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Abstract

Interactive methods support decision makers in finding the most pre-
ferred solution in multiobjective optimization problems. They iteratively
incorporate the decision maker’s preference information to find the best
balance among conflicting objectives. Several interactive methods have
been developed in the literature. However, choosing the most suitable
interactive method for a given problem can prove challenging and ap-
propriate indicators are needed to compare interactive methods. Some
indicators exist for a priori methods, where preferences are provided at
the beginning of the solution process. We present some numerical experi-
ments that illustrate why these indicators are not suitable for interactive
methods. As the main contribution of this paper, we propose a set of
desirable properties of indicators for assessing interactive methods as the
first step of filling a gap in the literature. We discuss each property in
detail and provide simple examples to illustrate their behavior.

Multiple criteria optimization, Performance evaluation, Performance assess-
ment, Interactive methods

1 Introduction

In multiobjective optimization problems, we usually optimize several conflicting
objectives simultaneously. This leads to multiple optimal solutions (known as
Pareto optimal solutions) that are mathematically incomparable [1]. The set
of Pareto optimal solutions is referred to as the Pareto front in the objective
space.

Multiobjective evolutionary algorithms (MOEAs) are well-known methods
for solving multiobjective optimization problems due to their ability to provide
an approximation of the Pareto front. In addition, they can handle problems



without analytical functions, different types of decision variables, and so on [2,
3]. On the other hand, they cannot guarantee Pareto optimality, but generate
an approximation of the Pareto front. However, in most real-world problems,
only a single Pareto optimal solution needs to be selected for implementation.
Typically, we use the knowledge of a domain expert, also known as a decision
maker (DM), to provide some kind of preference information. Then, based on
the DM’s preference information, the most preferred solution is selected.

We can incorporate the DM’s preference information for MOEAs in three
main ways [1, 4]: 1) a posteriori methods, where the DM first sees an approx-
imation of the Pareto front, and then chooses one or more solutions based on
her/his preferences, 2) a priori methods, where the DM provides the prefer-
ence information before the solution process, and then, a suitable MOEA tries
to generate solutions that reflect the DM’s preferences as well as possible and
3) interactive methods, where the DM provides her/his preferences iteratively
during the solution process and guides the search to find one’s most preferred
solution in the approximated Pareto front.

A posteriori methods enable the DM to better understand existing trade-
offs before expressing preferences. However, generating an approximation of the
entire Pareto front is computationally expensive. In addition, it may be over-
whelming for the DM to compare many solutions, especially, if we deal with
a high number of objectives. A priori methods are usually computationally
less expensive than a posteriori methods. However, it may be hard to provide
preference information without knowing what kind of trade-offs are feasible.
Moreover, besides preference information, most a priori methods require a pa-
rameter to identify a parameterized region of interest (ROI) which is a part of
the approximated Pareto front that the DM is interested in. It is worth men-
tioning that according to [5], the definition of parameterized ROI is vague, and
it can be identified in many different ways.

In interactive methods, the DM has the chance to learn about the trade-offs
between objectives during the solution process and identify her/his most pre-
ferred solution in the ROI. The ROI is a part of the approximated Pareto front,
where the DM likes to fine-tune the preferences and refine solutions. Moreover,
unlike a posteriori methods, the DM has to process only a limited amount of
information based on her/his preference information, which reduces the cogni-
tive load set on her/him. There are different ways to provide preferences [6, 7].
For instance, in [8], the DM is able to provide his/her preferences in four differ-
ent ways. Specifying aspiration levels representing desirable objective function
values (constituting a so-called reference point) is a well-known way of provid-
ing preference information. The reference point is a popular way to provide
preference information since it has been proven to be understandable to the
DM 6, 9].

Many performance indicators (or indicators for simplicity) have been devel-
oped for a posteriori methods to be able to compare them [10, 11]. They assess
the performance in approximating the whole Pareto front. In addition, some
indicators have been dedicated to a priori methods [12, 13, 14, 15, 16]. They as-
sess the performance in representing specific parts of the Pareto front identified



by preference information provided by a DM.

However, comparing interactive methods has been studied less. Typically,
before the DM uses an interactive method, an analyst, who knows the behavior
of interactive methods, should choose the most appropriate one. However, there
are many aspects that the analyst should consider to be able to choose. To the
best of our knowledge, no indicators have specifically been designed for assessing
interactive methods.

