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& Transfer Learning in Search

\. Transfer Learning

* Knowledge learnt during search is transferred
* What is transferred?
* What to transfer? « Points in the search space

* Elements of the population
* Components of elements

* Transfer of knowledge

* How to transfer?

*\When to transfer? « Areas of the search space
« Positi " f * How is it transferred?
OSItIVE VS NEgativetiansier * Forms part of the initial population of the target EA
* Focus on data and feature transfer * When is it transferred?
q * Last generations
*TLin EC * Generation intervals
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Benefits of TL in Search Case Study: Solution Space

* Genetic algorithms for solving the travelling salesman
problem (TSP)

* Improvement in performance * Symmetric TSP — Involves finding a route of minimum length

* Reduction in computational cost that visits all cities exactly once and begins and ends at the

« Reduction in th fd ded same city. The distance between cities m and n is the same
Reduction in the amount of data neede 26 e GHEETE EREET 7 2176 77,

* Improved convergence * Asymmetric TSP — Involves finding a route of minimum

length that visits all cities exactly once and begins and ends
at the same city. The distance between cities m and n is not

necessarily the same as the distance between n and m.
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Case Study: Solution Space

* What is the aim of the transfer learning?
* Define the source and target domains

* What will be transferred?

* How will it be transferred?

* When will it be transferred?

* Transformation function needed?

Case Study: Program + Heuristic Space —
Scheepers and Pillay, 2021 [2]

* Genetic programming generation construction hyper-
heuristic

* Each point/element — a parse tree representing a heuristic
* Application one dimensional bin packing (1BPP)

* Aim — reduction in computational cost of solving more
challenging problems

* Source domain — easy and medium 1 BPP problems
* Target domain — hard 1BPP problems
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Solution Space TSP
TL Case Study Discussion
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Case Study: Program + Heuristic Space —
Scheepers and Pillay, 2021 [2]

* What to transfer
* Population of last generation (TL1)
* Best individuals of each generation (TL2)
* Areas of the search space
* Frozen root (TL 2.1)
* Frozen second level (TL2.2)
* Frozen leaf nodes (TL2.3)
* How to transfer?

* When to transfer?
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Case Study: Program + Heuristic Space —
Scheepers and Pillay, 2021 [2]

* Performance evaluation
* Objective value — Number of bins
» Computational effort — Koza computational effort formula

log(1 —x) 1

R(z,M,i) = m

f@, M,i) = R(z, M, i)« M %i

* Generality — Standard deviation of differences (SDD)

f

N . \ o
SDD(H) = \/»’72,7}\5»'; T -

where N is the number of problem instances, z; = 0 if o;
=0 and b; = 0. Otherwise z; = (|o; — b;|)/average = 100.
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Case Study: Heuristic Space

* Selection construction/perturbative genetic algorithm hyper-
heuristic for educational timetabling

* Timetabling problems involve allocation of an entities, e.g.
exams, classes to timetable slots to reduce had and soft
constraints

* Educational timetabling

* Examination timetabling
* University course timetabling
* School timetabling

15
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Case Study: Program + Heuristic Space —
Scheepers and Pillay, 2021 [2]

* Objective value performance
* TL approaches performed better
* TL2, TL2.2 and TL2.3 produced the best results
* Best approach of the three is problem dependent

* Computational effort performance
¢ TL2 best computational effort
* TL2.1, TL2.2, TL2.3 better than TL1

* Generality performance

¢ TL1 and TL2 best generality
* TL2.1, TL2.2, TL2.3 worst generality
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Case Study: Heuristic Space

* What is the aim of the transfer learning?
* Define the source and target domains

* What will be transferred?

* How will it be transferred?

* When will it be transferred?
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Heuristic Space Educational
Timetabling
TL Case Study Discussion
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Case Study: Heuristic Space - Singh and
Pillay, 2022 [3]

* What is transferred?
* Pheromone maps from of the last iteration of the ACO
* How is it transferred?
* Best pheromone map of the last iteration of the source ACO hyper-
heuristic is transferred
* When is it transferred?
 Used at the beginning of the target ACO hyper-heuristic instead of
creating the maps randomly
* Performance
* Drastic reduction in computational cost

* Improvement in objective value for MSSP and QAP, poorer objective
values for 1BPP
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- Case Study: Heuristic Space Singh and
Pillay, 2022 [3]

* Ant colony optimization generation construction hyper-
heuristic

* Aim: Reduction in computational cost
* Applications
* Movie scene scheduling problem
* Quadratic assignment problem
* One dimensional bin packing
* Source domain: Simpler problem instance/s
* Target domain: Complicated problem instance/s
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~ Case Study: Program Space

* Genetic programming for evolving prediction models for
disease diagnosis
* Given relevant patient attributes the model predicts whether
the patient has the disease or not
* Disease diagnosis
* Heat disease
* Diabetes
* COVID-19
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L. Case Study: Program Space

* What is the aim of the transfer learning?
* Define the source and target domains

* What will be transferred?

* How will it be transferred?

* When will it be transferred?
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Case Study: Design Space — Nyathi and
Pillay, 2021 [1]

* Automated design of the genetic programming algorithm to
produce classifiers

* Design decisions represented in chromosome
* Representation
* Parameter values
* Genetic operators
* Control flow
* Grammatical evolution used for automated design (AutoGE)
* Source domain: NSL-KDD
* Target domain: UCI benchmark set
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Program Space Prediction
TL Case Study Discussion
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Case Study: Design Space — Nyathi and
Pillay, 2021 [1]

* What is transferred?
* Design of the GP classification algorithm
* How is it transferred?
* Best performing designs from the source AutoGE to the target
AutoGE
* When is it transferred?
* Best performing designs form the initial population generation
of the AutoGE
* Performance
* Improved accuracy with using transfer learning
* Reduction in computational cost
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Differences/Similarities for Different
Spaces

* Benefit/aim of transfer learning
* What to transfer?

* How to transfer?

* When to transfer?

* Performance

* Challenges
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27

1044

Automated Transfer Learning

* Automating TL design decisions
* Design decision
* Approaches
* Selection perturbative hyper-heuristic — single point
hyper-heuristic applied to randomly created design
* Genetic algorithm — Each chromosome is a design

* Automated transfer learning for evolutionary algorithms
(ATLEA)
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Discussion: Future Research
Directions
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