, (9) T - temperature scaling
parameter, and (10) τ - predictions confidence threshold. We employ uniform random sampling
for the clients’ selection strategy, as other approaches for adequate clients election are outside
the current work scope. Last, across all FedSTAR experiments, we fixed the temperature scaling
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Table 2. Primary Experiment Parameters

Parameter Name Variable Range

Number of Clients N 5–30
Number of Federated Rounds R 1–100
Number of Local Train Steps E 1–4
Clients’ Participation Percentage q 20% to 80%
Data Distribution Variance across Clients σ 0% to 50%
Dataset’s Labeled Percentage L 3% to 100%
Dataset’s Utilized Unlabeled Percentage U 20% to 100%
Unlabeled Data Influence on Train Step β 50%
Temperature Scaling T 4
Confidence Threshold Percentage τ 50% to 90%

parameter T = 4, while we set the confidence threshold τ to initialize from 0.5 and gradually
increase to a maximum of 0.9 during training, following a cosine schedule. A description of the
parameters used is presented in Table 2.

5.3 Baselines and Evaluation Strategy

In fully supervised federated experiments where the complete dataset is available, the labeled in-
stances are randomly distributed across the available clients. Likewise, in experiments where the
creation of a labeled subset from the original dataset is required (L <100%), we keep the dataset’s
initial class distribution ratio to avoid tempering with dataset characteristics. Afterward, the la-
beled subset is again randomly distributed across the available clients. With the σ parameter set
to 25% and a random partitioning of labeled samples among clients, the labeled data distribution
resembles a non-i.i.d. one. In contrast, an increase of available clients results in a highly skewed
distribution. It is worth mentioning that even if the meaning of non-i.i.d. is generally straightfor-
ward, data can be non-i.i.d in many ways. In our work, the term non-i.i.d data distribution describes
a distribution with both a label distribution skew and a quantity skew (data samples imbalance
across clients). This type of data distribution is common across clients’ data in federated settings.
Each client frequently corresponds to a particular user (affecting the label distribution), and the
application usage across clients can differ substantially (affecting the label distribution). For a con-
cise taxonomy of non-i.i.d. data regimes, we refer our readers to Reference [17]. Additionally, in
FedSTAR , the unlabeled subset consists of the dataset’s remaining samples after extracting the pro-
vided labels. In such experiments, both the labeled and unlabeled subsets are dispensed at random
over the available clients. Furthermore, for an accurate comparison between our experiments, we
manage any randomness during the data partitioning and training procedures by passing a seed
alongside the parameters presented in Table 2. In this way, we control the amount of data and
the data instances that reside on each simulated client. Last, for a more rigorous evaluation, we
perform three distinct trials (or runs, i.e., training a model from scratch) in each setting, and the
average accuracy over all three runs is reported across the results of Sections 5.3 and 5.4.

To evaluate the FedSTAR, we first need to construct a high-quality supervised baseline both in
centralized and federated environments. Therefore, we perform preliminary experiments in both
centralized as well as fully supervised federated settings. We conduct initial experiments on all
datasets in centralized settings where the models are trained until convergence to obtain the re-
sulting accuracy on a test set, which is presented in the centralized row of Table 3. Following, we
examine our model’s performance in federated settings by adjusting the FL parameters to R = 100,
q = 80%, E = 1, and σ = 25%. We vary the number of clients (N ) while keeping the remaining
federated parameters to the same as the earlier mentioned values, as N frequently fluctuates in
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Table 3. Evaluation of Audio Recognition Models in Centralized and Fully

supervised Federated Settings

Method Speech Commands Ambient Context VoxForge

Centralized 96.54 73.03 79.60

Federated

N = 5 96.93 71.88 79.13
N = 10 96.78 68.01 78.98
N = 15 96.33 66.86 76.09
N = 30 94.62 65.14 65.17

Average accuracy on test set over three distinct trials. Federated parameters are set to

q = 80%, σ = 25%, L = 100%, E = 1, R = 100.

