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ABSTRACT
The Hypergraph Partitioning (HGP) problem is a well-studied prob-

lem that finds applications in a variety of domains. The literature on

the HGP problem has heavily focused on developing fast heuristic

approaches. In several application domains, such as the VLSI design

and database migration planning, the quality of the solution is more

of a concern than the running time of the algorithm. KaHyPar-E

is the first multilevel memetic algorithm designed for the HGP

problem and it returns better quality solutions, compared to the

heuristic algorithms, if sufficient computation time is given. In this

work, we introduce novel problem-specific recombination and mu-

tation operators, and develop a new multilevel memetic algorithm

by combining KaHyPar-E with these operators. The performance

of our algorithm is compared with the state-of-the-art HGP algo-

rithms on 150 real-life instances taken from the benchmark datasets

used in the literature. In the experiments, which would take 39, 000

hours in a single-core computer, each algorithm is given 2, 4, and

8 hours to compute a solution for each instance. Our algorithm

outperforms all others and finds the best solutions in 112, 115, and

125 instances in 2, 4, and 8 hours, respectively.
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•Mathematics of computing→Hypergraphs; •Mathematics
of computation → Evolutionary algorithms.

KEYWORDS
multilevel hypergraph partitioning, memetic algorithms

1 INTRODUCTION
Hypergraphs are generalizations of graphs such that each hyper-

edge (net) connects a subset of nodes. Hypergraphs are used to

model complex relationships between nodes that cannot be cap-

tured by graphs. For instance, they can represent logic circuits

containing gates with more than two inputs [30]. A classical com-

putational problem related to hypergraphs is the Hypergraph Parti-

tioning (HGP) problem. In this problem, we are given a Hypergraph

𝐻 , an integer 𝑘 , and a maximum imbalance ratio 𝜖 , and asked to find

a balanced partition of nodes into 𝑘 disjoint blocks that minimizes

a cost function defined over the hyperedges. A partition is called

balanced if the size of each block is not more than (1 + 𝜖) times

the average block size. The HGP problem has various applications

in real life such as VLSI design [30], parallel matrix multiplication

[15], database migration planning [46], and database sharding [29].

In parallel matrix multiplication, the HGP problem is used to ac-

celerate the main computation, thus the HGP problem needs to

be solved fast. For applications, such as VLSI design and database

migration planning, not only that the HGP problem is solved offline,

but also the quality of the solution is directly related to the cost of

the operation. Ergo even small improvement in solution quality is

critical [48] and translates into millions of dollars of reduction in

operational costs. For instance, in application specific integrated

circuit (ASIC) design, one can spend hours or days to solve the

HPG problem since it will typically take weeks to create the final

implementation [43]. In this paper, we target the applications of

the HGP problem for which the quality of the solution is the main

concern.

Most of the work on the HGP problem in the literature has fo-

cused on developing heuristic solutions since the HGP problem is

NP-Hard[20]. Almost all of the state-of-the-art algorithms devel-

oped for theHGP problem use themultilevel hypergraph partitioning
(or, shortly multilevel) paradigm [13] that consists of the following

three stages: coarsening, initial partitioning, and uncoarsening. At
the coarsening stage, nodes of the hypergraph are contracted at

each level to obtain a series of smaller hypergraphs that are struc-

turally similar to the original hypergraph. This stage ends when

a hypergraph with the predetermined size is obtained. Then, at

the initial partitioning stage, the coarsest (smallest) hypergraph

is partitioned using heuristic algorithms. At each level of the un-

coarsening stage, coarsening is reverted and the partition is refined

using local search methods.

The efficiency of the local search algorithms decreases as the

size of the hyperedges increases since the gain of moving a single

node from one block to other is zero with high probability [33].

The multilevel approach allows more complex operations or more

repetitions of algorithms in coarser levels without increasing the

overall running time much [13]. Thus, the multilevel approach

increases the performance of the local search algorithms since

moving a single node in coarser levels actually corresponds to

moving all of the nodes that contracted in that single node [13].

This way, local search algorithms have a broader view in coarser

levels and a more granular view in the first levels [5].

Local search algorithms are still prone to get stuck in suboptimal

solutions, and thus repeated executions of the multilevel HGP algo-

rithms help to obtain better quality solutions. Typically, repeated

executions are combined with methods that diversify the search [5].

One commonly used approach for this is the use of V-cycles [47]. In
the Multilevel HGP context, the V-cycle method uses the already

computed partition and coarsens only the nodes in the same blocks.

Since only the nodes in the same block are coarsened, the original

partition is a valid partition, and thus the initial partitioning stage
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is skipped. The partition is improved at the uncoarsening stage.

Using different random seeds, V-cycle method can be executed

many times to improve the partition. Even though using repeated

executions of V-cycles is more efficient than calculating new parti-

tions from scratch, using more sophisticated metaheuristics is more

efficient [5].

Andre et al. [5] proposed the first multilevel memetic algorithm

for the HGP problem that uses specifically tailored mutation and

recombination operators. This memetic algorithm, referred to as

KaHyPar-E, outperforms all other multilevel algorithms on a very

large benchmark set, where each algorithm is given 8 hours of

computation time to compute a partition [5]. Several non-multilevel

(flat) evolutionary algorithms had been developed for the HGP

problem before the introduction of KaHyPar-E, however, none of

these algorithms is regarded as competitive as the state-of-the-art

multi level HGP tools [16].

Memetic algorithms (MA) are population-based metaheuristics

that combine local search with genetic algorithms (GA) [35]. Ge-

netic algorithms mimic the biological evolution process using selec-

tion, recombination (crossover) and mutation operations to evolve

population of individuals throughout generations to create fit indi-

viduals [26]. A genetic algorithm starts with an initial population of

individuals each of which corresponds to a random solution [14]. A

function, called fitness function, is used to measure the fitness of an

individual [34]. At each generation, parents are selected from the

population using a selection rule that generally favors fitter individ-

uals [21]. This way, the genes of weaker individuals disappear while

the genes of fitter individuals are preserved over the generations

[45]. The genes of the parents are mixed using recombination oper-

ators to create one or more offspring [26]. Each offspring replaces

an individual from the population. There are several commonly

used evolution schemes that control the evolution of the population.

On one extreme, there is the complete replacement scheme in which

the next generation is completely composed of new offspring. On

the other extreme, there is the steady-state scheme in which only

one individual is replaced by a new offspring [34]. Another widely

used evolution scheme is called replacement-with-elitism, and in

this scheme only a small proportion of the current generation is

preserved [34]. Genetic algorithms can prematurely converge to a

local minimum if the diversity of the population is not maintained

[8]. Mutation operators increase the diversity of the population by

randomly changing the genes of individuals [36].

Several evolutionary algorithms are devised for the HGP problem

over the years. Most of these algorithms do not use the multilevel

paradigm, and are outperformed by the state-of-the-art multilevel

HGP algorithms [5]. On the other hand, KaHyPar-E, which in-

corporates the multilevel paradigm into its operators, is the only

competitive evolutionary algorithm. In contrast to other evolution-

ary algorithms, which use mutation and recombination operators to

obtain partitions, KaHyPar-E uses operators to guide the coarsening

stage of a multilevel algorithm.

Our main contribution is to develop problem-specific mutation

and recombination operators for the HGP problem that effectively

explores the search space given a large amount of time. We intro-

duce one recombination and two mutation operators and combine

them with the KaHyPar framework to develop a new memetic algo-

rithm. Our memetic algorithm outperforms KaHyPar-E and three

most successful multilevel HGP algorithms kKaHyPar, PaToH, and

hMetis on a large benchmark set, where each algorithm is given

2, 4, 8 hours of computation time to find a partition. Our algorithm

finds the best solutions in 112, 115, and 125 instances in 2, 4, and 8

hours, respectively. Our experimental study indicate that the solu-

tions found by our algorithm in 2 hours are better than the solutions

found by kKaHyPar, PaToH, and hMetis in 8 hours. Furthermore,

the solutions found by our algorithm in 4 hours are better than the

solutions found by KaHyPar-E in 8 hours.

The rest of the paper is organized as follows. In Section 2, we in-

troduce the notation used throughout the paper and formally define

the HGP problem. We review the existing literature on metaheuris-

tics devised for the HGP problem, and the KaHyPar framework

along with the operators of KaHyPar-E in Section 3. In Section

4, we introduce our mutation and recombination operators. We

evaluate the impact of our operators and compare our algorithm

with the state-of-the-art HGP algorithms with three different time

limits in Section 5. We conclude in Section 6.

2 PRELIMINARIES
An undirected hypergraph 𝐻 is a four-tuple (𝑉 , 𝑁,𝑤, 𝑐), where 𝑉
is the set of nodes, 𝑁 ⊆ 2

𝑉 \ ∅ is the set of hyperedges (nets),

𝑤 : 𝑉 → R≥0 is the node weight function, and, 𝑐 : 𝑁 → R≥0 is the
hyperedge cost function.

The set of nodes connected by a hyperedge 𝑒 are called the pins of

𝑒 and denoted by 𝑝𝑖𝑛𝑠 (𝑒). We denote the set of hyperedges incident

to a node 𝑣 with 𝑁 (𝑣) ⊆ 𝑁 . A 𝑘-way partition Π = {𝑉1,𝑉2, . . . ,𝑉𝑘 }
of a hypergraph 𝐻 is a partition of 𝑉 into 𝑘 disjoint blocks such

that ∪𝑘
𝑖=1

𝑉𝑖 = 𝑉 ,𝑉𝑖 ∩𝑉𝑗 = ∅ if 𝑖 ≠ 𝑗 , and each block𝑉𝑖 is not empty.

A 𝑘-way partition Π of 𝐻 is called an 𝜖-balanced 𝑘-way partition if

the size of each block𝑉𝑖 is no more than the average block size, i.e.,

for each 𝑖 ,
∑

𝑣∈𝑉𝑖 𝑤 (𝑣) ≤ (1 + 𝜖) ⌈
∑

𝑣∈𝑉 𝑤 (𝑣)
𝑘

⌉.
The set of blocks that contains a pin of a hyperedge 𝑒 is called

the connectivity set of 𝑒 , and denoted by Λ(𝑒). The size of the

connectivity set of a hyperedge 𝑒 is called the connectivity of 𝑒

and denoted by 𝜆(𝑒). Hyperedges with connectivity more than

one are called cut hyperedges. We use 𝑁Π to denote the set of cut

hyperedges in Π.
The 𝑘-way hypergraph partitioning problem is to find an 𝜖-

balanced 𝑘-way partition Π of a given hypergraph 𝐻 that mini-

mizes a cost function defined over the cut nets 𝑁Π . The two most

commonly used cost functions are the cut and connectivity metrics.

The cut metric is defined as the total cost of cut hyperedges, i.e.,

𝑐𝑢𝑡𝐻 (Π) = ∑
𝑒∈𝑁Π

𝑐 (𝑒). The connectivity metric, also referred to as

(𝜆 − 1), takes into account how many block that each hyperedges

spans, and defined as (𝜆 − 1)𝐻 (Π) =
∑
𝑒∈𝑁 (𝜆(𝑒) − 1) 𝑐 (𝑒). The

special case of the problem where 𝑘 = 2 is referred to as bipartition

or bisection. Two metrics are identical when 𝑘 = 2, and they are

both NP-hard to optimize[20]. We focus on the connectivity metric

in this paper since this is the most commonly used metric in the

literature.

Node contraction merges two nodes 𝑢, 𝑣 into a single node 𝑢.

After the contraction, weight of 𝑢 increases as much as the weight

of 𝑣 , i.e. 𝑤 (𝑢) = 𝑤 (𝑢) +𝑤 (𝑣). All hyperedges in 𝑁 (𝑣) \ 𝑁 (𝑢) are
updated by replacing 𝑣 with𝑢, and 𝑣 is removed from all hyperedges

in 𝑁 (𝑣) ∩ 𝑁 (𝑢). Node uncontraction reverts all these operations.
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3 RELATEDWORK AND KAHYPAR
FRAMEWORK

The HGP problem received lots of attention from VLSI and sci-

entific computing communities due to its applications in these

domains. Empirical results show that general purpose KaHyPar

[1, 22, 24, 25, 42], VLSI focused hMetis [30, 31], and scientific com-

puting focused PaToH [15] stand out among the multilevel HGP

algorithms from the perspective of the quality of the solutions

found[5]. The existing literature is too vast to summarize here, so

we refer readers to [3, 41] for an extensive overview. Here we focus

on evolutionary approaches developed for the HGP problem, and

the KaHyPar framework which we incorporate our algorithm in.

Saab and Rao [38] proposes an evolutionary algorithm for solving

a more complex HGP problem with a multi-objective cost function.

The algorithm has only one individual generated using First Fit

Decreasing heuristic [28], and evolves this solution randomly by

changing the blocks of nodes if the value of the objective func-

tion impoves more than an integer taken as parameter. Hulin [27]

proposes a genetic algorithm that uses a complex two-step encod-

ing scheme for the Circuit (Hypergraph) Bipartitioning problem

(i.e., 𝑘 = 2). First, the (complex) components of the circuit are

grouped, then these groups are divided and mapped to the blocks.

They develop crossover and mutation operators suited for their

encoding-scheme. The initial population is randomly generated

by first selecting a random group for each component and then

randomly dividing groups. Bui and Moon [12] present a steady-

state memetic algorithm for Hypergraph Bipartitioning problem

with the ratio-cut metric. They use a 5-point crossover operator, a

basic mutation operator that changes the blocks of nodes randomly,

and a weak variation of the FM algorithm [19] for the local search.

They use a preprocessing step that reindexes the nodes by the vis-

iting order of depth first search on the clique representation [23]

of the hypergraph. They claim this improves the performance of

the crossover operator because nodes that will likely to be assigned

together have closer indexes. Areibi [6] proposes a memetic algo-

rithm that uses a variant of 𝑘-way FM algorithm [39] for Circuit

Partitioning with the graph model. This algorithm is adapted for

hypergraph partitioning and improved by using a preprocessing

step that contracts nodes to reduce the complexity of the problem

[7]. Also, they use a solution found by a GRASP metaheuristic along

with random solutions to create the initial population.

The first algorithm that combines multilevel paradigm with evo-

lutionary algorithms is proposed by [44] for the Graph Partitioning

problem. Their recombination and mutation operators modify the

edge weights of the input graph such that the underlying mul-

tilevel partitioner is guided while searching for a new partition.

Benlic and Hao [10] presents a multilevel memetic algorithm for

the Graph Partitioning problem where 𝜖 = 0. They use a multi-

parent recombination operator which ensures that the balance of

the parent solution is not degraded and refine the offspring with

a perturbation-based Tabu Search algorithm. Sanders and Schulz

[40] proposes a parallel multilevel evolutionary algorithm for the

Graph Partitioning problem. They use two crossover operators that

ensure the solution quality does not degrade. The first crossover

operator restricts the contraction of nodes that are cut edges in

at least one of the parents. The second crossover operator uses

Natural Cuts [18], which is originally proposed as a preprocess-

ing method for partitioning of road networks. They also use two

mutation operators based on V-cycles.

More recently, Andre et al. [5] presented the first multilevel

memetic algorithm, called KaHyPar-E, for the HGP problem. They

use recombination and mutation operators that either restrict the

contraction of some nodes, or modify the contraction scores of

nodes. We describe KaHyPar-E in more detail in Section 3.2. Preen

and Smith [37] proposes an evolutionary algorithm for the ini-

tial partitioning stage. They use a uniform crossover operator with

parental alignment, and a mutation operator that randomly changes

the blocks of nodes. They compare their algorithm with the ini-

tial partitioning algorithms used in kKaHyPar after applying FM

algorithm to both initial partitions. Solution quality does not differ

much when the hypergraph is coarsened until there are 150 · 𝑘
nodes (this is a common value in multilevel algorithms), but they

obtain better solutions when there are more than 15000 · 𝑘 nodes.

