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ABSTRACT
Computational Fluid Dynamics (CFD) simulations can be extremely
computationally demanding and usually rely on the use of High-
performance computing (HPC) using both CPU and GPU resources.
Modeling the behavior of bubbles size distribution often leads to a
symmetric function evaluation problem. This paper proposes a dy-
namic computational resource allocation, based on Pareto-optimal
solutions. The solutions are obtained from the formulation of the
resource-constrained symmetric function evaluation problem as
a multi-objective problem. After the Pareto-front is obtained, we
suggest a dynamic selection method of the solutions that utilize the
existing resources. To solve the multi-objective problem 𝜖-MOEA,
an algorithm known to obtain good diversity of Pareto-front so-
lutions, is applied. As the problem formulated is new, brute-force
search and two-specifically designed for this problem-heuristics
are implemented and tested to serve as baselines. The methods
are tested and compared to three dimensionalities of the problem.
The results showed that 𝜖-MOEA can successfully approximate the
Pareto-front, allowing to utilize the resources optimally at each
simulation time-step.

CCS CONCEPTS
• Computing methodologies→ Search methodologies; • Ap-
plied computing→ Operations research.

KEYWORDS
Resource Allocation, Multi-objective Optimization, Computational
Fluid Dynamics, High-Performance Computing

1 INTRODUCTION
A challenge that is frequently encountered in Computational Fluid
Dynamics (CFD) applications is how to accurately model the be-
havior of particles (i.e., bubbles, powder) [9, 15]. Such models are
especially relevant for nuclear and process engineering where one
is interested in the behavior of bubbles of different sizes (bubble
size distribution). Bubble size distribution can be tracked with pop-
ulation balance equation [21], which incorporates the effects of
coalescence (particles agglomerate into bigger ones) and breakup
(particles split into smaller ones). The method of classes [13] models
the distribution of bubbles by discretizing the bubble population
into a finite number of size groups (visualised in Figure 1). All of
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the interactions between bubble size groups are then aggregated
by source term assembly and used to produce a new updated distri-
bution. Assembling the source terms involves the computation of
coalescence and breakup frequencies between all bubble-size pairs.
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Figure 1: Bubble size distribution is discretized into nine
groups that are tracked for each cell in the mesh and mecha-
nisms of coalescence and breakup that change the distribu-
tion during the simulation.

Therefore, one comes across the following task: to evaluate a
symmetric function of different inputs at each time step of the
simulation. With finer meshes and a large number of size groups,
this can become one of the most computationally expensive parts
of the simulation [19].

The naive approach to evaluating the symmetric function is
to calculate each pair sequentially. This leads to a large waste of
resources, as it requires recomputing the same values and takes
no optimal advantage of the memory that is available in the HPC
system. In addition, one should take into account the different
associated CPU and GPU costs for each computation of the pairs.

Finding the optimal order of pair inputs in the symmetric func-
tions leads to a constrained combinatorial problem. Taking also into
account the objectives mentioned above makes the problem multi-
objective. Multi-objective Evolutionary Algorithms (MOEAs) have
become popular in solving hard combinatorial problems, such as the
MOEA/D for the flowshop scheduling problem [5] and MOEA/D
and NSGAII on the multi-objective traveling salesman problem [18].
Most multi-objective evolutionary algorithms are based on Pareto
dominance and it is the measure of the quality of their solutions dur-
ing the search. Using the MOEAs, one can obtain a near-optimal set
of non-dominated solutions, giving the freedom of choice between
conflicting objectives.

Efficiently allocating the available resources is of great interest
for CFD and it can be done based on the different constraints (user
requests, resource types, etc.) as in [1, 4]. Increasing the utilization
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of the available resources with the HPC systems can be dramati-
cally improved by the scheduling of jobs as shown in [11, 14, 22]. A
dynamic resource allocation for efficient parallel CFD simulations
that adapt at run-time is proposed in [10]. In CFD simulations paral-
lelization is often already implicitly handled by the frameworks [20]
that (during the simulation) splits the mesh into multiple regions
and process them independently in parallel. Such is the case also in
our scenario where a level of parallelization is already integrated
into the framework. Therefore, we are interested in a dynamic
computational resource allocation without the need to manually
manage the parallelization.