real-life FL scenarios. Thus, we can explore how the federated model behaves as clients progres-
sively increase and the available local data become yet more distributed, affecting the performance
of FL [45]. The results for supervised FL are presented in the Federated row of Table 3. We note from
results presented in Table 3 that the supervised federated models achieve comparable results in
various cases to the models trained in a centralized setting across all three datasets. Moreover, the
number of clients (N ) has a clear effect on the model’s performance. With an increase in N , we no-
tice that the training process requires more training rounds (R) to converge as the quantity of local
data for each client decreases. The obtained accuracy for a constant number of rounds deteriorates.

5.4 Results

5.4.1 Comparison against Fully Supervised Federated Approach under non-i.i.d. Settings. We first
evaluate FedSTAR to determine the obtained improvements versus a fully supervised federated ap-
proach when a non-i.i.d. distribution is considered. This analysis helps in understanding whether

utilizing unlabeled instances that reside on clients’ devices with FedSTAR can be beneficial for a model

trained in federated settings and, if so, to which degree it improves the recognition rate. To this end, we
perform experiments on all three datasets for a diverse number of clients (N ) where the percentage
of available labeled instances is varied from 3% up to 50%. To clearly illustrate the performance
gain of FedSTAR in comparison to the supervised FL regime, experiments with identically labeled
subsets are conducted under fully supervised FL, where the unlabeled instances remained unex-
ploited. Table 4 provides the accuracy scores on test sets averaged across three independent runs
for the considered datasets to be robust against differences in weight initialization and optimiza-
tion. For ease of comparison, we add the results column on fully supervised FL using entire labeled
dataset (L = 100%) in Table 4, as discussed earlier in Section 5.3.

In Table 4, we observe that FedSTAR can utilize unlabeled audio data to improve the model’s
performance across all datasets significantly. Consequently, we can conclude that FedSTAR can be
applied in a federated environment with scarce labeled audio instances to boost the performance
by learning from unlabeled data, independent of the audio recognition task. In particular, com-
paring the two rows for L=3%, we note an increase of 13.28% in accuracy on average when using
FedSTAR across the considered tasks.

While varying L, we note that the percentage gab between FedSTAR and the supervised federated
counterparts shrinks as more labeled data are available across devices. In addition, with only 5%
of labels available, we note that FedSTAR model’s accuracy is within a reasonable range from the
ones trained under fully supervised federated settings, where the complete dataset is available
(L = 100%). These two observations suggest that FedSTAR can be especially useful under extreme
label scarcity scenarios, where a highly accurate model can be obtained through the exploitation
of unlabeled data. Alternatively, FedSTAR could also be used in cases where sufficient labels are
provided (L = 50%) to slightly improve the resulting models’ performance. An exception to the
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Table 4. Performance Evaluation of FedSTAR

Dataset Clients
Supervised (Federated) FedSTAR

L = 3% L = 5% L = 20% L = 50% L = 100% L = 3% L = 5% L = 20% L = 50%

Ambient Context
5

46.34 47.89 61.40 65.85 71.88 48.68 54.95 64.37 67.04

Speech Commands 81.12 87.97 92.35 94.66 96.93 87.41 90.01 94.17 94.85

VoxForge 54.55 56.41 61.65 70.37 79.13 63.92 67.80 69.09 67.08

Ambient Context
10

35.29 41.31 51.71 62.69 68.01 48.87 52.37 62.94 64.42

Speech Commands 67.75 83.80 92.12 94.02 96.78 86.82 90.33 94.09 94.18

VoxForge 56.14 54.73 60.48 62.41 78.98 59.87 64.35 69.38 63.27

Ambient Context
15

33.03 42.75 53.37 59.97 66.86 49.54 54.71 63.46 62.41

Speech Commands 62.98 72.84 92.14 93.14 96.33 86.82 89.33 93.16 93.39

VoxForge 54.26 54.37 57.11 60.29 76.09 55.82 57.96 67.66 61.66

Ambient Context
30

32.31 40.17 47.05 55.85 65.14 40.84 46.58 60.21 56.19

Speech Commands 33.78 44.21 84.94 92.21 94.62 83.88 88.19 92.92 92.62

VoxForge 50.32 54.33 55.19 57.56 65.17 54.81 56.18 63.83 56.66

Average accuracy over three distinct trials on test set. Detailed results are given in Table 9 of the Appendix. Federated