As the first step towards developing indicators for interactive methods, we
must identify desirable properties for such indicators. As the main contribution
of this paper, we identify such desirable properties. It is important to note
that a single indicator is unlikely to possess all desirable properties. In fact,
we suggest that several indicators should be developed for assessing different
aspects of interactive methods. To support our motivation, we show that the
indicators designed for a priori methods are not suitable to assess interactive
methods. However, we do not claim that the list of properties presented in this
paper is exhaustive. Our objective is to initiate research in this direction.

In this paper, we first briefly review existing indicators in Section 2. Then
in Section 3, we propose the desirable properties that indicators designed for
interactive methods should possess, and describe each property in detail. In
Section 4, we assess existing indicators against our proposal. Section 5 includes
numerical experiments to support our arguments. Finally, we conclude the
paper and mention future research directions in Section 6.

2 Background

Different indicators have been developed for assessing a priori methods. Their
desirable properties are discussed in [16] and the indicators are stated to possess
most of the desirable properties. However, some of the indicators require the
knowledge of the Pareto front [17, 18] but, according to [16], an indicator
should not rely on the knowledge of the Pareto front. In what follows, we
briefly describe some recent indicators designed for a priori methods.

In R-metric [12], a reference point is incorporated to identify the param-
eterized ROIL. Then, based on an achievement scalarizing function [9], one of
the solutions is selected as a pivot point. Next, all solutions are transferred
into a virtual position using the pivot point. Finally, the hypervolume [19], or
the IGD [20] of the solutions inside the parameterized ROI is calculated as the
assessment of an a priori method. In this paper, we use R-metric by calculating
the hypervolume (we refer to it as R-HV) and higher values of R-HV represent
better performance.

PMOD [14] is a distance-based indicator. The main idea is to map solutions
onto a hyperplane generated based on the DM’s reference point. Then, three
different distances are calculated. First, the distance between the solutions and
the reference point, second, the standard deviation of each mapped point to the
nearest point (for measuring diversity), and third, the distance of each solution
and the origin point is calculated, but if the solutions are outside of parameter-



ized ROI, this value is multiplied by a penalty coefficient. Finally, the PMOD
value is calculated by using these three distances (for more details see [14]).
For PMOD, lower values represent better performance both in convergence and
diversity.

The preference metric based on distances [15] (PMDA) indicator is based
on light beam search [21] and decomposition-based multiobjective evolutionary
algorithm [22]. PMDA has four main steps. First, the reference point is de-
composed into k + 1 light beams, where k is the number of objectives. Then a
preference-based hyperplane is constructed by means of the light beams. Next,
the Euclidean distances of solutions to the ideal point are calculated as the main
assessment. Following this, angles between solutions outside the parameterized
ROI and the reference point are calculated to form a penalty function by multi-
plying them by a constant coeflicient. Finally, the mean of distances and angles
for all solutions generate the PMDA assessment of a set of solutions. The lower
the value of PMDA, the better it is.

In the user-preference composite front (UPCF) indicator [16], first, all the
solution sets are merged. Then, all of the nondominated solutions are selected.
Next, the closest solution to the reference point is identified, and a parameterized
ROl is formed around it by acquiring a parameter that determines the size of the
parameterized ROI. Finally, the hypervolume or IGD values for the solutions
inside the parameterized ROI are calculated as the final assessment. In this
paper, we use only the hypervolume version of UPCF (we refer to it as UPCF-
HV). Higher values in UPCF-HV indicate better performance.

The EH-metric [13] is a parameterless indicator designed to eliminate the
problem of defining parameterized ROI required by the indicators above. In-
stead of asking the user to define the size of the parameterized ROI through
a parameter, this indicator uses the concept of an expanding hypercube, which
starts as a point at the reference point and expands (with the reference point
at its center) until it envelops all solutions. The EH-metric value for an a pri-
ori method is calculated as the area under the curve generated by plotting the
fraction of solutions enveloped by the hypercube as it expands versus the size
of the hypercube. The former is considered to be a measure of diversity around
the reference point, while the latter is a measure of convergence to the reference
point. Thus, higher EH-metric values indicate good convergence and diversity
of preferred solutions.

As mentioned earlier, to the best of our knowledge, there are no indicators
for assessing interactive methods. So far, researchers have applied indicators de-
veloped for a priori methods (with some adjustments) as the best viable option.
For example, in [23, 24] the R-metric has been used in this way.

