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ABSTRACT
In this paper, we introduce Bingo, a flexible and customizable yet
performant Python framework for symbolic regression with genetic
programming. Bingo maintains a modular code structure for simple
abstraction and easily swappable components. Fitness functions,
selection methods, and constant optimization methods allow for
easy problem-specific customization. Bingo also maintains several
features for increased efficiency such as parallelism, equation sim-
plification, and a C++ backend. We compare Bingo’s performance to
other genetic programming for symbolic regression (GPSR) meth-
ods to show that it is both competitive and flexible.

CCS CONCEPTS
• Computing methodologies → Genetic programming; • Soft-
ware and its engineering → Abstraction, modeling and modular-
ity.

KEYWORDS
genetic programming, symbolic regression, genetic programming
for symbolic regression
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1 INTRODUCTION
Genetic programming is the most common and performant ap-
proach to symbolic regression [16]. Genetic-programming-based
symbolic regression (GPSR) involves generating a population of
equations, creating offspring from that population, evaluating the
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fitness of those equations, and selecting equations to continue onto
the next generation [15]. There is a wide array of methods for each
step of GPSR. For generating the initial population, equations can
be randomly generated, there can be a filtering process to find well-
suited candidate equations, or equations can even be manually cre-
ated or selected. For creating offspring, crossover or mutation may
be performed, each of which have many variations. For evaluating
fitness, there are several common measures of fitness and types of
regression that can be performed: implicit regression [2, 10, 24, 25],
physics-informed regression [13], or regression under uncertainty
[1]. For selection, tournaments, elitism, niching methods [18], and
pareto selection [27] are among the many possibilities.

Each of these methods has pros and cons and choosing the best
method is problem dependent. While the simplicity of applying a
single set of methods, regardless of context, is appealing; it is likely
suboptimal to do so. We propose a GPSR framework, Bingo, which
aims to solve this problem by allowing users to choose popular
established methods for components of GPSR and easily define
their own, if desired.

In the following sections, we will describe how Bingo approaches
GPSR, give an overview of how it is structured, describe how it
can be customized, and compare how it performs to other GPSR
methods. While Bingo is compared to other GPSR methods, its
performance is not set in stone. Bingo’s main strength is its design
that enables users to integrate their own code through a set of
provided interfaces (Bingo is open-source and available at https:
//github.com/nasa/bingo). Then theymay leverage any combination
of Bingo-supported methods as they please. For instance, using
GPSR to find an equation to a physics problem could benefit from
model evaluation based on physical properties (e.g., in Section 3.2)
or features from other established methods (e.g., Operon [3], FEAT
[17], etc.) can be implemented for better performance on general
regression problems.

2 STRUCTURE
Bingo is built upon a modular code structure with abstractions to
allow for swappable components. The core components of Bingo’s
structure are shown in Figure 1, each of which will be detailed in
the following subsections. Many of these components have multi-
ple implementations for different problems, as shown in Figure 2.
Furthermore, users can extend any of these components to create
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Figure 1: Classes involved in Bingo’s evolutionary process.

Figure 2: Implementations of Bingo’s GPSR classes.

their own implementations that suit their needs. A code example
of a sample Bingo configuration is shown in Appendix A. Lines of
this example will be used to illustrate how to setup components
described in the following sections.

2.1 Equations
Genetic algorithms and genetic programming involve the evolution
of a population of individuals. In GPSR, the individuals of the pop-
ulation are equations [15]. In Bingo, equations are represented as
instances of the chromosome object. These chromosome instances
are evaluated for fitness, evolved, and selected for continuation in
subsequent generations.

2.1.1 AGraph. Owing to the computational benefits over tree-
encodings [23], Bingo represents equations as acyclic directed
graphs (AGraphs). One such AGraph is shown in Figure 3, rep-
resenting the equation 𝐶0𝑋0 + 𝑋0 + 𝑋1.

Bingo’s AGraphs are represented using an array of commands.
As shown in Table 1, each row (command) in a command array has
one node with two parameters. The first command in the command
array (at 𝑖 = 0) is a terminal load constant command. A terminal
command loads a piece of data determined by its first parameter.
For example, the command at 𝑖 = 0 loads constant 0 (more on con-
stants in Section 2.1.2). The commands at 𝑖 = 1 and 𝑖 = 2 are similar

Table 1: Example command array for 𝐶0𝑋0 + 𝑋0 + 𝑋1

i Node Param. 1 Param. 2 Resulting Expression

0 constant 0 0 𝐶0
1 variable 0 0 𝑋0
2 variable 1 1 𝑋1
3 ∗ 0 1 𝐶0𝑋0
4 + 1 2 𝑋0 + 𝑋1
5 sin 2 2 sin(𝑋1)
6 + 3 4 𝐶0𝑋0 + 𝑋0 + 𝑋1

except they load in variables 0 and 1, respectively. The remaining
commands are operators, which perform operations on their param-
eters. For example, the command at 𝑖 = 3 performs multiplication
on the result of the commands at 𝑖 = 0 and 𝑖 = 1, resulting in 𝐶0𝑋0.
The commands at 𝑖 = 4 and 𝑖 = 6 do similar operations but with
addition instead. Also note how the command at 𝑖 = 5 is an operator
that only uses one parameter, resulting in sin(𝑋1); operators can
use one or two parameters. The last command in the array links
everything together to form the equation𝐶0𝑋0 +𝑋0 +𝑋1 as shown
in Figure 3.

Also note that not every command in the command array con-
tributes to the final equation (e.g., the command at 𝑖 = 5). These
commands are similar to vestigial structures in that they might
not have a function in the current individual but can still have
an impact in the evolutionary process. For example, consider the
classic eye-color Punnett square, where two parents have Bb chro-
mosomes resulting in brown eyes, with seemingly useless blue eye
alleles (b in Bb). The potential offspring of these parents can have
chromosomes resulting in blue eyes (bb).

2.1.2 Constants. Each equation in Bingo has the potential to have
associated constants. The constants can be fixed values or place-
holders for real numbers that are fitted later, for example, using
continuous local optimization (CLO). CLO of constants has been
shown to improve GPSR performance [7, 9, 14]. Bingo has a contin-
uous local optimization class that can perform CLO on equations
to determine optimal constant values.

2.1.3 Complexity. Complexity in Bingo is defined as the number
of utilized nodes in the AGraph of an equation. For example, the
complexity of the equation shown in Figure 3 is 6, even though a
potential command array for the equation (e.g., Table 1) could have
more commands.

2.2 Evolutionary Optimizer
The evolutionary optimizer class, see Figure 1, handles core compo-
nents of GPSR including generating the initial population and man-
aging evolutionary steps. This high-level class allows for flexibility
in coordination and execution of evolution. The main difference
between an evolutionary optimizer and an evolutionary algorithm
(described later) is that an evolutionary optimizer creates an initial
population using the generator class. Instances of the generator
class define characteristics such as the maximum number of com-
mands equations can have, what operators are possible, etc. An
example of an AGraph generator setup is shown on lines 23 to 29
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Figure 3: Example of an AGraph representing the equation
𝐶0𝑋0 + 𝑋0 + 𝑋1.

of the code example (see Appendix A). Users can use the default
generator as shown on line 29, or create their own to do more
complex population seeding (e.g., filtering, manual selection, etc.).

The standard GPSR evolutionary optimizer (evolution of a single
population) in Bingo is called an island. An island coordinates
an evolutionary algorithm and generator to create a customizable
GPSR workflow (as shown on line 44 of the code example). For
example, the fitness predictor island is a configuration of an island
that implements coevolution of fitness predictors as described in
[26]. Evolutionary optimizers can also be extended to create non-
traditional GPSR workflows. For example, another evolutionary
optimizer implemented in Bingo is an archipelago, which contains
multiple islands and performs periodic migration between random
islands [8, 19]. Users may further extend the evolutionary optimizer
class to support their platform needs for execution. Bingo’s parallel
archipelago class demonstrates this and will be discussed later in
Section 2.3.2.

2.3 Evolutionary Algorithm
While Bingo’s evolutionary optimizer manages the high-level GPSR
process, it has a subclass to handle the evolutionary steps of GPSR:
an evolutionary algorithm. In general, an evolutionary algorithm is
given a population and returns the next generation of that popula-
tion. The evolutionary algorithms implemented in Bingo have three
phases: variation, evaluation, and selection. Custom evolutionary
algorithms may also be implemented, including those which have
more/different evolutionary phases. As seen in Figure 2, there are
several evolutionary algorithms implemented in Bingo for estab-
lished GPSR methods including those described in [18, 27]. The
setup of an evolutionary algorithm using the method described in
[27] is shown on line 41 of the code example.

2.3.1 Variation. Bingo creates offspring via its variation class. The
variation class has two implementations: VarAnd and VarOr. VarAnd
creates offspring from a population by performing crossover then
mutation on individuals given crossover and mutation probabilities.
VarOr creates offspring by either performing crossover or mutation
on an individual. Replication occurs when neither crossover nor
mutation takes place.

Crossover of AGraphs is implemented as a single-point crossover
of command arrays. Mutation of AGraphs is a random selection
of either single-point command mutation, single-point operator
mutation, single-point parameter mutation, prune mutation, or
branch mutation. An example of setting up crossover and mutation
is shown on lines 32 and 33 of the code example.

2.3.2 Evaluation. Bingo evaluates equations’ fitnesses using fitness
functions. Fitness functions use an equation’s output on a dataset to
either return a vector of fitnesses per data entry or a single fitness
for the entire dataset. More specifically, fitness evaluation of amodel
includes a set of training data (𝑋𝑖 , 𝑦𝑖 ) where 𝑖 ∈ 1, 2, . . . , 𝑛 and 𝑋 is
an𝑚-dimensional vector-valued input, 𝑋𝑖 = 𝑥

(0)
𝑖

, 𝑥
(1)
𝑖

, . . . , 𝑥
(𝑚)
𝑖

. A
model, 𝑓 : R𝑚 → R, is then sought for these training data. For each
model proposed by GPSR, 𝑓 , a defined fitness function is sought
to beminimized (Bingo treats fitness analogous to error, where
the lower the error, the better). For the common case of explicit
symbolic regression, a fitness would be defined as a vector:

𝐹𝑖 = 𝑓 (𝑋𝑖 ) − 𝑦𝑖 (1)

or homogenized, for example, as mean-squared error (MSE):

𝐹 =
1
𝑛

𝑛∑︁
𝑖=1

(𝐹𝑖 )2 . (2)

Bingo implements several forms of fitness functions for common
cases such as the vector-based function class which takes training
data and a defined error metric (e.g., MSE) as input and performs the
requested homogenization. An example of this is shown on line 36
of the code example. Bingo also provides two main classes (derived
from the vector-based function class) for explicit regression and im-
plicit regression. The implicit regression fitness function is used for
evaluating implicit equations; since the output of implicit equations
are constant across a dataset, explicit regression cannot be used to
judge them. Therefore, Bingo compares the partial derivatives of
an equation to those of the ideal equation to get its fitness [2].

2.3.3 Selection. In GPSR, population sizes are generally fixed among
generations. Therefore, individuals have to be selected from the
current population and its offspring to be used for the next pop-
ulation. To do this, Bingo implements a selection class. Since the
choice of selection method can be crucial depending on the prob-
lem [4, 12], Bingo allows its users to choose between established
selection methods such as deterministic crowding [18], age-fitness
[27], tournament, or create their own.

3 CUSTOMIZABILITY
Bingo utilizes its modular code structure to allow users to customize
the GPSR process. This allows for turn-key access to established
algorithms such as age-fitness pareto selection [27] or the creation
of user-defined methods as needed. For instance, Bingo enables its
users to define how the GPSR process is configured by creating
custom evolutionary optimizer and evolutionary algorithm classes.
This creates a flexible workflow for experimenting with high-level
algorithm design decoupled from low-level intricacies.

Since it is likely the most common customization, the remainder
of this section is devoted to illustrating how Bingo’s fitness function
class can be easily customized to suit users’ needs. Bingo’s fitness
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function class is an abstract base class that requires only the _
_call__(self, individual) method to be implemented. This
method returns the fitness of a given individual. Note that the use
of __call__ means that lambda functions can be used as drop-in
replacements for fitness functions in simple cases.

3.1 Continuous Local Optimization
As mentioned in Section 2.1.2, Bingo implements CLO methods to
fit constants in equations. Bingo’s CLO class is implemented as a
wrapper around a fitness function (either vector-valued or not) that
performs optimization of constants when needed. The __call__
method of the CLO class is illustrated here:

1 def __call__(self , individual):

2 if individual.needs_local_optimization ():

3 self._optimize_params(individual)

4 return self._evaluate_fitness(individual)

The self._evaluate_fitness(individual)method is awrap-
per around a fitness function and the self._optimize_params
(individual) is a wrapper around a SciPy [29] optimization of
constants with the fitness function as the objective. See line 37 of
the code example for an example setup of the CLO object.

Other CLO methods can also be implemented in a similar fash-
ion. For example, a custom CLO method is used in [1] to quantify
uncertainty in numerical constants using Bayesian methods.

3.2 Physics-Informed Fitness
The vector-based function class can also be readily derived by
the user to implement custom fitness functions. For example, con-
sider the case of physics-informed machine learning [13] where
the fitness of an individual is dependent upon its derivatives. For
this, a user only needs to implement a custom class, derived from
the vector-based function class, which implements a evaluate_
fitness_vector method that takes an individual as input and re-
turns the evaluated fitness vector. Bingo provides the evaluate_
equation_with_x_gradient_at method for evaluation of an indi-
vidual and its gradient at 𝑥 . This can be used for evaluation of first
derivatives: for higher-order derivatives the PyTorch [20] module
is currently recommended.

As an example, consider the case of modeling the velocity of an
object falling through a viscous fluid. From Newton’s 2𝑛𝑑 law, the
governing differential equation for acceleration, 𝑑𝑣

𝑑𝑡
, can be derived

as 𝑑𝑣
𝑑𝑡

= 𝑔 − 𝑐𝑣
𝑚 where 𝑣 is velocity, 𝑡 is time, 𝑔 is acceleration due

to gravity, 𝑐 is a drag coefficient, and𝑚 is the mass of the object. A
physics-informed fitness function could then be implemented as
the residual of this equation:

1 def evaluate_fitness_vector(self , individual):

2 v, dvdt = \

3 individual.

evaluate_equation_with_x_gradient_at(

4 self._training_data.x)

5 residual = self.g - self.c * v / self.m - dvdt

6 return residual

This could further be augmented to simultaneously minimize the
residual and match existing training data by appending elements to
the returned array which represent distances from measured data
to the returned array (e.g., v - self._training_data.y).

4 EFFICIENCY
Multiple options for increased efficiency and high-performance
computing are supported within Bingo. The most prominent of
these options include parallelism, coevolution of fitness predictors,
equation simplification, and a C++ backend.

Bingo includes two forms of parallelism based on the desired
deployment environment: distributed memory or shared memory.
Parallel (distributed) evolution of islands in an archipelago is imple-
mented usingMPI4Py [6]. Parallel (shared) evaluation of individuals
in an island is implemented using Python’s multiprocessing tool.

Coevolution of fitness predictors has been shown to increase the
efficiency and generalization of GPSR. This is achieved by using
fitness predictors rather than fitness functions to evaluate equations,
resulting in faster evaluations. More details regarding this method
can be found in Schmidt and Lipson’s paper [26].

This method is implemented in Bingo as a fitness predictor is-
land, which is a simple, drop-in replacement for Bingo’s standard
evolutionary island.

Evaluation latency is tied to the complexity of equations. To
reduce latency, Bingo implements algebraic simplification of equa-
tions [5] to reduce the complexity of equations during evolution.
For example,𝑋0+𝑋0+𝑋0+𝑋0+𝑋0 would be simplified to 5𝑋0. Bingo
simplifies an equation to a simpler form and stores it alongside its
original form. Then, when the equation needs to be evaluated, the
simplified form is used, resulting in a faster evaluation than with
the original form. However, during evolutionary processes like
crossover and mutation, original forms are used to avoid removing
any properties that were originally evolved.

As datasets become larger, the impact of latency for evaluating
equations becomes significant. For this reason, several of the com-
ponents of Bingo have been implemented in C++. This primarily
serves as a backend to the Python implementations to leverage
the speed of C++ while the user focuses on the high level logic of
Python. The C++ backend is integrated into Bingo’s Python fron-
tend using PyBind [11]. This allows for the use of C++ objects in
Python without causing significant overhead. Furthermore, once
the backend is built on a user’s machine, it is automatically used
and can be easily disabled using flags.

5 PERFORMANCE ANALYSIS
To demonstrate how Bingo performs compared to other symbolic re-
gression (SR) methods, its effectiveness was tested using La Cava’s
SRBench test suite [16]. Methods tested in this test suite are re-
quired to expose a scikit-learn [21] interface for straightforward
training and prediction. Therefore, users can use Bingo’s integrated
scikit-learn interface for a plug-and-play experience, if desired. The
test suite is separated into two portions: black-box problems and
ground-truth problems. In the black-box problems, methods are
judged based on the 𝑅2 values of their predictions. In the ground-
truth problems, methods are judged based on their recovery rate
of ground-truth equations from data produced by those equations.
Data in both types of problems were split into training and testing
datasets using a 75%/25% split.
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Table 2: Bingo Hyperparameter Sets

Set Number Population Size Stack Size

1 100 24
2 100 64
3 500 24
4 500 48
5 2500 16
6 2500 32

5.1 Black-Box Problems
For the black-box problems, each method was allowed to define a
collection of hyperparameters. SR methods like Bingo were allowed
to define up to six hyperparameter sets. The optimal hyperparam-
eters per dataset were automatically chosen via five-fold halving
cross-validation. Bingo was configured for these problems using
the operator set {+, -, *, /, sin, cos, exp, log} with a fitness predictor
island [26] using age fitness pareto selection [27]. Furthermore,
Bingo used population size and stack size as the varying hyper-
parameters in its six hyperparameter sets as detailed in Table 2.
Methods were limited to 500,000 evaluations on each dataset per hy-
perparameter cross-validation session or 48 hours of total training
time per dataset, whichever came first.

Since GPSR methods evolve a population of equations, selecting
which equation was used for testing on each dataset was an impor-
tant consideration. Bingo selected the most fit individual across all
generations to be used for testing.

5.1.1 Results. Figure 4 shows the testedmachine learning (ML) and
SR methods sorted in descending order by each method’s median
𝑅2 value on the test datasets. Methods with asterisks in front of
their names are SR methods whereas the rest are other ML methods.
As shown on the left plot of Figure 4, Bingo is in the top half of the
methods tested based on median 𝑅2 value. While Bingo is not the
top performer of these methods based on its median 𝑅2 value, as
shown in the middle plot of Figure 4, Bingo produces very simple
models (small model size) compared to the other methods tested1.
However, the right plot of Figure 4 shows that Bingo is one of
the slowest methods in training time. Bingo’s slow training time
is not a completely accurate depiction of its performance due to
the fact that different hardware was used for Bingo’s benchmark
analysis. The Bingo analysis was performed locally on an Intel
Xeon Gold 6230 CPU @ 2.10GHz with 4GB of memory allocated
per run. Additionally, the Bingo training was performed using its
pure Python implementation; performance would improve using
the C++ backend

Figure 5 shows a comparison between the median model size
rank and median 𝑅2 rank of each method per dataset (not neces-
sarily the same as the ranking based on median 𝑅2 value as shown
in Figure 4). This figure highlights how Bingo has a low median
model size rank and low median 𝑅2 rank, showing that it produces
simple, yet accurate models. Other methods that perform similarly
1For the symbolic regression methods, model size was measured as the number of
nodes in an equation’s graph representation (i.e. how Bingo defines complexity). For
the other machine learning methods, other comparable metrics were used (e.g., sum of
nodes per tree in the RandomForest method, see [16] for more detail)

to Bingo according to these metrics are shown in the same color:
Operon [3], GP-GOMEA [28], and DSR [22].

5.2 Ground-Truth Problems
For the ground-truth problems, methods did not undergo hyperpa-
rameter tuning. Instead, eachmethod was given the most frequently
selected hyperparameter set from the black-box problems. Then,
each method was allowed up to 1,000,000 evaluations or 8 hours of
training time per dataset, whichever came first. Various levels of
noise were also added to the datasets before training.

5.2.1 Results. Figure 6 shows the median solution rate of each SR
method sorted in descending order. Bingo is shown to have a very
high solution rate with no target noise compared to the other tested
methods. However, Bingo’s performance significantly worsens as
increasing levels of target noise are added. Overall, Bingo ranks
similarly to other methods that perform well on the black-box
problems but worse on the ground-truth problems (e.g., Operon [3]
and GP-GOMEA [28]).

6 CONCLUSION
We introduce a customizable and performant framework for sym-
bolic regression with genetic programming: Bingo. Bingo is shown
to be competitive to other symbolic regression methods in tasks
such as general regression and recovery of ground-truth equations.
Furthermore, as shown in Figure 5, relative to the other methods
tested in the benchmark, Bingo produces simple yet accurate mod-
els.
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A CODE EXAMPLE

1 import numpy as np # for generating data

2 from bingo.evolutionary_algorithms.age_fitness import

AgeFitnessEA # evolutionary algorithm

3 from bingo.evolutionary_optimizers.island import

Island # evolutionary optimizer

4 # components for evaluation

5 from bingo.evaluation.evaluation import Evaluation

6 from bingo.symbolic_regression import

ExplicitRegression , ExplicitTrainingData #

fitness function

7 from bingo.local_optimizers.continuous_local_opt

import ContinuousLocalOptimization # CLO

8 # generators

9 from bingo.symbolic_regression import

ComponentGenerator , AGraphGenerator

10 # crossover and mutation

11 from bingo.symbolic_regression import AGraphCrossover

, AGraphMutation

12

13 # hyperparams

14 POP_SIZE = 100

15 STACK_SIZE = 20

16

17 # make some data

18 x = np.linspace (-10, 10, 100).reshape ([-1, 1])

19 y = x**2 + 3.5*x**3

20 training_data = ExplicitTrainingData(x, y)

21

22 # setup generator to generate equations using

variables , constants , +, -, and *

23 component_generator = ComponentGenerator(x.shape [1])

24 component_generator.add_operator("+")

25 component_generator.add_operator("-")

26 component_generator.add_operator("*")

27

28 # agraphs of equations will have STACK_SIZE (20)

commands and will use algebraic simplification

29 agraph_generator = AGraphGenerator(STACK_SIZE ,

component_generator , use_simplification=True)

30

31 # crossover and mutation

32 crossover = AGraphCrossover ()

33 mutation = AGraphMutation(component_generator)

34

35 # defining evaluation

36 fitness = ExplicitRegression(training_data=

training_data , metric="mse")

37 local_opt_fitness = ContinuousLocalOptimization(

fitness , algorithm="lm")

38 evaluator = Evaluation(local_opt_fitness)

39

40 # setup evolutionary algorithm

41 ea = AgeFitnessEA(evaluator , agraph_generator ,

crossover , mutation , 0.4, 0.4, POP_SIZE)

42

43 # setup evolutionary optimizer

44 island = Island(ea, agraph_generator , POP_SIZE)

45

46 # run!

47 opt_result = island.evolve_until_convergence(

max_generations =500, fitness_threshold =1.0e-4)

48

49 # print best individual from last generation

50 print(opt_result.get_best_individual ())
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