skip to main content
10.1145/3520304.3533656acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Evolution of neural networks

Published:19 July 2022Publication History
First page image

References

  1. A. Agogino, K. Tumer, and R. Miikkulainen, Efficient credit assignment through evaluation function decomposition, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Parikh, and D. Batra, Vqa: Visual question answering, International Journal of Computer Vision, 123(1):4--31 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that constructs recurrent neural networks, IEEE Transactions on Neural Networks, 5:54--65 (1994).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. K. Belew, Evolution, learning and culture: Computational metaphors for adaptive algorithms, Complex Systems, 4:11--49 (1990).Google ScholarGoogle Scholar
  5. G. Bingham, W. Macke, and R. Miikkulainen, Evolutionary optimization of deep learning activation functions, in: Proceedings of the Genetic and Evolutionary Computation Conference (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. D. Bryant and R. Miikkulainen, Acquiring visibly intelligent behavior with example-guided neuroevolution, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. J. Chalmers, The evolution of learning: An experiment in genetic connectionism, in: Touretzky et al.88, 81--90.Google ScholarGoogle Scholar
  8. D. B. D'Ambrosio and K. O. Stanley, A novel generative encoding for exploiting neural network sensor and output geometry, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO '07), 974--981, ACM, New York, NY, USA (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. B. D'Ambrosio and K. O. Stanley, Generative encoding for multiagent learning, in: Proceedings of the Genetic and Evolutionary Computation Conference (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Deb and C. Myburgh, A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variablesbreaking the billion-variable barrier in real-world, European Journal of Operational Research, 261:460--474 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  11. X. Dong and Y. Yang, Nas-bench-201: Extending the scope of reproducible neural architecture search, in: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26--30, 2020, OpenReview.net (2020).Google ScholarGoogle Scholar
  12. D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary Intelligence, 1:47--62 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Floreano and J. Urzelai, Evolutionary robots with on-line self-organization and behavioral fitness, Neural Networks, 13:431--4434 (2000).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Fontaine and S. Nikolaidis, Differentiable quality diversity, in: Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds., volume 34, 10040--10052, Curran Associates, Inc. (2021).Google ScholarGoogle Scholar
  15. O. Francon, S. Gonzalez, B. Hodjat, E. Meyerson, R. Miikkulainen, X. Qiu, and H. Shahrzad, Effective reinforcement learning through evolutionary surrogate-assisted prescription, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2020), 814--822 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Fullmer and R. Miikkulainen, Using marker-based genetic encoding of neural networks to evolve finite-state behaviour, in: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, F. J. Varela and P. Bourgine, eds., 255--262, MIT Press, Cambridge, MA (1992).Google ScholarGoogle Scholar
  17. J. J. Gauci and K. O. Stanley, A case study on the critical role of geometric regularity in machine learning, in: Proceedings of the Twenty-Third National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. F. Gomez, Robust Non-Linear Control Through Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (2003).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Gomez and R. Miikkulainen, Incremental evolution of complex general behavior, Adaptive Behavior, 5:317--342 (1997).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses, Journal of Machine Learning Research, 9:937--965 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Gonzalez and R. Miikkulainen, Improved training speed, accuracy, and data utilization through loss function optimization, in: Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC) (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Gonzalez and R. Miikkulainen, Optimizing loss functions through multivariate taylor polynomial parameterization, in: Proceedings of the Genetic and Evolutionary Computation Conference (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect, Evolutionary Computation, 1:213--233 (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Hale, S. Webster, A. Petherick, T. Phillips, and B. Kira, Oxford COVID-19 government response tracker, Blavatnik School of Government (2020). https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker, accessed 5/26/2020.Google ScholarGoogle Scholar
  25. H. Hoos, Programming by optimization, Communications of the ACM, 55:70--80 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Proceedings of the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds., 2588--2595, IEEE Press, Piscataway, NJ (2003).Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu, Population based training of neural networks, arXiv:1711.09846 (2017).Google ScholarGoogle Scholar