3.1 KaHyPar Framework
KaHyPar is a general purpose hypergraph partitioning framework

developed over the series of papers [5, 22, 24, 25, 42, 43]. The latest

version of the k-way direct partitioner in KaHyPaR framework,

referred to as kKaHyPar, is considered the best partitioner [43]. We

first present a high level description of the kKaHyPar algorithm

since both our algorithm and KaHyPar-E use it as a subroutine.

kKaHyPar employs two preprocessing techniques before the

coarsening stage. The first one is called pin sparsification and it

contracts some pins of large hyperedges to reduce the average pin

size of hyperedges. The second method uses Louvain algorithm

[11] to detect the community structure of the hypergraph [25]. This

information is used to guide the coarsening process.

At each level of the coarsening stage, kKaHyPar contracts two

nodes into a single node. Notice that the coarsening stage is com-

posed of nearly 𝑛-levels. To rate node pairs for contraction, it uses

the heavy-edge function [30]. For a node pair (𝑢, 𝑣), the heavy-edge
function is defined as follows.

𝑟 (𝑢, 𝑣) =
∑︁

𝑒∈𝑁 (𝑢)∩𝑁 (𝑣)

𝑐 (𝑒)
|𝑝𝑖𝑛𝑠 (𝑒) | − 1

At each level of the coarsening stage, kKaHyPar chooses a ran-

dom node 𝑣 and than finds its contraction partner 𝑣 from the eligible
nodes for which 𝑟 (𝑢, 𝑣) is maximized. Nodes 𝑢 and 𝑣 are eligible for

contraction if they belong to the same community (found at the

preprocessing step), and𝑤 (𝑢) +𝑤 (𝑣) ≤ 𝜅, where 𝜅 = ⌈
∑

𝑣∈𝑉 𝑤 (𝑣)
𝑡 ·𝑘 ⌉

for some parameter 𝑡 . In kKaHyPar, 𝑡 is selected as 150 [22]. The

coarsening stage ends when there are less than 𝑡 · 𝑘 nodes, or there

are no valid contractions, i.e., no node has an eligible partner.

To find the initial partition to the coarsest hypergraph, kKaHyPar

recursively bipartitions the hypergraph until a 𝑘-way partition is

found [42]. It employs a pool of 9 randomized algorithms to compute

bipartitions [43], and runs each algorithm 20 times. Each partition

is refined using local search algorithms based on FM heuristics

[19, 39], and the best partition is used as the initial partition. Then

this initial partition is projected to larger hypergraphs at the un-

coarsening stage. kKaHyPar uses 𝑘-way FM heuristic along with

a local search algorithm based on maximum flows (MF) [22, 24].
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𝑘-way FM heuristic is executed a large number of times at each level

of the uncoarsening stage. The more complex and time-consuming

MF heuristic is executed once at each level 𝑙 where 𝑙 is an exact

power of two. For details on the MF heuristic, see [22, 24].

3.2 KaHyPar-E
KaHyPar-E is a multilevel memetic algorithm that outperforms

all other hypergraph partitioners when given a large amount of

time[5]. KaHyPar-E takes a time limit 𝑡 as an input. The initial pop-

ulation is generated using kKaHyPar algorithm. Since kKaHyPar

also takes non-negligible time, the size of the population is deter-

mined dynamically as follows. First, kKaHyPar is executed once

and its running time is recorded. Then, roughly 15% of the time

limit 𝑡 is used to generate the initial population. The population

size is bounded below with 3 to ensure diversity, and it is bounded

above with 50 to ensure convergence. This initial population is then

evolved over generations with the steady-state paradigm where

only one offspring is created at each generation via a mutation or a

recombination operation. KaHyPar-E uses two mutation operators

and two recombination operators, and each operator is picked with

a probability of 0.25. The individual that will be replaced by the

offspring is chosen by a replacement strategy that considers both

solution quality (fitness) and the similarity of individuals. The fit-

ness of an individual is determined by its objective function value,

and the one with a lower objection function value is considered

fitter. Contrary to other evolutionary algorithms developed for the

HGP problem, it uses problem-specific mutation and combination

operators instead of problem-agnostic operators. We next describe

these operators as well as the replacement strategy. We use the

terms individual and solution interchangeably.

Recombination Operators: KaHyPar-E uses two recombina-

tion operators. The first one, which we refer to as𝐶1, works similar

to the V-cycles but it is more restrictive. First, it selects two parents

using two-way tournaments. The fitter parent becomes the first

parent and the other becomes the second parent. Let 𝑏𝑖 [𝑢] denote
the block of node 𝑢 in parent 𝑖 . This operator coarsens two nodes

𝑢 and 𝑣 if and only if 𝑏1 [𝑢] = 𝑏1 [𝑣] ∧ 𝑏2 [𝑢] = 𝑏2 [𝑣], i.e., if the
nodes 𝑢 and 𝑣 are placed to the same blocks in both parents. This

constraint ensures that the partitions of both parents are still valid

partitions after any possible contraction. Contracting nodes beyond

the maximum allowed node weight 𝜅 could lead to unbalanced

initial partitions. But the contraction restriction ensures that the

partitions of each parent are still valid after coarsening. Therefore,

instead of finding new initial partition, partition of the fitter parent

is used. Then, the solution is refined at the uncoarsening stage. This

operator actually creates a new coarsening scheme for the first

parent and then applies local search algorithms at the uncoarsening

stage. Thus, it ensures that the solution quality is maintained even if

no improvements are found. But, this also means that the offspring

created will be the same as the first parent if no improvements are

found. Normally, this could lead to a premature convergence since

the fittest individual could possibly replace all other individuals if

no improvements were found for the fittest individual throughout

the generations. But, the similarity measure used in the replace-

ment scheme ensures that no individual is allowed to be in the

population more than once.

