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ABSTRACT
In this paper we introduce an active learning method for symbolic
regression using StackGP. The approach begins with a small num-
ber of data points for StackGP to model. To improve the model the
system incrementally adds a data point such that the new point
maximizes prediction uncertainty as measured by the model en-
semble. Symbolic regression is re-run with the larger data set. This
cycle continues until the system satisfies a termination criterion.
We use the Feynman AI benchmark set of equations to examine
the ability of our method to find appropriate models using fewer
data points. The approach was found to successfully rediscover 72
of the 100 Feynman equations using as few data points as possible,
and without use of domain expertise or data translation.

CCS CONCEPTS
•Computingmethodologies→Representation ofmathemat-
ical functions; Supervised learning by regression; Genetic
programming; Active learning settings.
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1 INTRODUCTION
Symbolic regression is a typical application of genetic programming
(GP) that develops mathematical models to fit data sets [1, 10]. This
is a form of understandable AI since the final model can be easily
presented to the end user in the form of an equation. This makes it
an appealing tool for researchers attempting to understand a system
of study. While many different implementations exist for symbolic
regression, such as DataModeler, Eureqa, AIFeynman, etc., symbolic
regression is not a solved problem [11, 12, 17]. Questions remain
such as how much data is needed, what genetic operators to use,
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what representation is most effective, and what fitness function(s)
should be used.

Previous to this study, a set of 100 Feynman equations was used
to compare the effectiveness of different symbolic regression imple-
mentations [17]. This benchmark data set was used to test the ability
of a machine learning (ML) system to rediscover the equations us-
ing the fewest data possible. This is a useful benchmark since all
of the equations are physically meaningful. Good performance on
this benchmark could indicate a ML/GP system is viable for use
in scientific studies attempting to discover equations describing
natural phenomena.

Udrescu and Tegmark themselves developed an effective ML
approach, AIFeynman, that is capable of solving all 100 problems in
the Feynman Symbolic Regression Database [16, 17]. However, on
many of the more complex equations their approach relies heavily
on dimensional analysis, translation, and neural networks that take
advantage of symmetries, smoothness, and separability designed
specifically to solve these types of physics problems. While their
method works extremely well in solving these problems, for cases
that have to rely on neural networks, large data sets are required to
rediscover the equation. As well, the dimensional analysis, transla-
tions, and assumptions about symmetry and separability required
significant domain expertise, rendering this a complex approach to
solving general purpose symbolic regression problems. Further, di-
mensional analysis requires that units both be known and recorded
with the data, which may often not be the case in real-world appli-
cations.

Active learning [2] is a machine learning strategy where an algo-
rithm self-selects additional training data to maximally inform its
own learning process. Active learning has been applied to genetic
programming classification tasks where points are only labelled
when the developing models encounter points that can’t be classi-
fied [4]. This was found to reduce the total effort needed to label
training points, since only a subset had to be labelled before finding
accurate models. Active learning has also been applied to genetic
programmingwhere training sets are large by selecting sub-samples
of the training data to be used. Active learning for sub-sampling was
found to decrease training times to find quality binary classification
models by an order of magnitude [3].

The goal of StackGP with active learning is to create a general
purpose GP system that requires no domain expertise, uses the
least number of data points possible, and can guide data collection
to be maximally informative. Beyond data collection for model
training, the developed models could be used to design experiments
to further explore the system of study. As well, the models could be
used to accelerate the development process by recommending the
target conditions for the system of study. An example of this could
be using the developed models to design a chemical with specific

ar
X

iv
:2

20
2.

04
70

8v
1 

 [
cs

.L
G

] 
 9

 F
eb

 2
02

2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


GECCO ’22, July 9–13, 2022, Boston, USA Haut and Banzhaf and Punch

target properties by recommending the conditions to produce such
target properties.

2 RELATEDWORK
Previous work by Kotanchek et al. [9] laid the foundation to use ge-
netic programming for active design of experiment, where models
developed by a GP system can be used to find optimal conditions
in a system of study. Active design of experiment is a field closely
related to active learning, since it has the goal of designing experi-
ments that are maximally informative. They proposed using model
ensembles from symbolic regression to find regions of uncertainty
and exploit those regions of uncertainty to gather new data with
high information content.

Active learning methods have been employed successfully to
help discover biological networks [15]. Several different methods
were explored by the authors for determining which new data
points would be maximally informative. One method the authors
explored was the maximum difference method in which two best-fit
models are chosen and a new data point is selected where those two
best-fit models have the largest difference in predictions. Another
method they examined was entropy score maximization. In that
method a new data point is selected that maximizes an entropy
score, where the entropy can be thought of as the amount of in-
formation to be gained by gathering that data point. The entropy
score 𝐻𝑒 is computed as shown in the equation below, where𝑀 is
the set of Boolean networks, 𝑥𝑒 is the number of network states for
a given data point, and 𝑒 is the set of all potential data points.

𝐻𝑒 = −
𝑥𝑒∑︁
𝑥=1

𝑒𝑥

|𝑀 | log2
𝑒𝑥

|𝑀 |

Active learning has also been applied in chemical engineering
to expedite a reaction screening process by only selecting a subset
of maximally informative experiments to complete rather than ex-
haustively performing all possible experiments [6]. This was done
by training neural networks and using them to select a subset of
experiments that will maximize the information gain. Maximal in-
formation gain was determined by looking at the standard deviation
of an ensemble of neural networks.

The influence of dimensional awareness on the ability for sym-
bolic regression to rediscover 27 of the equations from the Feynman
Symbolic Regression Database has recently been explored in [5]. It
was found that the use of dimensional awareness can significantly
reduce the computational cost of rediscovering those equations
when compared to symbolic regression without dimensional aware-
ness. The authors acknowledged that while dimensional awareness
worked well, it may not be feasible in many real-world applications
since it requires that all data points be labelled with units. This is
often not the case, either because units were not recorded during
data collection, or because the units are not known. This indicates
support for alternative methods to improving symbolic regression’s
learning and success rates.

3 METHODS
Our active learning strategy is an iterative process that trains mod-
els on data, selects an ensemble of good models, then uses the

ensemble to find a new point to add to the training data that max-
imizes uncertainty. The algorithm is summarized in Algorithm 1
and each part is described in detail in the subsections following.

3.1 Active Learning
The goal of active learning is to strategically select new data points
that are most informative to the current models. One way to iden-
tify informative points is to find uncertainty among the current
models. The uncertainty metric Δ we apply is defined as the stan-
dard deviation of the ensemble divided by the 70 percent trimmed
mean of the absolute value of ensemble responses.

Δ =
Std(EnsembleResponses)

TrimmedMean(Abs((EnsembleResponses, 0.3))
The trimmed mean is used to ignore potentially asymptotic be-

havior that could occur in a few of the models. Below is the step-
by-step explanation of how this active learning approach works.

3.1.1 Initialization. To start, 3 random data points from the region
defined in [16, 17] are generated. Another 100 data points are gen-
erated as test points and are used purely for tracking the progress
of the model development. They are not used to inform the model
development.

An initial set of models are trained on these 3 data points. Evolu-
tion is allowed to run for up to 2 minutes running independently on
4 cores. Each run has a population size of 300 models initialized and
randomly at the outset, such that the starting population consists
of random models with an operator stack of 10 operators or less.
An operator is any of the math operators allowed to be used during
evolution plus the pop operator. StackGP’s default math operators
are: +,−, ∗, /, 𝐸𝑥𝑝, 𝑆𝑞𝑟𝑡, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒, and 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 . Additional operators
such as trig functions can be added as needed.

3.1.2 Evolution Epochs. The evolution process relies on a multi-
objective fitness function, which utilizes Pareto optimality of corre-
lation and complexity. The Pareto front is then considered to be the
models with the best trade-off between correlation and complexity.

The models evolve using crossover and mutation. The crossover
method is a two point crossover modified for the stack data struc-
ture. It works by selecting two points in the operator stack and
swapping the operators and associated variables/constants between
the two points with a similar section in another model.

The mutation method allows for 6 different types of mutation:
variable/constant point mutation, math operator point mutation,
pushing new variables and operators to the top of the stacks, trim-
ming off the bottom of the stack, pushing new variables and con-
stants to the bottom of the stacks, and insertion of new operators
at a random position in the stack.

The goal population size is 300 models. For each generation
79% of the 300 models are generated by mutating models from the
previous generation. 11% of the 300 models are generated using
crossover on model pairs from the previous generations. 10% of the
300 models are randomly generated. Additionally, 10% of models
nearest the Pareto front of the previous generation are cloned into
the new generation. This leads to populations that generally have
between 300 and 330 models. The models selected for mutation and
crossover are chosen via Pareto tournament selection.
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Algorithm 1 Active Learning Process
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 3𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠 ⊲ Generate initial random training data
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙𝑠 ⊲ Generate initial random models
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠) ⊲ Train models on starting data
while 𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙𝐸𝑟𝑟𝑜𝑟 ≠ 0 do ⊲ While perfect model not found

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑆𝑒𝑙𝑒𝑐𝑡 (𝑀𝑜𝑑𝑒𝑙𝑠). ⊲ Select ensemble of models
𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒) ⊲ Find point that maximizes uncertainty
if 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ⊂ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠 then ⊲ If point already selected

𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒)) ⊲ Search a subspace
end if
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎, 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡) ⊲ Add new point to training data
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠) ⊲ Evolve new models with new data using best models to seed evolution

end while

Pareto tournament selection [8] works by randomly selecting a
subset of models from populations and returning the Pareto front of
those subsets. The Pareto tournament size was set to 5 models. The
small tournament size was chosen to promote diversity while pre-
venting several models from dominating a population. An example
tournament with 8 models is shown in Figure 1.

Figure 1: Example Pareto Tournament Selection: This figure
represents a Pareto tournament of size 8 where the models
on the Pareto front are highlighted. The highlightedmodels
(larger points) would be considered the winners of the tour-
nament and all of the models on the Pareto front would be
returned.
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3.1.3 Ensemble Generation and Data Selection. Once the models
are developed, an ensemble is generated. The ensemble is generated
by partitioning the current training data using Mathematica’s built
in clustering capabilities [14] and selecting models that best fit each
data partition [7]1.Early in the active learning process the ensembles
will be smaller since the number of data clusters is limited by the
number of data points. As the number of data points increases, the
limit on the number of clusters increases. The maximum number of
clusters is capped at 10 to ensure ensembles do not grow beyond 10
models. This helps prevent ensemble evaluations from becoming
1Mathematica’s ClusteringCompenents function is usedwith default settings where the
method for clustering is automatically selected based on what Mathematica determines
is the best suited method for the supplied data set.

too computationally intense. In the event that all data points are
similar and only a single cluster forms, the Pareto front of the
models is chosen as the ensemble rather than a single model.

Using the selected ensemble, Mathematica’s NMaximize2 [13]
function is employed to find the data point that maximizes the
uncertainty metric defined in section 3.1, within the bounds of each
variable as described in the Feynman Symbolic Regression Database
[16]. It is possible that a local maximum is found rather than a global
maximum. This is acceptable since the point still represents a point
of relatively high uncertainty. The parameters found to maximize
uncertainty are then used to collect the true model response. This
data is then added to the training set and will be used in the next
run of model evolution.

It is possible a point that already exists in the training set is
selected as the new point. If this occurs, rather than duplicating
the point, a new point is selected by maximizing the uncertainty of
the ensemble in a random region of the original search space. This
helps ensure that new information is being added in each iteration.

Once the new training point has been added to the training set,
another evolutionary epoch begins. This new evolutionary epoch
is seeded with the 20% of models nearest the Pareto front from the
previous epoch. This ensures that good models are not lost between
evolutionary epochs. This does introduce the risk that these more
developed models will dominate over the less developed models at
the beginning of the new epoch and bias the evolution. This risk is
limited by the small tournament sizes, although it could be further
limited in the future using other methods such as age layering.

This learning process is repeated until a perfect model is found
or a maximum number of iterations has completed.

3.1.4 Reporting. Once the iterations have completed a report is
generated. This report contains the best model that was found
during the search, error plots of the best model found in each
iteration, the training points used, and the total number of training
points needed before finding the perfect model (if one was found).

3.2 Ensemble Design
The ensembles are created by partitioning the training data using
Mathematica’s built-in clustering function, ClusteringComponents.