According to [7], we can often observe two phases in interactive solution
processes: a learning phase and a decision phase. In both of these phases, the
provided preferences direct the search to a desired region, where interactive
methods try to generate solutions. In the learning phase, the DM studies differ-
ent parts of the Pareto front to increase her/his knowledge about the problem,
how well different preferences can be reflected, and learn more about the achiev-
able values for objectives. At the end of the learning phase, the DM is more



confident about which part of the Pareto front she/he is interested in and has
identified her/his ROI. Here, the DM enters the decision phase, where she/he
fine-tunes the search within the ROI until she/he is satisfied with one of the
solutions.

One should note that we use the concept ROI with different meanings in
different contexts. The ROI in a priori indicators is based on the preferences
that the DM provides before the optimization process, whereas in interactive
methods, the ROI is identified at the end of the learning phase to be further
studied in the decision phase. In addition, we refer here to the act of providing
new preference information by the DM as an interaction. It happens after every
method-specific number of generations.

3 Desirable Properties

In this section, first, we provide a list of desirable properties for designing indi-
cators suitable for interactive methods. Then, we discuss and describe them in
detail. Since these properties are meant to assess different aspects of interactive
methods, a good starting point is the list of desirable properties identified for
interactive methods, provided in [25]. In that study, the authors divided the
desirable properties of interactive methods into three categories. The first cate-
gory consists of properties that should be considered during the whole solution
process, that is, both in the learning and decision phases. These properties are
referred to as general properties (GPs). The second set of desirable properties,
referred to as LPs, relates to the learning phase. In this phase, the method is
supposed to assist the DM in studying the objective space and learning about
the different trade-offs to identify a ROI. The third and final set of desirable
properties, DPs, relates to the decision phase, where the interactive method is
intended to assist the DM in identifying the most preferred solution in the ROI.
For more details about the three phases, see [25].

In the same way, we divide desirable properties of indicators for interactive
methods into the corresponding categories. Ideally, indicators for interactive
methods must be able to:

GP1: Assess the convergence of solutions in those regions of the approximated
Pareto front that reflect the DM’s preferences the best (local convergence).

GP2: Assess the diversity of solutions in those regions of the approximated
Pareto front that reflect the DM’s preferences the best (local diversity).

GP3: Assess the performance irrespective of the number of objective functions
(scalability).

GP4: Assess the performance without knowledge of the Pareto front.

GP5: Assess the performance by incorporating preferences that are provided in
different ways.



GP6: Assess the performance in a computationally inexpensive manner.

GP7: Assess the performance in a manner that is independent of other interac-
tive methods being compared.

GP8: Assess the performance without introducing parameters that have an un-
clear effect on the performance or are unintuitive to set.

GP9: Assess the performance as a whole process and not as a series of indepen-
dent a priori steps.

LP1: Assess how much of the Pareto front has been studied (expedition).

LP2: Assess how well/fast the method can adapt to new (even very different)
preferences (responsiveness).

DP1: Assess the capability of fine-tuning solutions inside the ROI.

DP2: Assess the decision phase by considering the amount of information shown
to the DM at each interaction.

Next, we discuss each desirable property in more detail. Moreover, for some
of the desirable properties, we provide hypothetical examples illustrating their
role in designing indicators for assessing interactive methods. We consider two
hypothetical interactive methods, I, and I, and visualize their solutions as red
rectangles and orange circles, respectively.

In the provided examples, we use a reference point Z as preference informa-
tion. Furthermore, we assume that the DM begins with a learning phase, which
is the case in many practical scenarios. After having identified an ROI, the DM
moves to the decision phase.

Moreover, the desired region and ROI may be identified differently in each
indicator. For simplicity, in the provided examples, we use a cone (green dashed
lines) to represent the desired region. In addition, the ROI is represented by a
purple box, where we expect the DM would provide her/his reference points in
the decision phase. Actually, the ROI is a subset of Pareto optimal solutions.

Figure 1 illustrates an example of how reference points are typically provided
in learning and decision phases to reflect different needs. Reference points in
the learning phase (denoted by —|—) are often scattered as the DM goes on an
expedition to learn more about the Pareto front. On the other hand, reference
points in the decision phase (denoted by @) have some conformance among them
as the DM refines solutions in the ROI identified at the end of the learning phase.