The second recombination operator, which we refer to as 𝐶2,

uses the fittest 𝑝 individuals, for some parameter 𝑝 , to determine

the nodes to be coarsened. The frequency of a hyperedge 𝑒 , denoted

by 𝑓 (𝑒), is defined as the number of the fittest 𝑝 individuals for

which 𝑒 is in the cut. Hyperedge frequencies are incorporated into

the rating function used at the coarsening stage by replacing the

heavy-edge function with the following function, which favors the

node pairs that share a large number of small hyperedges with low

frequencies.

𝑟 (𝑢, 𝑣) = 1

𝑤 (𝑢) ·𝑤 (𝑣)
∑︁

𝑒∈𝑁 (𝑢)∩𝑁 (𝑣)

𝑒𝑥𝑝 (−𝛾 · 𝑓 (𝑒))
|𝑝𝑖𝑛𝑠 (𝑒) |

In this function, 𝛾 is a tuning parameter that controls the impact

of frequencies, which is chosen as 0.5. The number of individuals 𝑝

is chosen as the square root of the population size.

Mutation Operators: KaHyPar-E uses two mutation operators,

both of which is based on V-cycles. The first mutation operator,

which we refer to as𝑀1, is exactly the same as the V-cycle method.

It creates a new coarsening scheme for a solution by blocking

the contractions of the nodes that are placed in different blocks.

After the coarsening stage, 𝑀1 uses the original partition as the

initial partition, and proceeds with the uncoarsening stage. The

coarsening stage of the second mutation operator, which we refer

to as 𝑀2, is the same as that of 𝑀1. As opposed to 𝑀1, 𝑀2 does

not skip the initial partitioning stage, but proceeds with the initial

partitioning stage of kKaHyPar to find an initial partition. This

initial partition is refined at the uncoarsening stage. Notice that𝑀1

ensures that the solution quality will not degrade. However, as is

the case with 𝐶1, the solution will not change if no improvements

are found. This is not the case for the second mutation operator.

Replacement Strategy: Recall that 𝐶1 and 𝑀1 finds an exist-

ing solution if no improvement is found at the uncoarsening stage.

Therefore, maintaining the diversity of the population is very impor-

tant for KaHyPar-E. Evicting the worst solution from the population

may lead to a premature convergence. Thus, a replacement strategy

that considers the similarity between individuals as well as the

solution quality is used. It uses a sophisticated similarity measure

instead of the Hamming distance, which is used in HGP algorithms

[12, 32]. In this similarity measure, each individual 𝐼𝑖 is represented

with a multiset 𝐷𝑖 in which each cut hyperedge 𝑒 of individual 𝐼𝑖
appears (𝜆(𝑒) − 1) times. The difference between two individuals

𝐼𝑖 and 𝐼 𝑗 is defined as the cardinality of the symmetric difference

between 𝐷𝑖 and 𝐷 𝑗 , i.e., 𝑑 (𝐼1, 𝐼2) = | (𝐷1 \ 𝐷2) ∪ (𝐷2 \ 𝐷1) |. When

an offspring 𝑜 is created, it replaces the individual whose difference

to 𝑜 is smallest, among the pool of individuals whose fitness is no

more than that of 𝑜 .

4 MULTILEVEL MEMETIC ALGORITHM
Our algorithm is built on top of the KaHyPar-E algorithm. Unless

stated otherwise, we use the components of the KaHyPar-E as de-

scribed above. We first introduce a novel greedy recombination

operator that contracts nodes using the blocks of two parents. Con-

trary to the recombination operator𝐶1, which only contracts nodes

that both parents agree on, our greedy recombination operator

contracts a subset of nodes in the same block of one of the parents.
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The block that will be used for contraction is determined by using

a rating function. We then introduce two new mutation operators

that slightly differ from 𝑀1 and 𝑀2. Proposition 4.1 given below

presents the theoretical insight that led to our greedy recombination

operator.

Proposition 4.1. LetΠ = {𝑉1,𝑉2, . . . ,𝑉𝑘 } be an optimal 𝜖-balanced
k-way partition of a hypergraph 𝐻 . Let 𝑢 and 𝑣 be two nodes that
are in the same block in Π. Let 𝐻 ′ be the hypergraph obtained from
𝐻 by contracting 𝑢 and 𝑣 . The cost of an optimal 𝜖-balanced k-way
partition of 𝐻 ′ is equal to the cost of Π.

Proof. Consider the partition Π′
that is obtained by contracting

nodes 𝑢 and 𝑣 in Π. Notice that Π′
is an 𝜖-balanced k-way partition

of 𝐻 ′
, and the cost of Π′

is equal to that of Π. Thus, the cost of an
optimal 𝜖-balanced k-way partition of 𝐻 ′

is no more than that of

Π. Let Π∗
be an optimal 𝜖-balanced k-way partition of 𝐻 ′

. All we

need is to show that the cost of Π∗
is no less than that of Π.

For the sake of contradiction, assume that the cost ofΠ∗
is strictly

less than that of Π. Let Π̃∗
be the partition obtained by contracting

nodes 𝑢 and 𝑣 in Π∗
. But then, Π̃∗

is an 𝜖-balanced k-way partition

of𝐻 , and the cost of Π̃∗
is equal to that of Π∗

. This contradicts with

Π being an optimal 𝜖-balanced k-way partition of 𝐻 .

