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ABSTRACT

The importance of explainability in Al has become a pressing con-
cern, for which several explainable AI (XAI) approaches have been
recently proposed. However, most of the available XAI techniques
are post-hoc methods, which however may be only partially reli-
able, as they do not reflect exactly the state of the original models.
Thus, a more direct way for achieving XAl is through interpretable
(also called glass-box) models. These models have been shown to
obtain comparable (and, in some cases, better) performance with
respect to black-boxes models in various tasks such as classifica-
tion and reinforcement learning. However, they struggle when
working with raw data, especially when the input dimensionality
increases and the raw inputs alone do not give valuable insights on
the decision-making process. Here, we propose to use end-to-end
pipelines composed of multiple interpretable models co-optimized
by means of evolutionary algorithms, that allows us to decompose
the decision-making process into two parts: computing high-level
features from raw data, and reasoning on the extracted high-level
features. We test our approach in reinforcement learning environ-
ments from the Atari benchmark, where we obtain comparable
results (with respect to black-box approaches) in settings without
stochastic frame-skipping, while performance degrades in frame-
skipping settings.
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1 INTRODUCTION

While the progress in Al continues to achieve new milestones, there
is a growing concern on the need for understanding the decision-
making process of Al models, especially in critical applications. This
awareness originated the subfield of explainable AI (XAI), which
has the goal to design tools to explain the decisions made by Al
models, usually by means of post-hoc techniques. However, while
such techniques seem promising, they suffer from a fundamental
issue: rather than reflecting the internal state of the explained model
[21, 33], they mainly focus on explaining its output, and how its
behavior depends (either locally or globally) on the features of the
problem at hand. For this reason, another subfield of Al has been
catching on in the past few years, namely that of interpretable Al
(IAI) [4]. Differently from XAI, IAI focuses on the development of
inherently interpretable models (also called “explainable by design”
or “glass-box” models, as opposed to the traditional black-box ones),
i.e., models that are directly understandable for humans without
any post-hoc explanation.

In safety-critical and high-stakes applications, explainability is
an issue not only from a technical standpoint, but also from a legal
and, to some extent, ethical perspective. The recent literature has
proposed some seminal approaches for performing RL with inter-
pretable models [9, 28], e.g., based on evolutionary computation
[7, 8]. So far, these interpretable reinforcement learning (IRL) ap-
proaches have been mostly tested on relatively simple control RL
tasks. However, these methods are not expected to work well in RL
tasks with raw input data, as in these contexts each variable alone
(e.g., a pixel) may not be meaningful enough to take decisions.

In this work, we introduce the concept of interpretable pipelines
for tackling RL tasks with visual inputs. An interpretable pipeline
is a set of agents where each agent is an interpretable model with
well-defined responsibilities, which communicates with the other
agents in the pipeline. We optimize such pipelines by means of a co-
evolutionary approach, in which different evolutionary algorithms
(EAs) run in parallel, each of which optimizes a single agent. We test
our approach on three different Atari games, where we observe that
the proposed method is able to achieve satisfactory performance in
deterministic settings (i.e., without frame-skipping). On the other
hand, our approach is not able to achieve satisfactory performance
in environments with stochastic frame-skipping (yielding higher
uncertainty about the future), which provides some hints for future
work.

The paper is structured as follows. The next section makes a brief
overview of the related work. Section 3 explains the methodology
used in our experiments. In Section 5 we present the experimen-
tal setup and the results and, finally, in Section 6 we draw the
conclusions of this work.
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2 RELATED WORK

IRL has recently gained attention in the research community. Silva
et al,, in [28], employed differentiable decision trees trained by
means of the PPO algorithm [27]. This approach gives satisfactory
results when using the differentiable version of the decision trees
(which have low interpretability). However, when the produced
trees are discretized into decision trees with hard splits (which have
high interpretability), significant losses in performance occur.

Another interesting approach to IRL has been proposed in [9].
Here, the authors introduced a methodology that optimizes deci-
sion trees with non-linear splits by using an EA. The results show
that the proposed approach works well in discrete-action settings.
However, the highly non-linear splits limit the interpretability of
the solutions produced.

In [8], the authors proposed a methodology based on Grammat-
ical Evolution (GE) [22] and Q-learning [32] to produce decision
trees that perform online learning. In [7], this approach was further
extended in order to handle RL tasks with continuous action spaces
by using a co-evolutionary approach.

As mentioned earlier, the main limitation of these approaches
is that while they can be effective in tasks with a small number of
high-level features, they are not expected to work in environments
with high-dimensional, low-level features, such as images. In fact,
in the latter scenario, each input to the system does not provide
significant information for the decision-making process.

Interpretability, usually intended as a binary property, is ill-
defined. For this reason, some works proposed approaches to quan-
titatively measure interpretability.

In [30], the authors learned a metric of interpretability by train-
ing a regression model on the results of a survey.

The idea of using complexity as a proxy for interpretability was
also proposed in [3], where the authors stated that the computa-
tional complexity of a model can be used as a metric of interpretabil-
ity as it directly resembles the number of operations that must be
interpreted by humans.

3 METHOD

To evolve interpretable pipelines for image-based RL tasks, we build
on some of the aforementioned previous works from the literature
[7,8,29]. In detail, our proposed system is an interpretable pipelines
composed of two parts: a vision module, that is meant to process
the input to extract a pre-defined number of features; and a decision
module, whose purpose is to decide which action to take, based on
the features extracted by the vision module.

A graphical representation of this kind of pipelines is shown
in Figure 1. In the following subsections, we will first explain the
details of the two kinds of modules, and then we will describe our
co-evolutionary approach.

Similarly to the approach proposed in [29], in this work we use
a vision module, whose purpose is to find the k most important
patches in the image, returning their coordinates. The vision module
uses k convolutional kernels, that are easy to interpret, since each
kernel has the duty of recognizing one and only one entity.

The goal of the decision module, instead, is to perform “reason-
ing” on the coordinates of the most important patches of the input
images and to take a decision on top of them.
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Figure 1: An example of the proposed pipelines (note that
the frames are taken from the Pong environment).

To keep the interpretability of the pipelines high, we use an
automatically synthesized decision tree as decision module. This
decision tree takes as input the list of coordinates computed by the
vision module, thus it does not use the raw data of the whole image.

3.1 Co-evolutionary process

To optimize the vision and decision modules adopted within the
proposed pipelines, we employ a co-evolutionary approach [20]. In
particular, we combine Covariance Matrix Adaptation Evolution
Strategies (CMA-ES) [13] with Genetic Programming (GP) [16].
We use CMA-ES to evolve the parameters of the vision module,
i.e., the weights of each kernel module. CMA-ES has been chosen
for being one of the most robust algorithms for derivative-free
optimization. On the other hand, by using Genetic Programming
(more specifically, strongly typed Genetic Programming [19]), we
evolve decision trees, as described below.

3.1.1  Genetic Programming for evolving decision trees. To evolve
decision trees, we use two types of nodes: condition nodes and leaf
nodes. A condition is represented as a node with three child nodes:
a comparison node and two nodes (either leaves or conditions).

A comparison node is composed of a node representing an oper-
ator (e.g., “less than”, “equal to”, and “greater than”) that has two
child nodes, encoding two expressions.

An expression node can be either a constant, a variable, or an
arithmetical operation between expression nodes.

3.1.2  Fitness evaluation. In order to evaluate the quality of the
individuals from both populations, we pair each individual with all
the individuals of the other population.

We evaluate the pair on e episodes, and we compute the average
score (across episodes) for the pair §; j, where i is the index of the
individual from the population of vision modules and j is the index
of the individual from the population of decision modules.

Then, we define the fitness of an individual as the maximum
§ that that individual obtained across all the pairings, i.e. f; =
max (5, j) for vision modules and f; = max(5; ;) for decision mod-

J 1

ules.

3.1.3  Reducing the number of evaluations. The computational cost
(in terms of number of evaluations, where a single evaluation relates
to an instance of the proposed pipelines) for the co-evolutionary
process is O(p¢ - pg - g - €), where p. is the population size for
CMA-ES, p, is the population size for the Genetic Programming
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(assuming that each individual of one population is paired with
all the individuals of the other population), g is the number of
generations, and e is the number of episodes.

To reduce such cost, we propose a mechanism that evaluates the
behavior (i.e., the output) of each individual in the two populations,
and avoids the evaluation of individuals whose behavior is too
similar. At each generation, for both the vision and decision modules
in the current populations of the co-evolutionary process, we give
them in input a set of samples and we store their outputs. Then, for
both populations (separately), we cluster these outputs by means of
the DBSCAN algorithm [26]. Once clustering has been performed,
we evaluate only the centroids of each cluster (and the individuals
not assigned to any cluster) and we assign, for each individual of
the cluster, the same fitness.

4 EXPERIMENTAL SETUP

We test our approach in three environments from the Atari Learning
Environment implemented in OpenAl Gym [5, 6, 18]. In particu-
lar, we use the Pong-v4, Bowling-v4, and Boxing-v4 environments,
hereinafter simply referred to as Pong, Bowling and Boxing, respec-
tively. For each environment, we consider both the setting with
and without frame-skipping, the first one being harder than the
second one. For each environment and setting, we perform 5 runs.
This number of runs is enough to ensure statistical significance
since, given the results shown in Table 1, the confidence interval
(95%) is low enough to validate our conclusions (see the next sec-
tion for the results). The confidence interval has been computed as
Clysq = M%SW, where t is the critical value from the Student’s

t distribution, and o is the standard deviation.

4.1 Image pre-processing

Before feeding an image to the vision module, we perform the
following pre-processing steps: first, we remove the topmost 35
pixels: these pixels correspond to the part of the image that describes
the “status” of the game, thus we remove it to avoid that the evolved
pipelines use this information to take decisions; then, we resize
the image to 96x96: this operation speeds up the vision modules’
computations, without losing information about the entities present
in the game; finally, we normalize the input in [0, 1] by performing
a min-max normalization.

5 EXPERIMENTAL RESULTS

The results obtained from the 5 available runs for each environment
and setting are shown in Table 1. The results shown in the table
have been obtained by testing the best evolved pipelines on 100
unseen episodes. We observe that our approach performs well in
the environments without frame-skipping, but it performs poorly
in settings with frame-skipping. While state-of-the-art approaches
are able to achieve very good performance even in cases with frame-
skipping, it is important to point out that these approaches are not
interpretable, thus they do not provide any information about their
inner processes. On the other hand, while our approaches do not
perform well when trained in setups with frame-skipping, they
are completely transparent, potentially allowing an adaptation to
domains with frame-skipping.
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Table 1: Summary of the results of the best pipelines
evolved in 5 runs of each setting for each environment. Each
pipeline has been tested on 100 unseen episodes. “FS” stands
for the setting with frame-skipping, “NoFS” indicates the
setting without frame-skipping, “SoTA” indicates the results
from the (non-interpretable) state-of-the-art. Please note
that all the papers from the literature report results only in
the FS setting.

Env. Setup Mean Std. Best Reference
FS (ours) 697 849 742
Pong NoFS (ours) 21.00  0.00  21.00
FS (SoTA) - - 2100 [23,24,31]
FS (ours) 189.68 5.06 196.53
Bowling NOFS (ours) 220.20 18.00 240.00
FS (SoTA) - - 260.00 [10, 24]
FS (ours) 4859  19.05 75.37
Boxing NOFS (ours) 92.78  3.09  98.00
FS (SoTA) - - 10000 [2,5,11,12,
14, 24, 25]

The fitness trends (not reported here for brevity) show that the
clustering mechanisms allows us to save a significant amount of
evaluations, increasing the efficiency of the co-evolutionary process
(approximately saving 41%+12% evaluations).

The best pipelines obtained are shown graphically in Figure 2.
In order to improve the readability, the decision modules have been
manually simplified, deleting the conditions that always evaluate to
the same truth value. It is easy to observe that the resulting policies
are extremely simple to interpret. This result should encourage
future research in IAI, as adding more complexity to this type of
agents would still retain interpretability and, potentially, increase
performance in frame-skipping settings.

6 CONCLUSIONS AND FUTURE WORKS

Reinforcement learning (RL) has made significant progresses in
recent years. However, mainstream RL methodologies, typically
based on deep learning, are very hard to understand. In this paper,
we proposed a novel methodology (based on a kind of divide-et-
impera paradigm) for evolving interpretable systems for RL tasks
with visual inputs. In particular, our approach is based on pipelines
characterized by a separation of concerns between a vision module
(which uses convolutional kernels) and a decision module (based
on a decision tree). Our results show that our approach is able
to learn how to effectively play three Atari games in simplified
settings (i.e., without frame-skipping). However, when applying
frame-skipping to the environments, our approach is not able to
achieve satisfactory performance.

Future work should introduce ways to address the uncertainty
in non-deterministic settings (i.e., with frame-skipping), in order to
make this approach more robust to noise in the environment and
achieve performances comparable to those of the state-of-the-art
algorithms developed for these settings. In this sense, two possibil-
ities would be to incorporate in our approach some mechanisms
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(c) Vision module - Bowling

(a) Vision module - Pong

(b) Decision module - Pong
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Figure 2: Best evolved pipelines for the three environments
(without frame-skipping). On the top, we show the entities
discovered by the vision modules, while on the bottom we
show the corresponding decision modules.

used in evolutionary optimization in the presence of noise [1], or
using fuzzy [15] or probabilistic [17] decision trees.
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