3.1 General Properties

We have nine general desirable properties that should be considered when de-
signing new indicators. These general properties are valid for both learning and
decision phases. According to [16], indicators for a priori methods should have
four desired properties. We can extend these desirable properties to be appli-
cable in the case of interactive methods. Thus, the first four general properties
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Figure 1: Example of reference points in the learning phase (denoted by —|—)
and the decision phase (denoted by @)

correspond to those in [16]. In addition, we have formulated five more general
properties for designing indicators for interactive methods. These general prop-
erties do not depend on specific desires of the DM regarding the learning or
decision phases.

GP1

Convergence following the preferences, which we refer to as local convergence,
is an important desirable property because with each interaction, whether in
the learning phase or the decision phase, the DM expects to see solutions that
reflect the preferences. According to [25], this gives the DM the feeling of being
in control of the solution process.

f2 W [; solutions fa W [ solutions
n I, solutions I, solutions
|
m B
Lokh !
|
|
4 + |
f 1 f 1
(a) Example for showing local con- (b) Example for showing local di-
vergence. versity.

Figure 2: Solutions generated with two hypothetical interactive methods I (red
rectangles) and I, (orange circles) for the reference point 2 (denoted by —).
The desired region is shown by a green dashed cone.



Figure 2a illustrates local convergence. Here, both interactive methods Iy
and I» have generated four solutions. If we consider the union of the solutions
and eliminate dominated ones, we can observe that I retains all of its solutions,
while I; loses one. However, since the remaining solutions of I; reflect Z better,
an indicator should be able to identify I; as a better method.

GP2

An indicator should be able to measure the diversity of solutions reflecting the
DM’s preference, which we refer to as local diversity [16]. This is important
because, at each interaction, the DM must have “discernibly distinct” solutions
to choose from. A good balance between local convergence and local diversity
is required so that the solutions are not too diverse to make the DM feel that
the preferences are not being reflected by the interactive method (c.f. GP1).

Figure 2b illustrates local diversity. It is clear that the solutions generated
by Is are more diverse than those of I;. We can observe that all solutions of
I, are in the desired region, while I, has generated a solution outside it. We
assume that interactive methods show all these solutions to the DM. Therefore,
solutions that are outside of the desired region should not be disregarded but
should influence the indicator’s assessment in a negative way to reflect differ-
ences between methods compared.

GP3

Scalability is a desirable property of indicators. For example, when the number
of objectives grows, and we cannot even visualize the solutions properly, it will
be imperative for the analyst to be able to rely on the indicator when comparing
interactive methods.

GP4

If an indicator needs knowledge of the Pareto front, the applicability of the
indicator is limited. This is important to keep in mind since the main purpose
of interactive methods is solving real-world problems, where we do not know
the Pareto front in most cases. Therefore, it is essential that indicators do not
depend on this information.

GP5

As mentioned in Section 1, different interactive methods assume preference in-
formation to be provided in different ways. Therefore, appropriate indicators
are needed. This does not mean that one indicator should be able handle all
different ways of providing preferences.



GP6

In general, the calculation of indicator values should be computationally inex-
pensive. This enables their more versatile usage. For example, one may want
to calculate them at regular intervals during the solution process to monitor
the progress of an interactive method or compare progress of different methods.
For example, if an indicator is based on an inherently expensive computation,
such as the hypervolume, the computation time increases exponentially as the
number of objectives grows. It is impractical to use such indicators often (e.g.,
in regular intervals).

GP7

It is desirable that the indicator value for a given interactive method be in-
dependent of the other interactive methods being compared. This avoids the
problem of recomputing the indicator when a new interactive method needs to
be included in the comparison.

GPS8

An indicator should be easy to use, not having parameters whose effect on
assessing the performance is unclear. For example, many interactive methods
have a parameter that identifies the desired region based on the DM’s preferences
(see e.g., [8]). Here, if the indicator asks for a new parameter to redefine the
desired region, the analyst can get confused since she/he has to provide this
information twice in different ways.

GP9

In some studies, the performance of interactive methods has been assessed by
considering each interaction as a distinct a priori step [23, 24, 26], and indica-
tors for a priori methods have been used to assess the median performance of
interactions of each phase. This allows the use of existing (a priori) indicators
in the absence of those designed for interactive methods. However, this can
mislead assessments since the solution process as a whole and different roles of
learning and decision phases are not supported.

