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ABSTRACT
Activation functions (AFs) play a pivotal role in the performance

of neural networks. The Rectified Linear Unit (ReLU) is currently

the most commonly used AF. Several replacements to ReLU have

been suggested but improvements have proven inconsistent. Some

AFs exhibit better performance for specific tasks, but it is hard to

know a priori how to select the appropriate one(s). Studying both

standard fully connected neural networks (FCNs) and convolutional

neural networks (CNNs), we propose a novel, three-population, co-

evolutionary algorithm to evolve AFs, and compare it to four other

methods, both evolutionary and non-evolutionary. Tested on four

datasets—MNIST, FashionMNIST, KMNIST, and USPS—coevolution

proves to be a performant algorithm for finding good AFs and AF

architectures.
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1 INTRODUCTION
Artifical Neural Networks (ANNs), and, specifically, Deep Neural

Networks (DNNs), have gained much traction in recent years and

are now being effectively put to use in a variety of applications.

Considerable work has been done to improve training and testing

performance, including various initialization techniques, weight-

tuning algorithms, different architectures, and more. However, one

hyperparameter is usually left untouched: the activation function

(AF). While recent work has seen the design of novel AFs [1, 22–24],

the Rectified Linear Unit (ReLU) remains by far the most commonly
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used one, mainly due to its overcoming the vanishing-gradient

problem, thus affording faster learning and better performance.

AFs are crucial first and foremost because they transform a

neural network from a simple linear algorithm into a non-linear

one, thus allowing the network to learn complex mappings and

functions. If the AFs of a neural network were removed, the whole

architecture could be reduced to a linear operation on its input,

with very limited use. Traditionally, the most commonly used AFs

were sigmoid functions—such as logistic and hyperbolic tangent—

which are bounded, differentiable, and monotonic. Such functions

are prone to the vanishing-gradient problem [9]: when the function

value is either too high or too low, the derivative becomes very small,

and learning becomes very poor. To address this issue, different

functions have been developed, the most prominent of which being

the ReLU. Though it has proven highly performant, the ReLU is

susceptible to a problem known as “dying” [11]: because all negative

values are mapped to zero, there might be a scenario where a large

number of ReLU neurons only output a 0 value. It might cause the

entire network to “die”, resulting in a constant function.

Different variants of ReLU, such as PReLU [32] and Leaky ReLU

[31], have been proposed to address this issue. Although there

has been much research towards creating different variants, ReLU

remains themost commonly usedAF. Highly popular architectures—

includingAlexNet, ZFNet, VGGNet, SegNet, GoogLeNet, SqueezeNet,

ResNet, ResNeXt, MobileNet, and SeNet—have a common AF setup,

with ReLUs in the hidden layers and a softmax function in the

output layer [18].

This paper introduces a novel coevolutionary algorithm to evolve

AFs for image-classification tasks. Our method is able to handle

the simultaneous coevolution of three types of AFs: input-layer

AFs, hidden-layer AFs, and output-layer AFs. We surmise that com-

bining different AFs throughout the architecture may improve the

network’s performance. We compare our novel algorithm to four

different methods: standard ReLU- or LeakyReLU-based networks,

networks whose AFs are produced randomly, and two forms of

single-population evolution, differing in whether an individual rep-

resents a single AF or three AFs. We chose ReLU and LeakyReLU as

baseline AFs since we noticed that they are the most-used functions

in the deep-learning domain.

In the next section we review the literature on evolving new

AFs through evolutionary computation. Section 3 delineates the

different methods used in this paper and our proposed coevolution-

ary algorithm. The experimental setup used to test the methods

is delineated in Section 4. We present results and analyze them in

Section 5. Finally, we offer concluding remarks in Section 6.
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2 PREVIOUS WORK
There has been extensive research into using evolutionary algo-

rithms for optimizing and improving ANNs and DNNs, which can

be divided into two main categories: 1) topology optimization [13],

and 2) hyperparameter and weight optimization [10]. Topology-

optimization methods can be further divided into two groups: con-

structive and destructive. Constructive techniques start with a sim-

ple topology and gradually enhance its complexity until it meets

an optimality requirement. Contrarily, destructive methods start

with a complicated topology and gradually remove unneeded com-

ponents.

One of the most well-known methods is NeuroEvolution of Aug-

menting Topologies (NEAT) [27]. This is an evolutionary algorithm-

based method for developing neural networks. NEAT follows the

constructive approach, with the evolutionary algorithm beginning

with small, basic networks and gradually increasing their com-

plexity over the generations. Finding intricate and complex neural

networks is possible through this iterative approach. NEAT tries to

modify network topologies and weights in an attempt to strike a

balance between the fitness of developed solutions and their diver-

sity.

[28] used a genetic algorithm to evolve neural-network architec-

tures andweight initialization of deep CNNs for image-classification

problems. Another work that used evolution to search for neural-

network architectures is [30], in which they utilized a partial weight-

sharing, one-shot neural architecture search framework that di-

rectly evolved complete neural-network architectures. [29] evolved

neural-network architectures using a training-free genetic algo-

rithm.

There are many more papers that aim to optimize a neural net-

work’s architecture without evolution, e.g., [8], wherein they in-

troduced an automatic machine learning technique to optimise a

CNN’s architecture by predicting the performance of the network.

Another interesting work is [7], in which they trained an over-

parameterized network and then used a pruning criterion to prune

the network.

Hyperparameter optimization is also a thriving field of research.

The impact of hyperparameters on different deep-learning architec-

tures has revealed complicated connections, with hyperparameters

that increase performance in basic networks not having the same

effect with more sophisticated topologies [6]. Selecting the right

AF(s) for a specific task is crucial for the success of the neural

network.

There are four commonly used methods for hyperparameter

selection (including AFs): 1) manual search, 2) grid search, 3) ran-

dom search, and 4) Bayesian optimization. Manual search simply

refers to the user’s manually selecting hyperparameters, a method

often used in practice because it is quick and can result in sufficing

results. Nonetheless, this technique makes it difficult to replicate

results on new data, especially for non-experts. Grid search exhaus-

tively generates sets of hyperparameters from values supplied by

the user. This approach relies on the programmer’s knowledge of

the problem and produces repeatable results, but it is inefficient

when exploring a large hyperparameter space. Grid search is com-

monly used because it is simple to set up, parallelize, and explore

the whole search space (to some extent). Random search is similar

to grid search except that hyperparameter values are chosen at

random from ranges specified by the user; it often works better

than other methods [3]. Bayesian optimization is based upon using

the information gained from a given trial experiment to decide how

to adjust the hyperparameters for the next trial [26].

A recent work by [17] focused on evolving AFs for neural net-

works. Their work differs in several aspects from our novel coevo-

lutionary algorithm:

(1) They used standard evolution, whereas we use coevolution.

(2) We deploy Cartesian genetic programming (CGP)—with its

immanent bloat-control—rather than (bloat-susceptible) tree-

based GP.

(3) We use evolved AFs in all network layers, as opposed to their

work, which only used evolved AFs in the hidden layers.

(4) We use four benchmark image datasets in full, whereas they

used a small subset of image datasets, and tabular datasets.

(5) We investigate two different architectures (fully connected

neural network and convolutional neural network), with two

different baseline AFs (ReLU and Leaky ReLU), while they

used a randomly chosen architecture for each of the tested

datasets.

A number of papers evolve AFs using genetic programming

[2, 4, 5], but we have not found any using coevolution for this

purpose. We believe coevolution is well-adapted to the problem

at hand, given the different natures of AFs depending on their

placement—input, hidden, or output layer.

We are interested in coevolving AFs for fixed-topology neural

networks. The coevolutionary algorithm iteratively evolves better

AFs, a technique that has received less attention so far within the

scope of AFs.

3 METHODS
We compare five different methods for obtaining neural networks

that perform a given task:

(1) Standard fully connected neural network (FCN) and standard

convolutional neural network (CNN).

(2) Random FCN and random CNN.

(3) Single-population evolution, where an individual represents

a single AF.

(4) Single-population evolution, where an individual represents

three AFs: input-layer AF, hidden-layer AF, and output-layer

AF.

(5) Coevolutionary algorithm, with three populations: a popu-

lation of input-layer AFs, a population of hidden-layer AFs,

and a population of output-layer AFs.

We used the following hyperparmaters for the learning algorithm

in each of the methods: learning rate – 0.01, optimizer – Adam,

batch size –
1
10 the size of the training set. PyTorch’s default initial-

ization was used both for weights and biases, meaning that values

were initialized from𝑈 (−
√
𝑘,
√
𝑘), where𝑘 = 1

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑖𝑛𝑝𝑢𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
.

Below we delineate each of the above methods in more detail.

We used the same number of candidate solutions in each of the

different methods to conduct a fair comparison. Also, before moving

on to describe the evolutionary-based algorithms, we provide a



Evolution of Activation Functions for Deep Learning-Based Image Classification GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Table 1: FCN architecture.

Layer Layer type Number of neurons
1 (input) Fully Connected 784

2-6 (hidden) Fully Connected (× 5) 32

7 (output) Fully Connected 10

Table 2: CNN architecture.

Layer Layer type No. channels Filter size Stride
1 Convolution 32 3 × 3 1

2 Max Pooling N/A 3 × 3 2

3 Convolution 64 3 × 3 1

4 Max Pooling N/A 3 × 3 2

5 Dropout (𝑝 = 0.5) N/A N/A N/A

6 Fully Connected 1600 N/A N/A

7 Fully Connected 1000 N/A N/A

8 Fully Connected 10 N/A N/A

brief description of Cartesian genetic programming, the flavor of

evolutionary algorithm we used herein.

3.1 Standard neural networks
A standard FCN is typically composed of several building blocks that

are chained sequentially, starting with data input and ending with

an output (uponwhich a loss function is computed). In the Standard-
FCN architecturewe used, the non-linear functions torch.nn.ReLU
or torch.nn.LeakyReLU follow each fully connected layer (and be-

fore the final softmax layer). In the Standard-CNN architecture we

used, torch.nn.ReLU or torch.nn.LeakyReLU follow each con-

volution layer and the last fully connected layer (before the final

softmax layer). ReLU and Leaky ReLU thus form our baseline AFs

for comparison.

In our setting (for all methods), a network requires three AFs

(which can be identical—or not): an input-layer AF, a hidden-layer

AF, and an output-layer AF. For FCNs, the first AF is applied after

the first torch.nn.Linear layer, the second AF is applied after

each of the hidden torch.nn.Linear layers, and the third AF is

applied after the last torch.nn.Linear layer (before the softmax

layer; see Table 1). For CNNs, the first AF is applied after the first

torch.nn.Conv2D layer, the second AF is applied after the second

torch.nn.Conv2D layer, and the third AF is applied after the first

torch.nn.Linear layer (see Table 2).

3.2 Random neural networks
Random search is a class of numerical optimization methods that do

not consider the problem’s gradient, allowing them to be utilized on

functions that are neither continuous nor differentiable. Herein, we

randomly created a set of candidate (AF) solutions, with each one

comprising three ordered AFs. We generated max_iter*3 candidate
solutions for fair comparison with CGP (max_iter—see Table 3),
by repeatedly creating a random initial generation through CGP.

Each candidate solution was then trained over the train1 set for 3

epochs
1
and its score was computed as the accuracy over the train2

1
3 epochs proved a good tradeoff between evolution-driving fitness and runtime.

Table 3: Hyperparameters used by CGP.

Parameter Description Value
operators list of primitives see Table 4

n_const number of symbolic constants 0

n_rows number of rows in the code block 5

n_columns number of columns in the code block 5

n_back number of rows to look back for connections 5

n_mutations number of mutations per offspring 3

mutation_method specific mutation method point

max_iter maximum number of generations 50

lambda number of offspring per generation 4

f_tol absolute error acceptable for convergence 0.01

n_jobs number of jobs 1

set. Then, we pick the best (top-accuracy) candidate solution for

comparison.

3.3 Cartesian genetic programming
Cartesian genetic programming (CGP) is an evolutionary algorithm

wherein an evolving individual is represented as a two-dimensional

grid of computational nodes—often an a-cyclic graph—which to-

gether express a program [14]. It originally grew from a mechanism

for developing digital circuits [16]. An individual is represented

by a linear genome, composed of integer genes, each encoding a

single node in the graph, which represents a specific function. A

node consists of a function, from a given table of functions, and

connections, specifying where the data for the node comes from.

A sample individual is shown in Figure 1. There are three hyper-

parameters that define the connectivity and dimensionality of the

encoded architecture: 1) number of rows, 2) number of columns,

and 3) number of rows to look back for connections—this limits

the columns from which a node can acquire its inputs. This rep-

resentation is simple, flexible, and convenient for many problems.

Typically, evolution begins with a population of randomly selected

candidate solutions. In our case, because we are evolving AFs, an

individual in a population represents an AF. Driven by a fitness

function and using stochastic modification operators, CGP is able

to produce successively better models in an iterative manner.

The CGP library used in this paper [21] evolves the popula-

tion in a (1 + 𝜆)-manner, i.e., in each generation it creates 𝜆 off-

spring (we used the default 𝜆 = 4) and compares their fitness

to the parent individual. The fittest individual carries over to the

next generation; in case of a draw, the offspring is preferred over

the parent. Tournament selection is used, with tournament size

𝑘 = |𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 |, single-point mutation, and no crossover. For

more details, see [15, 21]. Table 3 delineates the hyperparameters

used by the CGP algorithm, and Table 4 shows the primitive set.

3.4 Evo-Single: Single-population evolution
Evo-Single is a single-population evolutionary algorithm, wherein

an individual represents a single AF used throughout the whole

network (as explained in Section 3.1). We start with the ReLU AF

or the Leaky ReLU AF. Then we iterate, mutating the AF at every

iteration of the CGP algorithm. Each individual is then trained

over the train1 set for 3 epochs and its fitness is computed as the

accuracy over the train2 set. After max_iter ∗ 3 = 150 iterations,

we select the individual whose performance on the train2 set was
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Figure 1: A sample CGP individual, with 3 inputs—𝑥,−1, 1—and 1 output—𝑦. The genome consists of 5 3-valued genes, per 4
functional units, plus the output specification (no genes for the inputs). The first value of each 3-valued gene is the function’s
index in the lookup table of functions (bottom-left), and the remaining two values are parameter nodes. The last gene deter-
mines the outputs to return. In the example above, with 𝑛𝑖 representing node 𝑖: node 3, gene 101, 𝑓1 (𝑛0, 𝑛1) = 𝑛0 × 𝑛1; node
4, gene 330, 𝑓3 (𝑛3) = 𝑒𝑛3 (unary function, 3rd gene value ignored); node 5, gene 042, 𝑓0 (𝑛4, 𝑛2) = 𝑛4 + 𝑛2; node 6, gene 250,
𝑓2 (𝑛5) = 1

𝑛5
; node 7, output node, 𝑛6 is the designated output value. The topology is fixed throughout evolution, while the

genome evolves.

Table 4: Set of primitives used by CGP. Left: Standard AFs.
Right: Mathematical functions.

AF Expression AF Expression
ReLU 𝑓 (𝑥) =𝑚𝑎𝑥 (𝑥, 0) Max 𝑓 (𝑥,𝑦) =𝑚𝑎𝑥 (𝑥,𝑦)
Tanh 𝑓 (𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 Min 𝑓 (𝑥,𝑦) =𝑚𝑖𝑛(𝑥,𝑦)
Leaky ReLU 𝑓 (𝑥 < 0) = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 · 𝑥 Add 𝑓 (𝑥,𝑦) = 𝑥 + 𝑦

𝑓 (𝑥 ≥ 0) = 𝑥

ELU 𝑓 (𝑥 ≤ 0) = (𝑒𝑥𝑝 (𝑥) − 1) Sub 𝑓 (𝑥,𝑦) = 𝑥 − 𝑦
𝑓 (𝑥 > 0) = 𝑥

HardShrink 𝑓 (𝑥 < −𝜆) = 𝑥 Mul 𝑓 (𝑥,𝑦) = 𝑥 · 𝑦
𝑓 (𝑥 > 𝜆) = 𝑥

𝑓 (−𝜆 ≤ 𝑥 ≤ 𝜆) = 0

CELU 𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) +𝑚𝑖𝑛(0, 𝛼 (𝑒
𝑥
𝛼 − 1)

Hardtanh 𝑓 (𝑥 > 1) = 1
𝑓 (𝑥 < −1) = −1
𝑓 (−1 ≤ 𝑥 ≤ 1) = 𝑥

Hardswish 𝑓 (𝑥 ≤ −3) = 0
𝑓 (𝑥 ≥ 3) = −1
𝑓 (−3 < 𝑥 ≤ 3) = 𝑥 · (𝑥+3)6

Softshrink 𝑓 (𝑥 > 𝜆) = 𝑥 − 𝜆
𝑓 (𝑥 < −𝜆) = 𝑥 + 𝜆
𝑓 (−𝜆 ≤ 𝑥 ≤ 𝜆) = 0

RReLU 𝑓 (𝑥 ≥ 0) = 𝑥

𝑓 (𝑥 < 0) = 𝛼 · 𝑥
(𝛼 is uniformly, randomly sampled)

best. This individual is then compared against the other methods.

The fitness-computation scheme is shown in Figure 2.

3.5 Evo-Triple: Single-population evolution
Evo-Triple is a single-population evolutionary algorithm, wherein

an individual comprises an array of 3 AFs, the first being the input-

layer AF, the second being the hidden-layer AF, and the third being

the output-layer AF. The AFs are used throughout the network as

explained in Section 3.1. We start with 3 ReLU AFs or 3 Leaky ReLU

AFs. Then we iterate, mutating each of the AFs at every iteration

of the CGP algorithm. Each individual is then trained over the

train1 set for 3 epochs and its fitness is computed as the accuracy

over the train2 set. After max_iter ∗ 3 = 150 iterations, we select

the individual whose performance on the train2 set was best. This

individual is than compared against the other methods. As with

Evo-Single, training uses the train1 set, and fitness is computed

Figure 2: Evo-Single: Fitness computation of an individual
in the population. The same AF is used throughout the net-
work, in this example 𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ(𝑥) + 2𝑥 .

over the train2 set. The fitness-computation scheme is shown in

Figure 3.

3.6 Coevo: Three-population coevolution
Coevolution refers to the simultaneous evolution of two or more

species with coupled fitness [20]. Coevolution can be mutualistic,
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Figure 3: Evo-Triple: Fitness computation of an individual
in the population, which comprises 3 AFs, in this example:
{𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ(𝑥), 𝑅𝑒𝐿𝑈 (𝑥),𝑇𝑎𝑛ℎ(𝑥2)}.

parasitic, or commensalistic [25]. In mutualistic coevolution, two

or more species reciprocally affect each other beneficially. Parasitic

coevolution is a competitive relationship between species. Com-

mensalistic coevolution is a relationship between species where

one of the species gains benefits while the other neither benefits

nor is harmed. In this paper we focus on mutualistic, or cooper-

ative coevolution, which is based on the collaboration of several

independently evolving species to solve a problem. An individual’s

fitness is determined by its ability to cooperate with members of

the other species.

Our coevolutionary algorithm comprises three separate popula-

tions: 1) input-layer AFs, 2) hidden-layer AFs, 3) output-layer AFs.

Combining three individuals—one from each population—results

in an AF architecture that can be evaluated. For each evolved in-

dividual in each population—an AF—we evaluated its fitness by

choosing the two best (top-fitness) individuals of the two other

populations from the previous generation. Each population evolved

for𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 50 iterations (generations). We then created a neu-

ral network composed of the three AFs in the respective input,

hidden, and output layers. The scheme for fitness computation is

depicted in Figure 4. As with Evo-Single and Evo-Triple, training

uses the train1 set, and fitness is computed over the train2 set. The

fitness-computation scheme is shown in Figure 4. The coevolution-

ary algorithm is described in Algorithm 1.

Table 5: Datasets. Note: 1 × ℎ ×𝑤 represents a single-channel
(greyscale) image of height ℎ and width𝑤 .

Dataset Images Classes Training Test

MNIST 1 × 28 × 28 10 60,000 10,000

KMNIST 1 × 28 × 28 10 60,000 10,000

FashionMNIST 1 × 28 × 28 10 60,000 10,000

USPS 1 × 16 × 16 10 7291 2007

There might arise a concern over the differentiability of evolved

AFs (PyTorch performs automatic differentiation—indeed this fea-

ture is one of its main strengths). However, in practice, this does

not pose a problem since the number of points at which most func-

tions are non-differentiable is usually (infinitely) small. For example,

ReLU is non-differentiable at zero, however, in practice, it is rare

to stumble often onto this value, and when we do, an arbitrary

value can be assigned (e.g., zero), with little to no effect on perfor-

mance. Our experiments have not shown differentiability to be of

any concern.

4 EXPERIMENTAL SETUP
We experimented with four supervised classification datasets—

MNIST, FashionMNIST, KMNIST, USPS—using PyTorch’s [19] de-

fault data loaders, with pixel values normalized between [0, 1] in
the preprocessing step. The architectures used in the experiments

are fixed and delineated in Tables 1 and 2. Full information about

the datasets is shown in Table 5.

We used the Torchvision library—an accessible, open-source,

machine-vision package for PyTorch, written in C++ [12]. We used

our GPU cluster
2
, performing 20 replicate runs for each experimen-

tal setup. We split the data three ways into train1 (60%, used to

“locally” train the networks), train2 (25%, used to “globally” evolve

the networks), and test (15%) sets, using the training sets for the

different automated approaches, while saving the test set for post-

evaluation.

As noted above, we compared 5 different approaches: Standard-

FCN/CNN, Random-FCN/CNN, Evo-Single, Evo-Triple, and Coevo.

We ran multiple replicates of four kinds, each involving the execu-

tion and comparison of five different methods:

(1) FCN, ReLU: Run Standard-FCN with ReLU, Random-FCN,

Evo-Single, Evo-Triple, Coevo.

(2) FCN, Leaky ReLU: Run Standard-FCN with Leaky ReLU,

Random-FCN, Evo-Single, Evo-Triple, Coevo.

(3) CNN, ReLU: Run Standard-CNN with ReLU, Random-CNN,

Evo-Single, Evo-Triple, Coevo.

(4) CNN, Leaky ReLU: Run Standard-CNN with Leaky ReLU,

Random-CNN, Evo-Single, Evo-Triple, Coevo.

The score of a network at any given phase was its classification

accuracy over said phase’s dataset. Scoring a standard network

(either FCN or CNN) was done as follows: train the network using

as training set both the train1 and train2 sets; the trained network’s

final score for comparison purposes was its performance over the

test set. Scoring the other types of networks (random, evolved, and

coevolved) was done as follows: train the network using the train1

2
Nvidia GPU cards: 19 RTX 3090, 56 RTX 2080, 52 GTX 1080, 2 Titan XP, 4 P100.
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Figure 4: Fitness computation of an individual in Coevo requires cooperation from the other two populations.

Algorithm 1 Coevolutionary Algorithm: Main Components.

1: function create_network(individual, best_input, best_hidden, best_output, pop) # pop ∈ {input, hidden, output }
2: if pop == input then
3: model← NeuralNetwork(individual, best_hidden, best_output)
4: else if pop == hidden then
5: model← NeuralNetwork(best_input, individual, best_output)
6: else # pop == output

7: model← NeuralNetwork(best_input, best_hidden, individual)
return model

8: function NeuralNetwork(input_af, hidden_af, output_af )
9: model← Create a neural network with the given AFs, and input/output dimensions determined by dataset

10: return model

11: function fitness(model, train1, train2)
12: train model for 3 epochs with cross entropy loss and mini-batches of size |train1 |/10
13: return accuracy score over train2

set; use as fitness the score over the train2 set; the network’s final

score for comparison purposes was its performance over the test

set. Note that the random and evolutionary algorithms never saw

the test set—only the train1 and train2 sets were provided; solely

the best individual returned was ascribed a test score based on the

test set. In the next section, wherein we describe our results, values

shown are test scores (i.e., over test sets).

Algorithm 2 delineates the experimental setup in pseudo-code

format.

Figure 5 depicts an overview of the coevolutionary experimental

setup. The code is available at https://github.com/razla.

5 RESULTS AND ANALYSIS
Our experimental results are shown in Table 6. The mean of the

highest per-replicate test accuracy score over all replicates, for each

method, is reported as the best score for that method.