2Mathematica’s NMaximize function was used with default settings which allows
Mathematica to choose a maximization method from the following options: Nelder
Mead, Differential Evolution, Simulated Annealing, and Random Search.
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The data set is partitioned into a max of 10 clusters. All of the
models are then evaluated over each partition and their average
error for each partition is computed. The model with least error
for each partition is selected and added to the ensemble, ensuring
no model is chosen more than once. If a model has already been
selected for a different partition the next best model is selected.
This helps ensure ensemble diversity.

It is possible for the clustering algorithm to fail and return only
1 cluster when given a small data set of all similar points. Since a
single model can’t act as an ensemble, when this occurs, the Pareto
front of the current model set is chosen as the ensemble.

3.3 StackGP
StackGP is the stack based genetic programming system used to
evolve models during the model development step of the active
learning strategy. StackGP is built for use within Mathematica. The
key components of this system are described below in the following
subsections.

3.3.1 Model Form. StackGP is the system being used for symbolic
regression. Models are represented as stacks, where data types are
stored in separate stacks. The operators are stored in the operator
stack and the variables/constants are stored in another stack. The
evaluation of each model is driven by the operator stack, such that it
grabs the next available operator and pops off the variable/constant
stack as many variables/constants as the operator needs. This con-
tinues until no more operators are left in the operator stack.

3.3.2 Genetic Operators. Models are evolved using three primary
genetic operators: mutation, recombination, and cloning. Two point
crossover is used as the recombination operator. Mutation has mul-
tiple choices for how it will modify the parent models to produce
the offspring and these choices are randomly chosen each time
the operator is called. The types of mutation are as follows: vari-
able/constant point mutation, math operator point mutation, push-
ing new variables and operators to the top of the stacks, trimming
off the bottom of the stack, pushing new variables and constants
to the bottom of the stacks, and insertion of new operators at a
random position in the stack.

3.3.3 Selection/Fitness. The models compete via Pareto tourna-
ments, wherein each tournament 5 models are randomly selected
and the Pareto front of the models are returned as the winners. The
Pareto front consists of all the models that are not dominated in
either accuracy or simplicity. Correlation is used as the accuracy
metric, and combined stack length is used as the complexity metric.
The selected models are then added to the pool of models that are
assigned to be either cloned, mutated, or paired with another model
from the pool of selected models for recombination.

3.3.4 Termination Criteria. Models are evolved until either a set
number of generations has completed or until a time limit has been
reached. The termination criteria was set to be 2 minutes with no
limit on the number of generations.

3.3.5 Default Evolution & Active Learning Parameters. The parame-
ters for evolution were selected using an active learning strategy for
parameter optimization. The optimization goal was to reduce the
number of data points needed to find correct models on a sample

Table 1: StackGP & Active learning Parameter Settings

Parameter Setting
Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2 Pt.
Tournament Size 5
Population Size 300
Selection Rate 20

problem. The parameters that were optimized were the following:
mutation rate, crossover rate, spawn rate, elitism rate, tournament
size, population size, selection rate, and crossover method. The
training set was initialized with results from testing 3 different
parameter settings on the sample problem. The active learning for
parameter selection began by training models to fit those 3 param-
eter settings to the number of points needed to solve the sample
problem. The developed models were then used to predict the best
configuration and then tests were performed using the predicted
parameter settings. The results of using the recommended parame-
ter settings were then returned to the training set. This process was
iterated until convergent behaviour was observed. Table 1 shows
the resulting parameter settings. The mutation rate shown in Ta-
ble 1 refers to the rate at which a model will receive exactly one
mutation.

3.4 The Feynman Symbolic Regression
Benchmark

The Feynman set of equations consists of many physics equations
compiled by Richard Feynman. A recent paper by Udrescu and
Tegmark used the Feynman set of equation as inspiration for their
physics based symbolic regression system[17]. As well, they se-
lected a subset of 100 Feynman equations that don’t use deriva-
tives or integrals and created the Feynman Symbolic Regression
Database[16]. In their paper they reported the minimum number
of data points needed by their system, AIFeynman, to solve each
physics problem. They also reported the noise tolerance, whether
their system had to use more sophisticated techniques to solve each
equation, the runtime to solution, and whether another industry
grade symbolic regression system, Eureqa, was able to solve it. The
results in that paper and that data set allow for direct comparisons
of the success of new systems to both AIFeynman and Eureqa.