Figure 3 illustrates why interactive methods should not be assessed as a series
of a priori steps. Figures 3a, 3b, and 3c show three interactions of the decision
phase with the two interactive methods I; and I5 in a biobjective minimization
problem. It is shown that the solutions generated by I; in Figures 3a and 3b
are better than those of I,. However, in the third interaction, I manages to
find a solution that the DM prefers (orange circle inside a black rectangle).
Here, if we calculate the mean of the performances of I; and I with most of
the indicators developed for a priori methods, I; will have a better performance
than I. However, the most preferred solution was generated by Is. Therefore,
it is important for indicators to consider the interactive methods as more than
a series of a priori steps.
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Figure 3: Three interactions of interactive methods I; and Is with the reference
points Z1, 29, 23. The desired region is shown by a green dashed cone, and the
ROI is shown by a purple box.

Before moving to desirable properties specific for decision and learning phases,
it is worth pointing out that whether the DM is in the learning phase or the
decision phase is not always obvious. Ideally, the indicator should have a mech-
anism to detect this transition based on the sequence of DM’s preferences and
modify its calculations to either suit the learning phase or the decision phase.
Alternatively, one can design separate indicators for the two phases.

3.2 Learning Phase

In addition to the general properties, indicators should have specific desirable
properties for the learning phase. In this phase, the DM wants to study the
objective space to finally identify her/his ROI. Therefore, when designing indi-
cators, we should consider the unique characteristics of the learning phase.

LP1

Measuring the expedition of an interactive method in the learning phase can
help the analyst to figure out whether the interactive method has covered the
approximation of the Pareto front well enough. Typically in this phase, the DM
is not aware of the shape of the Pareto front. So, it is difficult for the DM to
say how much expedition she/he has done. This is particularly true in many-
objective problems. Moreover, measuring the expedition does not need to be
exact since we do not want to rely on the knowledge of the Pareto front (GP4)
and it is enough if the indicator can identify different regions of the Pareto front
and communicates this information to the analyst.

It is worth mentioning that expedition is not the same as local diversity. The
solutions shown to the DM should be diverse within the desired region so that
they still reflect the DM’s preferences (GP2). On the other hand, expedition is
more about an approximation of how much of the approximated Pareto front
has been covered by the generated solutions through the learning phase.
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LP2

In the learning phase, the DM is still studying the objective space, and therefore
her/his preferences may change drastically. As mentioned in [25], responsiveness
to these changes is a desirable property for interactive methods in the learning
phase. Therefore, in the learning phase, it is desirable for indicators to assess
how well an interactive method can adapt to the changes in the preferences.

Moreover, as mentioned in Section 2, one of the main advantages of interac-
tive methods is that they do not need as many function evaluations as a poste-
riori methods. Besides the responsiveness of an interactive method, measuring
how fast it can converge toward new preferences is essential as well because
usually the DM has limited time to wait for new solutions to be generated.
Therefore, it is important that the interactive method can respond to the new
preferences as fast as possible to minimize the waiting time of the DM. For ex-
ample, we can track how many function evaluations it takes to generate solutions
that reflect the new preferences.
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(a) First interaction (b) Second interaction

Figure 4: Two interactions of methods I; and Is. Here, I3 responds better to
the change of preferences (from 21 to 25).

Figure 4 illustrates an example of the importance of responsiveness. Here, we
assume that both interactive methods I; and I had the same budget for function
evaluations for each interaction. We can observe that in the first interaction
(Figure 4a) with the reference point 21, both interactive methods had almost
similar results. However, when the DM provided the second reference point
(Figure 4b), %o, the solutions generated by Iy are closer to 2, than what I
has generated. In other words, we could say that I3 is more responsive to the
changes in reference points than I;.

3.3 Decision Phase

As the DM begins the decision phase, new desirable properties dedicated to
this phase should be considered. Now, she/he is more interested in fine-tuning
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solutions in the ROI identified at the end of the learning phase.

DP1

Since the DM refines solutions by providing her /his preferences within the ROI,
preferences are likely to be concordant.

