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ABSTRACT

Facial expression is one of the most powerful, natural, and uni-
versal signals for human beings to express emotional states and
intentions. Thus, it is evident the importance of correct and inno-
vative facial expression recognition (FER) approaches in Artificial
Intelligence. The current common practice for FER is to correctly
design convolutional neural networks’ architectures (CNNs) using
human expertise. However, finding a well-performing architecture
is often a very tedious and error-prone process for deep learning
researchers. Neural architecture search (NAS) is an area of growing
interest as demonstrated by the large number of scientific works
published in recent years thanks to the impressive results achieved
in recent years. We propose a genetic algorithm approach that
uses an ingenious encoding-decoding mechanism that allows to
automatically evolve CNNs on FER tasks attaining high accuracy
classification rates. The experimental results demonstrate that the
proposed algorithm achieves the best-known results on the CK+
and FERG datasets as well as competitive results on the JAFFE
dataset.
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1 INTRODUCTION

Facial expression recognition (FER) has a variety of applications in
human society, such as medical care, automotive, and robotics man-
ufacturing [4], to mention some. Convolutional neural networks
(CNN5s) are the most well-known networks thanks to their wide
applicability in Euclidean data problems. These CNNs have become
the standard architectures for FER tasks in multiple scientific works
such as Deep-Emotion [15], thanks to outperforming other non
CNNss techniques.

Architecture search is an area of growing interest as demon-
strated by the large number of scientific works published in re-
cent years and inspiring works have emerged for FER. For exam-
ple, MnasNet-FER [1] builds a recurrent neural network controller
that continuously adjusts the input architecture. Auto-FERNet [10]
weakens the search space to a continuous spatial structure and
then combines the greedy algorithm. The ConvGP [6] uses genetic
programming through a series of crossovers and mutations. These
neural architecture search algorithms using CNNs on FER tasks
perform better than those hand-crafted CNNs. However, there are
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some limitations on these works such as requiring high computa-
tional power as well as making strong assumptions on the search
space by using fixed length representations.

The main contribution of this work is addressing these issues.
Specifically,

e We propose a variable-length encoding strategy to effectively
address the need for a fixed-length encoding strategy.

e The skip connections are merged into the proposed algo-
rithm to handle complex data.

o A global caching system is set up to reduce the computational
cost of the evolution process.

2 RELATED WORK
2.1 Neural Architecture Search

Machine learning and deep learning are now being used in an in-
creasing number of fields such as computer vision, healthcare, and
robotics, thus requiring more and faster-automated design mod-
els. Google’s proposal of NAS [21] caused a boom in the research
community. Since then, NAS has attracted an increasing number
of researchers due to its ability to automatically search for a good
performing network [17]. There are three main parts in NAS: search
space, search strategy, and performance evaluation.

The search space defines which architectures can be represented.
A search strategy details how to explore and exploit the search
space, which is often exponentially large or even unbounded. The
goal of performance estimation is usually to find architectures that
achieve high classification performance for unseen data.

2.2 Facial Expression Recognition

Many researchers have started to explore the combination of NAS
and CNN. For example, Aghera et al. [1], proposed MnasNet-FER,
an automatic mobile neural architecture-based approach for FER
tasks. However, as pointed out by the authors, this approach is
costly and difficult to balance between obtaining a lightweight
architecture and obtaining a well-performing network. Li et al.
[10], proposed Auto-FERNet. This performs an automatic search
of neural architectures through gradient optimization with pre-
set layers of network architecture and construction of hypernets,
which often requires a great deal of expertise. Another noteworthy
method is the one proposed by Evans et al. [6], dubbed ConvGP.
This method overcomes the disadvantage of needing to pre-set the
architecture length, but the excessive operators lead to requiring
large computational calculations.
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Figure 1: The general flow of the proposed algorithm.

For FER tasks, we use a genetic algorithm approach to automati-
cally search for network architecture, which is due to its extraordi-
nary results in numerous areas and we employ ingenious ideas to
overcome the issues of NAS on FER.

3 METHODS
3.1 Algorithm Framework and Search Space

Figure 1 demonstrates the overall framework of the proposed al-
gorithm. The FER dataset is used as input, and through a series of
evolutionary generations, the most potential CNNs’ architecture
is automatically discovered. During the evolution process, firstly
a population is randomly initialized to predefined population size,
and the specific CNN architectures are encoded using the proposed
encoding strategy. The fitness value of the individual is calculated,
using accuracy as a metric. Then, the parent individuals are selected
to generate new children according to the proposed crossover and
mutation operators. Finally, the next generation of individuals is
generated by selecting the parent and the new individuals, and the
most potential one is returned.