parameters are set to q = 80%, σ = 25%, β = 0.5, E = 1, R = 100.

aforementioned behavior is the case of FedSTAR experiments on VoxForge with L = 50%, where
we can see that the accuracy obtained after R = 100 rounds is inferior to the one achieved with
identical federated settings and L = 20%. This might be because the unlabeled subset was not yet
exposed to all available labeled examples; thus, the model had not reached the learning plateau
and may require more training rounds to converge. Despite this behavior, the performance of
FedSTAR models is superior to the supervised federated models with the same amount of labeled
data and reasonably close to supervised federated models trained on the entire labeled data.

While N increases and the labeled subset of each client shrinks (and, hence, we obtain an even
higher non-i.i.d. distribution), we notice that the FedSTAR models’ accuracy remains relatively un-
affected, especially if we recollect that in FL experiments of Table 3 we noticed accuracy decays
for a constant R as N rises. In particular, when N = 30 and the data distribution becomes highly
skewed (or non-i.i.d), we note a performance gap between FedSTAR and supervised FL that can
reach up to 50% for the Speech Commands dataset. It means that the FedSTAR model can effec-
tively utilize unlabeled audio data, even in highly distributed scenarios. This essentially means
that the exploitation of large-scale unlabeled on-device instances can help create a more uniform
distribution across devices and tackle the challenges introduced in federated settings from the
“non-i.i.d.-ness” of data.

5.4.2 Effectiveness of FedSTAR across Diverse Federated Settings. In this subsection, we assess
the efficacy of FedSTAR across a variety of federated settings. As presented in Section 5.4.1, the
performance improvement by utilizing FedSTAR in comparison to the supervised FL scheme can
vary across different federated settings. As federated settings’ variability is a primary characteristic
of a distributed environment, it is essential for our approach to be effective in distinct scenarios. To
this end, we conduct further experiments on the Speech Command dataset, where the participation
rate (q), the number of clients (N ), the local train step (E), and the data distribution across clients
(σ ) are varied. We choose to investigate these four parameters, as they primarily vary in a real-life
FL setting, and they can have a significant effect on model performance [17, 45].

Varying participation rate: With the device heterogeneity and computational resources signif-
icantly varying across devices in a federated environment, a participation rate of 100% is probably
an unrealistic assumption for most pragmatic FL applications [17]. As clients’ participation rate
(q) can greatly influence the convergence rate of an FL model, we evaluate FedSTAR performance
while varying the participation rate in each federated round. Therefore, this assessment helps us in
understanding whether FedSTAR can retain the same level of effectiveness under low levels of clients

participation. To this end, we conduct experiments with N = 15 for various clients’ participation (q)
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Fig. 3. Evaluation of FedSTAR performance under varying clients’ participation rate. Federated parameters

are set to σ = 25%, β = 0.5, R = 100, E = 1, and N = 15. Average accuracy over three distinct trials is reported.

rates, starting from 20% up to 80%, under different percentages of labels availability on the Speech
Commands dataset. Figure 3 provides obtained accuracy score on the test set; we observe that
FedSTAR is able to effectively learn from the unlabeled instances residing on clients’ devices un-
der low levels of clients engagement, even if the available labeled samples are scarce. While there
is a decrease in FedSTAR model’s accuracy when the participation rate reduces, the reduction is
no more than 2% for a given L. In particular, the reduction is eliminated when additional labeled
instances are available.