However, it is not easy to confirm whether the provided preferences have
concordance with each other in problems with more objectives. For example,
when we are using reference points in the decision phase, if the new reference
point at each interaction in the ROI dominates the old reference point (which
is also in the ROI), they are concordant. Otherwise, even if the new reference
point dominates the previous one, they are not concordant if the new one is
provided outside of the ROI. An indicator must identify the preferences with
concordance and increase the role of corresponding solutions in assessing the
decision phase.
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Figure 5: Hypothetical fine-tuning in the decision phase during four interactions.
The ROI is represented by a purple box.

Figure 5 shows a simple example of the fine-tuning capability of an inter-
active method. Here, 21, Zo, 23 and Z4 are the reference points that the DM
has provided in successive decision phase interactions. Assume that the most
preferred solution is chosen in the last interaction (from solutions corresponding
to 24). In this example, we can easily observe that 21, 25 and 24 are all inside
the ROI (denoted by a purple box), but 23 is not. Here, 24 dominates 2; and
therefore, they are concordant. However, there is no concordance between Zg4,
Z2, and Z3 because Z; is not dominated by Z4, and Z3 is outside the ROI.

Moreover, since the most preferred solution is chosen from the fourth inter-
action, Z; must play the most significant role in assessing the decision phase.
An indicator should be able to measure the concordance between the DM'’s
preferences in the decision phase. Here, each interaction does not influence
the assessment equally, Thus, this approach is different from seeing interactive
methods as a series of a priori steps where all interactions have an equal effect
on the assessment of the performance.
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Table 1: Indicator values for iRVEA and iNSGA for 3-objective DTLZ7 problem
in the learning phase. Here, T means that higher values are better for the
corresponding indicator, and | means that lower values are better. Bold values
indicate that the corresponding interactive method has a better performance.

iRVEA

iNSGA

R-AV T EH-metric T PMOD | PMDA [ UPCF-HV T R-AV T EH-metric T

PMOD |

PMDA |

UPCF-HV T

interaction 1 5.927 0.276 6.543 4.632 3.437 6.669 0.561

7.888

5.050

4.310

interaction 2 5.859 0.569 5.713 4.248 3.985 5.401 0.419

6.626

5.092

2.546

interaction 3 7.301 0.688 5.418 3.226 4.015 6.489 0.121

5.833

4.940

2.135

interaction 4 5.909 0.482 5.690 4.245 3.874 2.930 0.196

6.392

4.893

2.497

DP2

Another important aspect of interactive methods is the amount of information
shown to the DM at each interaction. In relation to GP5, the amount and
nature of information depend on the way preference information is provided.
In the learning phase, the amount of information required by the DM to learn
about the shape of the Pareto front can vary as long as the cognitive load is
acceptable to the DM. However, in the decision phase, a typical requirement
from a DM is the number of solutions that she/he wishes to analyze within the
ROI [1]. An interactive method that generates fewer solutions than what the
DM desires may delay the solution process, whereas one that generates more
solutions may increase the cognitive load on the DM. In essence, the desires of
the DM should be respected. An indicator should be able to take both these
aspects into account.

4 Applicability of Existing Indicators

As mentioned earlier, since there are no indicators in the literature designed
specifically for comparing interactive methods, some studies [23, 24, 27] have
resorted to using indicators developed for a priori methods. In this section,
we assess the five a priori indicators presented in Section 2 with respect to the
desirable properties discussed in the previous section.

Table 2 shows how well the five indicators stack against the desirable prop-
erties. All of the indicators satisfy the first four desirable properties concerning
local convergence and local diversity, scalability and knowledge of the Pareto
front (GP1, GP2, GP3 and GP4). However, for GP1 and GP2, some of the
indicators like R-HV and UPCF-HV remove solutions outside the desired re-
gion before calculating GP1 and GP2. This may be misleading since the DM
sees these solutions. In other words, if the interactive method presents some
solutions outside the desired region (or the ROI), then these solutions should
have a negative effect in assessing the method (instead of being deleted).

All the indicators consider reference point(s) as the preference information.
Hence, none of the indicators satisfy the desirable property GP5. Moreover,
R-HV and UPCF-HV do not satisfy GP6, since they are based on computation-
ally expensive calculations (hypervolume). Here, as the number of objectives
increases, the computation time of these indicators grows exponentially, which
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Figure 6: DTLZ7 in the learning phase where we provided a reference point in
each part of the Pareto front manually.

is not desirable in interactive methods.