Of the 16 groups of runs, Coevo won 7, Evo-Triple – 6, Random

– 2, Standard – 1, and Evo-Single – 0 (wins are sometimes by a

small margin but this is usual in this field). The standard FCN or

Algorithm 2 Experimental Setup

Input:
dataset← dataset to be used

replicates← number of replicates to run

Output:
Performance measures (over test sets)

1: for rep in {1. . . replicates} do
2: Shuffle and split the dataset into train1 set, train2 set, test set
3: Standard-Net ← create a standard neural network # Net is either

FCN or CNN

4: Random-Net← best network obtained through random search

5: Evo-Single-Net ← best network obtained through Evo-Single

method

6: Evo-Triple-Net← best network obtained through Evo-Triple method

7: Coevo-Net ← best network obtained through coevolution (Algo-

rithm 1)

8: for net in {Standard-Net, Random-Net, Evo-Single-Net, Evo-Triple-
Net, Coevo-Net} do

9: Train net on train1 + train2 sets for 30 epochs
10: Test net on test set
11: Record net’s test performance

https://github.com/razla
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Figure 5: Overview of experimental coevolutionary setup. The coevolutionary algorithm uses the train1 set to train a model
and the train2 set to evaluate the evolved model’s fitness. The train1 and train2 sets are combined together and used as the
training set for the best coevolved neural network. The final model is tested over the test set.

CNN network was outperformed by the other methods in 15 out of

the 16 groups of experiments, implying that automated AF search

methods may increase model performance.

The fact that most wins involved 3 different AFs—either in Evo-

Triple or in Coevo—affirms our surmise in Section 1: Combining

different AFs improves network performance.

Table 7 presents the top-3 coevolved AF configurations for each

of the four datasets. We note that some of the coevolved configura-

tions are simpler and thus easier to use both for the feed-forward

phase and the backpropagation phase. For brevity, we presented

only the top-3 configurations, although there were many configu-

rations that were composed only of simple evolved functions such

as 𝑥 , 2𝑥 , and 𝑥2.

6 CONCLUDING REMARKS
Despite the fact that deep-learning techniques are used for a wide

range of applications, many hyperparameters must still be manu-

ally specified. The choice of AFs is a critical element that is often

overlooked (i.e., standard AFs are used). We investigated the sig-

nificance of AFs in learning in FCN and CNN models for image

classification tasks. We introduced a coevolutionary algorithm to

evolve new AFs and combine them beneficially, showing that our

method performs well on four benchmark datasets.

We suggest a number of avenues for future research:

• Our focus herein was on classification tasks. Other deep-

learning tasks can be examined too.
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Table 6: Experimental results. Each line represents 20 replicates. Values shown are mean accuracy percentages over test set,
where themean is computed over best per-replicate scores for a particularmethod. Thewinningmethod ismarked in boldface.
Leaky: Leaky ReLU; Arch: Architecture.

Dataset Baseline Arch Standard Random Evo-Single Evo-Triple Coevo

MNIST
ReLU

FCN 93.93 94.48 93.85 94.13 95.9

Leaky

CNN 96.88 99.13 98.93 99.3 99.0

FCN 94.98 93.68 93.53 95.7 95.5

CNN 99.05 98.88 98.63 99.13 99.3

KMNIST
ReLU

FCN 80.3 80.58 80.88 81.33 80.15

Leaky

CNN 59.58 95.15 94.78 94.68 94.8

FCN 78.33 80.15 81.23 80.45 81.68
CNN 94.7 93.98 93.15 95.38 94.23

FashionMNIST
ReLU

FCN 85.55 85.78 83.25 86.0 86.48

Leaky

CNN 88.45 89.25 89.08 84.58 90.0
FCN 86.25 85.58 83.13 86.43 85.68

CNN 89.75 89.35 88.8 89.68 89.13

USPS
ReLU

FCN 90.52 91.27 91.39 84.91 91.4

Leaky

CNN 89.1 96.13 93.77 95.39 96.01

FCN 92.52 91.77 92.27 92.89 92.39

CNN 96.38 95.39 94.39 96.01 96.88

Table 7: Coevolution: Top-3 AF configurations per dataset, per architecture. Each AF is of the form 𝑓 (𝑥) = ... with the 𝑓 (𝑥)
omitted for brevity. Each AF configuration is of the form {input-layer AF, hidden-layer AF, output-layer AF}.

