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ABSTRACT
The International Workshop on Learning Classifier Systems (IWLCS)
is an annual workshop at the GECCO conference where new con-
cepts and results regarding learning classifier systems (LCSs) are
presented and discussed. One recurring part of the workshop ag-
enda is a presentation that reviews and summarizes the advances
made in the field over the last year; this is intended to provide an
easy entry point to themost recent progress and achievements.The
2020 and 2021 presentations were accompanied by survey work-
shop papers, a practice which we hereby continue. We give an
overview of all the LCS-related publications from 11March 2021 to
10 March 2022. The 42 publications we review are grouped into six
overall topics: Formal theoretic advances, new LCS architectures,
LCS-based reinforcement learning, algorithmic improvements to
existing LCSs, combinations of LCS andDeep Learningmodels and,
finally, a variety of applications of LCSs.

CCS CONCEPTS
• Computing methodologies → Rule learning; Genetic algo-
rithms; • General and reference→ Surveys and overviews.

        
                                
                   
                                                             
                                                            
                                                             
                                                           
                    

1 INTRODUCTION
Since 2019, a recurring segment of the International Workshop on
Learning Classifier Systems (IWLCS) is its organizers giving a pre-
sentation of an exhaustive overview of learning classifier system
(LCS) research that was conducted over the past year. In 2020 and
2021 that presentation was accompanied by a survey workshop
paper [36, 37], a practice which we hereby continue. Our primary
goal is to contribute to a better organized research community;
showcasing the most recent developments of the field helps to
connect LCS researchers but also serves people new to the field

                                                                     
                                                                        
                                                                        
                                                                     
                                                                       
                                                                             
                                                               
                                             
                                                                      
                                     
                                       

as they can more quickly assess the latest achievements, current
challenges as well as links to other areas.

In the next section, we shortly present themethodologywe used
for identifying publications to be included in our overview. The re-
maining sections correspond to six major topics that the 42 contri-
butions we found could be divided into and a concluding summary.
Note that these topics were updated as well for this year’s iteration
of the survey.Wemention each publication only once, even if some
fit into several sections; for each paper we choose the section it fits
into best. If an equally strong case for multiple sections could be
made, we choose the first appropriate section, in the order inwhich
the sections appear.

2 RESEARCH METHODOLOGY
This survey is limited to contributions in English with publication
dates on or after 11 March 2021 (one day after the end of the period
of the previous survey) and on or before 10 March 2022. Note that
some conferences may have published their proceedings within
this interval despite in fact taking place at another date; since we
only consider publication dates, these entries are covered by this
survey aswell.We intentionally do not includemilitary applications
of LCSs (of which we actually found one this year). Also, we leave
out papers published on arXiv unless they are relevant for a follow-
up paper whichmeets our criteria. Finally, we exclude publications
that were already cited in the previous year’s survey [36] even if
they were eligible for the present survey as well (this may be the
case, for example, if they have been re-published or moved from a
‘pre-proof’ to a ‘published’ status).

Our primary search tool wasGoogle Scholar1 with its time range
feature as it seemed to consistently report more relevant publica-
tions than comparable tools, especially for more general search
queries. We ultimately only used five different queries, two very
general ones and one for each of the three major LCSs that we
knew have been investigated in recent years; more specific terms
did not yield relevant results that were not found by these as well
(at least not in March 2022). The following lists each query with
the number of Google Scholar result pages that we examined for
papers meeting our requirements (numerator) and the total num-
ber of result pages (denominator); each Google Scholar result page
displayed 10 publications and we set the time range filter to Since
2021.

• learning "classifier system" (44/>100)2
• "evolutionary rule-based" learning (5/5)
• xcs classifier system (19/19)
• "extracs" classifier system (1/1)

1https://scholar.google.com
2We stopped when we noticed that the results of at least ten consecutive pages did
not contain any LCS-related publications that had not yet been listed on the preceding
pages (i. e. we estimated the probability of further relevant results to be very low).
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• biohel (3/3)

We also checked a number of LCS researchers (especially, but
not exclusively, ones we know to be active) and the proceedings of
the three main venues that have attracted LCS researchers in the
past: CEC, GECCO and Evostar. Aswe did not find any publications
this way that we had not already found using Google Scholar, we
are confident that our Google Scholar search was sufficiently ex-
haustive and there was no need to further refine the used search
terms.

3 FORMAL THEORY
There have been two spin-off papers to the work of Nakata et
al. which included a proof of—if configured correctly—XCS being
able to correctly distinguish maximally accurate rules from other
rules [29] on binary-input single-step tasks with a binary rewards
scheme (with correct hyperparameter settings being derived from
their analysis).