Among the indicators we listed in Table 2, R-HV, EH-metric and UPCF-
HV do not satisfy GP7. They employ a prescreening step which combines and
sorts the final solutions from all methods being compared. Thus, the values
of these indicators depend on the methods being compared. If a new method
is to be compared, these values may need to be recomputed (for more details
see [16, 12, 13]).

Except for EH-metric, the rest of the indicators need an analyst to set at
least one parameter. For example, R-HV, PMOD, PMDA and UPCF-H require
the size of parameterized ROI. In addition, PMOD and PMDA require a penalty
coefficient for the solutions outside the parameterized ROI. It may be confusing
for the analyst to provide these parameters values. None of the studies have
analyzed the effect of these parameters on their assessment of the performance.

The rest of the desirable properties are understandably not satisfied by any
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Table 2: Proposed desirable properties and their presence in existing indicators
for a priori methods.

Properties | R-HV | EH-metric | UPCF-HV | PMOD | PMDA
GP1 v v v v v
GP2 v v v v
GP3 v v v v v
GP4 v v v v v
GP5 X X X X X
GP6 X 4 X v v
GP7 X X X v v
GP8 X v X X X
GP9 X X X X X
LP1 X X X X X
LP2 X X X X X
DP1 X X X X X
DP2 X X X X X

Table 3: Mean indicator values of iRVEA and iNSGA for 5-objective DTLZ3
problem in the decision phase. As before, 1 means that higher values are bet-
ter for the corresponding indicator, and | means that lower values are better.
Bold values indicate that the corresponding interactive method has a better
performance.

iRVEA INSGA
R-AV T EH-metric T PMOD | PMDA | UPCF-OHV 7 | R-AV T EH-metric T PMOD | PMDA | | UPCF-HV T
interaction 1 14.145 0.475 5.835 2.888 0.185 32.212 0.590 8.533 3.329 0.195
interaction 2 24.263 0.619 6.405 1.430 0.203 32.253 0.643 9.265 3.329 0.262
interaction 3 26.126 0.766 13.813 0.704 0.311 31.956 0.744 12.160 3.329 0.347
interaction 4 28.699 0.768 14.950 0.687 0.412 31.957 0.741 12.160 3.329 0.458

of the indicators, because they were not designed to consider the learning and
decision phases. We have already mentioned that there could be separate indi-
cators dedicated to assess learning and decision phases. In addition, it may be
even too difficult to design an indicator that satisfies all the desirable properties
in the learning or decision phases. Hence, we may need several indicators for
different purposes in each phase.

5 Numerical Experiments

In this section, we present two numerical examples to emphasize the need for
developing new indicators specifically designed for interactive methods. We
demonstrate that the current practice of assessing interactive methods as a se-
ries of a priori steps is inappropriate. The first example shows the importance of
desirable properties for the learning phase (LP1 and LP2). The second example
focuses on the importance of DP1 in the decision phase and GP9 of the gen-
eral properties. We compare interactive NSGAIII (iNSGA) [23] and interactive
RVEA (iRVEA) [8] using DTLZ benchmark problems [28]. For both examples,
the number of generations is limited to 100 per interaction, while the number of
function evaluations for both methods is 100000. These numbers are examples

15




as our goal here is not to find the best method but to study the behavior of the
indicators.

Since using a priori indicators for comparing interactive methods is not the
main focus of this study, we have provided the details of this part in the Sup-
plementary Material.!.

5.1 An Example for the Learning Phase

Here, we use the 3-objective 11-variable (number of variables is based on [29])
DTLZ7 problem due to the unique shape of its Pareto front, which has four
disconnected regions as shown by the blue areas in Figure 6. These distinct
regions enable demonstrating the importance of measuring the expedition (LP1)
and responsiveness (LP2) in the learning phase. The following reference points
corresponding to each region were used in successive interactions to test the
expedition capability of iRVEA and iNSGA (a) [0.11, 0.10, 5.4], (b) [0.70, 0.14,
4.50], (c) [0.76, 0.76, 3.5], and (d) [0.14, 0.70, 4.5].

Figure 6 shows the solutions that iNSGA (red rectangles) and iRVEA (orange
circles) have generated corresponding to different reference points. We can
observe that iNSGA could not respond to the changes of the reference point
and stayed in one region. On the other hand, iRVEA could provide solutions in
the same region with the reference point. Therefore, for expedition (LP1) and
responsiveness (LP2), iRVEA was better than iNSGA in this example.