Varying local train steps: Subsequently, we examine the effect of increasing the local train
steps on the FedSTAR performance. As shown in Reference [25], a reduction in the communication
costs can be achieved by increasing E at the expense of local models convergence, which can
substantially affect the aggregation process. Thus, with this analysis, we aim to understand whether

FedSTAR models can retain their convergence rate when multiple local train steps are performed across

clients’ data to reduce the communication costs. To this end, we perform experiments with various
labeled percentages for 50 federated rounds (R = 50) and N = 15, while varying E from 1 to 4. From
the results shown in Figure 4, we note that FedSTAR can effectively utilize the unlabeled instances,
when the available labeled subset exceeds 3%, to avoid possible local models’ divergence, resulting
in a highly accurate aggregated (or global) model. However, for L = 3%, we notice a declining trend
as E increases, which could be originated from two reasons. Since the labeled data are scant for
L = 3%, the downwards trend on FedSTAR performance could be caused due to over-fitting, as the
local models are extensively trained on a tiny labeled subset, when E increases. In addition, the
absence of such a trend in higher label availability rates suggests that a sufficient amount of labeled
data might be required for FedSTAR local models to converge. As FedSTAR uses unlabeled instances
predictions to retrain the local models further, any faulty pseudo-labeled samples participating in
the retraining step will increasingly intensify local models’ divergence as E rises. Besides providing
additional labels to avoid local models divergence, this behavior could be regulated by adjusting
the confidence threshold of the predictions, τ , to a higher value so any initial faulty pseudo-labels
would participate in the local SGD steps are discarded.
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Fig. 4. Evaluation of FedSTAR performance against local train steps size. Federated parameters are set to

σ = 25%, β = 0.5, R = 50, q = 80%, and N = 15. Average accuracy over three distinct trials is reported.

Varying number of clients: The number of clients is an important factor in the FL procedure,
as it can have a significant impact on the data distribution, which has shown to affect the global
model’s generalization [17, 45]. In particular, introducing additional clients to FL, the class distri-
butions across clients can become highly skewed, as the data partitioning process is random. With
this ablation study, we aim to answer whether FedSTAR can retain the same level of effectiveness

when the number of clients (and thus the non-i.i.d-ness of the class distribution) grows. To this end, we
present the performance of FedSTAR on Speech Commands dataset when we vary the number of
clients from 5 up to 30, while settingq = 80%,σ = 25%,R = 100%, and E = 1. The findings are shown in
Figure 5, where we note that the number of clients has a relatively low impact on FedSTAR ability to
utilize the available unlabeled audio data, as FedSTAR models’ performance follows a constant up-
ward trend while we provide additional labels for any given N . In particular, comparing the results
for N = 5 and N = 30, we observe that the FedSTAR models’ accuracy is notably close, especially for
L>3%. This is in constant with fully supervised FL performance, as presented in Table 3, where mod-
els’ performance can drop more than 2% when varying N for the same dataset. Finally, it is impor-
tant to note that FedSTARmodel’s performance is close to the centralized baseline for bothL>20 and
L = 50; thus, no noticeable improvement appears with the introduction of additional labels samples.

Varying class distribution across clients: Apart from the number of clients, the preferences
of each client can substantially affect the nature of clients’ data distribution. For example, in a
music tagging scenario, the type and quantity of data residing on a device are directly correlated to
both user’s preference of a specific genre of music and the time users dedicated to the application.
Such challenges introduce a highly non-i.i.d. data distribution, both in terms of labels distribution
and quantity of data per client. Therefore, in this analysis, we aim to understand the effect of highly

non-i.i.d. distributions, both in terms of labels and data quantity distributions, on the effectiveness of

FedSTAR to utilize on-device unlabeled data. To this end, we execute experiments on the Speech
Commands dataset with N = 15, q = 80%, and E = 1 for R = 100, in which the partitioning of labeled
data on clients followed a defined class availability distribution. We utilize a uniform distribution
with a mean value of μ = 3 and fluctuating variance σc from 0% to 50% as our class availability
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Fig. 5. Evaluation of FedSTAR performance under varying number of clients. Federated parameters are set

to σ = 25%, β = 0.5, R = 100, q = 80%, and E = 1. Average accuracy over three distinct trials is reported.

distribution across clients. Since the total number of classes in the Speech Commands dataset is
12, we choose μ = 3 for clients to access only a few labeled samples per class (on average, three
classes). Thus, the on-device labeled data distribution resembles a realistic non-i.i.d. distribution.
The client’s preferences can affect both the type and the number of labeled samples described
earlier for a music tagging application. It is important to note that the splitting of the unlabeled
subset on clients followed a random distribution, with no assumption being made to distribute
the label. Consequently, clients might have labeled samples from a specific subset of classes,
yet unlabeled instances from all classes could be available. Such data distributions are frequent
in pragmatic applications, where the domain knowledge is missing to perform the annotation
process appropriately for all classes. For a rigorous evaluation, we perform identical experiments
in terms of on-device labeled samples availability under fully supervised federated settings, where
the unlabeled dataset remained unexploited.

From the results introduced in Table 5, we note that FedSTAR can effectively exploit the avail-
able on-device unlabeled instances to learn an accurate audio model under highly non-i.i.d. distri-
butions. Comparing the FedSTAR performance with that of a fully supervised FL counterpart, we
notice a substantial improvement in accuracy in most cases. In particular, for the case of L ≤ 3%,
FedSTAR utilized on-device unlabeled examples to effectively train an audio model, whereas FL
was unable to learn under such highly non-i.i.d. settings adequately. Additionally, we observe that
the obtained accuracy gap across three distinct FedSTAR models (with σc of 0, 25, and 50 percent)
for a given L is no larger than 4.8%. This behavior suggests that FedSTAR can maintain nearly the
same level of effectiveness in exploiting on-device unlabeled data, irrespective of the skewness of
data distribution on clients’ end. Consequently, FedSTAR could be an effective solution to train an
audio model under different federated settings, where the labeled data across clients experience
a class distribution skewness and large-scale unlabeled audio samples from all classes are readily
available on clients’ devices.
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Table 5. Performance Evaluation of Method against Variation of Class Availability across Clients

Class Distribution

Characteristics

Supervised (Federated) FedSTAR

L = 3% L = 5% L = 20% L = 50% L = 3% L = 5% L = 20% L = 50%

μ = 3
σc = 0 % 9.83 32.63 80.22 82.40 79.08 79.62 87.01 83.14

σc = 25% 10.54 23.97 75.41 83.61 79.05 84.15 86.52 85.05

σc = 50% 8.44 24.25 73.93 84.41 78.14 81.88 84.56 84.55

Class distribution has mean μ = 3 and variance σc . Average accuracy over three distinct runs is reported on Speech

Commands. Detailed results are given in Table 8 of the Appendix. Federated parameters are set to β = 0.5, R = 100,

N = 15, q = 80%, and E = 1.

5.4.3 Assessment of Utilizing Self-supervised Learning for Model Pre-training to Improve Train-

ing Convergence of FedSTAR. Our proposed self-training federated learning approach attains high
performance on different audio recognition tasks by utilizing unlabeled data available on clients’
end. However, in reality, a large volume of unlabeled instances from a different task or distribu-
tion might also be available on the centralized server. As servers often possess the computational
power to effectively pre-train a model on a massive unlabeled dataset, a natural question arises,
whether leveraging self-supervised learning to pre-train a model as initialization for FedSTAR could