The search space is defined by considering the following basic
units: 3x3 convolution, 2x2 maximum pooling, 2x2 mean pooling
and skip connection. The basic units form the basic blocks, where
the skip connection layer consists of two convolutional layers and
one skip connection. The proposed coding strategy is used to build
the CNN architecture through these skip connections and pooling
layers. The available numbers of feature maps are set to 64, 128, 256,
512 based on the settings employed by the state-of-the-art CNNss,
and the step size is set to 1x1 (inspired by the ResNet series). The
pooling layer is divided into mean pooling and maximum pooling,
and the step size is also set to 1x1. Figure 2 shows an example of a
CNN architecture implemented using our variable-length coding
strategy.

3.2 Search Strategy and Performance
Evaluation

The first step is to initialize the population. Each individual in the
population encodes the network architecture. Next, we use the ac-
celeration component to compute fitness values for the population
shown in Algorithm 1. We set up a global cache system for each
individual (Lines 1-4), and if we find that the model corresponding
to the individual is already in the global cache system, then we
can get its fitness value without training and validation (Lines 6-9),
and vice versa, we record it (Lines 10-19). Finally, we return the
population with their corresponding fitness values (Line 22).
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Algorithm 1: Fitness evaluation with global cache

Input: The population P; of the individuals, the FER
dataset, the training epochs, the training data D;qin,
the fitness evaluation data D, ,;;

Output: The population P; with individuals’ fitness values;

1 if t == 0 then

2 Cache «— ¢ ;

3 Set Cache to a global variable;

4 end

s foreach individual in P; do

6 if the identifier of individual in Cache then

7 v < Query the fitness by identifier from Cache;
8 Set v to individual;

9 else

10 Upest < 03

1 foreach epoch in the given training epochs do
12 Train the CNN on D¢gin;

13 v « Calculate the accuracy on D,,;;

14 if v > vp,,; then

15 ‘ Vpest < U3

16 end

17 end

18 Set v as the fitness of individual,

19 Put the identifier of individual and vp,; into Cache;
20 end
21 end

22 return P;;

Algorithm 2 shows how crossover and mutation operators work.
The first step in the algorithm is to select two parents using tour-
nament selection of Size 2 (Lines 3-7). We designed single-point
crossovers for variable-length coding for generating two offspring.
(Lines 9-17). When mutating an individual, a specific mutation op-
eration is selected from the provided mutation list (Lines 19-26). In
the proposed algorithm, the available mutation operations defined
in the mutation list are:

adding a skip connection layer with random settings;
adding a pooling layer with random settings;

remove the layer at the selected location; and

randomly changing the parameter values in the selected
location building block.

The first two mutation operators increase the network depth and
the third mutation operator decreases the network depth. Crossover
and mutation followed by return of offspring (Line 27).

Finally, there is an environmental selection to form the next
generation of individuals, and we use a binary tournament selection,
as mentioned before, as well as elitism.

4 EXPERIMENTS

4.1 Benchmark Datasets

The Extended Cohn-Kanade (CK+) dataset [11] contains 593 video
sequences from a total of 123 different subjects, ranging from 18 to
50 years of age with a variety of genders and heritage. We divided
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Figure 2: A network architecture formed with the proposed coding strategy.

Algorithm 2: Offspring generation

Input: The population P; containing individuals with
fitness, the probability for crossover operation pe,
the probability for mutation operation py,, the
mutation operation list [, , the probabilities of
selecting different mutation operations pj ;

Output: The offspring population Qy;

Qr = ¢;

while |Qt| < |Pt| do

p1 < Randomly select two individuals from Py, and

[N}

from the two then select the better one;
p2 < Repeat Line 3;
while ps == p; do
‘ Repeat Line 4;
end
r « Randomly generate a number from (0,1);
if r < p. then
10 Divide p1 into two random parts by a point;
1 Divide p2 into two random parts by a point;
12 01 « The first part of p1 adds the second part of pa;
02 « The first part of p2 adds the second part of p1;
Qr < QrVo1 Uog;
else
| Qr — Q1 Up1 Upo;
end

13
14
15
16
17
18 end

foreach individual p do

r < Randomly generate a number from (0,1) ;

19
20
21 if r < pm then
22 i « Randomly choose a point in p;
23 m <« Select one operation from I, in py;

24 Do the mutation m at the point i of p;

25 end

26 end

27 Return Qy;

the dataset into training set, validation set and test set, the numbers
of which are 687, 101 and 193 respectively. The JAFFE dataset
[12, 13] consists of 213 images of different facial expressions from 10
different Japanese female subjects. We used 120 images for training,
23 images for validation, and 70 images for the test (10 images per
emotion in the test set). FERG [2] is a database of cartoon characters

Table 1: Comparison of accuracy with peer competitors.