The first one is by Horiuchi and Nakata [16] and extends the the-
ory to discrete but non-binary reward schemes with a finite num-
ber of non-negative reward levels. The authors show that XCS is
able to distinguish maximally accurate rules from other rules in
this setting under similar assumptions as the ones made for the
binary reward scheme (e. g. certain problem-dependent values for
hyperparameters such as the learning rate are used, certain learn-
ing parameter expected values are estimated correctly) with the
addition that a good estimate for a certain other parameter is avail-
able (i. e. a problem-dependent threshold 𝜃𝑛 ; how to perform this
estimation in practice is deferred to future work). Experimental
validation is performed using two experiments that cover the ideal
case where the reward received is always the expected reward and
a more practical case where the reward is sampled from the set of
possible rewards. The latter experiment shows that even if the as-
sumptions are violated, which to some degree will be the case in
most practical applications, as long as the derived hyperparameter
settings are used, learning performance is still better than when
using the typical hyperparameter settings from the literature.

The second follow-up paper to the learning optimality theory
of Nakata and Browne [29] was written by Nakamura et al. [28]
who move forward formal theory regarding XCS on binary classi-
fication domains. They show that (under simplifying assumptions)
XCS’s rule discovery process is capable of producing rules with
optimal generality by proving that the population’s average rule
generality converges to an optimal value if configured correctly.
This is essentially a precondition for the learning optimality the-
ory to work in practice. From their analysis, the authors are able
to derive a rule deletion scheme that ensures convergence as well
as additional guidelines for optimally setting the population size,
mutation probability and GA invocation rate hyperparameters of
XCS. A restriction of the conducted formal analysis is that only the
average rule generality of the population as a whole is considered
while the authors’ simplifying assumptions include that all rules
have the same optimal rule generality and that the probabilities of
rules matching an input are the same. Since these assumptions are
seldomly fulfilled in practice (one reason for even employing LCSs
is that different parts of the input space have to be covered by dif-
ferentlymany rules which violates these assumptions), the authors

perform an experimental verification on the 70-bit multiplexer (a
binary classification task) as well as the 3×3 concatenated multi-
plexer (a multiclass classification task). They find that their rule
deletion scheme and the hyperparameter recommendations do im-
prove performance despite the assumptions not being fulfilled on
these tasks.

4 NEW LCS ARCHITECTURES
In their very nature LCSs are a family of learning algorithms that
produce models of a shared architecture. Whereas many research-
ers focus on proposing advances to existing algorithms, most im-
portantly XCS and its derivatives, some researchers still find novel
approaches to train LCSmodels. In this section, we recount the key
ideas of two innovative new algorithms.

Bishop et al. [2] present a new Reinforcement Learning (RL)
technique for scenarios with continuous inputs and discrete ac-
tions. The method is a Pittsburgh-style system that uses coevolu-
tion to optimize two populations: A population of ordered sets of
fuzzy logic membership functions (i. e. one fuzzy partitioning for
each input feature) and a population of rule sets that use these par-
titionings. Combining one of the rule sets with one of the fuzzy
logic membership function sets yields an RL policy which can be
evaluated on the considered RL task. The system also performs
multi-objective optimization with respect to the return achieved
by the explored policies and the policies’ complexity. The authors
evaluate their approach on the well-knownMountain Car problem
and also shortly discuss interpretability of the resulting rule sets.

Guendouzi and Boukra [11] propose EDE-FRMiner a differen-
tial evolution–based rule induction algorithm to generate fuzzy
rules for supervised classification tasks. The matching function of
a rule is based on attribute-wise triangular membership functions
and rules incorporate a heuristic estimate of correctness of their
class assignment. A modified version of differential evolution then
serves as an optimizer within a Michigan-style approach to gener-
ate a well-suited rule set. They compare their system with other
rule-based machine learning (ML) algorithms, most notably GAs-
sist, on a variety of publicly available datasets.While EDE-FRMiner
was on average the best ranked algorithm in terms of run time and
achieved accuracy it produced less compact solutions than GAs-
sist.The authors also analysed their algorithm’s scalability on high-
dimensional data and the noise sensitivity on an artificially created
dataset, finding promising results.

5 REINFORCEMENT LEARNING
LCSswere originally proposed as RL algorithms and ever since this
subfield ofML remains of interest to the community. In this section
we introduce last year’s improvements and benchmarks of existing
algorithms, many of which were evaluated on game environments.

A novel modification of the ACS2 system called Averaged ACS2
(AACS2) is proposed by Kozłowski and Unold [21]. It is based on
the notion that many real-world sequential decision problems can
be solved by maximizing the average of successive rewards (unlike
the common formal notion of maximizing the return, i. e. the sum
of rewards ever received or the sum of rewards within an episode).
The authors explore two variants of AACS2 that differ only in the
way the average reward is estimated and compare those algorithms

    



                                                                                  

to Q-learning, the original ACS2 as well as R-learning (another
average reward–based learner) on three delayed-reward RL tasks
(corridor, finite state world 20 scenarios and Woods1).

In their extended abstract, Orhand et al. [35] discuss future re-
search directions for Anticipatory LearningClassifier Systemswith
respect to the extensions that were introduced by the same authors
in recent years, behavioural sequences and probability-enhanced
predictions.They shortly elaborate on strengths andweaknesses of
the approaches and conclude that a combination of the two may
prove fruitful.