The assessments of indicators for a priori methods for each interaction have
been gathered in Table 1. We can observe that most of the indicators declare
that iRVEA is better than iNSGA in the last three interactions. However, based
on these values, we cannot get the essential information that iINSGA was stuck in
the initial region and could not cover the Pareto front well. In fact, by looking at
these values, the analyst may be misled to think that the performance of these
interactive methods is not that different (e.g., see PMOD or PMDA values).
Therefore, it is essential that the indicators can communicate such important
insight to the analyst.

5.2 An Example for the Decision Phase

In this section, we compare iIRVEA and iNSGA using the 5-objective DTLZ3
problem in the decision phase. Thus, we assume that the ROI has already been
identified. To generate reference points, we used an artificial decision maker [23].
These reference points are: (a) [0.000, 0.000, 0.000, 3.072], (b) [0.000, 0.000,
0.000, 0.000, 1.951], (c) [0.000, 0.000, 0.000, 0.000, 1.010], and (d) [0.000, 0.000,
0.000, 0.000, 1.010]. We can observe that the artificial decision maker changed
the reference point for the first three interactions, but at the last interaction
used the same reference point as the previous one. After generating the refer-
ence points, we ran each interactive method ten independent times. Then, we
calculated the average of results for each interaction (see Table 3).

ink to the implementation: https://github.com/ppouyaa/desirable-properties-
masterhttps://github.com/ppouyaa/desirable-properties-mas ter
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According to Table 3, EH-metric indicates that for the first two interactions,
iNSGA was better than iRVEA, while for the third and fourth interactions,
iRVEA was better than iNSGA. Earlier, we mentioned that in the current liter-
ature, the mean of indicators values for each interaction is typically calculated
to find the best interactive methods. Here, if we calculate the mean of the EH-
metric values, iIRVEA has the value of 0.656, and iNSGA has the value of 0.679.
Therefore, based on this way of calculation, iNSGA is better than iRVEA.

However, earlier, we noted that one of the desirable properties in the decision
phase is fine-tuning solutions in the ROI (DP1). This involves information about
the concordance of reference points. Moreover, the reference points did not
change in the last two interactions (where iRVEA had a better performance). If
we consider the concordance of reference points and let solutions corresponding
to the third and fourth interaction influence the results more, iRVEA could
probably be regarded to have a better performance than iINSGA. This shows
that it is important to have specifically designed indicators for the decision phase
(or the learning phase). Besides, this example shows why it is important not to
assess the interactive methods as a series of a priori steps (GP9).

Finally, we can observe in Table 3 that the indicators are not similar for each
interaction. For example, based on R-HV, INSGA was better than iRVEA at
every interaction. However, based on PMDA, iRVEA was better than iNSGA
at every interaction. In addition, EH-metric indicates that at the first two in-
teractions, iINSGA was better, and for the third and fourth interactions, iRVEA
was better. On the other hand, PMOD gave opposite results to EH-metric.
This is interesting since most of these indicators were designed to calculate lo-
cal convergence and local diversity, and still, the results are so different from
one another. Thus, if these indicators are used to assess interactive methods,
the results may be sensitive to the choice of the indicator. This supports the
need of indicators designed specifically for assessing interactive methods.

6 Conclusions

In this paper, we identified the desirable properties for designing indicators suit-
able for interactive methods and discussed them in detail. There are three main
categories for these desirable properties. The general properties that should
be considered in both the learning and decision phase, the desirable properties
regarding the learning phase, and the decision phase properties that focus on
aspects of interactive methods that help the DM refine a solution. Together,
we suggested 13 desirable properties that indicators designed for interactive
methods should possess. However, one indicator cannot satisfy all the desirable
properties, and there should be different indicators for different purposes.

We also demonstrated why indicators developed for a priori methods should
not be applied for interactive methods. We showed that these indicators do
not satisfy most of the desirable properties that we presented. Furthermore, we
provided two numerical examples to support the claim that there is a need for
indicators specifically designed for assessing interactive methods.
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By assessing interactive methods, we can analyze their characteristics and
choose the appropriate method for different real-world problems. Therefore, as
a future research direction, we plan to develop indicators that satisfy at least
most of the desirable properties we presented in this paper. Moreover, these
desirable properties only consider algorithmic aspects of interactive methods.
It is also important to study interactive methods from human perspectives such
as cognitive load set on the DM.
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