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ABSTRACT
Genetic improvement is a search technique that aims to improve a
given acceptable solution to a problem. In this paper, we present
the novel use of genetic improvement to find problem-specific opti-
mized LLVM pass sequences. We develop a pass-level patch repre-
sentation in the linear genetic programming framework, Shackleton,
to evolve the modifications to be applied to the default optimization
pass sequences. Our GI-evolved solution has a mean of 3.7% runtime
improvement compared to the -O3 optimization level in the default
code generation options which optimizes on runtime. The proposed
GI method provides an automatic way to find a problem-specific op-
timization sequence that improves upon a general solution without
any expert domain knowledge. In this paper, we discuss the advan-
tages and limitations of the GI feature in the Shackleton Framework
and present our results.
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•Computingmethodologies→Genetic programming; • Soft-
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1 INTRODUCTION
Genetic Improvement (GI) [5, 8] automatically improves upon a
given solution using Genetic Programming (GP) [1, 7, 9]. This ap-
proach is inspired by the process of natural selection [3], in which
the idea of relative fitness advantage allows for the preservation of
favorable variations and guides the passing of genetic information
to the next generation. The Genetic Algorithm (GA) [4, 6] is a pow-
erful search algorithm that can efficiently find the near-optimal
solution in a large search space. Linear Genetic Programming (LGP)
[2] is a special application of its variant, Genetic Programming, in
which the genetic information of each individual codes for active
elements in the population represented in a sequential order. The
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Shackleton Framework1 is a generalized LGP framework that al-
lows the use of GP on any user-defined object types and fitness
metrics [12].

In the GI feature of the Shackleton Framework (Shackleton-GI),
each modification from the baseline is represented as a sequence
of operations to be applied to the baseline solution. The use-case
of interest in our experiments is the optimization of LLVM2 com-
piler optimization pass sequences [10]. LLVM is a collection of
modular and reusable (language/target independent) compiler and
tool-chain technologies. Different compile-time optimizations can
be specified using LLVM (Transform) Passes, which traverse the
program in some way and mutate the program in order to optimize
some metric (i.e. reduce runtime)[13]; a sequence of LLVM passes
can be specified at compilation to achieve a particular optimiza-
tion goal. Shackleton-GI evolves a series of insertion, deletion, and
replacement patch operations, which produces a more powerful
optimization pass sequence when applied to a pre-defined sequence
of LLVM passes, which is usually a solution to a general problem.

2 METHODS
Shackleton [12] is a flexible LGP framework, in which various types
of objects can be treated as genes and optimized with the GA. In
Shackleton-GI, we develop a pass-level patch representation in
which individuals consist of ‘genes’ that are patches. A patch has a
type field, a position field, and a value field. The framework takes
in a specific source code of a program, and generates a sequence of
patches that will be used to modify a starting sequence of compiler
optimization passes.

A demonstration of the process is shown in Figure 1, in which
an individual with three patches is applied to an example initial se-
quence of 5 LLVM passes long. After the initial sequence is modified
by the patches contained in an individual, it is used during compi-
lation as the optimization arguments. After the source program is
compiled with the new pass sequence, the average runtime over 40
runs is recorded as the fitness value of that individual. This mini-
mizes the effect of runtime inconsistency due to system fluctuations
and any unusual halting in the user-provided source program.

1https://github.com/ARM-software/Shackleton-Framework
2https://llvm.org
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Figure 1: Sample PatchRepresentation ofGI. Three different
patches are applied: insertion (1), deletion (2), and replace-
ment (3). Position fields are relative positions between 0 and
1; value fields are LLVM pass names.

In our experiments, the source program is the Backtrack Algo-
rithm implementation for the Subset Sum Problem (SSP)3, and the
to-be-modified sequence is the LLVM optimization passes in the
default LLVM optimization level -O3, which enables optimizations
that take longer to perform during compilation or that may generate
larger code in an attempt to make the program run faster [10, 11].
There are a number of hyperparameters required for Shackleton,
and we used the optimal hyperparameter combinations found in
[12].The experiments were conducted on HPCC nodes running
CentOS Linux version 7 and Clang version 8.0.0.

3 RESULTS AND DISCUSSION
Eight repeated trials were run with the same hyperparameter values
and the fitness across generations for two sample runs are plotted
in Figure 2, with horizontal lines as the baseline runtime. As we
can see, the run on the left shows a converging pattern that starts
at a high runtime then decreases; the run on the right initializes
at a high quality starting point, and stays within the same range
during the entire evolutionary process. However, both scenarios
are improvements upon the baselines.

Figure 2: Sample Runtime Improvement

The average percent improvement compared to the LLVM de-
fault optimization level -O3 in terms of target program runtime
over 8 runs of Shackleton-GI is 3.7% with a standard deviation of
3https://github.com/parthnan/SubsetSum-BacktrackAlgorithm

0.8768. The p-value for the left-tail test when the null hypothesis for
the mean percent improvement of 0 is 0.000012%. This shows the
robustness of the algorithm and its readiness to be experimented
with in production.

The search space for LLVM optimization pass sequences is in the
order of 10167 (using 120 different passes in sequences of approxi-
mately 80 passes long). Therefore, finding the absolute optimum
for a given source code is computationally impossible for currently
available methods. The default -O3 optimization level in LLVM is
carefully hand-crafted and aims at reducing the runtime of a target
program. Hence, it gives a good starting point for the search and sig-
nificantly reduces the size of the search space. The pass-level patch
representation in Shackleton-GI effectively searches near this initial
starting point and is able to find a local minimum tailored to the
specific source program. The use of GI significantly increases the
efficiency of the search compared to a run from random solutions
[12] and is able to provide a better solution than -O3 as-is.

4 CONCLUSION AND FUTUREWORK
The -O3 LLVM optimization level is hand-crafted by experts with
rich domain-specific knowledge about the LLVM infrastructure,
and is general enough to be used by different programs. Shackleton-
GI automatically produces a sequence of patches that generates a
problem-specific optimization solution to a user-provided source
program. We proposed a pass-level patch representation for GI
that can be extended into different object types, and showed that
our approach is able to achieve substantial runtime improvements
compared to a strong compiler baseline.

Shackleton-GI is a novel application of GI and a first step in
exploring a flexible use case of Shackleton. Future directions in the
development of Shackleton-GI are: First, measuring fitness of indi-
viduals with clock speed, which could potentially be influenced by
resource sharing on the same computing cluster. A more accurate
measure would be to measure the CPU time by altering the thread-
ing design in the Shackleton Framework. Second, our experiments
used the optimal hyperparameter values found by [12] in a LGP
(non-GI) environment. Additional hyperparameter tuning might
result in further runtime improvements as this is a different use
case. Further investigation into other GI algorithms and a wider
range of test problems would also be interesting areas of future
research.
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