Siddique et al. [45] extend their earlier work on learning at dif-
ferent levels of abstraction to RL scenarios (deterministic discrete
2Dmaze environmentswith aliasing states) where it can contribute
to solving problems of perceptual aliasing. Their approach builds
policies by combining so-called code paths (shallow trees of state-
action-state sequences) and allows for the agent to utilize different
levels of abstraction by choosing tree depths freely (up to a max-
imum depth). Aliased states are detected based on the knowledge
encoded in a policy’s code paths; however, this does not work in
all cases and as a fallback, the agent’s relative coordinates to states
visited earlier are computed (this is possible due to actions moving
the agent by a noiseless discrete amount in one of four directions
and the chosen actions being logged). The authors conclude that
their approach compares favourably to several other methods for
these kinds of learning tasks including ACS2 and a deep recurrent
Q-network.

RL also plays a role in Siddique’s PhD thesis which he published
last year [44]. It provides a detailed account of the general topic of
lateralized learning and how it can be applied to different kinds of
problems—among them, RL tasks as well as classification tasks.

Hansmeier and Platzner [14] evaluate four existing explore/
exploit strategies for XCS on three RL tasks (the 11- and 20-bit mul-
tiplexers and the Maze4 environment). One of the four strategies,
which are chosen based on a principled literature review, is input
local (i. e. the decision for/against exploitation depends on the cur-
rent RL state) whereas the other three act globally (i. e. decisions
do not depend on the current RL state but rather on global popu-
lation metrics). At that, all investigated strategies only perform a
binary decision between pure exploration (selection of a random
action) and pure exploitation (greedy action selection), that is, they
do only determine when exploration should be performed and not
how. The authors’ parameter study shows that the strategies’ hy-
perparameters are rather sensitivewith respect to the learning task
considered and that, for the scenarios they analyze, an argument
can be made for at least two of the four strategies.

In [34], Oberoi et al. preliminarily investigate the feasiblity of
XCS in an artificial player of a 6×6 variant of Checkers, a strategic,
combinatorial game with high branching factor and complex state
space. To do so, they adapted the XCS agent to the specific Check-
ers variant and trained it using a random agent. In the evaluation
experiments in which the customized XCS agent competed against
the alpha-beta pruning algorithm of different depths as well as
against human agents with different capabilities, the XCS agent
performed well.

Büttner and von Mammen [5] use XCS-RC, an XCS derivative
with inductive reasoning rather than stochastic optimization, to
play games of competitive snake. They focus on self-play-based

RL, where two agents with the same model play against each other.
While the agents were able to successfully navigate the game and
complete objectives it became clear that some look-ahead capabil-
ity to carefully plan out the next moves could have improved their
overall performance.

To solve competitive Markov games (i. e. games against other
players that typically show sophisticated behaviour themselves),
Chen et al. [6] proposed HAMXCS (heuristic accelerated Markov
games with XCS): A neural network learns to predict an opponents
next move by approximating their policy. This information is then
used to choose the action from the matching classifiers. Contrary
to standard XCS, not only the classifiers in the previous action
set but all the classifiers that match the state-action pairs are up-
dated. HAMXCS was evaluated on the Hexcer game as well as a
modified version of the thief-hunter problem and compared with
several Q-learning as well as neural network-based RL systems.
The results indicate that HAMXCS outperforms the baseline sys-
tems in terms of win rate; the authors acknowledge, however, that
HAMXCS took significantlymore computation time to train which
they deem acceptable given the increased performance and the fact
that the system’s actions are more interpretable (which they show
by performing an exemplary interpretability analysis of a selection
of rules).

Novak and Fister [33] propose to perform automated software
testing using XCS. They test whether a game successfully imple-
ments all its features by letting XCS learn to play the game. For
validation of their approach, they use a simple game of tic tac toe
where they introduced 8 exploitable bugs in the opponent’s strat-
egy and conclude that XCS is able to find and exploit all of them.

6 IMPROVEMENTS TO EXISTING
ALGORITHMS

The XCS classifier system is the most investigated LCS to date.
Over the more than 25 years of its history, a large variety of ex-
tensions and improvements to its structure and components have
been proposed. One such extension to tailor it for the use in classi-
ficationwas the sUpervised Classifier Systems (UCS). In the follow-
ing, we present improvements to XCS or UCS that were proposed
during the last year.

6.1 Improvements and extensions for XCS
Nguyen et al. [32] define a new fitness function for code fragments
(CFs) in the XOF classifier system. It includes CF complexity (mea-
sured as the number of leaf nodes in the tree) which earlier defini-
tions of fitness were lacking and leads to generally less bloated CFs
as well as makes the CF depth limit hyperparameter unnecessary.
Aside from that, an accompanying niching method for generating
CFs is introduced as well. For evaluation, the authors use binary
classification tasks with interacting features, namely, the 11-bit
even-parity problem, the 18-bit hierarchical multiplexer and the
18-bit hierarchical majority-on problem. They measure the struc-
tural efficiency of CFs used by classifiers in the population by track-
ing rule generality and complexity and conclude that growth of
CF depth decreases and that structural efficiency of the CFs is im-
proved only if both the fitness measure and the niching method

    



                                                        

are employed which also leads to CFs evolving more quickly with-
out being trapped in local optima. This as well as earlier works of
those authors are also part of the primary author’s Nguyen’s PhD
thesis, which was also published last year [31].