This paper tackles the following research questions:
(1) Taking into account the different associated costs and the

memory constraints of the HPC system, which is the optimal
order of computing each pair of the symmetric function?

(2) Since we have two objectives - minimizing the CPU and GPU
costs - leading to a multi-objective problem, is it possible
to obtain a number of equally good solutions, that form a
Pareto-front, with multi-objective evolutionary algorithms?

(3) If this is the case, why not use at each time-step of the sim-
ulation (that needs the calculation of the same symmetric
function with different inputs) the most adequate ordering
of the CPU-GPU Pareto-front to further, dynamically, utilize
the available resources?

As the problem is new, brute-force search and two specifically
designed problem heuristics are also implemented and tested, to
serve as baseline solutions. After the Pareto-front is obtained, a
dynamic selection method of the solutions is proposed aiming to
utilize the existing resources. The methods are tested and compared
to three dimensionalities of the problem. To find the approximation
set (i.e., the closest solution to the theoretical Pareto-front) of the
multi-objective problem, we applied five MOEAs (MOEA/D [23],
NSGAII [6], GDE3 [12], 𝜖-MOEA [7], SPEA2 [24]). The 𝜖-MOEA
showed superior performance in terms of fast convergence, and the
reported results of the paper refer to this algorithm. The empirical
comparison of the MOEAs is out of the scope of this paper (some
more results are available in the Appendix A.

We organize the rest of this paper as follows. In Section 2 the
problems of dynamic resource allocation and the resource-constrained
symmetric function evaluation are formulated and described. The
methods developed and used to solve the problem are shortly de-
scribed in Section 3. The experimental setup and the obtained results
are discussed in Section 4. The last section summarizes the conclu-
sions of the paper, as well as some potential research directions.

2 PROBLEM FORMULATION
In this section, we formulate the dynamic resource allocation prob-
lem, which contains the resource-constrained symmetric function
evaluation problem.

2.1 Dynamic Allocation of Computational
Resources

In each time step of the simulation, different CPU and GPU re-
sources are available. At the same time, each tensor/input consumes
GPU and CPU resources. The goal is to dynamically utilize the re-
sources during the different time-steps. Based on the number of the

size groups, the available memory, and the cost of the inputs, the
source term assembly represents a symmetric function that has to
be evaluated on all pairs of bubble sizes. The associated challenge is
to determine the order in which to assemble source terms and the
order of recomputing tensors to minimize resource use. Obtained
solutions for assembling source terms can therefore differ in the
amount of CPU and GPU resources that they consume. A challenge,
therefore, becomes how to select in each time-step of the simulation
what order should be used to assemble source terms based on the
current utilization of available resources.

2.2 Resource-Constrained Symmetric Function
Evaluation

Here, the resource-constrained symmetric function evaluation prob-
lem, with its mathematical formulation and notation, is described.

Problem 𝑃𝑛,𝑙 is defined as follows: assume we have a set of 𝑛
inputs I = {𝐼0, 𝐼1, . . . , 𝐼𝑛−1} and a function 𝑓 (𝐼 𝑗 , 𝐼𝑘 ) that has to be
evaluated for all the input pairs. The function is symmetric, thus
𝑓 (𝐼 𝑗 , 𝐼𝑘 ) = 𝑓 (𝐼𝑘 , 𝐼 𝑗 ). For a memory of size 𝑙 (where 𝑙 < 𝑛), one can
store a subset of 𝑙 inputs at a given time.When the function 𝑓 (𝐼 𝑗 , 𝐼𝑘 )
is being evaluated with new input, one previously obtained input
is dropped from the memory. Then, the new input is calculated
and stored in the memory, before evaluating the function. We are
interested in finding the optimal order of the subset of inputs to be
evaluated from the function, that minimizes their re-computations.

Moreover, each input 𝐼𝑘 has one or more costs associated with
its computation, creating an additional constraint to the problem.
Let the 𝑟𝑖 (𝐼𝑘 ) > 0 be a function that describes the amount of type 𝑖
resource needed for calculating the input 𝐼𝑘 . The goal is to find a set
of solutions (i.e., orders) that will guarantee all pairs to be evaluated
while a) never exceeding the memory constraints and b) minimizing
re-computation costs.
Let𝑂 be one possible ordering of the inputs. Each objective value is
defined as 𝑜𝑏 𝑗𝑖 =

∑
𝐼𝑘 ∈𝑂 𝑟𝑖 (𝐼𝑘 ). The goal is to find a set of orderings

that minimize the objectives.
Figure 2 shows a problem 𝑃5,3 with randomly selected costs and

one possible solution to the problem. The set of inputs is of size 5
(𝑛 = 5) and the memory size is 3 (𝑙 = 3). One possible solution is the
order [𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼0, 𝐼1]. For this ordering, the objective values
are (4.4, 4.2). Alternatively, the ordering of [𝐼0, 𝐼2, 𝐼3, 𝐼4, 𝐼0, 𝐼1, 𝐼3, 𝐼2]
has objective values of (5.5, 4.6) and is thus inferior to the first
ordering. In general, depending on the costs associated with each
input 𝐼𝑘 in the set, the problem can have one or multiple optimal
solutions (i.e., solutions on the Pareto front).

3 METHODS OVERVIEW
3.1 Brute-force Search
The problem is new with no known optimal solutions. To obtain
the solutions, one can check all the possible candidate solutions,
known as a brute-force search. We apply brute force to explore the
search space and obtain baseline/reference solutions. This approach
is only possible for low dimensions of the problem, as it becomes
prohibitively costly - or even infeasible - as the dimensions increase.
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Figure 2: Example of a problem 𝑃5,3 with randomly selected
costs for all the inputs (top). One possible solution (bottom) is
described with objective values of (4.4, 4.2). The first triplet in
memory is (𝐼0, 𝐼1, 𝐼2) ensuring that first 6 function evaluations
will be [𝑓 (𝐼0, 𝐼0), 𝑓 (𝐼0, 𝐼1), 𝑓 (𝐼1, 𝐼1), 𝑓 (𝐼0, 𝐼2), 𝑓 (𝐼1, 𝐼2), 𝑓 (𝐼2, 𝐼2)]. In-
puts marked with green are computed and placed into the
memory while white ones are just reused.

3.2 Deterministic Heuristics
To further investigate the solutions, we propose two heuristic non-
evolutionary algorithms for computing the ordering of inputs. Such
heuristics serve as a fast and efficient baseline used to evaluate
more complex evolutionary algorithms. Heuristic algorithms only
produce one final solution contrary to MOEAs. Our two proposed
deterministic heuristics work in the following way:
• Heuristic 1 - It first computes the inputs that are determined
as the most expensive to evaluate (𝑠𝑒𝑙𝑒𝑐𝑡_𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒_𝑖𝑛𝑝𝑢𝑡𝑠)
and stores them in the available memory. Because the inputs
have a CPU and a GPU cost associated with them, the most
computationally expensive inputs are determined based on
the sum of the objectives (i.e. sum of both CPU and GPU
resources they consume). After the memory is filled with
expensive-to-evaluate inputs and the cost of computing them
is added to the total cost, we iterate over all the input pairs
that are required to evaluate the function. The order in which
the input pairs are iterated over is determined based on how
many of the inputs in the input pair they share memory with.
Pairs, where both of the inputs are already in memory, are
processed first followed by pairs where one input is already
in memory, and lastly pairs where no input is in memory. Or-
der is therefore determined with method 𝑠𝑒𝑙𝑒𝑐𝑡_𝑏𝑒𝑠𝑡_𝑝𝑎𝑖𝑟 ;
• Heuristic 2 - It is similar to the first one with one signif-
icant modification. During the execution, when a certain
input is no longer needed, it is dropped from the mem-
ory and replaced with the inputs that were just calculated
(𝑢𝑝𝑑𝑎𝑡𝑒_𝑚𝑒𝑚𝑜𝑟𝑦). Updating of thememory is thus performed
as follows: When a new input that is not in stored the mem-
ory is calculated, a check is made to determine if any of the
inputs in memory is no longer needed (due to all the input

