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ABSTRACT
Since its inception in 2013, the Travelling Thief Problem
(TTP) has been widely studied as an example of problems
with multiple interconnected sub-problems. The dependency
in this model arises when tying the travelling time of the
“thief” to the weight of the knapsack. However, other forms of
dependency as well as combinations of dependencies should
be considered for investigation, as they are often found in
complex real-world problems. Our goal is to study the impact
of different forms of dependency in the TTP using a simple
local search algorithm. To achieve this, we use Local Optima
Networks, a technique for analysing the fitness landscape.
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1 MOTIVATION
Many real-world optimisation problems can be modelled
as a combination of multiple sub-problems with internal
dependencies [2]. These dependencies can be formulated as
equations or inequalities to connect the sub-problems. This
class of problems are referred to as problems with multiple
interdependent components [1] or multi-hard problems [13].

Due to the lack of a good benchmarking model to study
multi-hard problems, the travelling thief problem was intro-
duced by Bonyadi et al. [1] as a combination of the Travelling
Salesman Problem and the Knapsack Problem. A simplified
formulation was then introduced by Polyakovskiy et al. [12] in
order to have a version that is more focused on the interdepen-
dency aspect. Since then, several papers introduced solution
methods (e.g., [3, 5, 10, 14]), while only few researchers tried
to analyse the problem itself empirically and theoretically
(e.g., [6, 15, 16]). Therefore, the goal of this study is to reduce
the gap in the problem analysis and provide insights into the
problem search landscape.

The standard TTP formulation in [12] considers a combi-
nation of the Travelling Salesman Problem (TSP) and the
Knapsack Problem(KP). The problem considers a set of items

scattered in different cities, and a thief that should visit each
city exactly once, stealing items on the way and returning
to the starting city, while trying to maximise his gain. The
dependency in this formulation is modelled by penalising
the travel velocity with the knapsack load. While this is a
useful model to reflect the dependencies faced in some realis-
tic problems, other problems can embed other – potentially
more complex – forms of interdependency, where multiple
dependency equations or inequalities can be combined [2].

Herein, we present preliminary results on 4 dependency
models of the TTP. Specifically, we use Local Optima Net-
works (LONs) [11] – a method for fitness landscape anal-
ysis – to assess the difficulty of the standard TTP model
and other three proposed models of dependency, including
a dependency-free model. The reported results show initial
insights into the impact of adding more interdependency equa-
tions and the influence of instance features on the difficulty
of solving multi-hard problems with local search heuristics.

2 PROPOSED APPROACH
2.1 Background on Local Optimal Networks
In the following, we analyse TTP dependency models based
on Local Optima Networks (LONs), which is a fitness land-
scape technique. LONs provide a compressed and simplified
version of the search space, represented as a graph where
nodes are the local optima and edges are the possible search
transitions among optima depending on a given local search
operator [11]. Each local optimum has an associated basin of
attraction composed of all solutions that converge to it when
applying a local search heuristic.

As shown in Figure 1, the basin of attraction associated
with a local optima 𝑖 (red dot) is the set 𝐵𝑖 = {𝑠 ∈ 𝑆, 𝒜𝑠 = 𝑖}
with cardinality |𝐵𝑖|, where 𝑠 is a solution (black dot) from
the solution space 𝑆, and 𝒜 is the local search procedure.
A connection exists (blue dashed lines) between two local
optima nodes if at least one solution in one basin has a
neighbour solution in the other basin using the local search
(neighbourhood) operator.
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Figure 1: An example of a LON with basins of attraction.

While many approaches to solving the TTP exist, only
few rigorously analyse the difficulty of the problem based on
the problem features. Wu et al. [15] varied the renting rate
parameter in an attempt to create hard-to-solve instances.
El Yafrani et al. [6] used the local optima network represen-
tation to better understand the TTP’s search space structure
when using a local search heuristic joining the TSP and
KP neighbourhoods [4]. The same representation is adopted
by [16], who analysed fitness landscape characteristics from
smaller instances of the problem, investigating the effective-
ness of operators and metaheuristics that use local search.