□

4.1 Greedy Recombination Operator
Let Π be an optimal 𝜖-balanced k-way partition of a hypergraph

𝐻 . Let 𝐻 ′
be the hypergraph obtained from 𝐻 by contracting a

subset (possibly all) of nodes of any block of Π. Notice that, due
to the proof of Proposition 4.1, the problem of finding an optimal

𝜖-balanced k-way partition of a hypergraph 𝐻 is equivalent to to

the problem of finding that of the smaller (contracted) hypergraph

𝐻 ′
. However, deciding if any subset of nodes 𝑉 ′

appears in the

same block of an optimal partition of a hypergraph is NP-hard. Our

greedy recombination operator is motivated by the observation

of Proposition 4.1, and aims to approximate the aforementioned

NP-hard problem.

The greedy recombination operator selects two parents by two-

way tournaments. Then it sorts the blocks of each parent with

respect to a quality measure. It selects the block with the high-

est quality, and assigns all nodes in this block to a new cluster. It

removes these nodes from the blocks of the other parent, and recom-

putes the qualities of these blocks. This procedure is repeated until

either each node is assigned to a cluster, or
3𝑘
2
blocks are selected.

The nodes that are not assigned to a cluster are assigned to a special

cluster called 0. These cluster are used to guide the coarsening stage

of the kKaHyPar algorithm as follows. At the coarsening stage, two

nodes 𝑢 and 𝑣 are only allowed to be contracted if they belong to

the same cluster, and this cluster is not cluster 0. The coarsening

stage ends only if there are no possible contractions. This operator

uses kKaHyPar algorithm with this modified coarsening stage to

create an offspring.

Themotivation for selecting nomore than
3𝑘
2
blocks is as follows.

Clustering the nodes in the remaining
𝑘
2
blocks may lead to less

ideal contractions since we already selected the best
3𝑘
2
block. In

addition to that, allowing contractions even after there are less

than 𝑡 · 𝑘 nodes remaining may create small number of nodes with

uneven weights, which may complicate the initial partitioning stage

[31].

The rating function used to measure the block quality is crucial

for the performance of the greedy recombination operator. Different

operators can be developed by using different rating functions.

We believe that a rating function needs to satisfy the following

conditions.

• The quality of a block should not depend on the number

of nodes in contains since we remove the contracted nodes

from the other parent.

• It should rank a good block higher compared to a bad block.

We say that a block is good if it contains either a high or a low

fraction of pins of incident hyperedges. For instance, consider three

blocks𝑉1,𝑉2, and𝑉3, each of which is incident on 2 hyperedges.𝑉1
contains

1

4
and

3

4
of the pins of the incident hyperedges.𝑉2 contains

1

2
of the pins of both of the incident hyperedges. 𝑉3 contains

1

2
and

3

4
of the pins of incident hyperedges. Notice that 𝑉1 is defined to

be a better block than 𝑉2. This is because 𝑉1 is easier to improve

using local search algorithms. Furthermore, we want𝑉3 to be better

than 𝑉1 since it has higher average of fraction of pins. We use the

rating function given below which satisfies these conditions. Let

𝐸𝑖 = ∪𝑣∈𝑉𝑖𝑁 (𝑣).

𝑟 (𝑉𝑖 ) =
1

|𝐸𝑖 |
∑︁
𝑒∈𝐸𝑖

(
|𝑝𝑖𝑛𝑠 (𝑒) ∩𝑉𝑖 |
|𝑝𝑖𝑛𝑠 (𝑒) |

)
2

Notice that our greedy recombination operator is not particularly

useful when there are only two blocks. Since for 𝑘 = 2 the greedy

recombination operator finds one of the parent solutions. We use

𝐶3 to denote the greedy recombination operator.

4.2 Mutation Operators
The mutation operators cluster the nodes of the hypergraph using

an already computed partition. They use these clusters to create a

new coarsening scheme by blocking some contractions. Operators

first find the connected components in each block. If a connected

component does not contain all pins of at least one hyperedge, then

nodes on this connected component are assigned to the special

cluster 0. Then, all of the remaining connected components on each

block 𝑖 are assigned to a single cluster number 𝑖 .

The first operator only allows the contraction of nodes 𝑢 and 𝑣 if

𝑢 and 𝑣 are assigned to the same cluster, and the assigned cluster is

not the special cluster 0. Notice that this operator does not allow the

contraction of nodes 𝑢 and 𝑣 that are in different blocks. Therefore,

after the modified coarsening stage, the original partition is valid

and can be used as an initial partition to the coarsened hypergraph.

Thus, the initial partitioning stage is skipped and the partition is

refined at the uncoarsening stage. Notice that if each block only

contains a single connected component, and there is at least one

hyperedge whose pins are assigned to this block, then this operator

works the same as the mutation operator𝑀1.

The second operator allows the contraction of nodes 𝑢 and 𝑣

only if 𝑢 and 𝑣 are assigned to the same cluster, or either 𝑢 or

𝑣 is assigned to the special cluster 0. The original partition may

not be feasible after the modified coarsening stage since nodes

from different blocks can be contracted. The modified coarsening
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stage of this operator is followed by the initial partitioning stage of

kKaHyPar. Then, the initial partition is refined at the uncoarsening

stage. Notice that if each block only contains a single connected

component, and there is at least one hyperedge whose pins are

assigned to this block, then this operator works the same as the

mutation operator𝑀2. We use𝑀3 and𝑀4 to denote these mutation

operators, respectively.

5 EXPERIMENTAL EVALUATION
Experimental Setup:We implemented𝐶3,𝑀3 and𝑀4 using KaHy-

Par framework. We performed all experiments on a cluster with 3

machines each of which has 2 Intel Xeon 6148 Icosa-core proces-

sors clocked at 2.4GHz, and 384 GB RAM. We solved instances in

parallel and one core and 8GB is reserved for each instance. We

compare our algorithm with KaHyPar-E, kKaHyPar, PaToH 3.2

[15] and hMetis-R [30, 31]. While our algorithm and KaHyPar-E

spend all of their time evolving a population, kKaHyPar, PaToH,

and hMetis-R compute new partitions using different random seeds

until the time limit is reached. We use kKaHyPar with its default

parameters given in [43] with the V-cycle refinement technique

at most 100 times after computing a partition as in [5]. hMetis-R

uses a different balance definition and do not directly optimizes

connectivity metric. Instead, it optimizes Sum of External Degrees

(SOED) metric which is closely related to the connectivity metric

[43]. We used PaToH and hMetis-R with their default parameters,

and chose 𝜖 for hMetis-R as described in [5].

We evaluate the performance of different configurations of our

algorithm in Section 5.1. For that, each configuration of our algo-

rithm is run 3 times with different random seeds and, with a 2 hour

time limit. To save time we only used the instances with 32 blocks.

We used the same random seeds for each configuration so that they

start with the same initial population. We use convergence plots to
show how the mean connectivity of best solution of each instance

is evolved over time for each configuration.

We compare the performance of our algorithm with KaHyPar-

E in Section 5.2, and with the other state-of-the-art hypergraph

partitioners in Section 5.3. We run each algorithm 5 times with

different seeds for each instance with 2, 4 and 8 hour time limits,

respectively. We run our algorithm and KaHyPar-E with the same

seeds so that they start with the same initial population to mitigate

the impact of randomness. We use performance plots [5] to compare

the performances of algorithms with the best found solution on a

per-instance basis.

Convergence plots: Convergence plots show how the mean

connectivity of best solutions for each instance evolved over time.

First, we compute the best solution found until time 𝑡 for each

instance and configuration. To combine the results obtained by

different seeds for a single instance, we use arithmetic mean. To

combine the results of different instances, we use geometric mean

so that each instance can contribute equally. The y-axis shows the

mean connectivity of all instances used and the x-axis shows the

time.

Performance plots: For each instance, the connectivity of the

solution found by each algorithm is divided to that of the the best

solution for that instance. This is repeated for each instance and

results are aggregated such that the plot shows the fraction of

instances where each algorithm produces solutions that are 𝑟 times

worse compared to the best. The x-axis shows the quality relative

to the best solution and the y-axis shows the fraction of instances.

For instance, a point (𝑟, 𝑓 ) for an algorithm𝐴 in a performance plot

shows that the algorithm 𝐴 finds solutions that are at most 𝑟 times

higher than the best solution in 𝑓 fraction of the instances. Notice 𝑟

is monotone non-decreasing. At 𝑟 = 1, performance plots show the

fraction of instances where each algorithm found the best solution.

Table 1: Benchmark Set D[4]

Hypergraph n m p

ISPD89

ibm06 32,498 34,826 128,182

ibm07 45,926 48,117 175,639

ibm08 51,309 50,513 204,890

ibm09 53,395 60,902 222,088

ibm010 69,429 75,196 297,567

SAT14 Dual

6s133 140,968 48,215 328,924

6s153 245,440 85646 572692

6s9 100,384 34317 234228

dated-10-11-u 629,461 141,860 1,429,872

dated-10-17-u 1,070,757 229,544 2,471,122

SAT14 Literal

6s133 96,430 140,968 328,924

6s153 171,292 245,440 572,692

aaai10-planning-ipc5 107,838 308,235 690,466

atco_enc2_opt1_05_21 112,732 526,872 2,097,393

dated-10-11-u 283,720 629,461 1,429,872

SAT14 Primal

6s153 85,646 245,440 572,692

aaai10-planning-ipc5 53,919 308,235 690,466

atco_enc2_opt1_05_21 56,533 526,872 2,097,393

dated-10-11-u 141,860 629,461 1,429,872

hwmcc10-timeframe 163,622 488,120 1,138,944

SPM

laminar_duct3D 67,173 67,173 3,833,077

mixtank_new 29,957 29,957 1,995,041

mult_dcop_01 25,187 25,187 193,276

RFdevice 74,104 74,104 365,580

vibrobox 12,328 12,328 342,828

Instances: We use Benchmark Set D of Andre et al. [5] with

25 unweighted hypergraphs that consists of the instances from

ISPD98 VLSI Circuit Benchmark Suite [2], the SuiteSparse Matrix

Collection [17], and the SAT Competition 2014 [9]. The respective

sizes and application domains of the hypergraph are presented

in Table 1. Each hypergraph is partitioned into 𝑘 blocks where

𝑘 ∈ {4, 8, 16, 32, 64, 128}, and we set 𝜖 to 0.03 as in [5]. Thus, we

have 150 instances in total. Our experiments take 39, 000 CPU hours

in a single-core computer.

5.1 Impact of Algorithmic Components
The details of the configurations we considered are given in Ta-

ble 2. The first column lists the configuration names, and the last
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2 columns give the selection probabilities of recombination and

mutation operations for each configuration Columns 2 − 4 show

the selection probability of each recombination operator when the

recombination operation is selected. Columns 5 − 8 show the se-

lection probability of each mutation operator when the mutation

operation is selected.