To achieve their overarching goal, the implementation of amore
reliable specialization pressure in XCS to prevent detrimental ef-
fects due to over-generalization, Wagner and Stein proposed and
evaluated two different extensions for XCS for continuous valued
inputs. In [48], two variants of lexicase selection, that is, batch
lexicase selection and 𝜖 lexicase selection, are introduced for par-
ent selection in the GA of XCSR and XCSF. Instead of an error-
aggregating fitness value, lexicase selection bases the parent selec-
tion on the accuracy of the rules using test cases (i. e. previously vis-
ited environmental states) for the accuracy assessment. In addition
to the adaptation of the lexicase selection variants to XCSR and
XCSF, they additionaly proposed a local test case storage, the so-
called classifier experience storage, which enables a niche-specific
mode of operation of the lexicase selection variants. The evalu-
ation on multiple classification tasks (e. g. the three-dimensional
checkerboard with both six and eight divisions per dimension and
real world data sets), and four regression tasks (e. g. the eggholder
function and the sine-in-sine function), showed lexicase selection
enables XCSR and XCSF to remarkably improve its learning per-
formance, as the different problems are learned more quickly and
with increased accuracy.

In [49], Wagner and Stein proposed their second extension to
tackle the problem of over-generalization in XCS for continuous
valued problems, the so-called over-generality handling (OGH). It
is based on two previously introduced methods for XCS for binary
inputs, namely absumption by Liu et al. [25] and the specify opera-
tor by Lanzi [23]. For the adaptation to continuously valued input
spaces, two new strategies to specialize over-general rule condi-
tions have been proposed: either smaller conditions are randomly
generated, which contain the center point of the condition of the
over-general rule, or smaller conditions are generated which are
entirely contained inside the condition of the over-general rule. In
addition, a new technique to detect over-general classifers in multi-
step settings has been introduced which is based on the increase in
oscillation of the prediction of an over-general rule due to match-
ing of environmental niches with different payoff levels.The poten-
tial of OGH was evaluated using different classification tasks (e. g.
Mario pixel-art and real-world data from the agricultural domain)
and a multi-step problem, namely the grid world with puddles.The
results showed that the application of OGH leads to considerable
learning performance improvements of XCSR, especially in case
of the considered real-word data and the used multi-step problem.
On the other hand, OGH’s underlying mode of operation leads to
an increased number of transient rules during the learning phase.

The work on OGH is continued in [50].The authors additionally
fathom the potential of the application of OGH in function approx-
imation tasks with XCSF and conduct an analysis based on three
different functions (i. e. the two-dimensional sine-in-sine function,
the three-dimensional cross function and the eggholder function)
with different settings of the 𝑟0 hyperparameter, to artificially in-
duce different tendencies to over-generalize. The results show that
OGH can also lead to significant improvements in the learning per-
formance of XCSF: In the considered cases, it reduces the system

error but at the same time, again, causes the aforementioned in-
crease in the number of transient rules.

Preen et al. [38] propose to use LCSs for building autoencoders
that consist of a set of smaller localized autoencoders (each local-
ized autoencoder corresponding to one rule in the LCS). In the pro-
posed system, an adapted variant of XCSF is used in which the con-
dition part 𝑐𝑙 .𝐶 and the prediction part 𝑐𝑙 .𝑃 of each rule is a sepa-
rate neural network.The neural network for 𝑐𝑙 .𝐶 is fully connected
feed forward with a single output neuron that determines whether
the rule matches a given input, whereas the neural network for
𝑐𝑙 .𝑃 is a small autoencoder. The number of neurons and connec-
tions in the hidden layer of the two neural networks are optimized
by the GA which also adapts the weights of the 𝑐𝑙 .𝐶 network; the
weights of the 𝑐𝑙 .𝑃 autoencoder are fitted using backpropagation.
By decomposing the input space using XCSF, the small autoen-
coders can adapt their architecture to the local niches and thus
have different complexities. Therefore, compared to a global au-
toencoder approach, the proposed system can be expected to lead
to a reduction in convergence time, computational cost, code size
and resulting decoder computational cost due to heterogeneous
small autoencoders. The authors perform a study that compares
their system with another version of it that does not partition the
input space (i. e. 𝑐𝑙 .𝐶 = 1 for all inputs) to find out whether XCSF’s
niching has any merit in the autoencoder setting. They conclude
that the niching LCS performs better in terms of convergence and
reconstruction error as well as that it has more tolerance with re-
spect to restrictions of the maximum number of neurons allowed.

In [26], Liu et al. propose a concept called natural solution, which
describes the existence of a consistent deterministic solution for
each data set containing only maximally accurate and maximally
general rules. This concept extends the hypothesis about the opti-
mal (i. e. accurate and maximally general) set of rules [𝑂] of Butz
et al. [4]. In order to study the natural solution and [𝑂] along with
their differences, two additional compaction algorithms are pre-
sented, namely Razor Cluster Razor 2 (RCR2) and Razor Cluster Ra-
zor 3 RCR3. RCR2 aims to find the natural solution, while RCR3
aims to find [𝑂]. In the evaluation experiments conducted, the
proposed concept of natural solutions was investigated by apply-
ing RCR2 and RCR3 to 16 artificial Boolean problems, that ranged
from 6 to 70 bits, and 3 real-valued datasets. In addition, eight of
the most popular previous compaction algorithms, namely CRA,
FU1, FU3, CRA2, K1, QRC, PDRC, and RCR, were also reviewed in
the evaluation experiments and their compaction results compared
with RCR2 and RCR3. The results show that unlike the previous
compaction algorithms, the proposed compaction algorithms can
extract the rules that accurately contain the ground truth of a prob-
lemwhen the dataset is fully observable and does not contain noise.
This is further evidence that LCSs are an appropriate technique for
building natural, interpretable models in data-mining tasks. How-
ever, when the data set is noisy, the generated rules are more likely
to reflect the ground truth of the provided dataset instead of the
problem.

In their thesis [24], Liu combines their previously proposed re-
search in the domain of LCS: the visualization techniques (such
as the Feature Importance Map (FIM)), the natural solution [26],
the new compaction algorithms (Razor Cluster Razor (RCR) and

    



                                                                                  

Razor Cluster Razor for real-valued domains (RCR-Real)), the Hi-
erarchical Learning Classifier System (HLCS) and the approaches
to overcome the issue of over-generalization (Absumption and the
Absumption Subsumption based learning Classifier System (ASCS))
as well as leveraging rule patterns across multiple interconnected
populations. It is shown that LCSs are able to generate optimal
solutions or natural solutions for clean datasets, that is, datasets
without any noisy instances, using the introduced algorithms and
techniques, and these solutions contain visible patterns that reflect
the ground truth of the considered datasets. The natural solution
contains all unsubsumable correct rules found in the global search
space.

6.2 Improvements for UCS
Nazmi et al. [30] extend their UCS-based LCS for multi-label classi-
fication by introducing a covering operator that respects label de-
pendencies.Themethod builds label correlation graphs and derives
from them subsets of semantically close labels for each of which a
rule is created. Further, a novel method for calculating prediction
arrays in the multi-label setting is proposed which is based on es-
timating each rules’ precision in predicting each individual label
it contains. On the five multi-label classification tasks (PASCAL-
VOC6, Scene, Mediamall, Corel5k and Corel16k; with prior dimen-
sionality reduction to 256 features using the VGG16model) that the
authors evaluate it on, the extended system compares favourably
to both the authors’ earlier system (which was based on the label
powerset technique) as well as several well-knownmulti-label clas-
sification algorithms (i. e. CLR, ECC, HOMER, ML-𝑘NN, RA𝑘EL).

To improve the performance of UCS on real-valued classifica-
tion tasks Hamasaki and Nakata [12] propose the Minimum Rule-
repair Algorithm (MRA). This algorithm attempts to slightly mod-
ulate the decision boundary so that misclassified examples are no
longer matched without overly reducing rule generality.Therefore,
it either removes a singular example or only changes the upper
or lower value of a bound in a singular dimension. The authors
evaluate MRA on a variety of real-valued multiplexer and real-
valued majority on problems and find that UCS with MRA does
converge considerably faster and often to better solutions (both
smaller and higher performing) than standard UCS. They also find
that the newly introduced hyperparameters are not very sensitive
for a majority of problems.

7 LCS AND DEEP LEARNING
InmodernML, deep neural networks have becomewell established
due to their strong learning capabilities. Especially the capabili-
ties of deep convolutional networks as powerful feature extractors
and dimensionality reductors motivated their use in combination
with LCS.Autoencoders are often-favoured architectures to achieve
these goals, as they can be trained unsupervisedly with unlabelled
data. Whereas neural network classification is very intransparent,
LCS models should allow an understanding of the classifications
made based on the provided features. Therefore, several research
endeavours have proposed the combination of features extracted
by autoencoders (or other deep convolutional feature extractors)
and LCS.

For the classification of real world images Irfan et al. [17] com-
bine a deep autoencoder and XCSR to CAXCS. XCSR evolves in-
terpretable rules operating on rich feature maps extracted by the
encoder part of an autoencoder. These rules can then be trans-
formed to operate on the original input features using the decoder.
The authors demonstrate the applicability of their system on syn-
sets of the ImageNet database depicting underwater scenes. They
compare CAXCS with a variety of benchmark deep neural archi-
tectures for image classification on multiple combinations of two
synsets each and find that the newly proposed system outperforms
the selected previous architectures in terms of accuracy and F-mea-
sure. They also provide some analysis of the rules and find that
around 30% of the encoded features do not contain meaningful in-
formation to classify the images.

To move towards ML systems with lifelong learning capabili-
ties, Irfan et al. [18] propose the usage of code fragment–based
LCSs in combination with deep learning feature extraction mod-
els. The neural networks are pre-trained to classify images from a
domain (i. e. underwater images) and the classification layers are
then replacedwith an LCS using code fragments as conditions.This
LCS is then trained to classify the same images using the features
extracted by the networks. Upon successful training, the code frag-
ments are stored in a knowledge base. For new tasks, such as the
classification of new classes from the same domain, the feature ex-
tractor is reused and the stored code fragments can be utilized to
jump start training with meaningful knowledge. The authors suc-
cessfully demonstrate the applicability of this approach with a va-
riety of typical image classification neural network architectures
for feature extraction.

In [19], the same authors then combine the two previous ap-
proaches into a new system using deep autoencoder–based fea-
ture extraction and code fragment LCS–based classification. They
modify mutation and subsumption and present a mechanism to
generate diverse and general sets of classifiers per task and, thus,
code fragments for the knowledge base. The applicability of the
approach is demonstrated on three large image datasets outper-
forming both the baseline method and a variety of models from
literature applied to similar problems in the past.

Shehu et al. [41] present a novel system based on the idea of
lateralization in biological systems which performs emotion cate-
gorization in face images by considering heterogeneous features,
such as mouth, eyes, nose, and jaw. Due to the application of the
lateralized approach, the robustness against hostile attacks such
as the one-pixel attack should be increased. To achieve this goal,
the novel system performs emotion categorization as follows: At
first, a face is initially detected using theHaar cascade classifier in a
given image, which is subsequently segmented into the respective
parts, namely face, jaw, eyes, mouth, and nose, using dlib. In the so-
called context phase, multiple deep neural networks DNNs (VGG19
architecture) generate predictions either for the constituent level
(i. e. the individual parts) or the holistic level (i. e. the big picture)
of the given face image. In case the predictions at the constituent
level and the holistic level diverge in estimation, the system is in
doubt about correctly classifying the emotion of the given face im-
age and invokes the so-called attention phase. In this phase, multi-
ple sUpervised Classifier Systems (UCS) are used to generate either
constituent-level predictions or holistic-level predictions based on

    



                                                        

HOG features computed for segmented parts of the given face im-
age. Finally, all predictions from both phases are analysed, and the
category with the highest score is predicted. In the evaluation ex-
periments, the novel lateralized system is shown to correctly pre-
dict severely corrupted images and therefore possesses a certain
robustness against adversarial attacks. Compared to state-of-the-
art deep learningmodels, the new lateralized system outperformed
VGG19 by 15% to 36% with respect to classification accuracy. Al-
though the novel lateralized system still performed best, it could
not withstand a certain strong adversarial attack either (the classi-
fication accuracy dropped to about 51%).

To enable the detection of incorrect output of an CVAEXCSR
LCS, Shiraishi et al. [43] propose in their extended abstract the
Misclassification Detection based on Conditional Variational Auto-
Encoder (MD/C). MD/C decides whether an CVAEXCSR’s output 𝑎
for input 𝑥 is incorrect by applying its internal decoder to 𝑎 (yield-
ing some 𝑥 ) and then computing the difference between 𝑥 and 𝑥 .
The system is evaluated using the MNIST dataset, the experimen-
tal results indicate that CVAEXCSR combined with MD/C signifi-
cantly outperforms the standalone version of CVAEXCSR and of
XCSR, as CVAEXCSR+MD/C achieves an accuracy of 99% com-
pared to 88% by CVAEXCSR and about 10% by XCSR. Therefore,
the new extension may improve classification performance and es-
pecially the applicablity of LCSs to high-dimensional inputs.

Shiraishi et al. [42] then build the same extension as a so-called
refinement component into their Encoding, Learning, Sampling, and
Decoding Classifier System (ELSDeCS) yielding the Encoding, Learn-
ing, “Plausible” Sampling, and Decoding Classifier System (ELPS-
DeCS). To assess the impact of this change, the system is evaluated
using theMNIST dataset with the unchanged ELSDeCS system as a
baseline. According to the results, the refinement component, both
significantly improves the accuracy and enhances the interpretabil-
ity, at least in case of the MNIST dataset.

A further new variant of ELSDeCS is proposed by Tadokoro
et al. in [47], namely MVN-ELSDeCS, in which the XCSR is re-
placed by anXCSR based onmultivariate normal distribution (MVN-
XCSR) to handle the internal representation of the variational au-
toencoder in ELSDeCS. In MVN-XCSR, the standard hyperrectan-
gular rule condition representation is replaced by a multivariate
normal distribution, which also results in adaptations of thematch-
ing and subsumption mechanisms of XCSR. As before, an eval-
uation experiment is performed on the MNIST dataset compar-
ing MVN-ELSDeCS and standard ELSDeCS. It is found that MVN-
ELSDeCS achieves significantly higher accuracy compared to ELS-
DeCS, as MVN-XCSR shows higher classification performance on
the dimensionally compressed latent space already in the early
stage of training. Furthermore, the reconstructed rules generated
by MVN-ELSDeCS showed higher classification performance for
the original high-dimensional data, a fact thatwas further exploited
by additional training of an XCS on the reconstructed rules, result-
ing in significantly improved classification accuracy of the XCS for
high-dimensional data. Overall, the use of MVN-ELSDeCS enabled
the creation of rules with both high interpretability and high clas-
sification performance for high-dimensional inputs.