Method Pre-train CK+ JAFFE FERG Manual or Auto
Deep-Emotion [15] No 98.00 92.80 99.30 Manual
Ensemble Multi-feature [20] No - 80 97 Manual
Adversarial NN [7] Yes - 98.2 Manual
LBP [9] No 939 883 96.7 Manual
SAFER [19] No 96.37 95.30 - Manual
FAN [14] Yes 99.69 - - Manual
AFER [18] No - 96.05 - Manual
FERIK [5] Yes 9759 - - Manual
HMTL [16] Yes 98.23 79.88 - Manual
ViT [3] Yes 98.17 94.83 - Manual
ViT + SE [3] Yes 99.80 92.92 - Manual
ViT (3] No 98.57 88.23 - Manual
ViT + SE [3] No 99.49 90.61 - Manual
Auto-FERNet [10] No 9889 97.14 - Auto
ConvGP [6] No - 96.67 - Auto
Ours No 100 95.71 99.98 Auto

with annotated facial expressions containing 55,769 annotated face
images of six characters. We use around 34k images for training,
14k for validation, and 7k for testing.

4.2 Parameter Settings

We set the population size to 20 and the evolutionary generations
to 20. The crossover and mutation probabilities in the parameter
settings for this algorithm to search for the most potential CNN
architecture are set to 0.9 and 0.2. We trained a total of 600 epochs
using stochastic gradient descent with an initial learning rate of
0.025, a momentum of 0.9, and a weight decay of 3e-4 and adjusted
the learning rate to 0.017 at 100 epochs, 0.001 at 300 epochs, and
0.0001 at 500 epochs. In addition, the number of available feature
maps is set to 64,128, 256, 512 according to the settings used in state-
of-the-art CNN. For the FERG dataset, we set the epochs to 20 and
keep the rest of the values the same. The algorithm can be stopped
when the evolutionary generation is over or the performance is
good. The results of all experiments were averaged over five tests.

4.3 Experimental Results

To show the effectiveness and efficiency of the proposed algorithm,
we selected the state-of-the-art algorithms as peer competitors.
As shown in Table 1, we achieved 100% accuracy on the CK+
dataset and 99.98% accuracy on the FERG dataset, both achieving
the best-known results so far, and 95.71% accuracy on the JAFFE
dataset, higher than most models, achieving competitive results.
Furthermore, compared to manual design, our algorithm is com-
pletely free of manual design. In particular, in contrast to the cur-
rently existing methods that perform well only on a single dataset,
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Table 2: The number of layers and parameters of the net-
work architecture and the time spent in the architecture
search.

Dataset Layers Parameters (M) Time (GPUhs)
CK+ 16 10.2 29
JAFFE 12 5.9 27.75
FERG 13 11.07 16

our proposed algorithm performs well on multiple datasets, thus
demonstrating the good adaptability of our proposed algorithm.

4.4 Analysis of Results

There are three key aspects that these modern and revolutionary
methods have focused their attention on: size of the network, the
number of parameters and the time to train these networks. These
three elements are shown in Table 2.

As it can be seen, the number of layers varies for each of the
datasets used in this work. This shows how the proposed mutation
operators work effectively to automatically adjust the size of the
network, with 16, 12 and 13 layers for the CK+, JAFFE and FERG
datasets, respectively. The number of parameters is also reported in
this table, third column from left to right. Finally, we show how it is
possible to effectively train our network without requiring massive
computational power. In this work, we use an NVIDIA 2080 Ti GPU
card. We can see that the time, measured in GPU-hours, goes from
16 to +27 hours, for the CK and the other two datasets, respec-
tively. These times show how our proposed encoding is effective
on FER tasks, where it has been well documented that multiple
high-end GPUs are required to train these types of networks within
reasonable time [8].

5 CONCLUSION AND FUTURE WORK

We propose an algorithm for automatically designing network ar-
chitectures based on genetic algorithms for FER. Specifically, we
propose a variable-length encoding strategy and the corresponding
crossover operator to efficiently explore the optimal network depth.
Secondly, skip connections are introduced into the algorithm to
make it possible to handle complex data. Finally, a global caching
system is set up to reduce the computational cost of the evolution
process. Experimental results show that our algorithm achieves
good performance. In the future, we will work on accelerated fit-
ness evaluation methods to apply the proposed algorithms to larger
datasets.
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