In this paper, we extract LONs from multiple enumerable
TTP instances using a neighbourhood search algorithm. This
is done to investigate the impact of the problem features on
the performance of local search by studying the topological
structure of the problem search space. The pseudocode of
the local search is listed in Algorithm 1 where 𝐹 . is the
TTP objective function, 𝒩𝑇 𝑆𝑃 . and 𝒩𝐾𝑃 . represent the
neighbourhood functions for the TSP and KP components
respectively. In the context of this study, we consider the local
search named J2B [4] which uses the 2-OPT neighbourhood
operator to generate 𝒩𝑇 𝑆𝑃 . and the one-bit-flip operator for
the 𝒩𝐾𝑃 . neighbourhood.

Algorithm 1 Joint neighbourhood search algorithm
1: 𝑠← initial solution
2: while there is an improvement do
3: for each 𝑠* ∈ 𝒩𝑇 𝑆𝑃 𝑠 do
4: for each 𝑠** ∈ 𝒩𝐾𝑃 𝑠* do
5: if 𝐹 𝑠** > 𝐹 𝑠 then
6: 𝑠← 𝑠**

While approaches with a sequential neighbourhood struc-
ture (iterating between the sub-problem neighbourhoods in-
stead of combining them as in Algorithm 1) report better
results [3, 10], they would result in a new LON for each
sub-problem whenever the solution changes for the other
sub-problem. Thus, the joint structure in Algorithm 1 was
chosen due to this limitation.

2.2 Interdependency models
2.2.1 Standard model of interdependency. The standard TTP
model, 𝑇 𝑇 𝑃𝐴 (as per [12]) is formulated as follows: given a
set of 𝑛 cities, the associated matrix of distances 𝑑𝑖𝑗 , and a
set of 𝑚 items distributed among these cities; each item 𝑘 is

related with a profit 𝑝𝑘 and a weight 𝑤𝑘. The problem states
that a thief should visit all the cities exactly once, stealing
items on the road, returning to the starting city. The knapsack
capacity is denoted 𝑊 , the renting ratio, denoted 𝑅, dictates
how much the thief should pay at the end of the travel with
respect to the travel time, and 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 represent the
maximum and minimum velocities respectively. Furthermore,
each item is available in only one city, and 𝑎𝑘 ∈ {1, . . . , 𝑛}
contains the reference of item 𝑘 to the corresponding city.

A TTP solution is represented by the tour 𝑥 = 𝑥1, . . . , 𝑥𝑛,
a vector which contains the ordered list of cities; and the
picking plan 𝑧 = 𝑧1, . . . , 𝑧𝑚, a binary vector coding the status
of items (1 for ”packed”, and 0 for ”not packed”).

The TTP was designed considering that the speed of the
thief changes according to the knapsack weight, which makes
the sub-problems mutually dependent. Therefore, the thief’s
velocity at city 𝑥 is defined in Equation 1.

𝑣𝑥 = 𝑣𝑚𝑎𝑥 − 𝐾 · 𝑤*
𝑥 (1)

where 𝐾 = 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛𝑊 is a constant value and 𝑤*
𝑥 is the

weight of the knapsack at city 𝑥.
We note 𝑔𝑧 = 𝑘 𝑝𝑘𝑧𝑘, s.t. 𝑘 𝑤𝑘𝑧𝑘 ≤ 𝑊 as the total items

value and 𝑓𝑥, 𝑧 =
𝑛−1
𝑖=1 𝑡𝑥𝑖,𝑥𝑖1 𝑡𝑥𝑛,𝑥1 as the total travel time,

where 𝑡𝑥𝑖,𝑥𝑖1 = 𝑑𝑥𝑖,𝑥𝑖1𝑣𝑥𝑖 is the travel time from 𝑥𝑖 to 𝑥𝑖1.
The objective is to maximise the total gain, 𝐹𝐴𝑥, 𝑧 =

𝑔𝑧 − 𝑅 · 𝑓𝑥, 𝑧, by finding the best tour 𝑥 and picking plan 𝑧.

2.2.2 Extended models of interdependency. Here, we propose
three additional models with different types of interdepen-
dencies.

The first model, 𝑇 𝑇 𝑃0, does not include any dependency,
and it will serve for comparison with the other models. The
objective function for 𝑇 𝑇 𝑃0 is 𝐹0𝑥, 𝑧 = 𝑔𝑧 − 𝑅 · 𝑓𝑥.

The second TTP model, 𝑇 𝑇 𝑃𝐵 , considers that the value
of the items drops by time, and it does not consider the
velocity-load dependency in Equation 1. Therefore the total
value 𝑔𝑥, 𝑧 depends on the tour too. The value of an item 𝑘

drops from 𝑝𝑘 to 𝑝
𝑓𝑖𝑛𝑎𝑙
𝑘 = 𝑝𝑘 · 𝒟⌈ 𝑇𝑘

10 ⌉, where 𝒟 ∈ 0.1, 0.99 is
the dropping rate, and 𝑇𝑘 is the carrying time. To focus on
the dependency analysis, we consider a linear combination of
both objectives as 𝐹𝐵𝑥, 𝑧 = 𝑔𝑥, 𝑧 − 𝑅 · 𝑓𝑥.

The last model, 𝑇 𝑇 𝑃𝐶 , considers both types of dependency
and its objective function is 𝐹𝐶𝑥, 𝑧 = 𝑔𝑥, 𝑧 − 𝑅 · 𝑓𝑥, 𝑧.

The item value drop idea was introduced in [1] to create a
bi-objective version of the TTP (𝑇 𝑇 𝑃2). Here, we also use this
idea in 𝑇 𝑇 𝑃𝐵 and 𝑇 𝑇 𝑃𝐶 , however both are single-objective.

For the purpose of efficient implementations of
neighbourhood-searching algorithms, the solution evaluation
algorithms for 𝑇 𝑇 𝑃𝐴, 𝑇 𝑇 𝑃𝐵 and 𝑇 𝑇 𝑃𝐶 have the same worst-
case complexity. However, the actual computation time for
𝑇 𝑇 𝑃𝐴 and 𝑇 𝑇 𝑃𝐵 can be significantly improved through
caching when generating neighbouring solutions [5, 10]. Such
an approach is more difficult to achieve under the added item
drop equation in 𝑇 𝑇 𝑃𝐶 .
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3 EXPERIMENTAL RESULTS AND
DISCUSSION

Herein, we present the results of the empirical study of the
the four models of interdependency. The instance are gener-
ated based on [1, 12] and categorised based on the following
features:
∙ Profit-value correlation (𝒯 ): This describes the correlation

of the weight (𝑤𝑘) and profit (𝑝𝑘) of each item 𝑘. The
TTP library addressed here considers three correlations,
namely, uncorrelated (u), uncorrelated with similar weight
(usw), and bounded strongly correlated (bsc).

∙ Knapsack capacity class (𝒞): This feature is a factor oc-
curring in the maximum weight of the knapsack which
is given by 𝑊 = 𝒞

11
𝑚
𝑗=1 𝑤𝑗 , where 𝒞 ∈ {2, 5, 10} and 𝒞

11
is applied as a limit for 𝑊 , i.e., class 𝒞 = 10 enlarges 𝑊
around to 90%, and more objects can be added in the
knapsack [12].

∙ Item value dropping rate (𝒟): This feature determines
the rate at which the items lose value through time, and
ranges between 0 and 1.This feature is used to determine
the value of an item 𝑘 at the end of the travel as follows
𝑝𝑖 = 𝒟⌈ 𝑇𝑘

10 ⌉, where 𝑇𝑘 is the total time that the item 𝑘
has been carried.
We consider small instances to generate the local optima

networks and identify the basins of attractions. Small in-
stances have been chosen because the enumeration and study
of the standard ones are impractical. The addressed instances
contain 7 cities and 6 items (one per city, except for the
starting one) and are generated following the guidelines
by Polyakovskiy et al. [12]. The renting rate is given by
𝑅 = 𝑔𝑍𝑜𝑝𝑡𝑓𝑋𝑜𝑝𝑡, 𝑍𝑜𝑝𝑡, where 𝑍𝑜𝑝𝑡 and 𝑋𝑜𝑝𝑡 represent the
optimal picking plan and the optimal tour respectively for
the instances considered here.

Table 1: LON metrics for 𝑇 𝑇 𝑃0

𝒯 𝒞 𝑛𝑣 𝑛𝑒 𝐶 𝐶𝑟 𝑙 |𝐵|

𝑢

2 1356875 1996510676 0.440.17 0.050.05 2.220.24 65
5 26781752 7224042094 0.50.13 0.040.05 2.170.19 1210
10 413379 1632918362 0.680.11 0.340.26 1.680.27 274273

𝑢
𝑠
𝑤

2 43200 520500 0.310 0.010 2.40 10
5 108000 2604820 0.260 00 2.580 10
10 3374255 15737811026 0.360.01 0.030 2.210.03 141

𝑏
𝑠
𝑐 2 2040826 2853911355 0.320.09 0.030.04 2.320.17 33

5 33993204 11692979643 0.40.11 0.080.09 2.190.28 1618
10 781517 5283932613 0.650.11 0.30.23 1.720.25 112110

Table 2: LON metrics for 𝑇 𝑇 𝑃𝐴

𝒯 𝒞 𝑛𝑣 𝑛𝑒 𝐶 𝐶𝑟 𝑙 |𝐵|

𝑢

2 483410 83246074 0.60.16 0.250.3 1.890.4 64147
5 10574 30132496 0.850.09 0.580.25 1.420.24 495635
10 2519 398530 0.970.05 0.950.09 1.050.09 27771950

𝑢
𝑠
𝑤

2 1643770 214539261 0.50.04 0.020.01 2.310.06 42
5 30541421 9740432996 0.570.05 0.030.03 2.150.12 74
10 12517 55591379 0.840.01 0.70.01 1.30.01 37062

𝑏
𝑠
𝑐 2 1183814 1743910774 0.510.14 0.120.21 2.110.34 1324

5 7761718 2705748137 0.760.12 0.490.28 1.550.35 134119
10 5821 15371027 0.920.04 0.870.07 1.130.07 836276

Table 3: LON metrics for 𝑇 𝑇 𝑃𝐵

𝒯 𝒞 𝒟 𝑛𝑣 𝑛𝑒 𝐶 𝐶𝑟 𝑙 |𝐵|

𝑢

2
0.9 741634 104328838 0.570.21 0.170.25 2.020.39 3344
0.95 1263823 187329734 0.50.18 0.050.05 2.160.18 710
0.98 626513 97886313 0.530.18 0.170.24 1.990.35 2440

5
0.9 303192 120879042 0.760.06 0.340.2 1.660.21 10480
0.95 944773 3408329961 0.640.12 0.210.25 1.850.29 6780
0.98 1247813 4180226987 0.610.07 0.080.06 1.990.11 2721

10
0.9 6728 19551387 0.90.05 0.820.1 1.180.1 777337
0.95 10557 40723690 0.830.05 0.690.13 1.310.13 517203
0.98 380412 1965924222 0.750.16 0.460.33 1.540.33 419419

𝑢
𝑠
𝑤

2
0.9 3761443 460095229 0.450.06 0.010 2.360.02 10
0.95 428355 51701537 0.330.02 0.010 2.390.01 10
0.98 43200 5204969 0.310 0.010 2.40 10

5
0.9 2789391 915428516 0.60.01 0.020 2.160.04 61
0.95 6470467 17235210217 0.470.01 0.010 2.30.01 20
0.98 9947708 24519314408 0.330.03 00 2.430.02 20

10
0.9 1675 8527300 0.810 0.620.01 1.380.01 2728
0.95 51475 342475195 0.690.01 0.260.04 1.740.04 9013
0.98 1473157 849407299 0.580.01 0.080.01 1.950.02 313

𝑏
𝑠
𝑐

2
0.9 1367985 1858010718 0.530.14 0.150.25 2.090.4 1528
0.95 1003846 1963712444 0.490.14 0.10.09 2.050.25 1211
0.98 1978932 2996313027 0.330.14 0.050.1 2.340.26 817

5
0.9 560973 2076631803 0.770.13 0.450.34 1.570.38 175185
0.95 1262597 6410030502 0.560.09 0.130.13 1.960.2 2425
0.98 33512567 12401489315 0.460.13 0.080.14 2.170.29 1828