8 APPLICATIONS
An important step in the life-cycle of an algorithm is the transition
from being developed and tested under laboratory conditions into
real world applications and testing in the wild. In this section we
want to first summarize works from the past year that present the-
oretical use cases and make arguments why LCS are well-suited
learning algorithms in these domains. Then, we present last year’s
variety of applications, both on real world data sets or directly in
production.

8.1 Theoretic applications and positions
Krupitzer et al. [22] explore a concept of hybrid system manage-
ment where distributed decision making of heterogeneous autono-
mous agents is integrated into central optimization processes. An
example use case would be a taxi service using privately-owned
self-driving cars. The authors motivate the use of XCS variants
for the required autonomous distributed decision making: The ex-
plainability and interpretability offered by LCSs would make them
more desirable than deep learning techniques, although hybrid ap-
proaches could provide an optimal balance between explainability
and interpretability and raw performance. The authors posit that
due to the limited feedback, dynamic search spaces, situational ac-
tion restrictions and multiple goals, which might shift during run-
time, new variants of XCS would need to be developed.

Heider et al. [15] describe a scenario where humans, real-world
technical systems and virtual agents collaboratively solve tasks,
for example, the manufacturing of products in an industrial set-
ting. The agent would serve as an assistance system for machine
parametrizations. Based on a short literature review regarding ex-
plainability, interpretability and transparency capabilities of LCSs,
they motivate the application of LCSs as the decision making com-
ponent of an agent within such socio-technical systems as it is
likely that these capabilities would increase human trust in the
agent’s decision making. The authors then formulate a template,
consisting of seven direct questions, to situationally assess explain-
ability requirements as well as LCS model design requirements.

In a short position paper [13], Hansmeier describes his plans
for his PhD project which is about employing LCSs to enable self-
awareness capabilities in heterogeneous compute nodes. Included
in the paper is a preliminary investigation of XCS’s performance
on the task-to-resource assignment problem (i. e. for a computing
task, deciding whether it should be run on the CPU, GPU or FPGA)
which showcases that XCS is able to exploit a simple pattern in the
arriving tasks. Aside from that the author shortly discusses some
advantages and limitations of using XCS for this problem.

To realize self-learning and self-organizing (SASO) systems, ma-
chine learning techniques capable of operating in environments
with dynamically changing conditions or unpredictable operation-
al events are needed. In [46], Stein and Tomforde discuss the ap-
plication of XCS or XCS-based systems in SASO systems, due to
advantages such as improved interpretability and capability to con-
tinually evolve their knowledge as well as their previous successful
application to self-adaptation tasks concerning condition-aware re-
configuration of parameters of productive systems. They present a

    



                                                                                  

system model for XCS-based SASO agents and planned improve-
ments to the XCS algorithm to augment XCS with proactive learn-
ing behavior based on self-awareness and self-reflection capabili-
ties, as they emphasize the importance of integrating concepts of
self-reflection, flexibility, and transferability of knowledge to real-
ize XCS-based SASO agents. It is expected that these adaptations
would lead to more robust and efficient learning behaviour of the
SASO agents as well as a more efficient use of existing knowledge
within the overall collective system structure.

8.2 Real world applications
Rosenbauer et al. [40] investigate the effect of a simple population
transformation that enables transfer learning for XCSF. The trans-
formation essentially only resets rule fitness, the expected rule er-
ror estimates as well as some of the bookkeeping parameters while
assuming that the dimensionality of the input space stays the same.
In the considered scenario (which is, prioritizing software tests for
test selection) the authors are able to show that the transfer learn-
ing regime has some albeit small benefits with respect to perfor-
mance.

In a subsequent study [39], the authors combine their previous
work on LCS-based test selection (including the transfer learning
approach) to form a software architecture for an autonomous agent
for automated test selection, building on concepts from the field
of Organic Computing and evaluating the agent with respect to
several metrics from that field (e. g. autonomy, self-organization
and robustness).

Kato and Sbicca [20] use LCSs to investigate trust in groups of
autonomous agents (one LCS instance per agent, 60 agents in to-
tal) in a grid world hunters/gatherers scenario which is intention-
ally designed to be close to the well-known investment game. The
authors hand-craft starting rules for each of the decisions that the
agents have tomake and then investigate different combinations of
agents being static or learning, being allowed to interact with any
other agent or exclusively within certain subgroups. The authors
observe that, without learning, agents act rather selfishly (which
coincides with the prediction from classical game theory) whereas
adding rather simple learning capabilities already leads to an emer-
gence of trust.

Malhotra and Khanna [27] benchmark 14 algorithms (among
them, GAssist, MPLCS, UCS, XCS—as they are implemented in the
KEEL tool3) against one another regarding their performance on
the task of learning to recognize change-prone software modules.
The motivation behind this is that software projects can benefit
from identifying such modules early on as that enables precau-
tionary design decisions that may lead to an easier to maintain
software product in the end. As predictors, for a certain software
module, the well-known metrics for object-oriented software by
Chidamber and Kemerer are used as well as the module’s number
of lines of code. The target is binary and corresponds to whether
the module will be changed at least once after the software was de-
ployed or distributed. The authors investigate 14 software projects
(all Java or C++) and conclude, based on Friedman and Nemenyi
tests, that LCSs at least perform well on this task if not outperform
most of the other algorithms.