MNIST

FCN

{𝑚𝑖𝑛(𝑥, 𝑥2) −𝑚𝑎𝑥 (𝑥2, ReLU(𝑥)), RReLU(𝑥), ELU(𝑥)}
{𝑥 −𝑚𝑎𝑥 (𝑥2, ReLU(𝑥)), 𝑥 , 𝑥 }
{𝑥2, RReLU(RReLU(RReLU(𝑥))), 2𝑥 }

CNN

{𝑥 − CELU(𝑥), Hardswish(ReLU(𝑥)), RReLU(ReLU(Hardshrink(𝑥)))}
{Softshrink(Hardswish(Hardshrink(𝑥))), RReLU(𝑥), ReLU(𝑥)}
{Hardtanh(𝑥) − CELU(𝑥), Hardswish(RReLU(ReLU(𝑥))), tanh(𝑥2)}

KMNIST

FCN

{ELU(Hardswish(𝑥)), CELU(𝑥), ReLU(𝑥)}
{𝑚𝑎𝑥 (0, ELU(𝑥)), 𝑥 , ELU(𝑥)}
{RReLU(ReLU(Hardshrink(𝑥))),𝑚𝑖𝑛(Softshrink(ELU(𝑥)), 𝑥), ELU(𝑥)

CNN

{𝑥 , Softshrink(Hardtanh(𝑥)), RReLU(𝑥) − Hardswish(𝑥)}
{Hardshrink(𝑥), Softshrink(Hardshrink(𝑥)), LeakyRelu(tanh(𝑥2))}
{𝑚𝑖𝑛((Hardshrink(𝑥) ∗ 𝑥), ELU(𝑥)), Softshrink(Hardtanh(𝑥)), Hardtanh(Hardswish(𝑥))}

FashionMNIST

FCN

{RReLU(𝑥) · 𝑥 + 𝑥 , ELU(𝑥), 2𝑥 }
{𝑥2 + 𝑥 ,𝑚𝑎𝑥 (ReLU(𝑥), LeakyRelu(𝑥) + 2𝑥) − (LeakyRelu(𝑥) + 2𝑥), 2𝑥 }
{ELU(𝑚𝑎𝑥 (ReLU(𝑥), 𝑥)), CELU(RReLU(𝑥)), RReLU(𝑥)}

CNN

{Hardswish(𝑥), RReLU(𝑥), ELU(LeakyRelu(𝑥) − 𝑥))}
{Hardswish(𝑥), Hardswish(𝑥), Softshrink(Softshrink(CELU(𝑥))}
{Softshrink(𝑥), Hardtanh(LeakyRelu(Hardswish(𝑥))), Hardtanh(𝑚𝑎𝑥 (Hardtanh(Hardswish(𝑥)), 0)}

USPS

FCN

{ELU(Hardswish(𝑥)), CELU(𝑥), ReLU(𝑥)}
{Hardswish(𝑥), 𝑥 , ELU(𝑥)}
{ReLU(CELU(𝑥)), Hardswish(tanh(𝑥)) + RReLU(𝑥), LeakyReLU(ELU(𝑥))}

CNN

{RReLU(tanh(𝑥)), tanh(𝑥), LeakyReLU(𝑥)}
{HardSwish(Softshrink(𝑥)), CELU(ELU(𝑥) −𝑚𝑖𝑛(LeakyReLU(𝑥), 𝑥)),𝑚𝑖𝑛(Hardshrink(𝑥) − 𝑥, LeakyReLU(𝑥))}
{HardSwish(Softshrink(𝑥)), ELU(𝑥) −𝑚𝑖𝑛(LeakyReLU(𝑥), 𝑥), Softshrink(𝑚𝑖𝑛(Softshrink(𝑥), Hardshrink(𝑥) − 𝑥))}

• During DNN learning, the influence of AFs on computational

complexity could be analyzed.

• Applying coevolutionary technique to other DNN hyperpa-

rameter searches.

• Inspecting other DNN topologies, such as recurrent neural

networks (RNNs) and autoencoders (AEs).
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