4 RESULTS
37 of the 100 equations we were able to solve with just the initial
random 3 data points. The minimum number of points needed by
AIFeynman was 10, so StackGP outperformed AIFeynman on all
of these problems. This indicates that these problems are trivially
solvable and active learning is not necessary for these problems, so
they give no insight into how active learning is affecting the search.
Of the remaining problems, 16 were solved using fewer data points
thanwhat was reported by AIFeynman. For these problems, it seems
that the active learning had a positive effect on the success of the
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Table 2: StackGP with Active Learning Performance Sum-
mary

Performance Total Equations
Trivial (Only 3 Points Needed) 37
Outperformed AIFeynman 16
Underperformed AIFeynman 18
Matched AIFeynman 1
Failed to Solve 28

search. One of the equations needed the same number of points
as AIFeynman. 18 of the problems required more data points than
what was reported by AIFeynman. The 28 remaining problems
were not solved within 100 iterations of active learning, so it is
not possible to compare the effect that active learning had on the
success of those searches. The results are summarized in Table 2.

According to Udrescu and Tegmark, Eureqa is the best available
commercial symbolic regression software [17]. Eureqa was found
to solve 71 of the 100 Feynman equations using 300 data points and
2 hours of compute time for each equation. StackGP with active
learning was able to find 72 of the 100 Feynman equations, so
performed similarly to Eureqa, although not all the same equations
were solved.

The performance on each individual equation is shown in Tables
4 and 5 in the Appendix. The formulae for each equation number
alongside the variable ranges and sample data can be found in
the Feynman Symbolic Regression Database [16] where they are
ordered in the same way. The table shows the number of data
points needed to solve each equation by AIFeynman, the number
of data points needed to solve each equation by StackGP with
active learning, the success of StackGP with active learning, and
the success of Eureqa. The number in parenthesis indicates the
number of repeated trials completed and averaged (median) to get
the total number of points needed to solve the problem. Many of the
equations were able to be tested using 100 repeated trials, although
some were tested fewer times due to limited access to computing
resources.

In the following we discuss a few examples. Equation number 22
is an example of a problem that needed just 3 points to be found.

𝜏 = 𝑟𝐹 sin(\ ) (Eq 22)

Looking at the equation we can see that it is relatively simple
and would require only 3 operators (sin, *, *) and 3 variables (r,
f, \ ). It is likely easy to find, both due to its simplicity and since
the terms are combined as products, which makes each variables
contribution to the response data easily distinguishable and similar
in magnitude.

Equation number 3 is an example of an equation where the active
learning approach with StackGP outperformed AIFeynman, need-
ing just 42.5 points on average compared to the 1000 points needed
by AIFeynman. As well, this specific equation was unsolvable by
Eureqa.

𝑓 =
𝑒
− 1

2

(
\−\1
𝜎

)
2√︁

(2𝜋)𝜎
(Eq 3)

Equation number 5 is an example of an equation that was un-
solvable by StackGP with active learning and by Eureqa.

𝐹 =
𝐺𝑚1𝑚2

(𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1) 2 + (𝑧2 − 𝑧1) 2
(Eq 5)

It required 1 million data points to be solved by AIFeynman. This
equation is rather complicated since it has 9 variables and the
contributions of each variable to the response are vastly different
depending on where they are in the equation.

5 ABLATION STUDY
An ablation study was completed to determine if the performance
of StackGP using active learning can be attributed to the active
learning strategy or the stack based genetic programming system.
The ablation study compared the active learning approach against
a modified approach where each new data point was randomly
selected rather than selected according to the active learning strat-
egy. A sample of equations from the set were chosen to highlight a
variety of equation forms. Specifically, equations 1, 2, and 3 were
chosen to highlight how very similar but slightly modified equa-
tions can differ in how successful this active learning approach
is.

It is unexpected that active learning works as well as it does on
equation 3, when it performs worse than random point selection
on equation 2, despite equation 2 being similar yet simpler than
equation 3. For comparison, equation 1, 2, and 3 are shown below. A
variable is added between each equation making equation 2 slightly
more complex than equation 1 and equation 3 slightlymore complex
than equation 2. The expected behaviour would be for the equations
to be more difficult to find as the complexity increases. When using
random point selection, this behaviour is observed, but when using
active learning, equation 2 seems to be more difficult to find than
equation 3. It is unclear what would make equation 2 more difficult
for active learning than when random point selection is used, so
further analysis of equation 2 could be useful.

𝑓 =
𝑒−

\2

2√︁
(2𝜋)

(Eq 1)

𝑓 =
𝑒
− 1

2

(
\
𝜎

)2
√
2𝜋𝜎

(Eq 2)

𝑓 =
𝑒
− 1

2

(
\−\1
𝜎

)
2√︁

(2𝜋)𝜎
(Eq 3)

Equation 24 is another example of an equation that active learn-
ing performed well on and excelled over random point selection.

𝐸 =
1

4
𝑚𝑥2

(
𝜔2 + 𝜔12

)
(Eq 24)

Equation 14 and Equation 47 both showed worse performance
using active learning over random search. It is possible that the
active learning point selection is mislead by these equations to
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Table 3: Average number of points needed in Active Learn-
ing (AL) vs. Random Point Selection (Random). Number of
trials for reference.

EQ# AL Random Trials
1 3 3 100
2 43 28.5 100
3 42.5 >202 100
4 25 26 100
10 4 5 100
11 3 3 100
12 3 3 100
14 19.5 14 100
15 3 3 100
16 3 3 100
23 4 4 100
24 28.5 49.5 100
32 10.5 11 100
47 28.5 17.5 40
60 8 7.5 100
61 30 30.5 40

select points that are not maximally informative or points that are
very similar to points previously selected.

𝑈 = 𝐺𝑚1𝑚2

(
1

𝑟2
− 1

𝑟1

)
(Eq 14)

^ =
𝑘𝑣

𝐴(𝛾 − 1) (Eq 47)

6 DISCUSSION
Although the active learning approach did not outperform AIFeyn-
man on all of the tested equations, it does show promise in that it
has a similar success rate to Eureqa and uses no domain expertise,
unlike AIFeynman. The active learning approach also represents a
self-guided experimentation process where the machine learning
algorithm can direct an experimentation and design process so that
researchers can spend less time planning their next experiments.
Even more important, with active learning, it is less likely that
an exhaustive set of experiments needs to be completed to fully
understand a system of study.

It was observed in the ablation study that some types of problems
are better suited for this method of active learning while other types
of problems are more difficult for this active learning method than
random point selection. For those problems that are difficult for this
active learning approach it is possible that the active learning point
selection is being misled to choose points that are not actually max-
imally informative. An attempt to avoid this problem was made by
introducing the random subspace point selection, since previously
an issue would occur for some problems where identical points
were chosen many times over. However, this approach was likely
not sufficient to ensure similar points are not repeatedly selected.
Further work will explore an approach where new points have to
be a minimum distance away from points already in the data set to
ensure that similar points are not gathered at every selection event.

Alternatively, a hybrid random and informed point selection could
be utilized.

A second possibility is that the issue lies with the uncertainty
metric used. The uncertainty metric used is a relativemeasure since
it is scaled by the magnitude of the ensemble response. This seemed
like a good approach since the magnitude of uncertainty would
likely increase as the magnitude of the response increases, but that
may not always be the case. If it is not the case, point selection could
become biased towards regions where the uncertainty metric is
magnified by the smaller ensemble response. This could potentially
be fixed by changing the uncertainty metric to not be relative to
the magnitude of the ensemble response.

Further research to explore howwell various uncertainty metrics
affect the success of this active learning approach on various prob-
lem types will be useful. As well, it could be beneficial to explore
and classify the types of problems that tend to be difficult or easy
for this active learning method.

From observation it seems that of all the equations in the Feyn-
man data set, the ones that tend to pose difficulty for this active
learning approach tend to have complex denominators. This could
support the concern that the relative uncertainty metric is being
mislead for some problem types. Alternatively, it could highlight a
weakness with current symbolic regression implementations since
Eureqa struggled with many of those problems as well. It is pos-
sible that when variables exist in the denominators of problems,
that it becomes more difficult for symbolic regression to determine
the true contribution of those variables. To determine if this is a
larger scale weakness with symbolic regression it could be useful to
compare several additional symbolic regression implementations
on those difficult problems.

Future research is planned to explore the applications of other
active learning techniques, both model and data driven, to genetic
programming with the goal of determining which methods are most
successful for different classifications of problems. This information
will hopefully act as a basis for an active learning toolkit that can
be used by researchers in various fields to accelerate their data
collection process.
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Table 4: Number of Data Points Needed to Solve Problems
1-50. For The StackGP solution the number of points is the
median of points used out of the indicated number of trials.
For Eureqa, 300 points were used for each equation with a 2
hour time limit.

EQ AIFeynman StackGP Pts StackGP Eureqa
Num Data Pts (num trials) Success Success

1 10 3 (100) Yes No
2 100 43 (100) Yes No
3 1000 42.5 (100) Yes No
4 100 25 (100) Yes No
5 1000000 - (100) No No
6 10 - (100) No No
7 100 >102 (100) No Yes
8 10 3 (100) Yes Yes
9 10 68 (1) Yes Yes
10 10 4 (100) Yes Yes
11 10 3 (100) Yes Yes
12 10 3 (100) Yes Yes
13 10 21 (1) Yes Yes
14 10 19.5 (100) Yes Yes
15 10 3 (100) Yes Yes
16 10 3 (100) Yes Yes
17 10 - No No
18 100 - No No
19 10 - No No
20 10 - No No
21 10 - No Yes
22 10 3 (100) Yes Yes
23 10 4 (100) Yes Yes
24 10 28.5 (100) Yes Yes
25 10 3 (100) Yes Yes
26 100 3 (100) Yes Yes
27 10 12 (100) Yes Yes
28 10 3 (100) Yes Yes
29 1000 - No No
30 100 - No Yes
31 100 3 (1) Yes Yes
32 10 10.5 (100) Yes Yes
33 10 -(100) No No
34 10 3 (1) Yes Yes
35 10 4 (1) Yes No
36 10 - No No
37 10 3 (1) Yes Yes
38 100 - No Yes
39 10 11 (1) Yes Yes
40 10 3 (1) Yes Yes
41 10 9 (1) Yes Yes
42 10 3 (1) Yes Yes
43 10 102 (1) Yes No
44 10 - No No
45 10 3 (1) Yes Yes
46 10 3 (1) Yes Yes
47 10 28.5 (40) Yes Yes
48 10 32 (1) Yes Yes
49 10 3 (1) Yes Yes
50 100 - No No

Table 5: Number of Data Points Needed to Solve Problems
51-100. For The StackGP solution the number of points is
the median of points used out of the indicated number of
trials. For Eureqa, 300 points were used for each equation
with a 2 hour time limit.

EQ AIFeynman StackGP Pts StackGP Eureqa
Num Data Pts (num trials) Success Success

51 10 - No Yes
52 10 13 (1) Yes Yes
53 10 3 (1) Yes Yes
54 10 3 (1) Yes Yes
55 10 13 (1) Yes Yes
56 10000 - No No
57 10 92 (1) Yes Yes
58 10 3 (1) Yes Yes
59 10 3 (1) Yes Yes
60 10 8 (100) Yes Yes
61 10 30 (100) Yes Yes
62 10 76.5 (100) Yes Yes
63 10 14 (1) Yes Yes
64 100 - No No
65 100 - No No
66 10 5 (100) Yes Yes
67 100 68 (1) Yes No
68 10 - No No
69 10 3 (1) Yes Yes
70 10 3 (1) Yes Yes
71 10 22 (1) Yes Yes
72 10 - No No
73 10 3 (100) Yes Yes
74 10 3 (100) Yes Yes
75 10 3 (100) Yes Yes
76 10 3 (100) Yes Yes
77 10 3 (100) Yes Yes
78 10 3 (100) Yes Yes
79 10 3 (1) Yes Yes
80 10 - No No
81 10 - No Yes
82 10 - No Yes
83 10 4 (100) Yes Yes
84 10 3 (100) Yes Yes
85 10 4 (1) Yes Yes
86 10 - No No
87 10 - No No
88 10 3 (1) Yes Yes
89 10 6 (1) Yes No
90 1000 - No
91 100 83 (1) Yes Yes
92 10 3 (1) Yes Yes
93 10 5 (1) Yes Yes
94 10 - No No
95 10 10 (1) Yes Yes
96 10 3 (100) Yes Yes
97 10 3 (100) Yes Yes
98 10 7 (1) Yes Yes
99 10 9 (1) Yes Yes
100 10 3 (100) Yes Yes
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