3http://www.keel.es/

To predict depression from a variety of sociological factors, Bil-
lah et al. [1] first generated a dataset from a group of students and
then analysed this dataset using amulti-layer perceptron, the fuzzy
unordered rule induction algorithm (FURIA) and an evolutionary
multi-objective rule learning system finding comparable results.

Bu et al. [3] detect database intrusion attacks when using role-
based access control. They utilize an LCS to determine good input
features for a deep learning model and later on construct ensem-
bles of these individual models for the purpose of prediction. A rule
is therefore determined by a binary condition (representing the in-
dividual input features) and a deep classification model with a fit-
ness dependent on the accuracy of the model’s prediction during
training. To gain an architectural variety of deep classifiers in the
pool of models available for the ensemble prediction this process
is repeated for each architecture.The ensemble is then constructed
to contain accurate but diverse classifiers. They find that this en-
semble outperforms previous benchmarks of a singular model for
which the input features where determined by an LCS.

Chi and Hsiao [8] analyse the biomedical reaction of 32 students
to gameplay videos of video games to predict their individual risk
of gaming disorder.The ground truths were determined using state
of the art psychological questionnaires. They utilize XCSR with
center-spread conditions and replace the actionwith the respective
class for this supervised learning task. To determinewhich features
were useful tomake a prediction the feature selection ratewas com-
puted based on high performing classifiers across 30 runs. XCSR
achieved an average training data accuracy of 90% with very high-
frequency pulse rate variability as the most prominent biomarker
among rules.

In a related study Chi et al. [7] aimed at predicting the risk of in-
ternet addiction in conjunction with existing internet gaming dis-
order among 50 student participants. Similarly, the internet gam-
ing disorder classification and the risk for internet addiction were
determined using a questionnaire and biomedical responses were
measured during the consumption of gameplay videos. XCSR was
then used to predict internet addiction based on the questionnaire
answers and biomedical responses to stimuli in separate experi-
ments. The average 10-fold accuracy was slightly over 75% and us-
ing the commonly deemed relevant features—by analysing classi-
fiers matching functions—the questionnaire could be reduced from
26 to 19 questions and the biomedical data could also be limited to
fewer sensors.

To generate interpretable rules for image classification De Falco
et al. [9] present an approach using a differential evolution–based
rule learning system. The image data is pre-processed into a set of
64 features using a static filtering technique. Subsequently, rules
are induced by optimizing their conditions with a performance-
based fitness function. The combination of preprocessing and rule
learning is tested on a set of COVID-19 chest X-rays with high
class imbalance. Given the gray-scale nature of X-rays only 29 of
the 64 features are used for this study. The authors compare the
performance of their classification system with various other ML
techniques using the same features. While they find that their algo-
rithm does not outperform all of the other techniques in terms of
Matthews correlation, they stress that it does provide models that
are much easier to interpret.
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Gowri et al. [10] propose the use of XCS to balance resource
allocation for compute tasks between cloud and fog devices. They
present a short scenario with inputs beingworkload, battery capac-
ity and network congestion and the action being the workload to
be processed in fog. The payoff signal is based on time to solution
(delay) and energy usage.

9 SUMMARY AND CONCLUSIONS
This paper gave an overview of all the LCS-related publications
since 11 March 2021, that is, since the submission of the previous
such survey to the IWLCS 2021. We clustered the contributions we
found into six overall topics.

Formal theory saw two contributions in the last year that were
based on and advance work from the previous year. We encourage
researchers to contribute further formal theory in order to, in the
long term, develop more formally backed improvements to LCSs.

Two new LCS algorithmic architectures were proposed. A Pitts-
burgh-style reinforcement learning (RL) approach and a differen-
tial evolution-based Michigan-style system for supervised learn-
ing. Interestingly, despite being developed independently, both sys-
tems utilized fuzziness in their rules.

Just like in recent years, RL saw some community interest. We
found 8 papers concerning improvements or applications to RL
tasks, most notably for the ACS2 and XCS algorithms. As is not
uncommon for the RL community, many test-beds were related to
games.

XCS and its extension UCS saw 9 further studies (7 and 2 respec-
tively) that proposed a wide variety of features to improve these
systems. In particular, we want to highlight the works regarding
explainability and transparency of LCS models.

A total of seven papers proposed the use of different deep convo-
lutional models, most notably autoencoders, for feature extraction
and LCSs as classification algorithms. The LCSs were typically mo-
tivated for their easily interpretable rules.

The successful application of techniques (and their subsequent
improvements) of a field is very important to validate develop-
ments and to uncover subsequent research topics. This year we
found 4 papers that raise new research topics to make algorithms
fit for use in the presented use cases and 10 papers that attempted
utilizing LCS in real world applications or on real world data sets.

Overall, past year’s LCS research features a healthy diversity
from theory over incremental algorithmic andmethodical improve-
ments to applications in new domains.
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