Table 2: Configuration Table

Configuration Operator Selection Probability

Name 𝐶1 𝐶2 𝐶3 𝑀1 𝑀2 𝑀3 𝑀4 𝐶 𝑀

KaHyPar-E 0.5 0.5 0 0.5 0.5 0 0 0.5 0.5

MMA-M-0.5 0.4 0.2 0.4 0.25 0.25 0.25 0.25 0.5 0.5

MMA 0.4 0.2 0.4 0.25 0.25 0.25 0.25 0.8 0.2

MMA-G 0 0 1 0.25 0.25 0.25 0.25 0.8 0.2

MMA-EQ-C 0.33 0.33 0.33 0.25 0.25 0.25 0.25 0.8 0.2

Figure 1 shows how the mean best solution of each configuration

is evolved over time. The MMA-G configuration which uses a single

recombination operator (𝐶3) performs the worst. The MMA-M-05

which uses all recombination and mutation operators performs

slightly better than KaHyPar-E which shows the effectiveness of

the new operators. The MMA uses less mutation operation com-

pared to MMA-M-05 and performs better. This shows that 𝐶3 con-

tributes to the diversity of the population since lowering mutation

probability decreases the performance of KaHyPar-E [5]. The per-

formance of MMA-EQ-C, which uses all recombination operators

with equal probability, is similar to that of MMA. We choose MMA

configuration as our final configuration since it performs best.

Figure 1: Convergence plot for different algorithmic config-
urations

5.2 Comparison with KaHyPar-E
Figure 2 shows that MMA consistently outperforms KaHyPar-E for

each time limit. Furthermore, the performance gap widens as the

computation time increases. When each algorithm is given 2 hours,

MMA computes solutions with better, equal, and worse quality

Figure 2: Performance plots comparing MMA and KaHyPar-
E for 2, 4, and 8 hour time limits

compared to KaHyPar-E on 105, 8 and 37 instances, respectively.

For the 8 hour time limit, MMA computes solutions with better,

equal, and worse quality compared to KaHyPar-E on 114, 12 and 24

instances, respectively. For the setting where MMA is given 4 hours

and KaHyPar-E is given 8 hours, MMA computes solutions with

better, equal, and worse quality on 75, 11, 64 instances, respectively.

Table 3 shows the average improvements over KaHyPar-E for dif-

ferent time limits and number of blocks. For instances with 𝑘 ≥ 32,

MMA performs 0.46%, 0.57%, 0.8% better on average than KaHyPar-

E, in 2, 4, 8 hours, respectively. For some instances, MMA returns
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8.1% better solutions than KaHyPar-E, however, there is no in-

stance for which KaHyPar-E returns a solution that is 1% better

than MMA. A Wilcoxon matched pairs signed rank test [49] show

that the average improvements by MMA over KaHyPar-E are sta-

tistically significant for all time limits (all 𝑝 values are less than

10
−10

).

Table 3: Left-side of the table shows the average improve-
ment over KaHyPar-E in percentages. Right-side of the table
shows the number of instances that MMA found the best so-
lutions.

Average Best Solutions

k 2 Hour 4 Hour 8 Hour 2 Hour 4 Hour 8 Hour

4 -0.11 0.04 -0.06 16 18 18

8 0.28 0.46 0.38 19 20 18

16 0.73 0.71 0.73 23 20 25

32 0.56 0.71 0.89 20 22 22

64 0.54 0.54 0.86 19 21 23

128 0.29 0.46 0.63 16 16 15

all 0.37 0.49 0.57 113 116 126

5.3 Comparison with other heuristics
Figure 3 shows performance comparisons of MMA, KaHyPar-E,

and 3 other state-of-the-art multilevel hypergraph partitioners

kKaHyPar, PaToH, and hMetis-R. In all plots, kKaHyPar, PaToH,

and hMetis-R are run with 8 hour time limit. MMA and KaHyPar-E

are run with 2, 4, and 8 hour time limits, respectively. MMA and

KaHyPar-E outperform all non-evolutionary algorithms even when

they use a quarter of the time non-evolutionary algorithms use.

MMA finds a best solution in 107, 113, 125 instances, and KaHyPar-

E finds a best solution in 33, 36, 31 instances for 2, 4, 8 hours, re-

spectively. kKaHyPar finds a best solution in 23, 17, 14 instances

2, 4, 8 hours, respectively. While PaToH finds a best solution for

one instance, hMetis-R does not find a best solution in any of the

instances. For each algorithm, the maximum performance gap with

the best solution in any instance is as follows: 1% for MMA, 8%

for KaHyPar-E, 12% for KaHyPar, 82% for PaToH, 284% for hMetis-

R. The results show that MMA is the best choice for applications

where the solution quality is the most important concern.

6 CONCLUSION
We introduced a problem-specific greedy recombination opera-

tor and two mutation operators for the HGP problem that can be

incorporated into a multilevel memetic algorithm. The greedy re-

combination operator combines the good genes of each parent in a

novel way using a rating function that can rank subsets of nodes.

We add our operators to the best performing hypergraph partition-

ing algorithm, KaHyPar-E, to develop a even better performing

algorithm. We evaluated the performance of our algorithm in a

large benchmark set and showed that our algorithm outperforms 4

state-of-the-art algorithms. Our algorithm finds the best solution in

125 of the 150 instances when each algorithm is given 8 hours. Even

though the average improvement over KaHyPar-E is not large, it

is statistically significant. We also showed that our algorithm with

Figure 3: Performance plots comparing all algorithms

4 hour time limit outperforms KaHyPar-E with 8 hour time limit.

This can be partly explained by the fact that improvements for both

algorithms are slow.
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