pairs that rely on that input already being calculated). If this
is the case, the input from the memory is replaced with the
one that was just calculated.

Algorithm pseudocode 1 describes how both algorithms work.
The only difference between Heuristic 1 and Heuristic 2 is that
Heuristic 2 updates the inputs in memory as described in line 20
(i.e., Heuristic 2 only differs from Heuristic 1 in additional line 20).

Algorithm 1 Algorithm pseudocode for Heuristic 1 and Heuristic 2.
Algorithms differ only in how memory is updated in line 20. Line
20 is only used in Heuristic 2

1: 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 ← 0
2: 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 ← 0
3: 𝑝 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑙𝑖𝑠𝑡_𝑜 𝑓 _𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑖𝑟𝑠 (𝑖𝑛𝑝𝑢𝑡𝑠)
4: 𝑚 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒_𝑖𝑛𝑝𝑢𝑡𝑠 (𝑖𝑛𝑝𝑢𝑡𝑠)
5: for 𝐼𝑛𝑝𝑢𝑡 ∈𝑚 do
6: 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 + 𝑟𝐶𝑃𝑈 (𝐼𝑛𝑝𝑢𝑡)
7: 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 + 𝑟𝐺𝑃𝑈 (𝐼𝑛𝑝𝑢𝑡)
8: end for
9: while 𝑙𝑒𝑛(𝑝)! = 0 do
10: 𝑐 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑏𝑒𝑠𝑡_𝑝𝑎𝑖𝑟 (𝑚, 𝑝)
11: 𝑟𝑒𝑚𝑜𝑣𝑒_𝑝𝑎𝑖𝑟_𝑓 𝑟𝑜𝑚_𝑙𝑖𝑠𝑡 (𝑐, 𝑝)
12: if 𝑐.𝐼𝑛𝑝𝑢𝑡1 ∉𝑚 then
13: 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 + 𝑟𝐶𝑃𝑈 (𝑐.𝐼𝑛𝑝𝑢𝑡1)
14: 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 + 𝑟𝐺𝑃𝑈 (𝑐.𝐼𝑛𝑝𝑢𝑡1)
15: end if
16: if 𝑐.𝐼𝑛𝑝𝑢𝑡2 ∉𝑚 then
17: 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐶𝑃𝑈 + 𝑟𝐶𝑃𝑈 (𝑐.𝐼𝑛𝑝𝑢𝑡2)
18: 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 ← 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 + 𝑟𝐺𝑃𝑈 (𝑐.𝐼𝑛𝑝𝑢𝑡2)
19: end if
20: 𝑚 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚𝑒𝑚𝑜𝑟𝑦 (𝑚, 𝑝, 𝑐)
21: end while
22: return (𝑐𝑜𝑠𝑡𝐶𝑃𝑈 , 𝑐𝑜𝑠𝑡𝐺𝑃𝑈 )

3.3 𝜖-MOEA
The 𝜖-MOEA proposed by Deb et. al. [7] is a steady-state algorithm,
incorporating 𝜖- dominance archiving. The algorithm generates
only one solution in each iteration. It consists of two co-evolving
populations, the EA population-which starts as random- and an
archive population-which gets the non-dominated solutions the for-
mer produced. Using the 𝜖-dominance concept, in each generation,
a new offspring is produced by two solutions of the two populations.
The 𝜖-dominance enables the algorithm to approximate the Pareto
front well both in terms of convergence and diversity. More details
can be found in [7].

3.3.1 Encoding. The representation of an individual consists of one
chromosome. Each chromosome encodes the order in which inputs
have to be dropped or recomputed as a list of inputs represented as
integers. Since it is possible that the inputs have to be recomputed,
they can occur on the list multiple times. A number of occurrences
of a certain input in the list tell us how many times it has to be
recomputed.
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3.3.2 Initialization. The construction of the initial population can
have a significant impact on the optimization procedure [2, 8]. We
initialised the chromosome as a random ordering of inputs.

Figure 3: Example of a two-point crossover (top) where the
offspring chromosome is created based on two randomly se-
lected parents. The offspring is thenmutated (bottom),where
two genes (inputs) are swapped.

3.3.3 Crossover and mutation operators. During the optimization
procedure, new chromosomes are generated with the goal of im-
proving the orderings to minimize costs. To achieve this, EAs apply
the crossover and mutation operators. The crossover operator trans-
fers information from parents to their offspring. Generally, when
dealing with permutations (i.e. traveling salesman problem) there
exists a wide range of crossover operations where the goal is to
never produce a chromosome that is not a valid permutation. In
our case the ordering is not a permutation, as repeated values are
allowed. We are thus able to use different crossover operators. We
used a two-point crossover where two-parent chromosomes are
sliced and everything between the two points is swapped. After
performing crossover, mutation is also applied. We used swap mu-
tation where order of two inputs are swapped to obtain a new
chromosome. Figure 3 shows an example of both the crossover and
mutation operators that are used during the optimization.

3.4 Dynamic Selection Method
To solve the dynamic resource allocation problem, one has to select
an adequate solution from the multiple non-dominated solutions
presented in the approximation set Pareto-front. In our case, the
two objective functions are the GPU and CPU resources consumed
during the computation. At each time step of the simulation, differ-
ent GPU and CPU resources are available. Our goal is to select the
solution that takes advantage better the available resources.

Numerous approaches exist on how to select a solution from the
Pareto-front. If the ideal point is known, one can rank the obtained

solution and select the best one such as in [16]. If the ideal solution
is not known, a strategy of finding a "knee" in the obtained solutions
can be used as described in [3].

In our problem, we applied the following method, which is fast
and does not require previous knowledge about the Pareto-front
form:

• At the beginning of each time step of the simulation, we
check the utilization of the resources (GPU and CPU) on the
system where simulation is running.
• Based on their utilization, we calculate the following ratio:

𝑟𝑎𝑡𝑖𝑜𝑡 =
𝑢𝑡𝑖𝑙𝑡

𝐶𝑃𝑈

𝑢𝑡𝑖𝑙𝑡
𝐺𝑃𝑈

+ 𝜖
(1)

where𝑢𝑡𝑖𝑙𝑡
𝐶𝑃𝑈

and𝑢𝑡𝑖𝑙𝑡
𝐺𝑃𝑈

are utilizations of both resources
at time step 𝑡 and 𝜖 is some small constant (in our case 0.001)
to prevent division by zero if GPU is in idle state.
• Next, we use the ratio as a slope of the line that goes through
the point (GPU𝑚𝑖𝑛 , CPU𝑚𝑖𝑛), where theGPU𝑚𝑖𝑛 andCPU𝑚𝑖𝑛

are the minimum values of those two objectives that are
obtained from some solution. We need to point here that
their selection is independently done for each time step of
the simulation.
• To decide which solution will be further selected, we calcu-
late the distance of each non-dominated solution from the
approximation set and the line. The solution that is closer
to the line is selected as the most relevant one. The selected
solution, therefore, represents an ordering that describes a
trade-off between CPU and GPU resource usage according to
the resource utilization for each time step of the simulation.

An example of the aforementioned framework can be seen in Fig-
ure 4.

Step 1: Based on the number of size groups, available memory, and
the cost for inputs, we formulate the optimization problem.

Step 2: we obtain the Pareto front of our multi-objective problem.
Step 3: for each time step of the simulation, the most optimal solu-

tion is selected according to the ratio above.

t=1 t=2 t=3

CPU:13% 
GPU: 51%

CPU:45% 
GPU: 51%

CPU:2% 
GPU: 75%

GPU

C
PU

Search

Figure 4: Obtaining a set of Pareto optimal solutions at the
beginning of the simulation and dynamically selecting the
most optimal ordering for each time step during the process
of the simulation based on the resource availability.
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Table 1: Hyperparameter values for the 𝜖-MOEA.

Hyperparameter Value

Population size 50
Two-point crossover probability 0.5

Swap mutation probability 0.1
𝜖 in 𝜖-MOEA 0.1

4 RESULTS
4.1 Experimental Setup
For the 𝜖-MOEA implementation, the platypus1 Python framework
is used.Workflow and analysis are performed using Snakemake [17]
ensuring reproducibility. The instances are independently run 30
times on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 1 TB
of RAM, and the Ubuntu operating system. The relevant code can
be found at the Gitlab repository2. In Table 1 we report the hy-
perparameter values used in the experiments. We kept the default
hyperparameter values and we did not perform an extensive search
for the best hyperparameter.

4.2 Test-problems
The 𝜖-MOEA, the two heuristics, and the brute-force search were
compared on a set of randomly generated instances, minimizing the
objectives reported above. To test the scalability of the methods, we
generated three instances of the problem, with increasing dimen-
sionality. In specific, the three instances are of size 𝑃5,3, 𝑃15,3 and
𝑃30,3. In CFD simulations, that would mean a bubble size distribu-
tion discretized into 5,15, and 30 groups respectively, and a memory
that can store up to 3 tensors. The GPU and CPU costs were sam-
pled randomly from an exponential distribution with mean=200
and a unique seed. Based on the CPU and GPU costs, the problem
can have one or more solutions. How the generated costs affect
the test functions and their subsequent solutions are outside of the
scope of the paper.

4.3 Performance on Low-dimensional Instance
To better understand the behavior of the 𝜖-MOEA and the heuristic
algorithms on the problem, we evaluate them on the low-dimension
instance, namely 𝑃5,3. First, we obtain all the feasible solutions
and the optimal Pareto front by the brute-force search. The non-
dominated solutions found serve as the baseline solutions of the
optimal Pareto-front for comparison with the other methods.

Figure 5 is a scatter plot of all the feasible solutions (grey dots)
obtained by the brute-force search. The non-dominated solutions
are the Pareto-front of the instance and are depicted with an empty
circle. In the same plot, the solutions found by Heuristic 1 and
Heuristic 2 are depicted with blue and red dots, respectively. The
orange dots depict the non-dominated solutions found by the 𝜖-
MOEA after one run, which coincide with the solutions with the
global optima. On the contrary, the solutions found by the heuristics
are far from the known Pareto-front.

1https://platypus.readthedocs.io/en/latest/getting-started.html
2https://repo.ijs.si/gpetelin/square-resource-problems-2022

Table 2: Success rate of finding 𝑛 non-dominated solutions
out of 5 known solutions for problem 𝑃5,3.

Success Rate
Number of solutions 1 2 3 4 5

Brute-force 1 1 1 1 1
Heuristic 1 0 0 0 0 0
Heuristic 2 0 0 0 0 0
𝜖-MOEA 1 1 1 0.866 0.566

In Table 2 we report the success rate of finding the set of the non-
dominated solutions. The success rate is calculated as the average
ratio of the number of runs where the algorithm finds 𝑛 solutions
of the 5 known solutions to the total number of runs. As seen pre-
viously in Figure 5, the unique solutions the heuristics provide are
sub-optimal, therefore their success rate is zero. What is interesting
is that the 𝜖-MOEA can guarantee to find at least 3 different non-
dominated solutions, while managing to find at least 4 and all 5
with percentages 86% and 56% respectively. This demonstrates that
- for low dimensional cases - the 𝜖-MOEA can discover successfully
optimal solutions.
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Figure 5: Scatter plot of all the feasible solutions for the
problem 𝑃5,3. The blue and red dots are the solutions obtained
by Heuristic 1 and Heuristic 2, respectively. The orange dots
belong to the Pareto front of one run of the 𝜖-MOEA.

After the Pareto-front is obtained, the dynamic resource allo-
cation is solved with the method explained in section 3. Figure 6
presents an example of how the solutions are dynamically selected
(bottom), based on the CPU and GPU resource utilization (top) dur-
ing seven simulation time steps. If the GPU and the CPU utilization
are approximately equal, a solution that balances the usage of both
resources will be selected in the specific time step. In other cases,
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the solutions selected manage to optimally take advantage of the
available resources.
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Figure 6: Example of how the solutions are dynamically se-
lected (bottom), based on the CPU and GPU resource utiliza-
tion (top) during 7 simulation time-steps.

4.4 Performance on Higher-dimensional
Instance

To demonstrate the performance on more realistic problems, we
selected two problems with sizes 𝑃15,3 and 𝑃30,3. Obtaining the
solutions via brute force in these cases is not feasible. Therefore, for
these problems, neither the optimal Pareto front nor the number of
non-dominated solutions is known in advance.

In Table 3 we report the mean objective values for the two objec-
tives, found by the two heuristics and the 𝜖-MOEA. Regarding the
developed heuristics, we can observe that Heuristic 2 outperforms
Heuristic 1 in the instances. Dynamically selecting which inputs
should be stored in memory, is thus beneficial compared to the
static strategy of heuristic 1. The 𝜖-MOEA finds solutions with
significantly lower objective values, indicating that it is the most
suitable method for this class of problems.

4.5 Convergence Speed
In this subsection, we focus on the convergence speed of the differ-
ent methods, as it is important the most important aspect for the
incorporation of the allocation in the simulation procedure.

Figure 7 presents the median convergence of the 𝜖-MOEA in
terms of a hypervolume for all the test instances over 30 runs. A
reference point for the hypervolume computation was set as the
worst solution, the one corresponding to computing sequentially
all the pairs, without the possibility of storing them in the memory.

Table 3: Mean objective values of consumed CPU and GPU
as obtained by Heuristic 1, Heuristic 2, and 𝜖-MOEA. Values
for the 𝜖-MOEA are reported as a mean over 30 runs.

Problem Algorithm CPU resources GPU resources

Heuristic 1 24086.7 53633.3
𝑃15,3 Heuristic 2 13420.2 31984.3

𝜖-MOEA 13421.6 17827.7

Heuristic 1 125055.1 167591.8
𝑃30,3 Heuristic 2 61618.6 98636.1

𝜖-MOEA 58412.6 56427.1

For 𝑃5,3 and 𝑃15,3, 50,000 function evaluations are enough to find
good solutions, while instance 𝑃30,3 requires approximately 100,000
function evaluations to reach convergence.
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Figure 7: Median hypervolume indicator convergence of the
𝜖-MOEA for problems 𝑃5,3 (blue line), 𝑃15,3(orange line) and
𝑃30,3 (green line) over 30 runs.

Table 4 reports the mean runtime for the different testedmethods.
The runtime reported for the 𝜖-MOEA is selected according to the
observation above.Moreover, the brute-forcemethod is only applied
to the small instance, and thus no runtime is reported for the other
two. For 𝑃5,3, obtaining all the feasible solutions and the Pareto-
front by brute-force search takes approximately 61s. The 𝜖-MOEA
requires only around 3s, while the two deterministic heuristics are
extremely fast, producing a solution in less than 0.1s.

Our results point out some guidelines. Before the start of the
simulation, a trade-off between the quality of the solutions and
time consumption has to be made for the selection of the methods.
For a simulation of lower complexity (coarse mesh, low number of
size groups, fewer time-steps), Heuristic 2 is the best alternative to
provide a "good enough" solution, obtained in less than a second. As
the simulations become more complex and computationally expen-
sive, investing more time at the beginning of the simulation can be
extremely beneficial and save significant computational time. Even
though the 𝜖-MOEA is slower than the two deterministic heuristics,
it is advantageous to use it for larger simulations, where even minor
improvements in the quality of the solution can translate to large
savings in computational time during the simulation.
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Table 4: Mean runtime (30 runs, reported in seconds) obtain-
ing orderings for brute force approach, the 𝜖-MOEA, and the
two heuristic approaches. For the 𝜖-MOEA, it refers to 50,000
function evaluations for 𝑃5,3, 𝑃15,3 and 150,000 for 𝑃30,3.

𝑃5,3 𝑃15,3 𝑃30,3

Brute-force 61.12 / /
𝜖-MOEA 3.11 149.56 253.21
Heuristic 1 <0.1 <0.1 <0.1
Heuristic 2 <0.1 <0.1 <0.1

5 CONCLUSION AND FUTUREWORK
In this paper, we focus on dynamically utilizing the computational
resources allocation of CFD simulations used for modeling bubble
size distributions. The resource-constrained symmetric function
evaluation problem is formulated as a multi-objective problem. A
dynamic selection method of the Pareto-front solutions is proposed
that utilizes the existing resources. To solve the multi-objective
problem the 𝜖-MOEA is applied, and compared with brute-force
search and two heuristics that serve as baselines. The methods are
tested and compared to three different dimensions of the problem.
The results showed that the 𝜖-MOEA can successfully approximate
the Pareto-front, allowing to utilize the resources optimally at each
simulation time-step. This prototype can help practitioners that
stumbled upon a similar problem to save computational resources.

The immediate future step of this research is to test the frame-
work in real CFD simulations. Moreover, the MOEAs can be modi-
fied and/or combined with the heuristics, to further improve the
quality of the solutions. Further improvements can also be made
to the Dynamic Selection Method by testing its performance in a
diverse set of simulations running on different HPCs.
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A EMPIRICAL STUDY OF THE MOEAS
In this Appendix, we present the empirical studies of the experi-
ments fromfive differentMOEAs. Table 5 reports themean objective
values obtained using two proposed deterministic heuristics and
five MOEAs. We can observe that all of the five MOEAs outperform
the proposed heuristics. Figure 8 compares the convergence of the
different MOEAs on problems 𝑃5,3, 𝑃15,3 and 𝑃30,3.

Table 5: Mean objective values obtained by both heuristics
and all fiveMOEAs. Values forMOEAs are reported as amean
over 30 runs.

Problem Algorithm CPU resources GPU resources

Heuristic 1 2706.4 2983.0
Heuristic 2 1783.2 2195.8
SPEA2 1707.5 1565.5

𝑃5,3 GDE3 1719.0 1563.8
𝜖-MOEA 1707.7 1568.2
NSGA-II 1742.0 1541.9
MOEA/D 1715.3 1562.2

Heuristic 1 24086.7 53633.3
Heuristic 2 13420.2 31984.3
SPEA2 13550.5 18146.6

𝑃15,3 GDE3 13693.5 18336.1
𝜖-MOEA 13421.6 17827.7
NSGA-II 13514.1 17804.5
MOEA/D 13734.7 18416.8

Heuristic 1 125055.1 167591.8
Heuristic 2 61618.6 98636.1
SPEA2 59447.7 57395.7

𝑃30,3 GDE3 59315.4 57445.8
𝜖-MOEA 58412.6 56427.1
NSGA-II 58543.5 56758.9
MOEA/D 58643.9 57211.5
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Figure 8: Hypervolume of different MOEAs for problems a)
𝑃5,3, b) 𝑃15,3 and c) 𝑃30,3. Note that to better show the conver-
gence, axis are not the same.
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