  28. A. Jain, A. Subramoney, and R. Miikkulainen, Task decomposition with neuroevolution in extended predator-prey domain, in: Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems, East Lansing, MI, USA (2012).Google ScholarGoogle ScholarCross RefCross Ref
  29. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, Human-level concept learning through probabilistic program induction, Science, 350(6266):1332--1338 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Lehman, J. Chen, J. Clune, and K. O. Stanley, ES is more than just a traditional finite-difference approximator, arXiv:1712.06568 (2017).Google ScholarGoogle Scholar
  31. J. Lehman and K. O. Stanley, Abandoning objectives: Evolution through the search for novelty alone, Evolutionary Computation, 19:189--223 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Lessin, D. Fussell, and R. Miikkulainen, Open-ended behavioral complexity for evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Lessin, D. Fussell, and R. Miikkulainen, Trading control intelligence for physical intelligence: Muscle drives in evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Li and R. Miikkulainen, Evolving adaptive poker players for effective opponent exploitation, in: AAAI-17 Workshop on Computer Poker and Imperfect Information Games, San Francisco, CA, USA (2017).Google ScholarGoogle Scholar
  35. J. Liang, S. Gonzalez, H. Shahrzad, and R. Miikkulainen, Regularized evolutionary population-based training, in: Proceedings of the Genetic and Evolutionary Computation Conference (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and R. Miikkulainen, Evolutionary neural AutoML for deep learning, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2019) (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Liang, E. Meyerson, and R. Miikkulainen, Evolutionary architecture search for deep multitask networks, in: Proceedings of the Genetic and Evolutionary Computation Conference (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Z. Liang and R. Miikkulainen, Evolutionary bilevel optimization for complex control tasks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Liu, A. Brock, K. Simonyan, and Q. V. Le, Evolving normalization-activation layers, arXiv:2004.02967 (2020).Google ScholarGoogle Scholar
  40. Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEEE Transactions on Evolutionary Computation, 4:380--387 (2000).Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Lockett and R. Miikkulainen, Neuroannealing: Martingale-driven learning for neural network, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. P. McQuesten, Cultural Enhancement of Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2002). Technical Report AI-02-295.Google ScholarGoogle Scholar
  43. E. Meyerson, J. Lehman, and R. Miikkulainen, Learning behavior characterizations for novelty search, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), ACM, New York, NY (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. E. Meyerson and R. Miikkulainen, Discovering evolutionary stepping stones through behavior domination, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017), 139--146, Berlin, Germany (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. Meyerson and R. Miikkulainen, Pseudo-task augmentation: From deep multitask learning to intratask sharing---and back, in: Proceedings of the 35th International Conference on Machine Learning (2018).Google ScholarGoogle Scholar
  46. E. Meyerson and R. Miikkulainen, Modular universal reparameterization: Deep multi-task learning across diverse domains, in: Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and R. Garnett, eds., Curran Associates, Inc. (2019).Google ScholarGoogle Scholar
  47. E. Meyerson and R. Miikkulainen, The traveling observer model: Multi-task learning through spatial variable embeddings, in: International Conference on Learning Representations (2021).Google ScholarGoogle Scholar
  48. E. Meyerson, X. Qiu, and R. Miikkulainen, Simple genetic operators are universal approximators of probability distributions (and other advantages of expressive encodings), in: Proceedings of the Genetic and Evolutionary Computation Conference (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Miikkulainen, Creative AI through evolutionary computation, in: Evolution in Action: Past, Present and Future, W. Banzhaf, B. Cheng, K. Deb, K. Holekamp, R. E. Lenski, C. Ofria, R. Pennock, B. Punch, and D. Whittaker, eds., Springer, New York (2020).Google ScholarGoogle ScholarCross RefCross Ref
  50. R. Miikkulainen, Neuroevolution, in: Encyclopedia of Machine Learning and Data Science, 3rd Edition, D. Phung, C. Sammut, and G. I. Webb, eds., Springer, New York (in press).Google ScholarGoogle Scholar
  51. R. Miikkulainen and S. Forrest, A biological perspective on evolutionary computation, Nature Machine Intelligence, 3:9--15 (2021).Google ScholarGoogle ScholarCross RefCross Ref