10
0.9 8537 33511979 0.910.05 0.850.09 1.150.09 725644
0.95 212109 138498907 0.820.07 0.650.19 1.350.19 283185
0.98 462444 2889325806 0.750.14 0.520.31 1.490.32 194136

Table 4: LON metrics for 𝑇 𝑇 𝑃𝐶

𝒯 𝒞 𝒟 𝑛𝑣 𝑛𝑒 𝐶 𝐶𝑟 𝑙 |𝐵|

𝑢

2
0.9 276215 57284859 0.580.12 0.250.17 1.820.24 2829
0.95 351234 58264307 0.650.17 0.190.19 1.90.27 2423
0.98 191300 39527226 0.760.18 0.540.3 1.50.38 105103

5
0.9 4018 777582 0.930.04 0.880.09 1.120.09 658390
0.95 6373 20173582 0.910.08 0.820.19 1.170.19 681552
0.98 7149 20721875 0.860.07 0.690.17 1.310.17 632636

10
0.9 208 216166 0.990.01 0.990.02 1.010.02 25381150
0.95 198 200157 0.990.02 0.980.02 1.020.02 28491413
0.98 2713 393350 0.970.03 0.960.04 1.040.04 2032949

𝑢
𝑠
𝑤

2
0.9 73093 106461026 0.410.03 0.040.01 2.250.03 71
0.95 816166 116191909 0.440.04 0.040.01 2.260.03 61
0.98 1060291 145043482 0.470.03 0.030.01 2.290.04 52

5
0.9 18077 97305706 0.790.06 0.620.15 1.380.15 10749
0.95 408102 263837503 0.710.03 0.330.07 1.670.07 4111
0.98 739319 3896713790 0.670.04 0.180.1 1.840.12 2613

10
0.9 257 305190 0.990.01 0.990.02 1.010.02 1960424
0.95 523 1255165 0.950.01 0.940.02 1.060.02 87258
0.98 4211 886499 0.970.01 0.960.01 1.040.01 1137256

𝑏
𝑠
𝑐

2
0.9 426286 68193726 0.590.19 0.240.34 1.890.43 3665
0.95 232219 49275598 0.690.14 0.360.27 1.690.33 5144
0.98 505384 91197403 0.590.15 0.220.25 1.90.36 3140

5
0.9 6187 25396173 0.930.1 0.880.19 1.120.19 697408
0.95 7934 21211170 0.870.08 0.750.22 1.250.22 298142
0.98 211187 974910470 0.810.11 0.560.31 1.440.31 252230

10
0.9 268 338214 0.980.02 0.980.02 1.020.02 1834522
0.95 4112 803418 0.960.03 0.940.05 1.060.05 1197431
0.98 4821 1205929 0.950.03 0.930.05 1.070.05 1105535

During the instance generation process, the TSP compo-
nent is fixed, i.e., the set of coordinates is the same for all
the instances. We use three capacity classes 𝒞 ∈ {2, 5, 10},
three dropping rates 𝒟 ∈ {0.9, 0.95, 0.98} (for 𝑇 𝑇 𝑃𝐵 and
𝑇 𝑇 𝑃𝐶), and all three correlation variants (𝑢, 𝑢𝑠𝑤, and 𝑏𝑠𝑐).
This results in 9 classes for 𝑇 𝑇 𝑃0 and 𝑇 𝑇 𝑃𝐴, and in 27
classes for 𝑇 𝑇 𝑃𝐵 and 𝑇 𝑇 𝑃𝐶 . For each class, 100 instances
are generated, and the corresponding LONs are extracted to
analyse their fitness landscapes.

Tables 1, 2, 3 and 4 show the graph metrics for the standard
and extended models, with the subscript numbers represent-
ing standard deviations. The results in Tables 2 and 4 are
aligned with the findings in [6] and can be summarised as
follows. When the knapsack capacity is increased (higher 𝒞),
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Figure 2: Comparison of the average basin sizes. For 𝑇 𝑇 𝑃𝐵
and 𝑇 𝑇 𝑃𝐶 the averages across the three 𝒟 values is used

the number of nodes (𝑛𝑣) and edges (𝑛𝑒) decreases, while
the basin size (|𝐵|) increases. This means that the land-
scape is easy to navigate when the knapsack capacity is large.
This trend is sometimes broken when the values of items are
uncorrelated with the weights, and the weights are similar
(𝒯 = 𝑢𝑠𝑤).

The average path lengths (𝑙) are always small, which shows
that the transition from a random local optimum to another
is done through very few intermediate local optima. This fact,
combined with the observation that the clustering coefficient
(𝐶) is always higher than the clustering coefficient of the
equivalent Erdős–Rényi random graph (𝐶𝑟), indicates that
the LONs have small-world properties [8]. It is worth men-
tioning that when the LON has a small number of nodes, the
corresponding random graph naturally has a high clustering
coefficient (𝐶𝑟), which can be explained by the small number
of combinations to connect the nodes.

In Tables 3 and 4, it is difficult to isolate the impact
of changing the dropping rate (𝒟). In Table 4, the most
prominent trend is a positive correlation between 𝒟 and the
basin size |𝐵|. However, more samples over 𝒟 are required
to isolate the outliers if any and understand its impact.

Interestingly, in Figure 2, when comparing the basin sizes
of all models, we observe that the basin sizes of 𝑇 𝑇 𝑃0 are
mostly smaller than the remaining models. This is suggesting
that the models with dependencies result in landscapes that
are easier to navigate compared to the dependency-free model
𝑇 𝑇 𝑃0.

To further investigate the difficulty of the different models,
we consider Spearman’s correlation coefficients between the
fitness and basin size for all models, where the average is
calculated using Fisher z-transformation [7]. The correlations
are as follows: 𝜌𝑇 𝑇 𝑃0 = 0.61, 𝜌𝑇 𝑇 𝑃𝐴 = 0.79, 𝜌𝑇 𝑇 𝑃𝐵 = 0.74,
𝜌𝑇 𝑇 𝑃𝐶 = 0.80, and the associated scatter plots are shown in
Figure 3. There is a positive correlation between the fitnesses
and basin sizes for all 4 models, showing that larger basins
tend to have a higher fitness. The correlation is clearly the
weakest for 𝑇 𝑇 𝑃0, i.e., it appears to be the most difficult
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Figure 3: Fitness-basin size correlations. Shown for one ran-
dom instance per category.

there to find an optimal solution. This correlation can be
seen for individual categories in Figure 3.

In summary, it is surprising that the introduction of interde-
pendencies appears to make the problem easier for the given
algorithm. We can only speculate about the reasons. Firstly,
it might be that the joint neighbourhood search induces un-
necessary complexity to the 𝑇 𝑇 𝑃0 landscapes. Indeed, there
is no interdependency in 𝑇 𝑇 𝑃0, i.e., the instances can simply
be solved by solving the sub-problems separately. Secondly,
maybe our analyses are inadequate, and new powerful tools
are needed for characterising landscapes.

4 CONCLUSION
In this paper we have investigated the impact of different
forms of dependency on the difficulty of solving problems with
multiple interconnected sub-problems using local search. We
considered the Travelling Thief Problem (TTP) as our study
case and investigated three extended models embedding other
forms of dependency, and compared it to the standard TTP
model by analysing how dependency impacts the solution
landscape of the problem.

The analysis was conducted on enumerable instances us-
ing Local Optima Networks (LONs) and topology metrics
for a local search algorithm which combines the TSP and
KP neighbourhoods. The preliminary results gave us some
insights on the impact of the dependency equations to the
standard TTP. Specifically, the addition does not appear to
result in more difficult search landscapes for the considered
algorithm.

Nevertheless, this study has some limitations and aspects
that should be further investigated. Firstly, joint neighbour-
hood search algorithms are not the most efficient in practice
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due to their high computational complexity. Thus, the anal-
ysis does not necessarily generalise to other types of local
search with a sequential neighbourhood structure. Along sim-
ilar lines, our results might not carry over to non-enumerable
instances; however, if we investigate larger instances, the
characteristics of the sampled LONs can be highly suscep-
tible to the sampling approach [9]. Secondly, the item drop
feature (𝒟) should be further investigated to better isolate its
impact. Lastly, to overcome the limitations induced by LONs
and composite structure of the TTP, regression (cost) models
may be able provide additional insights on the behaviour of
(meta-)heuristics on the TTP models.
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