skip to main content
10.1145/3520304.3533629acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Decomposition multi-objective optimisation: current developments and future opportunities

Authors Info & Claims
Published:19 July 2022Publication History
First page image

References

  1. K. Deb, "Multi-Objective Optimization Using Evolutionary Algorithms", Wiley, 2009.Google ScholarGoogle Scholar
  2. T. Murata, H. Ishibuchi, M. Gen, "Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms", EMO'01: 82--95, 2001.Google ScholarGoogle Scholar
  3. I. Das et. al., "Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems", SIAM J. Optim, 8(3): 631--657, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6): 712--731, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y-Y Tan, et al., "MOEA/D + Uniform Design: A New Version of MOEA/D for Optimization Problems with Many Objectives", Comput & OR, 40: 1648--1660, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints", IEEE Trans. Evol. Comput., 18(4): 577--601, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  7. K. Li, K. Deb, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694--716, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260--1264, 2011.Google ScholarGoogle Scholar
  9. Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231--264, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Wu, et al., "Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective Optimization", IEEE Trans. Evol. Comput., 23(3): 376--390, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 22(2): 211--225, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  12. Y. Liu, et al., "Adapting Reference Vectors and Scalarizing Functions by Growing Neural Gas to Handle Irregular Pareto Fronts", IEEE Trans. Evol. Comput., accepted for publication, 2019.Google ScholarGoogle Scholar
  13. K. Li, et al., "Integration of Preferences in Decomposition Multi-Objective Optimisation", IEEE Trans. Cyber., 2018.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Li, et al., "Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions", IEEE Trans. Fuzzy Systems, 2019.Google ScholarGoogle Scholar
  15. K. Miettinen, "Nonlinear Multiobjective Optimization", Kluwer Academic Publishers, Boston, 1999.Google ScholarGoogle Scholar
  16. Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231--264, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Jiang, et al., "Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms", IEEE Trans. Evol. Comput., 22(2): 296--313, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Wang, Q. Zhang, et al., "Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods", IEEE Trans. Evol. Comput., 20(6): 821--837, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Wang, et al., "Localized Weighted Sum Method for Many-Objective Optimization", IEEE Trans. Evol. Comput., 22(1): 3--18, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  20. Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6): 712--731, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Cheng, et al., "A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization", IEEE Trans. Evol. Comput., 20(5): 773--791, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  22. Y. Xiang, et al., "A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization", IEEE Trans. Evol. Comput., 21(1): 131--152, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Sato, "Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs", J. Heuristics, 21: 819--849, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Wu, et al., "Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective Optimization", IEEE Trans. Evol. Comput., 23(3): 376--390, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Wu, et al., "Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective Optimization", IEEE Trans. Evol. Comput., 23(3): 376--390, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Wang, Q. Zhang, et al., "Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 20(3): 475--480, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Liu, F. Gu and Q. Zhang, "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450--455, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Zhou and Q. Zhang, "Are All the Subproblems Equally Important? Resource Allocation in Decomposition-Based Multiobjective Evolutionary Algorithms", IEEE TEVC, 20(1): 52--64, 2016.Google ScholarGoogle Scholar
  29. Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6): 712--731, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284--302, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Martínez, et al., "A multi-objective PSO based on decomposition", in GECCO 2011.Google ScholarGoogle Scholar
  32. C. Chen, et al., "Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization", CEC 2009Google ScholarGoogle Scholar
  33. H. Li, et al., "An adaptive evolutionary multi-objective approach based on simulated annealing", Evol. Comput. 19(4): 561--595, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Sindhya, "A new hybrid mutation operator for multiobjective optimization with differential evolution", Soft Comput., 15:2041--2055, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Alhindi and Q. Zhang, "Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation", UKCI 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Alhindi and Q. Zhang, "MOEA/D with Tabu Search for multiobjective permutation flow shop scheduling problems", CEC 2014.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. Zhang, et al., "Accelerating MOEA/D by Nelder-Mead method", CEC 2017.Google ScholarGoogle Scholar
  38. L. Ke, Q. Zhang, et al., "MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony", IEEE Trans. Cybern., 43(6): 1845--1859, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Zhou, Q. Zhang, et al., "A Decomposition based Estimation of Distribution Algorithm for Multiobjective Traveling Salesman Problems", Computers & Mathematics with Applications, 66(10): 1857--1868, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. I. Giagkiozis, et al., "Generalized decomposition and cross entropy methods for many-objective optimization", Inf. Sci., 282: 363--387, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. de Souza, et al., "MOEA/D-GM: Using probabilistic graphical models in MOEA/D for solving combinatorial optimization problems", arXiv:1511.05625, 2015.Google ScholarGoogle Scholar
  42. H. Li and Q. Zhang, "Biased Multiobjective Optimization and Decomposition Algorithm", IEEE Trans. Cybern., 47(1): 52--66, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  43. L. Ke, Q. Zhang, et al., "MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony", IEEE Trans. Cybern., 43(6): 1845--1859, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. Zhou, Q. Zhang, et al., "A Decomposition based Estimation of Distribution Algorithm for Multiobjective Traveling Salesman Problems", Computers & Mathematics with Applications, 66(10): 1857--1868, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. Morgan, et al., "MOPC/D: A new probability collectives algorithm for multiobjective optimisation", MCDM'13, 17--24, 2013Google ScholarGoogle ScholarCross RefCross Ref
  46. Q. Zhang, et al., "Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model", IEEE Trans. Evol. Comput., 14(3): 456--474, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. T. Chugh, et al., "A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization", 22(1): 129--142, 2018.Google ScholarGoogle Scholar
  48. S. Martínez, et al., "MOEA/D assisted by RBF Networks for Expensive Multi-Objective Optimization Problems", GECCO 2013.Google ScholarGoogle Scholar
  49. K. Li, et al., "Adaptive operator selection with bandits for multiobjective evolutionary algorithm based on decomposition", IEEE Trans. Evol. Comput., 18(1): 114--130, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  50. H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284--302, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. S. Zhao, Q. Zhang, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442--446, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Jiang, et al., "An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts", IEEE Trans. Cybern, 46(2): 421--437, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  53. H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284--302, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. K. Li, Q. Zhang, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6): 909--923, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  55. M. Wu, K. Li, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21(4): 554--568, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. K. Li, Q. Zhang, et al., "Interrelationship-based selection for decomposition multiobjective optimization", IEEE Trans. Cybern. 45(10): 2076--2088, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  57. Z. Wang, Q. Zhang, et al., "Adaptive Replacement Strategies for MOEA/D", IEEE Trans. Cybern., 46(2): 474--486, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  58. Y. Yuan, et al., "Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers", IEEE Trans. Evol. Comput., 20(2): 180--198, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. B. Huberman, et. al., "An Economics Approach to Hard Computational Problems", Science, 275(5296): 51--54, 1997.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Decomposition multi-objective optimisation: current developments and future opportunities
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion
        July 2022
        2395 pages
        ISBN:9781450392686
        DOI:10.1145/3520304

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • tutorial

        Acceptance Rates

        Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia
      • Article Metrics

        • Downloads (Last 12 months)23
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader