Benchmarking several strategies to update the penalty
parameters in AL-CMA-ES on the bbob-constrained testbed

Preprint version

Paul Dufossé
Institut Polytechnique de Paris
Inria Paris-Saclay, CMAP
Paris area, France

ABSTRACT

In this paper, we benchmark several versions of a population-based
evolution strategy with covariance matrix adaptation, handling
constraints with an Augmented Lagrangian fitness function. The
versions only differ in the strategy to adapt the penalty parameter
of the fitness function. We compare the resulting algorithms, AL-
CMA-ES, with random search and Powell’s derivative-free COBYLA
on the recently released bbob-constrained test suite for constrained
continuous optimization in dimensions ranging from 2 to 40. The
experimental results allow identifying classes of problems where
one algorithm is more advantageous to use. They also reveal fea-
tures of the merit function used for performance assessment and
in particular situations where even on simple problems the targets
can be hard to meet for algorithms based on Lagrange multipliers.

CCS CONCEPTS

« Computing methodologies — Continuous space search.

KEYWORDS

Benchmarking, Black-box optimization, constrained optimization

1 INTRODUCTION

This paper compares four variants of the Augmented Lagrangian
Covariance Matrix Adaptation Evolution Strategy (AL-CMA-ES)
on the bbob-constrained testbed. It also reports data obtained
running random search and Powell’s Constrained Optimization BY
Linear Approximations (COBYLA) algorithm [16] on the same test
functions for baseline comparison.

Augmented Lagrangian (AL) methods handle the original con-
strained optimization problem by sequentially solving unconstrained
sub-problems, optimizing an AL fitness function. This function
consists of the Lagrangian function of the constrained problem
augmented with a penalty term. Dynamic parameters are updated
after each sub-problem is approximately solved. Initially introduced
by Hestenes [14] and Powell [16], AL constraint handling was first
combined with Evolution Strategies (ES) by Arnold and Porter [1],
where the authors analyze a (1+1)-ES with AL on a sphere function
with a single linear constraint and an update for the AL penalty pa-
rameters was proposed. This update was then adopted by Atamna
et al. [2], who applied AL constraint handling to a (u/pw, 4)-CMA-
ES [7] for the first time. Later on, they extended the algorithm to
handle multiple constraints [3] and analyzed the convergence of

Asma Atamna
Institute for Neural Computation
Department for Computer Science
Ruhr-University Bochum
Bochum, Germany

a step-size adaptive (u/piw, A)-ES with AL on sphere and ellipsoid
objectives under multiple active linear constraints.

More recently, Dufossé and Hansen [6] conducted an extensive
study of AL approaches for CMA-ES determining the influence of
hyperparameters, individual adaptive penalty parameters and meta-
modeling on a set of low-dimensional problems. They propose a
new default parameter setting for the AL hyperparameters, thereby
improving upon the previous work [1-3] on some problems. Addi-
tionally, the authors identified failure cases of the AL method and
showed how surrogate linear modeling of the constraints helps to
overcome these difficulties.

The objective of this work is to provide an extensive compar-
ison of the different strategies to update the penalty parameters
in AL-CMA-ES, which are implemented in the pycma package [8],
following the carefully designed test problems and methodology of
COCO [11] for constrained optimization [5].

The paper is organized as follows: in section 2 we present the
common framework of AL-CMA-ES and the different variants we
consider in the experiments. Section 3 details the experimental
setup such as parameters settings, heuristics for initialization of
adaptive parameters and how we perform restarts. We specify the
hardware and report timings in section 4. Finally, selected results
are discussed in section 5.

2 ALGORITHM PRESENTATION

Recall that we consider the following optimization problem

miniRrglize f(x) subjecttogi(x)<0fork=1,....m (1)
xeR”

by minimizing the dynamic Augmented Lagrangian (AL) function
defined as

L x)+ g2 (x) if gp(x) > 2k
H(x’%w)=f(x)+2{y"{’y’g( )+ gl (x) ifge(x)> L

k=1 \ =20y otherwise

()
where y € R"” and @ € R" are respectively the Lagrangian and
penalty parameters with y; > 0 and w, > Oforallk = 1,...,m. They
are adapted at each iteration of the ES! and we expect y to converge
to Lagrange multipliers associated with a (at least) local optimum
if the Karush-Kuhn Tucker conditions [15] are satisfied. We call
AL-CMA-ES the combination of a (y/pew, A)-CMA-ES optimizing
the dynamic fitness function H.

1Depending on the context, we may or may not use the time index for y(l) and other
variables, where ¢ is the iteration counter.



Algorithm 1 AL-(¢/pw, A)-CMA-ES

Require: m(o) e R", 0(0) e RY, default CMA-ES parameters,
standard AL parameters y > 1, dy > 0 and eventually other
parameters specific to w-adaptation

1: ’y(o)=0€Rm
2 0® =1eRrR™
3:t=0

4: while not happy do
5 Ask population X Q)
2 L @A {m(f)}

6:
7: Tell with H(x, y(t), w(t)) for x in X (*)
8: fork=1,...,mdo > Loop over constraints
9: if ylgt) + wl((t)gk (m(tﬂ)) >0 then
(1+1) 0, o o (t+1)
10: Ve =max[0, y, ' + 49k (m )]
11 if condition-to-increase(k) is satisfied then
. (r) (r+1)

12: Increase wp to W
13: if condition-to-decrease(k) is satisfied then
14: d (1) o (D)

: ecrease ;. to
15: t<—t+1

Algorithm 1 presents the general algorithmic framework for AL-
CMA-ES in an ask-and-tell interface. All variants of AL-CMA-ES we
consider in this paper obey the framework of Algorithm 1 and differ
only by the strategies to adapt the penalty parameters. Lines 11
to 14 provide a generic update scheme of the penalty parameters
for each constraint.

The classical update scheme [1-3] is to increase wy by a factor

)(1/4 if

HmD 5 6Oy Z gm0 50
wkgz(m““))m‘ (m(+1)y ) - H(m®. y )

n
®3)

or if
k2 g (m ) = g (m )| < g (m )| @
()

and otherwise decrease wy by a factor y. We have that o, #

wétﬂ) forallk =1,...,mandt > 0, that is, at each iteration, each
penalty parameter is either increased or decreased.

The influence of hyperparameters k; and y on convergence
speed and robustness is studied by Dufossé and Hansen [6]. They
investigate the algorithm when k; = 10 and y = 2V compared
to the previously proposed settings of k1 =3 and y = 21/5" The
latter algorithm is the version 1 of AL-CMA-ES considered in this
work. Both settings are used in the different versions considered in
this work, but the algorithms also vary by different conditions to
trigger the update of w.

We now introduce some useful quantities to describe versions 2,
3 and 4 of AL-CMA-ES that we benchmark. Consider the archive A
of all points sampled by the evolution strategy and .A(p) the last p
points of A. In practice, the size of A is bounded by the greatest
value of p used to query the archive. If p > A then the archive
accumulates samples from previous iterations.

Atamna & Dufossé

The version 2 increases wj by )(1/4 if either eq. (3) or eq. (4) is
satisfied and if additionally

O (p) 27"
or and gk(m(tﬂ))gk(m(t)) >0, (5
O (p)<t-7"

where @ (p) is the ratio of points satisfying the k-th constraint in
the archive of size p

#{x e A(p);gr(x) <0} )
p

" = 0.6 defines the default threshold setting and p = int(1 + \/n),
p is eventually increased by 1 to be even. Otherwise, the penalty
parameter is only decreased by y if

1-7 <P (p)<r , (7)

with 77 =0.95 and p = n + 20.

The versions 3 and 4 don’t consider anymore the conditions of
egs. (3) and (4) to update the penalty parameter. They also share
the same setting for p = 5 + n and the same factors to update wy.

This multiplicative factor is not constant anymore over iterations.
Let s be 1 if condition-to-increase(k) is true and -1 if condition-

7
to-decrease(k) is true and dl((t) = Zf’=t0 sl(: ) where t is the last
time s; has changed, forgetting iterations where no condition is
triggered. Then dj. starts at 1 (respectively -1) and increases (resp.
decreases) each time the same condition is satisfied and is reset
when the other condition is satisfied. The increase of wy follows

“’l(ctH) _ w](ct)X(1+C)/4 ®)

(6)

O (p) =

and the decrease
wl(ct+1) _ wl(ct)X_(l_C)/4 )

where C = 4s; min [T, max[sidy — T,0]] /T with T = 2+ n. Hence
“The value [of C] is zero for the first [T] same changes and in-
creases linearly for the next [T] same changes and then stays at the

threshold value as long as the change does not flip sign.”

For version 3, the penalty wy. is increased if either g (m(Hl)) >
0 or & (p) > 77 = 0.95 and decreased only if &4 (p) <7~ = 0.9
and g (m(tﬂ)) <0.

For version 4, it is increased either if g (x) > 0 for all x € .A(2n)

(i.e. @ (2n) = 0) orifgk(m(tﬂ)) > —ylgt)/a)l(ct) and @ (p) > 7+ =

0.95. It is decreased if gx (m(Hl)) < —ylgt)/a)l(ct) and @y (2n) < 1.

Table 1 provides a summary of all hyperparameters implied in
the different strategies to adapt the penalty parameters throughout
the optimization process.

3 EXPERIMENTAL PROCEDURE

We run AL-CMA-ES from the pycma package3 [8] using the AL
fitness implemented in the constraints_handler module. All hyper-
parameters for CMA-ES are set to the default values provided in
the used package version. In this section, we provide more details
about the experimental setup related to constraint handling and
baseline algorithms COBYLA and random search. Each AL version

%See the documentation of CountLastSameChanges in the constraints_handler module
of the pycma package.
3https://github.com/CJ\dA- ES/pycma/releases/tag/r3.2.2



Benchmarking several strategies to update the penalty parameter in AL-CMA-ES

Table 1: Hyperparameters used in the different versions of
AL-CMA-ES implemented in pycma. If a parameter is not
used in a version, it is replaced with a cross (X) and if it has
different values for increase and decrease conditions, they
are specified with respectively up (/) and down ( \) arrows.

Hyperparameters
Version Existing Newly introduced
X dy ki ko p A
1 25m 5 3 5 X X X
1/v/n = 1+/n(7)
2 2 5 10 5 n+20(N) 0.6 095
3and4 2" 5 X X S5+n 095 09

is given a budget multiplier of 5 x 104 meaning the sum of objective
and constraint evaluations must not exceed 5 x 10*n where n is the
problem dimension.

Initialization heuristic. The Lagrangian and penalty parameters
are set based on f- and g- values of sampled points in the first
population, {(f(x),g(x)), x € x () }. Compute Af and Agy, Ag,zC
for k = 1,...,m where Af is the interquartile range of { f(x),x €
x(©) }, and set

(0) _ Af
Y T hnge + 1000 (Af + 1) (10)
o = 281 (11)

k" 5p (Agy + 107°Ag7 + 10711 (Af + 1))

where in both cases the term 107" (Af + 1) is to avoid division by
0.

Restarts with increasing population size. The stopping criteria are
numerous and kept to default from pycma. Only tolstagnation is
disabled because it is pointless in the case of a dynamic fitness func-
tion. If any criterion is met before the allowed budget is exhausted,
the algorithm restarts according to the Increasing Population size
framework (IPOP-CMA-ES) [4]. The parameters of the AL fitness
function are not reset.

Baseline data. In addition to AL-CMA-ES variants, we include
other algorithms for baseline comparison. The random search rs
uniformly samples points in —[5,5]" and evaluates both the objec-
tive and the constraints at each point. This dataset can be found in
the official COCO data archive and the budget multiplier is 2 x 10°.
We also run fmin_cobyla from the SciPy [18] optimization library
which is a wrapper around Powell’s Fortran code [16]. The budget
multiplier is 10* and we set the initial trust-region radius rhobeg to
1, the constraint tolerance catol to 1078 and the minimum radius
rhoend (stopping criterion) to 10710 .

4 TIMING

We monitored the elapsed time of all algorithms while running on
the entire bbob-constrained test suite [5] for the given budgets
according to Hansen et al. [12]. We did not monitor the CPU time.
There may be a discrepancy between the two for AL-CMA-ES, as

Table 2: Timing results for AL-CMA-ES (AL), COBYLA and
random search in milliseconds.

Dimension 2 3 5 10 20 40

AL 0.35 0.29 0.33 0.60 0.99 3
COBYLA 0.022 0.016 0.023 0.055 0.14 0.59
RS 0.034 0.039 0.058 0.11 0.22 0.51

the pycma package relies on NumPy [13] routines for linear algebra
spanning multiple cores. For COBYLA, the core code is written in
Fortran so the elapsed and CPU times also depend on the compiler.

The code was run on a Linux machine with 64 Intel(R) Xeon(R)
CPUs (E5-2683 v4 @ 2.10GHz), 64 cores and 64 GB RAM. The time
per function evaluation is monitored as in example_experiment2.py
for dimensions 2, 3, 5, 10, 20 and 40 and reported in Table 2. Because
we split the optimization processes between different instances
into batches, there is one time measurement per batch and AL
version. We display in Table 2 the median value obtained across
the different batches and versions. The relative sample differences”
between the maximum and minimum elapsed times are respectively
of 34, 18,21, 12, 8 and 24 percent for dimensions 2, 3, 5, 10, 20, 40 and
show no significant bias towards a specific AL version. Indeed the
computational effort to adapt the AL fitness is small compared to
CMA-ES.

5 RESULTS AND DISCUSSION

Results from conducted experiments following the COCO perfor-
mance assessment methodology [5, 9, 12] on the bbob-constrained
benchmark functions [5] are presented in Figures 1 to 5. The exper-
iments were performed with COCO [11], version 2.6.2, the plots
were produced with version 2.6.1.8.

The expected running time (ERT), reported in Figures 1 and 2,
depends on a given target value, 7t = fopt +A7, and is computed over
all relevant trials as the sum of function and constraint evaluations
executed during each trial while the best value of the merit func-
tion [5] has not reached 7, summed over all trials and divided by
the number of trials that actually reached 7 [5, 10, 17]. Statistical
significance is tested with the rank-sum test for a given target Az
using, for each trial, either the number of needed function and con-
straints evaluations to reach Az (inverted and multiplied by 1), or,
if the target was not reached, the best Ar-value achieved, measured
only up to the smallest number of overall (function + constraints)
evaluations for any unsuccessful trial under consideration.

Unsurprisingly, random search does not perform very well on
almost all problems but on the linear slope problem f13 in 20-D
(Figure 3) and, to a lesser extent, on the Discus problem f25. In fact,
while we do not enter the flat region of the linear slope objective
function, the solution set of 13 is a hyperplane, because there
is only 1 constraint which boundary is also the level set of the
underlying linear function (see Dufossé et al. [5] for a mathematical
characterization of the solution set). Such argument can be roughly
extended to the Discus problem, whose level sets are similar to a
linear function on a global scale. Beyond these cases, which are

* Absolute value of the difference divided by the maximum value across all measure-
ments in the sample.



Atamna & Dufossé

1 Sphere, m=1 7 Sep. Ellipsoid, m=1 13 Linear Slope, m=1 19 Rot. Ellipsoid, m=1 25 Discus, m=1
S - - » ) - =
oo ¢ 0 0 : o o’ & 6 ©
¢ O 9 Q e o @] Qo ) o
Ne——u—H—a G 3 3
B ail
o @ —e—®5.n
—- al3
14— == ala 1t— 1 M@_@ 1 =
& cobyla
s instances b his instances s instances s instances his instances
arget DF: 1c-6 arget Df: 1e-6 arget Of: 1.6 arget DF: 1c-6 arget DF: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
2 Sphere, m=3 8 Sep. Ellipsoid, m=3 14 Linear Slope, m=3 20 Rot. Ellipsoid, m=3 26 Discus, m=3
o— >—— > X <
5(2 A :
7 O O
: o o °
3 3 3
L]
1 W 1 @\@\@‘@——O—@ = 1f—
s instances 15 instances s instances s instances his instances
arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
3 Sphere, m=9 9 Sep. Ellipsoid, m=9 15 Linear Slope, m=9 21 Rot. Ellipsoid, m=9 27 Discus, m=9
5 . : 5
4 9 © § o
S o O
3 3
1 M ~ 1 % 1 ~
S instances 5 instances s instances s instances 5 instances
arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
4 Sphere, m=9+int(3n/4) 10 Sep. Ellipsoid, m=9+int(3n/4) 16 Linear Slope, m=9+int(3n/4) 22 Rot. Ellipsoid, m=9+int(3n/4) 18 Linear Slope, m=9+int(9n/2)
>4 o
5 ; 5 a 2 R 5[ 3
O @ ) w = 1O @
o o © & 8 ¥ o
© 0 O

5 instances 15 instances
arget Df: 1e6 arget Df: le- arget Df: 1e6 srget Df: le:6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
5 Sphere, m=9+int(3n/2) 11 Sep. Ellipsoid, m=9+int(3n/2) 17 Linear Slope, m=9+int(3n/2) 23 Rot. Ellipsoid, m=9+int(3n/2) 29 Discus, m=9+int(3n/2)
5l 5 ) o 73 3
oo © 6 8 & © & / g 5
VAN > e}
TV 3 :
3
o) @] 9/45__,/*_/
o] o o o]
N o Q 1
s instances his instances S instances S instances s instances
arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: le-6
10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
6 Sphere, m=9+int(9n/2) 12 Sep. Ellipsoid, m=9+int(9n/2) 18 Linear Slope, m=9+int(9n/2) 24 Rot. Ellipsoid, m=9+int(9n/2) 30 Discus, m=9+int(9n/2)

o ® — ©
A4 o © ~ o
3 3 ps
O o]
o 09 O —8—9 —>—0o —2
1 a8 (1
b5 instances hs instances 15 instances s instances hs instances
arget O Te-6 arget DI 1e-6 orget Of: Te:6 arget Of: Te-6 arget D1 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40

Figure 1: Expected running time (ERT in number of evaluations as log;, value), divided by dimension for target function
value 10~¢ versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond
to different algorithms given in the legend of f;. Light symbols give the maximum number of evaluations from the longest
trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms with p < 0.01 and
Bonferroni correction number of dimensions (six). Legend: o: all, ¢: al2, +: al3, ©: al4, O: cobyla, /: rs.

hard to avoid considering the merit function used, random search we see performance plateaus for AL algorithms. In particular, on
serves as a sanity check for any reasonable algorithm. f2 in 20-D, al2 solves 90% of the targets within 2 x 10* evaluations

On the sphere problem with 1 constraint f1, Figure 1 reveals but still needs up to 10° evaluations to reach the remaining last
that the number of evaluations required to reach the target with a 10%. It solves only 80% of the targets on f3, 70% on f4 and f5. This
precision value of 10~° scales linearly with dimension. COBYLA effect is reverted on f6 as al2 solves (almost) all targets whereas
is about 10 times faster than AL in all dimensions but in 40-D other versions stagnate around 80% of the targets. The same effect
where it does not reach the hardest targets. Considering ECDFs in is observed on some other problems in 20-D, like the linear slope
Figure 3, we see that all AL versions solve all targets with near-equal f13 to 18 and bent cigar f31 to f37. In the latter case, for 33, f34, {35,

performance. On sphere problems with more than one constraint, the al3 and al4 versions seem less affected and solve all targets. A



Benchmarking several strategies to update the penalty parameter in AL-CMA-ES

31 Bent Cigar, m=1 37 Diff. Powers, m=1 43 Sep. Rastrigin, m=1 49 Rot. Rastrigin, m=1
o]
1t 1 - 11
[LS instances [15 instances [15 instances [LS instances
arget DF; 1e-6 arget Df; le-6 arget Df; le-:6 arget DF; 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
32 Bent Cigar, m=3 38 Diff. Powers, m=3 44 Sep. Rastrigin, m=3 50 Rot. Rastrigin, m=3
51— -
o]
30
1 1
s instances s instances I instances s instances
arget Df: 1e-6 arget Df: 1e-6 uel Dl le-6 arget Df: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 5 10 20 40 2 3 5 10 20 40
33 Bent Ci_g_a_r, m=9 39 Diff. Powers, m=9 45 Seg Rastrigin, m=9 51 Rot. Rastrigin, m= 9
5’70 6 ¢ ©
® © e/ v 8 \ o
Y @] o o © o]
0—/ 3;; ©
1 1
s instances s instances 5 instances S instances
arget Df: 1e-6 arget Df: 1e-6 aracl D’ le-6 arget Df: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 10 20 40 2 3 5 10 20 40
34 Bent Cigar, m=9+int(3n/4) 40 Diff. Powers, m=9+int(3n/4) 46 Sep astrl in, m=9+int(3n/4) 52 Rot. Rastrigin, m=9+int(3n/4)
)
5 A
W 9° ® @
o o o
3 3l
O
1 1}
S instances S instances 15 instances S instances
arget Df: 1e-6 arget Df: 1e-6 arget e-6 arget Df: 1e-6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
35 Bent Cigar, m=9+int(3n/2) 41 Diff. Powers, m=9+int(3n/2) 47 Sep. Rastrigin, m=9+int(3n/2) 53 Rot. Rastrigin, m=9+int(3n/2)
St s . 5
0o o 0 © ] o 9
) V @] 9 o]
3 3 3
o % o o2 ¢
1= 1 - 11—
S instances S instances s instances S instances
arget Df: 1e-6 arget Df: 1e-6 arget Df: 1e-6 arget Df: le-¢
5 10 20 40 2 3 5 10 20 40 10 20 40 2 3 5 10 20 40
36 Bent Cigar, m= 9+|nt(9n/2) 42 Diff. Powers, m=9+int(9n/2) 48 Sep. Rastrigin, m=9+int(9n/2) 54 Rot. Rastrigin, m=9+int(9n/2)
)
5 = _ 5 A
8 ©® 6 9 9 0 9 ® @
O [¢] o o O o
£ O 0 o)
316 31—
O
o] 8- ot
e g
— a3
1 10— - ald
& cobyla
S instances S instances 5 instances S instances -
arget DF: 1.6 arget Df: 1e-6 arget Df: 1e:6 arget Df: 1.6
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40

Figure 2: Expected running time (ERT in number of evaluations as log;, value), divided by dimension for target function

value 10~¢ versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond
to different algorithms given in the legend of fs4. Light symbols give the maximum number of evaluations from the longest
trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms with p < 0.01 and
Bonferroni correction number of dimensions (six). Legend: o: all, ¢: al2, +: al3, ©: al4, O: cobyla, /: rs.

possible reason for these plateaus is the triggering of some stopping
criterion in CMA-ES before the last target is reached. It is also clear
that the effect varies with the AL version considered since the
stopping criteria are set to the same values.

Investigating early stopping of al1 on f18 in 20-D (m = 99) sev-
eral times, we assert the following scenario: the ES without restart
stops after ~ 4 x 10* because the tolfun = 1071 stopping criterion
is triggered. The euclidean distance from the optimal solution to
the ES mean is ~ 10® and indicates convergence. While the merit

function value is very close to the final target, some constraints are
slightly violated, hence don’t satisfy the feasibility condition to trig-
ger the target. Note that the fmin_con method of the pycma package
also implements a repair method consisting of minimizing the sum
of the constraints’ violations squared via the post_optimization
boolean argument. The repair method runs after CMA-ES has opti-
mized the AL fitness, starting from the best obtained solution with
the adapted step-size and covariance matrix. This second stage is
typically fast and we can expect the new solution to improve the



Atamna & Dufossé

Rot. Ellipsoid, m=1 25 Discus, m=1

10 w00 | ] ] @l
e
08 a12

°

f-©cobyla

°

\¥al3 8

°
>

ald

i3

°
b

cobyla

°

Fraction of function,target pairs
Fraction of function,target pairs

&
-4
?
2
s
£o.
s
g
2
s
S
]
e
frd

|

0.2+ 58'1

o s
0 6

2 4
log10(evals / dimension)

Fraction of function,target pairs
fraction of function,target pairs

rs

°
°

o'

2 4 6 0 2 a 6
log10(evals / dimension) log10(evals / dimension)

10 20 Rot. Ellipsoid, m=3

Discus, m=3

oL o L 210 Pocobyla o 1.0 Trrcemmer g0 a2 0 cobyla
s s i B el Sl H
s s s nsances S s s
% 0. 08 ©0.8 | wal3 0.8+ /)al] $08 al2
2 2 2 \ 2 2
) 8 b} ) 8
< 0. £06 €06+ ald €06 {-ala £06 1
s s s S s
So. Soa Soa n Soa /‘_1 Yeal3 Soa wal3
S S s S k)
§o02 §o02 So2 al2 So2 Pocoyia 502! Yaia
*o. 00 o = 0. s 0.0 s
o 2 4 6 ) 2 6 0 2 4 6 0 2 4 6 [ 2 a 6
log10(evals / dimension) log10(evals / dimension) Iog10(evals / dimension) 1og10(evals / dimension) log10(evals / dimension)
9 Sep. Ellipsoid, m=9 15 Linear Slope, m=9 21 Rot. Ellipsoid, m=9 27 Discus, m=9
010 010 S wIoP al2 10 D T 1 1.0 et 0 a2 010 A cobyla
H g i | vy g ey | B [ear e | Sead [ H e
3 3 a o e | o
508+ $08- 0. 5 0.8 Jpan 908" Jala
e 2 2 2 / e
g g b3 b3 £
€06+ €06 £ 0. £0.6 peobyla € 0.6+
s S S S s
g g g g § g
5041 304 20414 204 vald S04
s S S s s
< c c c . €
Soa2: go2 So. §o2 #al3 So2
g g g g g
* 00 * 00 o * 00 i *00
0 2 4 6 0 2 4 6 2 4 6 o 2 4 6
log10(evals / dimension) log10(evals / dimension) log10(evals / dimension) log10(evals / dimension)
0 Sep. Ellipsoid, m=9+int(3n/4) #2 Rot. Ellipsoid, m=9-+int(3n/4) 28 Discus, m=9+int(3n/4)
10 T 710,300 al2 10 1. 00 al2 1.0 o ae 206 ||| eobyla

32]

e 00 16,06

©
°
©
°
°
®
°
©

-

>
°
>
°
°
>
o
>

b
°
S
°
o
b
°
=

e
o
S
o
R

Fraction of function,target pairs
Fraction of function,target pairs
Fraction of function,target pairs
Fraction of function,target pairs

°
°

/M

2 4 6
log10(evals / dimension)

°
o
°
°
o
°
°
°

2 4 6
log10(evals / dimension)

5 Sphere, m=9-+int(3n/2), 29 Discus, m=9+int(3n/2)

Vala
\cxu

dar2

°

EhH
83

°
o
°

8

°
o

°
°
°
>
°
>

°
°
°
b
°
b

°
°
e
°
o

Fraction of function,target pairs
Fraction of function,target pairs
Fraction of function,target pairs

°
°

°
°
°
°

gv

ol focobyla 1 1.0 e ) cobyla cobyla
] H g H 5
g g g g g
5 0. a2 5o a2 B0 508 508 ai2
2 2 2 = 2
s 8 £ 8 s
So. i3 £ 0. vala S o S06 S0s6
8 s 13 s 8
So. al So. a3 So. Soa4 Soa
k3 s k3 k3 k3
o n So n So2 §o02 §o2
* 0. = X = * 0. * 0. * 0.0
2 4 6 o 2 a 6 0 2 4 6 0 2 4 6 o 2 4 6
log10(evals / dimension) log10(evals / dimension) log10(evals / dimension) log10(evals / dimension) log10(evals / dimension)

Figure 3: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of evaluations, di-

vided by dimension (evals/DIM) for the 41 targets 1007¢-2 jn dimension 20 and problem IDs 1 to 30. Problems below the blue
line have more constraints than dimension, and problems below the green line have more active constraints than dimension.

merit function. In these experiments, we disabled the repair method reveals what can be seen as both a feature of the test suite and a de-
and it is of further interest to quantify its influence on the number fect of algorithms based on Lagrange multipliers where the scaling
of targets solved, all other parameters being equal. of the constraints defines the precision at which they are satisfied.
On the same problem, we also observe the Lagrangian parame- Decreasing funtol to 10712, AL-CMA-ES does not converge and it
ters to converge to values spanning multiple orders of magnitude, is most likely that the algorithm is affected by numerical noise.
between 2 and 10>, whereas in the merit function® used to trigger As expected, COBYLA solves the linear slope problems f13 to
targets, coefficients playing a similar role are all set to 1 [5]. This dis- f18 with very few evaluations (less than 10n in almost all cases and
crepancy between the Lagrangian function and the merit function all dimensions, see Figure 1). Indeed, these problems have no non-
linear transformation hence the linear surrogate model of COBYLA
is exact.

SWe recall the merit function is f/(x) = max[f(x), f*] + = max[gx (x), 0] On ellipsoid problems, we observe that all AL versions sol\3/e
where f* is the optimal value and k = 1, . . ., m. the separable ellipsoid with 1 constraint f7 within roughly 10°n



Benchmarking several strategies to update the penalty parameter in AL-CMA-ES

010 iz ol 0 1 rgau 010 n
3 3 & s I & \
308 i B §0.87 i3 08 \at3
& & & \ & \
5 s s 5 \
c06 cobyla € 0. 206 ald So6 daiz
S s S s
g T ] \ g
Soa ala, 5 Soa daiz Soa4 f Vala
s s s s l
So2 al3 So. §02 cobyla  § 0.2+ y cobyla
T T ] T
e e e e
* o0 " = o0 s Eooi———— = g
2 a 6 0 2 4 6 0 2 4 6
Iog10(evals / dimension) log10(evals / dimension) log10(evals / dimension)
38 Diff. Powers, m=3 44 Sep. Rastrigin, 50 Rot. Rastrigin,
010 a4 1 10 ey, 2 1.0 a0 a2 2 1.0 Frrcmnernt 270 = a2
H 3 [ e i e 3 e
$08 i3 508+ 0.8+ n 0.8+ n
2 2 2 2
8 \ -] ] \ s
£06 é)au £06 £06 a4 £06 [7ala
s s S \ s
Soa ai2 So4: S04 al3 Soa al3
S s s S
So2 coyia 5 0.2 cobyla 5 02 cobyia 5 0.2 cobyla
* 0.0 = X 0. = *o.
2 a 6 ) 2 a 6 2 4 6 o 2 4 6
log10(evals / dimension) Iog10(evals / dimension) log10(evals / dimension) log10(evals / dimension)
33 Bent Cigar, m=9 45 Sep. Rastrigin, m=9 51 Rot. Rastrigin, m=9
010 010 ala 1 1.0 o g n nl T tsral3
H g g [ {5 H i G ova
2 g g g
%0 5081 i 08 ala 0.8 f a2
4 & e [ e
s s \ 5 . 5 fl
go. £06 Veal3 £0.61 a2 €061 ald
2 ] \ £ [ 2
g g \ g g
o S04 dal2 S04 a3 5041 .
s s s | s
So So2 cobyla S 02 ocabyia S 021 / cobyla
g g g g N
o0 o0 s Loos— | luonypdah o Lo0 - rs
0 0 2 4 6 0 2 4 6 0 2 4 6
log10(evals / dimension) log10(evals / dimension) log10(evals / dimension)
46 Sep. Rastrigin, m=9+int(3n/4) ‘?2 Rot. Rastrigin, m=9+int(3n/4)
» » ala 010 0 n 0l BT 10D n
H s ] 3 e g.va
g g & 3
s 9o al3 $0.87 al2 $ 087 al2
e 2 2 e
s s 8 I s
c0. €06 bcobyla € 0.6 fral3 €06 ral3
S s | 2 | 2
g T \ ] i g
So Soa “ n S04 ala S04 7ala
k) s | s s
So. So2 Qa2 So2 cobyla  § 0.2 cobyla
g g g g
£ Eo0 s & ook AV frs ook N/ N/ rs
0 2 a 6 2 4 6 0 2 4 6
log10(evals / dimension) Iog10(evals / dimension) log10(evals / dimension)
41 Diff. P 47 Sep. Rastrigin, m=94+int(3n/2) 3 Rot. Rastrigin, m=9-+int(3n/2)
0 01075 1 1.0 T et 305 Slocobyla 10 1.0 i ey 185 S ocobyla
H g R A ) T e Tiear | Sees
s s & i S i
0. 08 0.8 508
e 2 2 2
] ] | b
c0. €06 £0.6 €06
S s S S
So 304 S04 Soa
s s s s
So. So02 §02 So2
T T ] T
e e e e
* 00 00 o0 “ o0
2 4 6 0 2 4 6
log10(evals / dimension) log10(evals / dimension)
L 4. 48 Sep. Rastrigin, m=9+int(9n/2) 4 Rot. Rastrigin, m=9+int(9n/2)
1.0 Tepobar e xobyla 10 10 5 ©cobyla 1.'35 bob-canstrames f54. 2 cobyla

o o
-
o

°
9
°

Fraction of function target pairs
Fraction of function,target pairs

°
°
°

2 a 6 0 2 a 6
log10(evals / dimension) log10(evals / dimension)

5 3

g g

908 1 087 i
2 2

b} s

0.6 al2 £0.6 al2
s K I

2 I g |
S04 [tz Soa: [tz
k3 | k3

§0.2 |7aia §o02 ala
£, N -

2 4 6 o 2 4 6
l0g10(evals / dimension) log10(evals / dimension)

Figure 4: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of evaluations, di-
vided by dimension (evals/DIM) for the 41 targets 100721 in dimension 20 and problem IDs 31 to 54.

evaluations for all dimensions n, though this slightly increases, from
9 x 10%n in 5-D to 2 x 10%n in 40-D (see Figure 1). Comparing the
separable with the rotated ellipsoid ECDFs in Figure 3, al1 and al2
require 10 times more evaluations to solve the latter problem with
1 constraint, and al3, al4 are much slower (again roughly another
factor of 10 before the budget is exhausted). This ranking of AL
versions generalize to ellipsoid problems with more constraints
except when m = 9 + int(9n/2) where all versions show equal
performance before al1, al3 and al4 reach the plateaus. The ECDFs
of COBYLA are the same for the separable and rotated ellipsoid
problems, reaching 30% of the targets within 10*n evaluations when
n = 20.

On the global picture, aggregating data for problems with the
same number of constraints, Figure 5 reveals that in all cases
COBYLA is 10 to 100 times faster than AL-CMA-ES to solve the
low tier of targets, which coincides with small budgets, say be-
low 10%n. On problems where there remain degrees of freedom,
i.e. the number of active constraints is less than the dimension,
AL-CMA-ES is competitive for large budgets, and in particular for
challenging objective functions where the linear surrogate model of
COBYLA is a poor fit, like ellipsoid and different powers problems
with m € {1,3,9}. Where there is no degree of freedom, COBYLA
efficiently solves all problems except the Rastrigin function f47 and
53 with m = 9 + int(3n/2) constraints.



m=1

1.0 obob-canstrained 11, 77, 113, 119, 258K BLIE
41 targets: 100.1e-06
evals = f-evals + g-evals
15 instances

0.8~

0.6-

0.4-

0.2-

Fraction of function,target pairs

0 2 4 6
log10(evals / dimension)

m=3n]+9

1.0 Thbob-canstrained fa, 10, f16, f22, f28, f34, f40, f46, f52, 2p-

41 targets: 100./1e-06
evals = f-evals + g-evals
15 instances

0.8-

0.6~

0.4-

0.2-

Fraction of function,target pairs

0.0
0 2 4 6

log10(evals / dimension)

al4

al3

cobyla

cobyla

m=3
1.0 bbob-canstrained 12, f8, {14, 120, 126, 132] 138, 44, {50, 20}DL)a 11

41 targets: 100..1e-06
evals = f-evals + g-evals

15 instances

2
‘©
aQ
o 0.8+ Hal2
2
e /
c 0.6- Val4
.S
=l
o
c
2 0.4- al3
—
)
5
2£0.2- cobyla
1%
o
w
0.0 rs
0 2 4 6

log10(evals / dimension)

m=|3n]+9

1.0 Topob-canstrained 15, 711 117, 123, 726, 357
41 targets: 100./1e-06
evals =f-evals + g-evals
15 instances

&2
‘©
aQ
o 0.8- S/ald
2
] 4 3
i} .
c0.6- y \ ¥ral3
k=l 4
=i
9]
c
2 0.4 all
w—
)
S )
20.2- ‘ Hal2
1%
o
w
0.0 | Ars
0 2 4 6

log10(evals / dimension)

Fraction of function,target pairs

Fraction of function,target pairs

Atamna & Dufossé

m=9

1.0 bbob-cdnstrained f3, 19, f15, 121, 27, £33] 139, f45, 151, 201D {yal2
41 targets: 100.1e-06
evals =|f-evals + g-evals
15 instances

m=|3n|+9

Ycobyla

15 instances

0.8- Hal2

0.6- Vala

0.4- Fal3

0.2- 11

0.0 : rs
0 2 4 6

log10(evals / dimension)

Figure 5: Bootstrapped empirical cumulative distribution of the number of evaluations divided by dimension (evals/DIM) for

41 targets with target precision in 10176--2] for all functions and subgroups in 20-D. The functions are grouped by number of

constraints.

Finally, Figure 5 shows the two algorithms are rather complemen-
tary, and suggests that running a portfolio algorithm composed of
COBYLA and AL-CMA-ES® would be a good strategy in a black-box

scenario.

6Running the former first as it is faster and in particular if the problem has many

constraints.



Benchmarking several strategies to update the penalty parameter in AL-CMA-ES

REFERENCES

(1]

(2]

(3]

8

=

=

[10]

Dirk V. Arnold and Jeremy Porter. 2015. Towards an Augmented Lagrangian
Constraint Handling Approach for the (1 + 1)-ES. In Genetic and Evolutionary
Computation Conference. ACM Press, 249-256.

Asma Atamna, Anne Auger, and Nikolaus Hansen. 2016. Augmented La-
grangian Constraint Handling for CMA-ES—Case of a Single Linear Constraint.
In Proceedings of the 14th International Conference on Parallel Problem Solving
from Nature. Edinburgh, United Kingdom, 181 - 191. https://doi.org/10.1007/
978-3-319-45823-6_17

Asma Atamna, Anne Auger, and Nikolaus Hansen. 2017. Linearly Convergent
Evolution Strategies via Augmented Lagrangian Constraint Handling. In The
14th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XIV).
Copenhagen, Denmark, 149 — 161. https://doi.org/10.1145/3040718.3040732
Anne Auger and Nikolaus Hansen. 2005. A restart CMA evolution strategy with
increasing population size. In 2005 IEEE Congress on Evolutionary Computation,
Vol. 2. 1769-1776. https://doi.org/10.1109/CEC.2005.1554902

Paul Dufossé, Asma Atamna, Philippe R Sampaio, Dimo Brockhoff, Nikolaus
Hansen, and Anne Auger. 2022. Building scalable test problems for benchmarking
constrained optimizers. ? ? (2022), ?

Paul Dufossé and Nikolaus Hansen. 2021. Augmented Lagrangian, Penalty
Techniques and Surrogate Modeling for Constrained Optimization with CMA-ES.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
"21). Association for Computing Machinery, New York, NY, USA, 519-527. https:
//doi.org/10.1145/3449639.3459340

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Re-
view. In Towards a New Evolutionary Computation: Advances in the Estimation
of Distribution Algorithms, Jose A. Lozano, Pedro Larrafiaga, Ifiaki Inza, and
Endika Bengoetxea (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 75-102.
https://doi.org/10.1007/3-540-32494-1_4

Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. 2019. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634. https://doi.org/10.5281/zenodo.
2559634

Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tusar, and Tea Tusar.
2016. COCO: Performance Assessment. ArXiv e-prints arXiv:1605.03560 (2016).
Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2012. Real-
Parameter Black-Box Optimization Benchmarking 2012: Experimental Setup. Tech-
nical Report. INRIA. http://numbbo.github.io/gforge/bbob2012-downloads

[11

[12

[13

[14

[15

[16

[17

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff.
2016. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box
Setting. ArXiv e-prints arXiv:1603.08785 (2016).

Nikolaus Hansen, Tea Tusar, Olaf Mersmann, Anne Auger, and Dimo Brockhoff.
2016. COCO: The Experimental Procedure. ArXiv e-prints arXiv:1603.08776
(2016).

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Magnus R. Hestenes. 1969. Multiplier and Gradient Methods. Journal of Opti-
mization Theory and Applications 4, 5 (1969), 303-320. https://doi.org/10.1007/
BF00927673

Harold W. Kuhn and Albert W. Tucker. 1951. Nonlinear programming. In Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Probability.
University of California Press, Berkeley, USA, 481-492.

Michael J. D. Powell. 1969. A Method for Nonlinear Constraints in Minimization
Problems. In Optimization, R. Fletcher (Ed.). Academic Press, 283-298.

Kenneth Price. 1997. Differential evolution vs. the functions of the second ICEO.
In Proceedings of the IEEE International Congress on Evolutionary Computation.
IEEE, Piscataway, NJ, USA, 153-157. https://doi.org/10.1109/ICEC.1997.592287
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/s41592-019-0686- 2



	Abstract
	1 Introduction
	2 Algorithm Presentation
	3 Experimental Procedure
	4 Timing
	5 Results and discussion
	References

