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ABSTRACT

Evolutionary computation has been shown to be a highly effective
method for training neural networks, particularly when employed
at scale on CPU clusters. Recent work have also showcased their
effectiveness on hardware accelerators, such as GPUs, but so far
such demonstrations are tailored for very specific tasks, limiting ap-
plicability to other domains. We present EvoJAX, a scalable, general
purpose, hardware-accelerated neuroevolution toolkit. Building on
top of the JAX library, our toolkit enables neuroevolution algo-
rithms to work with neural networks running in parallel across
multiple TPU/GPUs. EvoJAX achieves very high performance by
implementing the evolution algorithm, neural network and task all
in NumPy, which is compiled just-in-time to run on accelerators.
We provide extensible examples of EvoJAX for a wide range of
tasks, including supervised learning, reinforcement learning and
generative art. Since EvoJAX can find solutions to most of these
tasks within minutes on a single accelerator, compared to hours or
days when using CPUs, our toolkit can significantly shorten the
iteration cycle of evolutionary computation experiments.

EvoJAX is available at https://github.com/google/evojax
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1 INTRODUCTION

Hardware accelerators have played an important role in advancing
the state-of-the-art for deep learning (DL), enabling rapid training
of neural networks and shorter research iteration cycles for their
development [12]. But much of this progress is restricted to systems
that rely on gradient descent, a highly effective optimization method
when we provide it with a well-defined objective function. But
in areas such as artificial life, complex systems, computational
biology, and even classical physics [18], much of the interesting
behaviors we observe take place near the chaotic states, where
a system is constantly transitioning between order and disorder.
It can be argued that intelligent life and even civilization are all
complex systems operating at the edge of chaos [3, 16]. If we wish
to study these systems, we need efficient methods to simulate and
find solutions in complex systems.
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Figure 1: EvoJAX Examples. (A) MNIST classification. (B)
Seq2Seq learning. (C) Robotic control. (D) Cart-pole swing
up. (E) Left: WaterWorld wherein the agent (yellow) tries
to get food (green) while avoiding poison (red). Right: A
version of WaterWorld with multiple agents. (F) Abstract
painting with only triangles. Left: Painting a concrete image.
Right: Painting the concept “Walt Disney World”.

Neural networks are a promising approach for modeling complex
systems [9, 19], and neuroevolution has made great progress in
developing methods for evolving neural networks to solve a wide
range of problems. Evolution-based methods have been shown to
find state-of-the-art solutions for reinforcement learning (RL) [8,
13, 22, 25, 29]. A policy with non-differentiable operations can solve
many more tasks than one that is fully differentiable [20, 27, 28, 33].
More importantly, the removal of the requirement of a differentiable
policy also liberates the researchers’ mind, enabling higher levels
of creativity for looking at problems and directions differently from
the mainstream. In a sense, enabling researchers to use neural
networks beyond gradient-based methods also enables the broader
machine learning (ML) research community to explore in a way
that is also less “grad student descent” [7]-based.

However, the progress of hardware-accelerated computational
methods for evolution has not kept pace with ML, or even RL.
Much of computational evolution is still conducted using CPU
clusters, largely ignoring the recent breakthroughs in hardware
accelerators such as GPUs/TPUs. Recent work started to demon-
strate effectiveness of GPUs for neuroevolution [25], but so far
such demonstrations are tailored for specific tasks [24], limiting
their applicability to other domains. To enable greater access to
hardware accelerators for neuroevolution researchers, we devel-
oped EvoJAX, a scalable, general purpose, neuroevolution toolkit.
Building on the JAX library [1], our toolkit enables neuroevolution
algorithms to work with neural networks running in parallel across
multiple TPU/GPUs. EvoJAX achieves very high performance by
implementing the evolution algorithm, neural network and task all
in NumPy, which is compiled just-in-time to run on accelerators.
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Figure 2: Architectural Overview of EvoJAX.

In this paper, we describe the design of EvoJAX and show how
one can use and extend EvoJAX for neuroevolution research. We
showecase several extensible examples of EvoJAX for a wide range
of tasks, including supervised learning (image classification, seq-to-
seq), RL (cart-pole swing-up [6], Brax locomotion [5], multi-agent
water world), and generative art (image approximation with shapes,
CLIP-guided abstract art [30]). We show that EvoJAX can find solu-
tions to most of these tasks within minutes on GPU/TPUs, compared
to hours or days when using CPUs. We believe our toolkit can sig-
nificantly shorten the experimental iteration cycle for researchers
working with evolutionary computation. We have also created sev-
eral tutorials and notebooks as part of this open-source project to
make adapting EvoJAX for novel use cases straightforward.

2 SYSTEM DESIGN

EvoJAX aims to improve the neuroevolution training efficiency by
implementing the entire pipeline in modern ML frameworks that
support hardware acceleration. We choose JAX[1] in our current
implementation due to its wide variety of hardware support and
its matured features of auto-vectorization, device-parallelism, just-
in-time compilation, etc. As we will see in Section 4, as long as
the component interfaces are properly implemented, EvoJAX also
allows user extensions with other frameworks.

Figure 2 gives an overview of how EvoJAX works. There are three
major components — the neuroevolution algorithm, the policy and
the task. Although these components are common in conventional
neuroevolution implementations, we highlight the key differences
that make EvoJAX much more efficient:

Modern ML Optimizers Researchers and practitioners in the
field of DL have been focusing on inventing optimization algo-
rithms [21] and techniques [15, 32, 34] that are both fast and effec-
tive. Although these techniques were tailored for gradient-based
optimizations, they can be directly applied to gradient estimation-
based evolutionary algorithms [17, 23] too. By leveraging JAX-based
libraries [1, 10, 11], EvoJAX not only achieves significant speed-up
but also provides the users with the tools and the interfaces to
develop their own implementations in a mature framework.

Global Policy In conventional neuroevolution implementa-
tions, it is a common practice to spawn multiple processes for
parameters evaluation. To achieve hardware acceleration, the im-
plementation adopts one of the DL frameworks and then each
of the evaluation processes maintains a separate computational
graph for the same policy. Unfortunately, most DL frameworks
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are not designed for multi-process training scenarios and often
cause difficulties. Moreover, when these processes are run on the
same accelerator, maintaining identical copies of the computational
graph is a waste of resource. Conforming to the “Single-Program,
Multiple-Data” (SPMD) model [4], EvoJAX solves this by building
a global policy and treat both the task observations and the policy
parameters as data for the computational graph. This global policy
design is easy to implement as it is consistent with DL frameworks,
and in the experiments we observe high data-throughput.

Vectorized Tasks Same as the policies, conventional methods
also create copies of the tasks in the spawned processes for indepen-
dent parameters evaluations. To be compliant with EvoJAX’s global
policy design, we propose to group these tasks in a vectorized form.
In terms of implementation, this can be achieved by either creating
the task in auto-vectorizaton supported frameworks or by creating
a task observations collector on top of all the evaluation processes.
EvoJAX adopts the first method.

Device Parallelism Thanks to the device-parallelism support
in JAX, EvoJAX is capable of scaling its training procedure almost
linearly to the available hardware accelerators. Utilizing EvoJAX’s
training pipeline, this device parallelism is automatically managed
and is transparent to the users. As we will see in Section 3, together
with the previously mentioned features, EvoJAX significantly short-
ens the training time for novel and non-trivial tasks.

EvoJAX defines simple yet functionally complete interfaces for
the three components, any implementations that are compliant
with the interfaces can be seamlessly integrated (see Section 4).

Finally, in addition to the mentioned major components, Evo-
JAX also comes with a trainer and a simulation manager that help
orchestrate and manage the training process. They contain detailed
implementations of task roll-out seeds generation, efficient training
loops, time profiling and logistics operations such as logging, test-
ing and periodic model saving. Convenient as they are, we point
out that EvoJAX is a flexible toolkit, where it is possible to use any
component independently (e.g., using a custom training loop).

3 EVOJAX EXAMPLES

We provide a total of six examples (see Figure 1) to showcase the
capacity, efficiency and the usage of EvoJAX online in the format
of Python scripts and notebooks. The examples are designed to
feature different aspects of EvoJAX and are in three categories:
Supervised Learning Tasks, Control Tasks and Novel Tasks. As
the experimental setups, “Robotic Control” was trained with TPUs,
“Concrete and Abstract Painting” was trained with 8 NVIDIA V100
GPUs, and the rest were trained with 1 NVIDIA V100 GPU.
Supervised Learning Tasks They provide both the data and
the ground-truth labels to train the policy. In EvoJAX, supervised
learning tasks are modelled as single-step tasks, the examples in
this category are thus isolated from other factors to prove the
correctness and efficiency of our algorithms’ implementation.

o MNIST Classification. Here, we train a convolutional neural net-
work (ConvNet) with 10K parameters with EvoJAX. Although
MNIST is a solved problem in DL, it is non-trivial for neuroevolu-
tion in terms of achieving high test accuracy within a short time
(e.g., in minutes). We show that EvoJAX can train the ConvNet
to reach > 98% test accuracy within 5 minutes.


https://github.com/google/evojax/blob/main/examples/train_mnist.py
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o Seq2Seq Learning. It has recently been shown that genetic al-
gorithms (GA) can train large models [20]. Here, we show that
EvoJAX is also capable of training a large network with hundreds
of thousands of parameters. We adopt a seq-to-seq task where the
policy is required to output a sequence after observing a query
sequence. Concretely, the query is a sequence that represents the
addition of two randomly generated integers (e.g., “012+345=",
we pad the numbers with leading 0’s so that they have equal
lengths) and the result is a sequence representing the answer. Us-
ing an LSTM-based seq2seq [26] model, EvoJAX achieves > 99%
test accuracy within tens of minutes.

While one would obviously use gradient-descent for such tasks
in practice, the point is to show that neuroevolution can also solve
them to some degree of accuracy within a short amount of time,
which will be useful when these models are adapted within a more
complicated task where gradient-based approaches may not work.

Control Tasks The purpose of including control tasks are two-
fold: 1) Unlike supervised learning tasks, control tasks in EvoJAX
have undetermined number of steps, we thus use these examples
to demonstrate the efficiency of our task roll-out loops. 2) We wish
to show the speed-up benefit of implementing tasks in JAX and
illustrate how to implement one from scratch.

e Robotic Control. Brax [5] is a differentiable physics engine im-
plemented in JAX that simulates environments made up of rigid
bodies, joints, and actuators. We show that it is easy to wrap Brax
tasks in EvoJAX, and it takes EvoJAX tens of minutes to solve a
robotic locomotion task on Colab TPUs.

o Cart-Pole Swing Up. Through this classic control task, we illustrate
how a task is implemented from scratch in JAX and integrated
into EvoJAX’s training pipeline. In our implementation, a user
can command the initial states to be randomly sampled from a
narrow (easy version) or a wide (hard version) range of possible
settings, with the latter being much harder to solve. EvoJAX
solves both versions within minutes.

Novel Tasks In this last category, we go beyond simple illustra-
tions and show examples of novel tasks that are more practical and
attractive to researchers in the genetic and evolutionary computa-
tion area, with the goal of helping them try out ideas in EvoJAX.

o WaterWorld. In this task [14], an agent tries to get as much food
as possible while avoiding poisons. EvoJAX is able to train the
agent in tens of minutes. Furthermore, we demonstrate that multi-
agents training in EvoJAX is possible. Here, we spawn the entire
population in the same task roll-out and directly measure each
agent’s performance in a multi-agent world. This training scheme
automatically generates task complexity beyond human design,
and is beneficial for learning policies that can deal with interac-
tions between agents and environmental uncertainties.

o Concrete and Abstract Painting. We reproduce the results from a
computational creativity work [30]. The original work, whose
implementation requires multiple CPUs and GPUs, could be accel-
erated on a single GPU efficiently using EvoJAX, which was not
possible before. Moreover, with multiple GPUs/TPUs, EvoJAX
can further speed up the mentioned work almost linearly. We also
show that the modular design of EvoJAX allows its components
be used independently - in this case it is possible to use only the
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Table 1: Time Comparisons. We report the training time for
both methods to achieve widely accepted test scores.

Baseline EvoJAX

MNIST 36 min 3 min
Cart-Pole Swing Up (Hard Version) 37 min 2 min
Locomotion (Ant)! 201 min 9 min

neuroevolution algorithms from EvoJAX while leveraging one’s
own training loops and environment implantation.

We summarize EvoJAX’s benefit via these examples. First of all,
EvoJAX brings significant training speed up. In Table 1 we show the
time costs of training some popular tasks with both a conventional
setup and EvoJAX.! On modest hardware accelerators, EvoJAX
trains 10 ~ 20 times faster which leads to quicker idea iterations.
Secondly, the capability of training multi-agents in a complex set-
ting that is beyond human design supplies training environmental
richness. And finally, EvoJAX puts the entire pipeline on unified
hardware setups and that allows the practitioners to simplify com-
plex hardware arrangements. As an example, for the substantial
load of computation in our Abstract Painting example, the baseline
needs to use both GPUs and CPUs, while EvoJAX only uses GPUs.

4 EXTENDING EVOJAX

A goal of EvoJAX is to provide researchers with an infrastructure
that allows fast idea iterations. With EvoJAX it is possible to devise
more effective neuroevolution algorithms, to explore novel policy
architectures, and to experiment with new tasks. EvoJAX has care-
fully defined interfaces, as long as these interfaces are properly
implemented, a user extended module can be integrated into the
pipeline seamlessly.

import jax.numpy as jnp

class TaskState: obs: jnp.ndarray
class PolicyState: keys: jnp.ndarray
class NEAlgorithm:
def ask(self) -> jnp.ndarray: pass
def tell(self, fitness: jnp.ndarray) -> None: pass
class PolicyNetwork:
def reset(self, states: TaskState) -> PolicyState: pass
def get_actions(self, t_states: TaskState, params: jnp.ndarray,
p_states: PolicyState) \
-> Tuple[jnp.ndarray, PolicyState]: pass
class VectorizedTask:
def reset(self, key: jnp.ndarray) -> TaskState: pass
def step(self, state: TaskState, action: jnp.ndarray) \
-> Tuple[TaskState, jnp.ndarray, jnp.ndarray]: pass

Figure 3: Major Component Interfaces in EvoJAX.

Devising New Algorithms Users interested in inventing new
neuroevolution algorithms should implement NEAIgorithm in Fig-
ure 3, which serves as the base class for all neuroevolution algo-
rithms in EvoJAX. Being consistent with most conventional im-
plementations, NEAlgorithm adopts the “ask” and “tell” interfaces,
where the former requests the algorithm to generate a population
of parameters and the latter reports the parameters evaluation re-
sults back to the algorithm for internal states update. Taking on the
conventional interfaces for the neuroevolution algorithms not only
brings familiarity to the developers and thus reducing the required

'We use the code from [27] as the baseline. For the Locomotion task, we use PyBullet
Ant in the baseline and Brax Ant in EvoJAX. The baseline is trained with 96 CPUs.


https://github.com/google/evojax/blob/main/examples/train_seq2seq.py
https://github.com/google/evojax/blob/main/examples/notebooks/BraxTasks.ipynb
https://github.com/google/evojax/blob/main/examples/train_cartpole.py
https://github.com/google/evojax/blob/main/examples/train_waterworld.py
https://github.com/google/evojax/blob/main/examples/train_waterworld_ma.py
https://github.com/google/evojax/blob/main/examples/train_waterworld_ma.py
https://github.com/google/evojax/blob/main/examples/notebooks/AbstractPainting01.ipynb
https://github.com/google/evojax/blob/main/examples/notebooks/AbstractPainting02.ipynb
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learning effort, but also allows the practitioners to quickly plug in
existing algorithms for sanity checks by writing a simple wrapper.

Exploring Novel Policy Architectures PolicyNetwork in Fig-
ure 3 defines the policy interface, all policies in EvoJAX implement
the get_actions method. The method puts no restrictions on what
the policy network should be or how it should behave, giving full
freedom for neural architecture search (NAS). Because EvoJAX con-
forms to the SPMD model, get_actions accepts three parameters: the
vectorized task states, the population parameters and the policy’s
internal states. At the beginning of a roll-out, each individual in the
population sees identical observations, they will then diverge due
to the population’s different behaviors. Because JAX requires pure
functions, the policy’s states (e.g., random seeds, LSTM cell states,
etc) are passed to get_actions via a Flax [10] dataclass p_states, which
is initialized by PolicyNetwork.reset. The method returns the actions
and the updated policy states. At runtime, calling get_actions is
equivalent to passing a batch of data through the model.

Experimenting with More Tasks In Figure 3, VectorizedTask
forms the base for all EvoJAX tasks. Similar to OpenAI's Gym envi-
ronments [2], the interface defines the reset and the step methods.
Following the pure-function principle of JAX, one major difference
between EvoJAX tasks and Gym environments is that EvoJAX’s
tasks do not keep internal states. Instead, these states are encap-
sulated in a TaskState instance and carried over the roll-out steps.
Similar to PolicyState, users can inherit TaskState and create one’s
own task specific state to encapsulate arbitrary information besides
the environment observations. In most tasks, the initial states are
generated via a procedure of randomness. The reset method thus
accepts key’s that act as seeds for the random process.

5 LIMITATIONS AND FUTURE WORKS

EvoJAX is based on the JAX framework, which is based on the
familiar NumPy and is thus friendly to researchers accustomed to
such tools. However, practitioners may have to take effort to under-
stand the subtleties of JAX in order to maximize its performance.
The time spent on learning the JAX framework may translate to
a delayed adoption of EvoJAX, hence much of our focus so far
has been on creating examples and tutorials that others can use
as templates to build upon. Another limitation of EvoJAX is the
compatibility with existing non-parallelizable tasks. Although it is
possible to create an observation collector on top of the evaluation
processes to mimic the behavior of VectorizedTask, the operation
involves inter-process communications that becomes a bottleneck,
preventing such tasks from the benefit of hardware-acceleration.
In the future, we plan to release more neuroevolution algorithm
implementations to EvoJAX in addition to PGPE [23, 31] in the
current release. We will add more policies and tasks to both demon-
strate a wider variety of examples in order to encourage greater
adoption of EvoJAX, with the goal of further enhancing the com-
putation tools available in evolutionary computation research.
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