improve the training convergence in federated settings with fewer rounds. To this end, we perform
experiments on all three datasets with N = 15 while using a model trained with a self-supervised
pre-training strategy introduced in Section 4.4. We compare the obtained accuracy after 10 rounds
of training (R = 10) when utilizing a self-supervised pre-trained model as an initial starting point
for FedSTAR in contrast with a randomly initialized FedSTAR model trained for the same number
of federated rounds. For a more rigorous evaluation, we vary labels availability from L=3% up
to L=100% across all our datasets. The findings are presented in Figures 6(a), (c), and (e), where
the average accuracy over three distinct trials is reported. Furthermore, the average train loss for
the case of L = 50% in the first 10 federated rounds (R = 10) is also reported in Figures 6(b), (d),
and (f). We choose to report the average train loss for the case of L = 50%, since we previously
observed from Table 4 that FedSTAR models might require additional rounds to utilize unlabeled
data effectively. Thus, we can demonstrate that utilizing a pre-trained model as initialization for
FedSTAR can significantly boost training convergence.

From Figures 6(a), (c), and (e), we note that the utilization of a pre-trained model leads to higher
accuracy within 10 rounds in almost all cases, suggesting that it was able to perform finer pseudo-
labels predictions and accelerate the model’s convergence. In particular, for the Ambient Context
dataset, where the amount of available labeled instances per client is tiny (approximately 13 labeled
samples per client for L = 5% and N = 15), we observe a substantial difference between the pre-
trained and randomly initialized FedSTAR approaches. This behavior suggests that in cases where
the amount of labels is exceedingly sparse, utilizing self-supervised learning via model pre-training
can significantly shorten the federated rounds needed for convergence. The beneficial role of the
model pre-training on FedSTAR can be observed in the train loss gap between the pre-trained and
the randomly initialized versions of FedSTAR after 10 rounds, presented in Figures 6(b), (d), and (f).

5.4.4 Effectiveness of FedSTAR under Varying Amount of Unlabeled Data. As of now, we
have assumed that unlabeled data is largely available across clients. However, it is intriguing to
investigate the scenario where both the amount of labeled and unlabeled data varies. In this way,
we could simulate two pragmatic scenarios: First, an abundant volume of unlabeled instances
generated by clients devices (e.g., numerous IoT devices constantly monitoring the surrounding
environment); and second, relatively small amount of unlabeled audio samples available (e.g.,
medical audio examples, where both obtaining and labeling data is expensive). In addition, the
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Fig. 6. Self-supervised learning improves training convergence in federated setting. Federated parameters

are set to q = 80%, σ = 25%, β = 0.5, E = 1. Average accuracy on testset over three distinct trials is reported.

restriction of available unlabeled on-device data could be originated from the often-limited
storage capabilities of devices participating in the distributed machine learning paradigms. Thus,
we aim to understand the effect of unlabeled data availability on the FedSTAR efficiency to improve

FL models’ performance as well as the impact of utilizing pre-trained model with self-supervised.
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Table 6. Performance Evaluation of FedSTAR when Varying Both Labeled and Unlabeled Datasets

Labeled

Percentage

FedSTAR (Randomly Initialized) FedSTAR (SSL Pretrained)

U = 20% U = 50% U = 80% U = 100% U = 20% U = 50% U = 80% U = 100%

L = 3% 84.13 85.40 86.63 86.82 84.52 85.17 85.43 86.46
L = 5% 87.47 88.52 88.90 89.33 88.07 88.28 87.73 88.98
L = 20% 90.06 92.24 93.07 93.15 92.44 93.67 93.98 94.13

L = 50% 87.76 92.26 94.18 93.38 90.70 93.83 94.76 95.54

Average accuracy over three distinct runs is reported on Speech Commands. Detailed results are given in Table 7 of

the Appendix. Federated parameters are set to q = 80%, σ = 25%, β = 0.5, R = 100, E = 1, N = 15.

Consequently, we perform experiments on the Speech Commands dataset with N = 15, while
varying the labeled subset from 3% up to 50% and the unlabeled dataset from 20% up to 100%.
The obtained accuracy scores for both pre-trained and randomly initialized FedSTAR models are
presented in Table 6.

As we see in Table 6, the availability of unlabeled data can affect the FedSTAR models perfor-
mance. In particular, when the amount of both labeled and unlabeled instances is limited (L ≤ 5 and
U ≤ 50), the obtained accuracy for both the randomly initialized and the pre-trained FedSTAR mod-
els is similar. However, as the amount of labeled data increases (L > 5), we notice a performance
improvement of the pre-trained over the standard FedSTAR approach, in case of L = 50 andU = 20
results an accuracy difference of 3%. This behavior suggests that the utilization of on-device unla-
beled data for the pre-trained FedSTAR is superior to that of the randomly initialized FedSTARwhen
sufficient labeled samples are provided. In addition, comparing results of both FedSTAR approaches
in Table 6 with those for supervised federated with N = 15 in Table 4, we observe an accuracy im-
provement for both pre-trained and randomly initialized FedSTAR models over their supervised
counterparts for L < 20. For higher labels availability (L > 20), the performance gap between the
pre-trained FedSTAR models and the fully supervised federated alternatives is still prevalent, even
for small volumes of unlabeled data (U = 20). From this, we can deduce that FedSTAR can effectively
utilize unlabeled instances to improve the performance of audio models, even when the availability
of on-device unlabeled samples is insufficient.

6 CONCLUSIONS AND FUTURE WORK

We study the pragmatic problem of semi-supervised federated learning for audio recognition tasks.
In the distributed scenario, clients’ well-annotated audio examples are deficient due to the prohibi-
tive cost of annotation, users with little to no incentives to label their data, and notably for various
important tasks, the domain knowledge that is missing to perform the annotation process appro-
priately. Conversely, large-scale unlabeled audio data are readily available on clients’ devices. To
address the lack of labeled data for learning on-device models, we present a novel self-training
strategy based on pseudo-labeling to exploit on-device unlabeled audio data and boost the gener-
alization of models trained in federated settings. Despite its simplicity, we demonstrate that our ap-
proach, FedSTAR, is highly feasible for semi-supervised learning on various audio recognition tasks
within different federated settings and labels availability. We exhaustively evaluate FedSTAR on sev-
eral publicly available datasets while comparing its performance with fully supervised federated
and traditional centralized counterparts. The models’ accuracy we achieve is consistently superior
to fully supervised federated settings under the same labels availability. In many cases, FedSTAR re-
sults are comparable to fully supervised federated settings, where the complete dataset with labels
was utilized. Furthermore, FedSTAR can retain the same level of effectiveness on utilizing unla-
beled instances, irrespective of the amount of labels available on clients. In addition, FedSTAR can
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significantly improve the model’s performance in settings where on-device labeled samples from
only a subset of classes are present, while the unlabeled instances contain examples from all classes.
By utilizing on-device unlabeled samples from all classes, the data distribution across devices be-
comes more uniform; thus, the local models’ learning objectives converge. This non-i.i.d data dis-
tribution setting is frequent in pragmatic scenarios, where the expertise is missing to annotate
samples from all available classes, e.g., physiological signals in the medical domain. Finally, we
demonstrate that self-supervised pre-trained models can significantly improve training conver-
gence in federated settings with fewer rounds when used as model initialization for federated
training instead of randomly initialized weights.

Despite the wide applicability, as FedSTAR is based on self-training, it is still relying on a few
well-annotated samples across all devices to properly exploit any additional unlabeled data. With-
out such labeled samples, the utilization of unlabeled samples through FedSTAR might bring un-
desirable results. In reality, however, such a limitation can be lifted by requesting from users to
annotate two to three samples, which are inexpensive to acquire. With the number of devices
in an FL network usually ranging from hundreds to even thousands of devices, this process will
provide a sufficient labeled subset. This can be used to train model in conjunction with the mas-
sively available unlabeled data using FedSTAR to acquire a highly accurate model. Furthermore,
inherent noise, which originates from the audio signal, is an additional challenge that can limit
the applicability of FedSTAR in real-life applications. Depending on the type and the amount of
noise, this could affect the performance of FedSTAR, making the exploitation of unlabeled samples
counter-productive. In such cases, there is a range of methods available that can be introduced
as a prepossessing step in the learning procedure to mitigate or denoise the signal with minimal
effort.

In this work, we provided a federated self-training scheme to learn audio recognition models
through a few on-device labeled audio data. In the Internet of Things era, this approach could be
employed in a variety of applications, such as home automation, autonomous driving, the health-
care domain, and smart wearable technologies. In particular, we believe that federated self-training
is of immense value for learning generalizable audio models in settings, where labeled data are
challenging to acquire. However, unlabeled data are available in vast quantities. We hope that the
presented perspective of federated self-training inspires the development of additional approaches,
specifically those combining semi-supervised learning and federated learning in an asynchronous
fashion. Likewise, combining federated self-training with appropriate client selection techniques
is another crucial area of improvement that will further improve the performance of deep models
in federated learning scenarios. Finally, evaluation in a real-world setting (i.e., federate learning in-
volving real devices) is of major importance to further understand the aspects that require improve-
ments concerning statistical and system heterogeneities, energy, and labeled data requirements in
the federated learning setting.
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APPENDIX

Table 7. Performance Evaluation of FedSTAR when Varying Both Labeled and Unlabeled Datasets

Labeled

Percentage

FedSTAR (Randomly Initialized) FedSTAR (Pre-Trained)

U = 20% U = 50% U = 80% U = 100% U = 20% U = 50% U = 80% U = 100%

L = 3% 84.13 ± 0.004 85.40 ± 0.008 86.63 ± 0.002 86.82 ± 0.020 84.52 ± 0.001 85.17 ± 0.001 85.43 ± 0.001 86.46 ± 0.006
L = 5% 87.47 ± 0.001 88.52 ± 0.005 88.90 ± 0.001 89.33 ± 0.007 88.07 ± 0.004 88.28 ± 0.002 87.73 ± 0.001 89.98 ± 0.002
L = 20% 90.06 ± 0.003 92.24 ± 0.012 93.07 ± 0.001 93.15 ± 0.011 92.44 ± 0.001 93.67 ± 0.005 93.98 ± 0.003 94.13 ± 0.001
L = 50% 87.76 ± 0.003 92.26 ± 0.005 94.18 ± 0.001 93.38 ± 0.001 90.70 ± 0.001 93.83 ± 0.003 94.76 ± 0.001 95.54 ± 0.007

Average accuracy over 3 distinct runs is reported on Speech Commands, including variance across experiments.

Federated parameters are set to q = 80%, σ = 25%, β = 0.5, R = 100, E = 1, N = 15.

Table 8. Performance Evaluation of Method against Variation of Class Availability Across Clients

Class Distribution

Characteristics

Supervised (Federated) FedSTAR

L = 3% L = 5% L = 20% L = 50% L = 3% L = 5% L = 20% L = 50%

μ = 3
σc = 0 % 9.83 ± 0.017 32.63 ± 0.097 80.22 ± 0.056 82.40 0.048 79.08 ± 0.026 79.62 ± 0.034 87.01 ± 0.028 83.14 ± 0.069
σc = 25% 10.54 ± 0.016 23.97 ± 0.139 75.41 ± 0.055 83.61 ± 0.046 79.05 ± 0.052 84.15 ± 0.013 86.52 ± 0.032 85.05 ± 0.051
σc = 50% 8.44 ± 0.001 24.25 ± 0.140 73.93 ± 0.044 84.41 ± 0.043 78.14 ± 0.021 81.88 ± 0.031 84.56 ± 0.041 84.55 ± 0.055

Class distribution has mean μ = 3 and variance σc . Average accuracy over 3 distinct runs is reported on Speech

Commands, including variance across experiments. Federated parameters are set to β = 0.5, R = 100, N = 15, q = 80%

and E = 1.
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