  52. R. Miikkulainen, O. Francon, E. Meyerson, X. Qiu, D. Sargent, E. Canzani, and B. Hodjat, From prediction to prescription: Evolutionary optimization of non-pharmaceutical interventions in the COVID-19 pandemic, IEEE Transactions on Evolutionary Computation, 25:386--401 (2021).Google ScholarGoogle ScholarCross RefCross Ref
  53. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, Evolving deep neural networks, in: Artificial Intelligence in the Age of Neural Networks and Brain Computing, C. F. Morabito, C. Alippi, Y. Choe, and R. Kozma, eds., Elsevier, New York (2020).Google ScholarGoogle Scholar
  54. R. Miikkulainen, E. Meyerson, X. Qiu, U. Sinha, R. Kumar, K. Hofmann, Y. M. Yan, M. Ye, J. Yang, D. Caiazza, and S. M. Brown, Evaluating medical aesthetics treatments through evolved age-estimation models, in: Proceedings of the Genetic and Evolutionary Computation Conference (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. E. Mjolsness, D. H. Sharp, and B. K. Alpert, Scaling, machine learning, and genetic neural nets, Advances in Applied Mathematics, 10:137--163 (1989).Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 762--767, San Francisco: Morgan Kaufmann (1989).Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. D. E. Moriarty and R. Miikkulainen, Forming neural networks through efficient and adaptive co-evolution, Evolutionary Computation, 5:373--399 (1997).Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Nolfi and D. Parisi, Good teaching inputs do not correspond to desired responses in ecological neural networks, Neural Processing Letters, 1(2):1--4 (1994).Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. D. Pardoe, M. Ryoo, and R. Miikkulainen, Evolving neural network ensembles for control problems, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents, Evolutionary Computation, 8:1--29 (2000).Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. K. Pugh, L. B. Soros, and K. O. Stanley, Quality diversity: A new frontier for evolutionary computation, Frontiers in Robotics and AI, 3 (2016).Google ScholarGoogle Scholar
  62. A. Rawal, P. Rajagopalan, and R. Miikkulainen, Constructing competitive and cooperative agent behavior using coevolution, in: IEEE Conference on Computational Intelligence and Games (CIG 2010), Copenhagen, Denmark (2010).Google ScholarGoogle ScholarCross RefCross Ref
  63. E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, Regularized evolution for image classifier architecture search, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. E. Real, C. Liang, D. So, and Q. Le, AutoML-zero: Evolving machine learning algorithms from scratch, in: Proceedings of the 37th International Conference on Machine Learning, H. D. III and A. Singh, eds., volume 119, 8007--8019 (2020).Google ScholarGoogle Scholar
  65. J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations, in: Proceeedings of the Genetic and Evolutionary Computation Conference, 1045--1052 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. Reisinger, K. O. Stanley, and R. Miikkulainen, Evolving reusable neural modules, in: Proceedings of the Genetic and Evolutionary Computation Conference (2004).Google ScholarGoogle ScholarCross RefCross Ref
  67. T. P. Runarsson and M. T. Jonsson, Evolution and design of distributed learning rules, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 59--63, IEEE, Piscataway, NJ (2000).Google ScholarGoogle ScholarCross RefCross Ref
  68. T. Salimans, J. Ho, X. Chen, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv:1703.03864 (2017).Google ScholarGoogle Scholar
  69. J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural networks: A survey of the state of the art, in: Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. Schaffer, eds., 1--37, IEEE Computer Society Press, Los Alamitos, CA (1992).Google ScholarGoogle ScholarCross RefCross Ref
  70. M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, Science, 324(5923):81--85 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  71. J. Schrum, I. Karpov, and R. Miikkulainen, Humanlike combat behavior via multiobjective neuroevolution, in: Believable Bots, P. Hingston, ed., Springer, New York (2012).Google ScholarGoogle Scholar
  72. J. Schrum and R. Miikkulainen, Evolving agent behavior in multiobjective domains using fitness-based shaping, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik, and K. O. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space, Evolutionary Computation, 19:345--371 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. H. Shahrzad, B. Hodjat, C. Dolle, A. Denissov, S. Lau, D. Goodhew, J. Dyer, and R. Miikkulainen, Enhanced optimization with composite objectives and novelty pulsation, in: Genetic Programming Theory and Practice XVII, W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo, and B. Worzel, eds., 275--293, Springer, New York (2020).Google ScholarGoogle ScholarCross RefCross Ref
  75. A. A. Siddiqi and S. M. Lucas, A comparison of matrix rewriting versus direct encoding for evolving neural networks, in: Proceedings of IEEE International Conference on Evolutionary Computation, 392--397, IEEE, Piscataway, NJ (1998).Google ScholarGoogle ScholarCross RefCross Ref
  76. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, Mastering the game of go without human knowledge, Nature, 550:354--359 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  77. K. Sims, Evolving 3D morphology and behavior by competition, in: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), R. A. Brooks and P. Maes, eds., 28--39, MIT Press, Cambridge, MA (1994).Google ScholarGoogle Scholar
  78. K. O. Stanley, Efficient Evolution of Neural Networks Through Complexification, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2003).Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, in: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE, Piscataway, NJ (2003).Google ScholarGoogle ScholarCross RefCross Ref
  80. K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, Designing neural networks through evolutionary algorithms, Nature Machine Intelligence, 1:24--35 (2019).Google ScholarGoogle ScholarCross RefCross Ref
  81. K. O. Stanley and J. Lehman, Why Greatness Cannot Be Planned: The Myth of the Objective, Springer, Berlin (2015).Google ScholarGoogle ScholarCross RefCross Ref
  82. K. O. Stanley and R. Miikkulainen, Evolving Neural Networks Through Augmenting Topologies, Evolutionary Computation, 10:99--127 (2002).Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny, Artificial Life, 9(2):93--130 (2003).Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. D. G. Stork, S. Walker, M. Burns, and B. Jackson, Preadaptation in neural circuits, in: International Joint Conference on Neural Networks (Washington, DC), 202--205, IEEE, Piscataway, NJ (1990).Google ScholarGoogle Scholar
  85. F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning, arXiv:1712.06567 (2017).Google ScholarGoogle Scholar
  86. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1--9 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  87. W. Tansey, E. Feasley, and R. Miikkulainen, Accelerating evolution via egalitarian social learning, in: Proceedings of the 14th Annual Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, Pennsylvania, USA (July 2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School, San Francisco: Morgan Kaufmann (1990).Google ScholarGoogle Scholar
  89. C. C. Tutum, S. Abdulquddos, and R. Miikkulainen, Generalization of agent behavior through explicit representation of context, in: Proceedings of the 3rd IEEE Conference on Games (COG-2021) (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti, Incremental robot shaping, Connection Science, 10:341--360 (1998).Google ScholarGoogle ScholarCross RefCross Ref
  91. V. K. Valsalam and R. Miikkulainen, Evolving symmetric and modular neural networks for distributed control, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2009, 731--738, ACM, New York, NY, USA (2009).Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, Show and tell: A neural image caption generator, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3156--3164 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  93. R. Wang, J. Lehman, J. Clune, and K. O. Stanley, POET: open-ended coevolution of environments and their optimized solutions, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13--17, 2019, 142--151 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, Evolving keepaway soccer players through task decomposition, Machine Learning, 59:5--30 (2005).Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning, Journal of Machine Learning Research, 7:877--917 (2006).Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. D. Whitley, S. Dominic, R. Das, and C. W. Anderson, Genetic reinforcement learning for neurocontrol problems, Machine Learning, 13:259--284 (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. A. P. Wieland, Evolving controls for unstable systems, in: Touretzky et al.88, 91--102.Google ScholarGoogle Scholar
  98. X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423--1447 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  99. C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, NAS-bench-101: Towards reproducible neural architecture search, in: Proceedings of the 36th International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, eds., volume 97, 7105--7114 (2019).Google ScholarGoogle Scholar
  100. A. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter, Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks, in: International Conference on Learning Representations (2022).Google ScholarGoogle Scholar

Index Terms

  1. Evolution of neural networks
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion
              July 2022
              2395 pages
              ISBN:9781450392686
              DOI:10.1145/3520304

              Copyright © 2022 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 19 July 2022

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • tutorial

              Acceptance Rates

              Overall Acceptance Rate1,669of4,410submissions,38%

              Upcoming Conference

              GECCO '24
              Genetic and Evolutionary Computation Conference
              July 14 - 18, 2024
              Melbourne , VIC , Australia
            • Article Metrics

              • Downloads (Last 12 months)26
              • Downloads (Last 6 weeks)1

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader