arXiv:2210.05217v1 [cs.CR] 11 Oct 2022

Abstract Interpretation of Michelson Smart-Contracts

Guillaume Bau
Sorbonne Université, CNRS, LIP6, Nomadic Labs
Paris, France
guillaume.bau@nomadic-labs.com

Vincent Botbol
Nomadic Labs
Paris, France
vincent.botbol@nomadic-labs.com

Abstract

Static analysis of smart-contracts is becoming more wide-
spread on blockchain platforms. Analyzers rely on techniques
like symbolic execution or model checking, but few of them
can provide strong soundness properties and guarantee the
analysis termination at the same time. As smart-contracts
often manipulate economic assets, proving numerical prop-
erties beyond the absence of runtime errors is also desir-
able. Smart-contract execution models differ considerably
from mainstream programming languages and vary from
one blockchain to another, making state-of-the-art analyses
hard to adapt. For instance, smart-contract calls may modify
a persistent storage impacting subsequent calls. This makes
it difficult for tools to infer invariants required to formally
ensure the absence of exploitable vulnerabilities.

The Michelson smart-contract language, used in the Tezos
blockchain, is strongly typed, stack-based, and has a strict
execution model leaving few opportunities for implicit run-
time errors. We present a work in progress static analyzer
for Michelson based on Abstract Interpretation and imple-
mented within MOPSA, a modular static analyzer. Our tool
supports the Michelson semantic features, including inner
calls to external contracts. It can prove the absence of run-
time errors and infer invariants on the persistent storage
over an unbounded number of calls. It is also being extended
to prove high-level numerical and security properties.

CCS Concepts: » Security and privacy — Logic and ver-
ification; » Software and its engineering — Automated
static analysis.

Antoine Miné
Sorbonne Université, CNRS, LIP6
Paris, France
antoine.mine@lip6.fr

Mehdi Bouaziz
Nomadic Labs
Paris, France
mehdi.bouaziz@nomadic-labs.com

allow programmable transactions in the form of computer
programs. These smart-contracts define complex transactions
between blockchain participants and maintain a persistent
state across runs. They can be viewed as a novel way for mul-
tiple users to securely exchange, build value sharing or dis-
tribution applications without a trusted third-party. Appli-
cations include auction sales, decentralized exchanges, col-
lective organizations, investment funds, etc.

Smart-contracts are relatively small, and not resource in-
tensive as they have to be executed on all blockchain net-
work nodes. However, compared to usual programming lan-
guages, they have an unconventional execution model tightly
tied to the blockchain implementation, thus are non-intuitive
to program. Compounded with the inability to update smart-
contracts on the (immutable) blockchain, and applications
manipulating large sums of money, this leads to costly er-
rors. Notable vulnerability examples include: a reentrancy
issue in The DAO [10], a smart-contract implementing a ven-
ture capital fund, that allowed a user to steal $60 million;
the Parity wallet bug [29], which froze $150 million by al-
lowing unauthenticated users to call restricted functions;
and the Proof-of-Weak-Hands attack, that allowed attackers
to steal $800,000 overnight [5], and $2.3 million then after,
abusing an integer overflow. Thereby, there is a high mo-
tivation to statically detect potential misbehavior or prove
their absence when possible.

1.2 Motivating Example

We focus on the verification by static analysis of smart-
contracts for the Tezos blockchain programmed in the Michel-

Keywords: static analysis, abstract interpretation, smart-contract,gop [34, 35] language. Our goal is to analyze Dexter [7], an

blockchain, Michelson, Tezos

1 Introduction
1.1 Blockchains and Smart-Contracts

Blockchains are distributed immutable ledgers organized in
peer to peer networks, allowing participants to securely trans-
fer tokens without a central authority. Some blockchains

This work is partially supported by the European Research Council under
Consolidator Grant Agreement 681393 — MOPSA.

important smart-contract implementing a decentralized ex-
change with alternate blockchain currencies (bitcoins, us-
dtz). Its initial version featured a vulnerability [20] allowing
an attacker to steal parts of the contract funds. As this is a
work in progress, we report on a preliminary analysis of a
simplified version only.

Consider the contract in Fig. 1 inspired from Dexter and
written in an ML-style pseudo-code. It implements a simple
wallet, allowing users to deposit to or withdraw from their
personal account some amount in mutez (the currency on


http://arxiv.org/abs/2210.05217v1

1 storage : (address, mutez) map

2 entry deposit () {

3 let owned = match Map.get $storage $sender with

4 | None -> @

5 | Some v -> v in

6 (Map.add $sender (owned + $amount) $storage, [])
8 entry withdraw (asked : mutez, dest : address) {
9 assert ($amount == 0);

10 // Fix to ensure proper access control:

11 // if dest != $sender then failwith "unauthorized";

12 let owned = match Map.get $storage dest with
13 | None -> failwith "empty account"

14 | Some v -> v in

15 if asked > owned then

16 failwith "not enough tokens";
17 (Map.add dest (owned - asked) $storage,
18 [transfer $sender asked])

19 3

Figure 1. A smart-contract with incorrect authentication

the Tezos blockchain). A map keeps track of user accounts:

it maps users, identified by their blockchain address, to the

deposited amount. The map is kept on the blockchain, in

a so-called storage, updated after each transaction. An exe-

cution of the smart-contract starts with the following vari-

ables:

e $storage is the storage value currently on the blockchain.

e $sender is the address of the initiator of the contract call
(a user, or another smart-contract).

e $amount is the amount of mutez transferred to the contract.
Every call is a transfer, possibly with a 0 amount.

A contract can define several independently callable entry

points. They allow splitting functionalities sharing the same

storage. In our case:

o deposit allows a user to deposit an amount. The $amount
sent to the contract is actually recorded to belong to the
user by updating his balance in the map (Map . add, line 6).

o withdraw allows a user to transfer back some amount from
the contract, unless his account in the map does not hold
sufficient funds (if asked > owned, line 15). The map
is updated (Map.add, line 17) and a transfer back to the
sender is generated (transfer, line 18).

Michelson features a purely functional execution model: the

new value of the storage as well as any effect (e.g., additional

transfers) are provided in the return value of the call.

This example actually contains a logic error: it allows a
user to transfer to himself mutez that were owned by some-
one else. Indeed, the dest parameter used as key in the map
in withdrawis controlled by the user who calls the contract.
A fix is provided in a comment line 11: it ensures that dest
equals the caller $sender. In this example, we want to verify
the high-level property stating that:

(key = $sender) V (new_value > old_value)
whenever the map is updated on key from old_value to

new_value, i.e., a user can only add funds to another user’s
account and can subtract funds only from his own account.

Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz.

1.3 Related Work

A number of tools have been designed to help smart-contract
developers catch bugs or vulnerabilities. Most of them target
the Ethereum platform. This includes symbolic execution
tools, like Maian [28], Manticore [26], Oyente [22], Zeus [18],
Securify [36], Mythril [27]. Some tools rely on exhaustive
state exploration, via model checking or SMT solving, some-
times leading to a slow analysis [1], timeouts [31], or lack of
results [1]. [18] relies on Abstract Interpretation for a pre-
liminary analysis, and uses an SMT solver to check proper-
ties on inferred invariants. [11, 12, 14, 37] report that many
existing tools fail to detect some issues, i.e., report false neg-
atives. [14, 33, 37] affirm that some tools can fail to prove
properties because their analyses are unsound.

Some tools focus on low-level properties affecting the pop-
ular Ethereum platform, like reentrancy issues [21, 32] or
overflows [13]. By contrast, Michelson [34, 35], the language
of the Tezos blockchain, which is the focus of our work, has
fewer opportunities for runtime errors and a stricter exe-
cution model eliminating reentrancy issues; low-level prop-
erties are less of an interest. Checking higher-level proper-
ties is feasible using proof assistants, but requires a large
effort to prove even simple properties. Mi-cho-Coq [4] pro-
vides a Michelson Coq embedding allowing the certification
of smart-contract properties, but requires manual develop-
ments of proofs, and small changes in a contract require
new proof developments. The Micse project [6] allows for
automated static analysis, using the Z3 SMT solver. The Te-
zla [30] project allows translating the Michelson instructions
into a suitable intermediate representation for dataflow anal-
ysis.

1.4 The MOPSA Static Analyzer

MOPSA [17] is amodular and extensible static analyzer based
on Abstract Interpretation [8]. It features a C analyzer de-
tecting runtime errors and invalid preconditions when call-
ing the C library, as well as Python type, value, and un-
caught exception analyses. Its modular design allows shar-
ing and reusing abstract domains across multiple analyses.
Its AST structure can be extended to support novel languages,
keeping a high-level representation without static transla-
tion.

MOPSA strongly relies on domain cooperation. An anal-
ysis is defined as a combination of small domain modules,
including value abstractions and syntax iterators that can
be plugged in or out, depending on the target language and
properties. It provides a common set of domains to build
value analyses with intervals, relational domains like oc-
tagons [23] or polyhedra [9] to infer linear relations, recency
abstraction [2] for memory blocks, etc. In addition to re-
ductions, domains cooperate through expression rewriting.
For instance, a domain handles C arrays by rewriting ar-
ray accesses dynamically as accesses into scalar variables



Abstract Interpretation of Michelson Smart-Contracts

1 storage nat;
2 parameter nat;
3 code { UNPAIR;

4 ADD;
5 NIL operation;
6 PAIR; }

Figure 2. Simple Michelson smart-contract

representing array cells. Expression rewriting helps writing
small, independent, and reusable domains, that rely only on
the manipulation of variables the state of which is managed
by other, lower-level domains.

1.5 Contribution

We have developed an analysis of Michelson programs [34,
35] based on Abstract Interpretation. This analysis is built
on MOPSA [17]. It reuses domains provided by MOPSA and

provides novel domains to support the semantics of the Michel-

son language. This includes support for specific Michelson,
ML-like types, such as pairs, unions, sets, maps, etc. as well
as iterators to handle the execution model for contracts on
the Tezos platform, including contract interactions. Our tool
can currently statically detect runtime errors like overflows,
shift overflows, and Michelson contracts always terminating
in a failure state. We also demonstrate its potential to prove
higher-level correctness properties on the example contract
from Fig. 1. By using abstract interpretation, our analysis is
sound and efficient, but can raise false alarms.

Section 2 presents a basic set of abstract domains that are
sufficient to cover the complete semantic of Michelson in-
structions and achieve an initial, sound, low-precision anal-
ysis; Sect. 3 presents the support for the Tezos transaction
execution model, including contracts calling external con-
tracts and inferring invariants on unbounded sequences of
calls to contracts; Sect. 4 presents more involved abstrac-
tions necessary to prove the correctness of Fig. 1; Sect. 5
presents our experimental evaluation; Sect. 6 concludes.

2 Michelson Value Analysis

For convenience, Fig. 1 presented a smart-contract exam-
ple in a high-level, ML-like syntax. Michelson [34], the lan-
guage actually executed on the Tezos blockchain, is a high-

level stack-based language that takes inspiration from Forth [25]

or Joy [19], while including many aspects from functional
languages: strong static typing, immutable values, anony-
mous functions, algebraic data-types, functional list, set, and
map types. This section presents the abstract domains added
to MOPSA to handle the stack, data-types, and instructions.

2.1 The Michelson Language

To simplify, we consider here a much simpler contract, in
Fig. 2, that performs an addition into an accumulator stored
on the blockchain.

In Michelson, there are no explicit variables. All values
are stored on a stack, implicitly manipulated through dedi-
cated instructions such as PUSH, DROP, DUP, and using opera-
tor instructions (e.g., ADD to perform an addition) replacing
arguments at the top of the stack with the operator result.

When the contract execution starts, the stack contains a
single element: a pair containing the value of the param-
eter it has been called with and the value stored on the
blockchain for the contract. When the execution ends, the
contract should leave on the stack a single value: a pair con-
taining a list of operations to perform after the contract
execution (such as calling other contracts, or performing a
transfer) and the new value to be stored on the blockchain.
Operations will be discussed in details in Sect. 3. For now,
the operation list output by a contract will be empty. The
initial value of the storage is specified when the contract is
deployed on the blockchain. Subsequent executions of the
contract update the storage value.

As the language is statically typed, a contract declares
the type of its storage and parameter. This corresponds to
lines 1-2 in Fig. 2. In the example, both the storage and
parameter have type nat (i.e., a non-negative integer), but
more complex data structures can be used. For instance, Fig. 1
uses a map as storage and its parameter is a union to model
different possible entry points.

When executed, the code from Fig. 2 proceeds as follows:
e UNPAIR pops the topmost (and only) element from the stack:

a pair with the storage and the parameter, which are pushed

as the first and second items on the stack;

e ADD, pops two elements, adds them, and pushes the result;

e NIL operation builds an empty list of operations, and
pushes it on the stack;

e PAIR pops the addition result and the empty list, and pushes

a pair, resulting in a stack with a single pair element.
Thus, each call to the contract will simply add the integer
passed as parameter to the integer stored on the blockchain.

2.2 Dynamic Translation into Variables

MOPSA models the memory as a map from variables to val-
ues and supports instructions, such as assignments and tests,
involving expressions over variables. This is a common as-
sumption for abstract interpreters as well as domain libraries
(such as APRON [16], used in MOPSA) and especially use-
ful for relational analyses. One possibility to handle stack-
based languages is to translate them to variable-based envi-
ronments and expressions beforehand, in a pre-processing
phase, as performed for instance in the Sawja framework
[15] for Java bytecode as well as Tezla [30] for Michelson.
Instead of a static translation, we extended MOPSA’s AST
with a native support for Michelson instructions and relied
on the ability for domains to rewrite statements and expres-
sions as part of the abstract execution. We developed a do-
main that introduces variables to represent stack positions



and translates Michelson instructions into assignments on-
demand. Non-scalar data-types, such as pairs, give rise to
several variables per stack position, as detailed in Sect. 2.3. A
dynamic translation can potentially use information about
the current precondition to optimize the translated instruc-
tions [17], although this is not currently the case for Michel-
son.

2.3 Michelson Data-Types

Michelson supports several integer kinds: arbitrary preci-
sion integers (int), natural integers (nat), dates, and unsigned
63-bit integers (mutez). Some operations, such as overflows
on mutez, as well as shift overflows, are checked runtime er-
rors that halt the contract execution. A specific domain in
MOPSA handles these types, checking all possible runtime
errors and representing their possible values in standard nu-
meric domains such as intervals and polyhedra.

Michelson supports simple algebraic types d la ML through
pairs ((a, b)), option types (Some a or None), and tagged unions
with two variants (Left a or Right b). The type of a and b
is arbitrary, and algebraic types can be nested. MOPSA fea-
tures domains to handle these types. They create and man-
age additional variables for each component of a pair, an op-
tion, or a sum, delegate the abstraction of their value to the
domain of the components’ type, and translate operations
on algebraic types (such as PAIR, CAR, etc.) into operations on
component variables. Domains handling scalar values, such
as numeric domains, ultimately work on environments mix-
ing components from different algebraic values, making it
possible to infer relations between values that appear inside
pairs or options. This technique is similar to that of Bautista
et al. [3], but we support recursive types and do not partition
with respect to which variant is used by each variable.

Michelson has a native support for immutable containers:
lists, sets, and maps. We propose simple, general-purpose,
and efficient, but coarse abstractions to handle them. Lists
are abstracted using a summary variable to represent the
union of all list elements, and a numeric variable represent-
ing its size. Like algebraic types, list elements can have ar-
bitrary type. List operations are translated into operations
on the variables (e.g., weak updates of summary variables,
size incrementation) and delegated to the domain appropri-
ate for the type. List iteration ITER is handled, as usual in
abstract interpretation, using a fixpoint. Sets are abstracted
similarly to lists with slight adjustments as they cannot con-
tain duplicate elements. Maps are abstracted using a sum-
mary variable to represent keys and a summary variable
to represent values. A more involved, property-specific ab-
straction of maps will be discussed in Sect. 4.3.

2.4 Addresses

Michelson has a domain-specific type for addresses, repre-
senting participants on the blockchain: either users (iden-
tified by a public key) or smart-contracts (identified by a

Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz.

hash). Some addresses play a special role during contract
execution, and can be accessed using dedicated instructions.
As detailed in Sect. 3, a contract execution can be triggered
by the execution of another contract. SOURCE represents the
user at the origin of a chain of calls, while SENDER is the im-
mediate caller of the contract. These variables play an im-
portant role in access control and thus the security of con-
tracts, as demonstrated by the fix proposed line 11 of Fig. 1
for our incorrect wallet implementation.

We use a reduced product of two domains for addresses:
a powerset of address constants — useful to precisely han-
dle addresses hard-coded in a contract — and a domain that
maintains whether the address equals $sender or not. It is
useful to handle precisely access control by comparison with
$sender, which is not a literal constant.

3 Execution Model and Analysis

The previous section presented domains sufficient to han-
dle the execution of arbitrary Michelson code on an input
stack. In this section, we take into account the execution in
its context on the blockchain. A contract can be executed
multiple times, making its storage evolve during time. Ad-
ditionally, one execution can trigger additional contract ex-
ecutions through the operation list it returns.

3.1 Execution Context

Once deployed (originated) on the blockchain, smart-contracts
are available for any user to call. A call must provide a pa-
rameter as well as an entry point for the contract. As differ-
ent entry points execute very different code, MOPSA per-
forms a case analysis: for each entry point, the contract is
analyzed on an initial stack for this entry point with a cor-
responding abstract parameter value modeling any possi-
ble actual value in the parameter type; the results are then
joined after execution. The execution context also sets up
special variables, such as $sender, modeling the contract
caller and initialized with a symbolic value in the address
domain (Sect. 2.4).

An analysis of the contract on an initial, empty storage
would only model the very first execution of the contract,
which is not sound. For instance, in Fig. 1, an empty stor-
age means that the withdraw entry point always fails. Al-
ternatively, starting with an abstract storage representing
all possible concrete values in its type could be imprecise.
Section 3.3 will propose another solution where a sound ab-
straction of the storage is inferred through fixpoint compu-
tation.

3.2 Operation List

In addition to the updated storage, Michelson contracts can
return a list of operations to execute after they finish. These
operations can be some calls to smart-contracts, which en-
tails executing these contracts with the updated storage. These



Abstract Interpretation of Michelson Smart-Contracts

can, in turn, append new operations to the operation list.
The list is traversed in depth-first order until there are no
more operations to execute. Note that a contract cannot call
another contract in the middle of its execution and expect a
return value; moreover, the execution of the operation list
is atomic: a runtime error at any point reverts all modifica-
tions to the storage of the contracts involved. This unusual
execution model makes reentrancy bugs, such as the one
plaguing as The DAO [10], less likely on Tezos.

MOPSA has partial support for this model. We do com-
pute the operation list and iterate contract execution in a fix-
point, using updated storage and inferred entry points and
arguments, as mandated. This includes the cases where a
contract calls itself, or another contract. However, our coarse
abstraction of lists using summary variables (Sect. 2.3) makes
the analysis impractical when a contract calls more than one
contract. It should be addressed in future work.

3.3 Multiple Calls Analysis

Analyzing a unique call to a smart-contract provides some
insights on the possible runtime errors, but it does not take
into account all possible executions over its whole lifetime.
We developed an analysis to over-approximate an infinite
number of calls to a smart-contract, from different callers
and to multiple entry points.

Let Addr be the set of all addresses, Entrypoints the set of
entry points for the contract and P, the semantic function
computing the new storage after executing entry point e of
contract P. The next storage Siy1 of the contract as a func-
tion of its current storage S; (assuming, for the simplicity,
an empty list of operations) is:

Si+1 = daddr € Addr, Je € Entrypoints, call(P,, addr, S;)

Using the (classic) technique of iterations with widening,
with $sender being an abstract value of our address reduced
product from 2.4, our analysis computes an abstraction of
the fixpoint:

Ifps, | S : |_| call(P,, $sender, S)
VeecEntrypoints

which models arbitrary sequences of executions of the con-
tract from the initial storage Sy . It thus outputs all possi-
ble runtime errors. It also returns an invariant over storage
values, which could be inspected by the user for additional
insight on the behavior of the smart-contract. On the exam-
ple of Fig. 1, we discover that the deposit entry point will fill
an initially empty map and allow some user to call the with-
draw entry point without entering the failure state. This is
not sufficient yet to prove our property of interest, that “only
owners can decrease the amount of tokens in the map.

4 High-Level Domains

We now present additional abstract domains, bringing more
precision necessary to analyze our motivating example.

1 // assuming a stack containing values x :: y;

2 DIP { DUP } // x ::y :: Yy

3 DUP; /] x 1iox iy iy

4 DUG 2; // x iy tiox oy

5 COMPARE; // pops 2 items, push -1, @ or 1

6 EQ; // boolean test if -1, @ or 1 equals to @
7 IF // pops boolean and branches accordingly
8 {Y /7 x =1y

{ Y7/ x =y

Figure 3. Comparison in Michelson

4.1 Symbolic Expressions

In Michelson, there is no direct comparison operator. Con-
sider the example in Fig. 3 that executes different branches
when the topmost stack elements x and y are equal, and
when they are different. The COMPARE polymorphic instruc-
tion pushes —1 (resp. 0, 1) on the stack when one operand
is smaller than (resp. equal to, greater than) the other. Then,
an integer operation such as EQ compares the result to 0 and
pushes a boolean on the stack, which is consumed by IF. To
be precise, an analysis must track this sequence of instruc-
tions. Using the domains presented in Sect. 2, our analysis
is only able to infer that true or false is pushed on the stack
and immediately consumed, inferring no information on the
topmost stack values x and y inside the branches.

As an alternative to developing a complex relational do-
main, we implemented the symbolic constant abstract do-
main proposed in [24]. This domain assigns to each vari-
able a value v from the set of symbolic expressions E, or T
to represent no information: v € {e, T},e € E. The map-
ping is updated through assignments, building more com-
plex expressions by substitution. This domain allows recon-
structing dynamically high-level expressions from low-level

stack-based evaluation, without requiring a static pre-processing

phase as done for instance by [15] on Java bytecode. In our
example, just before the IF instruction, the top of the stack
contains the expression eq(compare(x, y)), which allows IF
to apply flow-sensitive constraints on the x and y values.

4.2 Equality Domain

A stack-based execution model entails pushing copies of ex-
isting values from the stack (using DUP), to be consumed
later by operators while leaving the original values intact
for future use. This can be seen, for instance, in Fig. 3. In this
context, maintaining information about variable equalities
is critical for precision: it allows any information inferred
on one copy to be propagated to other copies. The symbolic
expression domain from the last section helps to a degree,
as it allows substituting x with y after an assignment x :=y,
which is sufficient for the case in Fig. 3. However, this sub-
stitution mechanism is unidirectional and can fail when the
symmetry or the transitivity of equality is required. Equali-
ties can be tracked by numerical abstract domains, such as
polyhedra, but this is limited to numeric values, while we re-
quire tracking the equality of values of complex types (such
as maps, for the example from Fig. 1). To solve this problem,



Table 1. Experimental evaluation

| Analysis | intv | poly | intv+exp | poly+exp |
total contracts 2931 2833 1579 1549
mutez overflow | 2824 1967 411 308
shift overflow 10 10 9 9
always fail 32 33 32 33
min. time | 0.076s 0.15s 0.17s 0.16s
max. time | 71.02s | 568.25s 581.34s 590.86s
avg. time | 3.31s 29.8s 26.43s 21.89s

we developed a simple domain able to infer variable equal-
ities. It maintains a set of equivalence classes for variables
that are known to be equal. It proved to be more reliable
than symbolic expressions for the specific purpose of track-
ing equalities on non-numeric variables.

4.3 Symbolic Maps

On the example Fig. 1, we want to prove that only the owner
of an account stored in the storage map can reduce its amount.
This requires inferring a numerical property about the con-
tents of a map. However, this is not a uniform property: the
property on the value depends on whether the key asso-
ciated to it equals the $sender address or not. Hence, the
simple summarization abstraction of Sect. 2.3 is not expres-
sive enough. We propose a map abstraction of the form:
{sender — amount, —~sender — namount} that uses two
variables per map: amount represents the value associated
to the key equal to $sender for this call; namount summa-
rizes all the values associated to other keys.

Like previous abstractions, amount and namount are vari-
ables, the values of which are abstracted in mutez domain.
Using a relational domain, it is possible to even track rela-
tions between different versions and copies of the map from
the storage. All map operations are translated into opera-
tions on these variables, depending on whether the key used
to access the map equals $sender or not, which can be pre-
cisely tested using our symbolic address domain (Sect. 2.4).

In our example, when updating the value of namount, we
check that the new value is greater than or equal to the pre-
vious one. This is always the case for deposit (even if the key
address was specified in parameter), as transferred amounts
are always non-negative. As for withdraw, updating the old
value with the value (owned - asked) triggers an error for
the original version without the fix. For the fixed version,
we are able to prove that the property is correct because the
value of namount is unchanged in withdraw.

5 Experimental Results

We performed two kinds of experiments. Firstly, we ana-
lyzed a large set of existing contracts for non-functional
correctness (e.g., absence of overflows) to assess the practi-
cality and scalability of our method. Secondly, we analyzed

Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz.

more specifically the example from Fig. 1 for our functional
specification: only the owner of an account can decrease its
amount. We used a Xeon E5-2650 CPU with 128GB memory.

Our prototype can be found at https://gitlab.com/baugr/mopsa-analyzer

at commit tag soap22.

We selected the Carthagenet test network containing 2935
contracts with size ranging from 1 to 3604 lines, and an-
alyzed them with arbitrary storage. The results, using dif-
ferent domain combinations, is presented in Table 1: intv
uses the domains from Sect. 2 and the interval domain; poly
adds the polyhedra domain; intv+exp and poly+exp add the
domains from Sect. 4. The first line indicates the number
of successful analyses (not all domains can support all con-
tracts due to the prototype nature of our implementation).
The lines mutez overflow and shift overflow indicate the num-
ber of runtime errors detected, whereas always fail is the
number of contracts always terminating in a failing state.
The last three lines indicate the minimal, maximal and av-
erage runtime per contract. We expect that a large number
of mutez overflows are actually false positive as the analy-
sis assumes that arbitrary 63-bit amounts can be stored and
transferred but, in fact, the total number of mutez in circula-
tion is far smaller.

Our prototype can check the functional correctness of our
motivating example from Fig. 1in 0.273s. As for other exam-
ples, it raises spurious overflows in mutez computations.

6 Conclusion

We have proposed a new sound and efficient static analysis
based on Abstract Interpretation for the Michelson smart-
contract language. Our prototype implemented in MOPSA
is already able to analyze realistic smart-contracts for run-
time errors, and higher-level functional properties for toy
contracts using realistic authentication patterns.

Future work include strengthening our implementation
to analyze more contracts, as well as our support of opera-
tion lists for inter-contract analysis. We will also focus on
analyzing functional correctness properties, closing the gap
between our simplified example and the actual Dexter im-
plementation, and considering other smart-contracts and prop-
erties. This entails developing more expressive domains, e.g.
extending our non-uniform map abstraction to arbitrary value
types, and supporting more complex authentication patterns,
such as cryptographic signatures. Finally, we plan to exploit
the value analysis to perform a gas consumption (i.e. timing)
analysis.


https://gitlab.com/baugr/mopsa-analyzer

Abstract Interpretation of Michelson Smart-Contracts

References

(1]

—
w
=

—
w
[’

(6]
(7]
(8]

[10]

[11]

[12]

[13]

[14]

[15]

Binod Aryal. 2021. Comparison of Ethereum Smart Contract Vul-
nerability Detection Tools. ~Master’s thesis. University of Turku.
https://urn.fi/URN:NBN:fi-fe2021110453759

Gogul Balakrishnan and Thomas Reps. 2006. Recency-Abstraction for
Heap-Allocated Storage. In Static Analysis: 13th International Sympo-
sium, SAS 2006, August 29-31 (Seoul, Korea). Springer, Berlin, Heidel-
berg, 221-239. https://doi.org/10.1007/11823230_15

Santiago Bautista, Thomas Jensen, and Benoit Montagu. 2020. Nu-
meric Domains Meet Algebraic Data Types. In Proceedings of
the 9th ACM SIGPLAN International Workshop on Numerical and
Symbolic Abstract Domains (Virtual, USA) (NSAD 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, 12-16.
https://doi.org/10.1145/3427762.3430178

Bruno Bernardo, Raphaél Cauderlier, Zhenlei Hu,
Pesin, and Julien Tesson. 2019. Mi-Cho-Coq, a framework
for certifying Tezos Smart Contracts. In Formal Methods.
FM 2019 International Workshops. Springer, Cham, 368-379.
https://doi.org/10.1007/978-3-030-54994-7_28

Bitburner. 2018. Proof of Weak Hands (PoWH) Coin
hacked, 866 eth stolen. Retrieved 2022-03-19 from

Basile

https://steemit.com/cryptocurrency/@bitburner/proof-of-weak-hands- powh-coirﬁ%ed—”gg&et‘ﬁfl&olen

https://research-development.nomadic-labs.com/dexter-flaw-discovered-funds-are-s

Jisuk Byun and Heewoong Jang. 2020. MicSE: The Michelson Symbolic
vErifier. Retrieved 2022-03-21 from https://github.com/kupl/MicSE
CamlCase. 2020. Dexter: A decentralized exchange for Tezos, on Gitlab.
Retrieved 2022-03-19 from https://gitlab.com/camlcase-dev/dexter/
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. 238—
252. https://doi.org/10.1145/512950.512973
Patrick Cousot and Nicolas Halbwachs. 1978.
ery of Linear Restraints among Variables of a Program. In Pro-
ceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (Tucson, Arizona) (POPL ’78). As-
sociation for Computing Machinery, New York, NY, USA, 84-96.
https://doi.org/10.1145/512760.512770

Michael del Castillo. 2016. The DAO Attacked: Code Issue Leads
to $60 Million Ether Theft. Saatavissa (viitattu 13.2. 2017) 3 (2016).

Automatic Discov-

https://doi.org/10.1007/978-3-642-18070-5_7

[16] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Li-
brary of Numerical Abstract Domains for Static Analysis. In
Computer Aided Verification, Ahmed Bouajjani and Oded Maler
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 661-667.
https://doi.org/10.1007/978-3-642-02658-4_52

[17] Matthieu Journault, Antoine Miné, Raphaél Monat, and Abdelraouf
Ouadjaout. 2019. Combinations of reusable abstract domains for a
multilingual static analyzer. In Proc. of the 11th Working Conference
on Verified Software: Theories, Tools, and Experiments (VSTTE19) (New
York, USA) (Lecture Notes in Computer Science (LNCS), Vol. 12031).
Springer, 1-18. https://doi.org/10.1007/978-3-030-41600-3_1

[18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
2018. ZEUS: Analyzing Safety of Smart Contracts. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The Internet Society.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09

[19] La  Trobe  University. 2013. Joy  Program-

ming  Language. Retrieved ~ 2021-11-15  from
https://www.latrobe.edu.au/humanities/research/research-projects/past-projects/joy-

[20] Nomadic  Labs.  2021. Dexter  Flaw  Discovered;

Retrieved ~ 2022-03-20  from

[21] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen,
and Bill Roscoe. 2018.  Reguard: finding reentrancy bugs in
smart contracts. In 2018 IEEE/ACM 40th International Conference
on Software Engineering: Companion (ICSE-Companion). IEEE, 65-68.
https://doi.org/10.1145/3183440.3183495

[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. 2016. Making smart contracts smarter. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications secu-
rity. 254-269. https://doi.org/10.1145/2976749.2978309

[23] Antoine Miné.  2006. The octagon abstract do-
main. High. Order Symb. Comput. 19, 1 (2006), 31-100.
https://doi.org/10.1007/s10990-006-8609- 1

[24] Antoine Miné. 2006. Symbolic methods to enhance the preci-
sion of numerical abstract domains. In Proc. of the 7th Interna-
tional Conference on Verification, Model Checking, and Abstract In-
terpretation (VMCAI'06) (Charleston, South Carolina, USA) (Lecture

https://www.coindesk.com/markets/ZO]6/06/17/the—da0—attacked—c0de—issue—]ea£9f5§6mngﬂml—té‘me$gm/(LNCS)’ Vol. 3855). Springer, 348-363.

Bruno Dia, Naghmeh Ivaki, and Nuno Laranjeiro. 2021. An
Empirical Evaluation of the Effectiveness of Smart Contract
Verification Tools. In 2021 IEEE 26th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC). 17-26.
https://doi.org/10.1109/PRDC53464.2021.00013

Thomas Durieux, Jodo F Ferreira, Rui Abreu, and Pedro Cruz.
2020. Empirical review of automated analysis tools on 47,587
Ethereum smart contracts. In Proceedings of the ACM/IEEE
42nd International conference on software engineering. 530-541.
https://doi.org/10.1145/3377811.3380364

Jianbo Gao, Han Liu, Chao Liu, Qingshan Li, Zhi Guan, and
Zhong Chen. 2019. EASYFLOW: Keep Ethereum Away from Over-
flow. 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion) (May 2019).
https://doi.org/10.1109/ICSE-Companion.2019.00029

Asem Ghaleb and Karthik Pattabiraman. 2020. How effective are
smart contract analysis tools? evaluating smart contract static analy-
sis tools using bug injection. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 415-427.
https://doi.org/10.1145/3395363.3397385

Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange,
Thomas Jensen, Vincent Monfort, David Pichardie, and Tiphaine
Turpin. 2011.  Sawja: Static Analysis Workshop for Java. In
Formal Verification of Object-Oriented Software. Springer, 92-106.

https://doi.org/10.1007/11609773_23

[25] Charles H Moore and Geoffrey C Leach. 1970. Forth-a language
for interactive computing. Amsterdam: Mohasco Industries Inc (1970).
http://www.ultratechnology.com/4th_1970.html

[26] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019.
Manticore: A user-friendly symbolic execution framework for bina-
ries and smart contracts. In 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE, 1186-1189.
https://doi.org/10.1109/ASE.2019.00133

[27] Bernhard Mueller. 2017. Introducing  Mythril:
work  for bug hunting on the Ethereum

A frame-
blockchain.

https://medium.com/hackernoon/introducing-mythril-a-framework-for-bug-hunting

[28] Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena,
and Aquinas Hobor. 2018. Finding the greedy, prodigal,
and suicidal contracts at scale. In Proceedings of the 34th
annual  computer security applications conference. 653-663.
https://doi.org/10.1145/3274694.3274743

[29] Santiago Palladino. 2017. The parity wallet hack explained. OpenZep-
pelin blog, https://blog.openzeppelin.com/on-the-parity-wallet-multisig-
hack-405a8c12e8f7 (2017).

[30] Jodo Santos Reis, Paul Crocker, and Simdo Melo de Sousa. 2020. Te-
zla, an Intermediate Representation for Static Analysis of Michel-
son Smart Contracts. In 2nd Workshop on Formal Methods for


https://urn.fi/URN:NBN:fi-fe2021110453759
https://doi.org/10.1007/11823230_15
https://doi.org/10.1145/3427762.3430178
https://doi.org/10.1007/978-3-030-54994-7_28
https://steemit.com/cryptocurrency/@bitburner/proof-of-weak-hands-powh-coin-hacked-866-eth-stolen
https://github.com/kupl/MicSE
https://gitlab.com/camlcase-dev/dexter/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://www.coindesk.com/markets/2016/06/17/the-dao-attacked-code-issue-leads-to-60-million-ether-theft/
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/ICSE-Companion.2019.00029
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1007/978-3-642-18070-5_7
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-030-41600-3_1
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.latrobe.edu.au/humanities/research/research-projects/past-projects/joy-programming-language
https://research-development.nomadic-labs.com/dexter-flaw-discovered-funds-are-safe.html
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/11609773_23
http://www.ultratechnology.com/4th_1970.html
https://doi.org/10.1109/ASE.2019.00133
https://medium.com/hackernoon/introducing-mythril-a-framework-for-bug-hunting-on-the-ethereumblockchain-9dc5588f82f6
https://doi.org/10.1145/3274694.3274743

[31]

[32]

[33]

Blockchains (FMBC 2020) (OpenAccess Series in Informatics (OA-
Slcs), Vol. 84), Bruno Bernardo and Diego Marmsoler (Eds.). Schloss
Dagstuhl-Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 4:1-
4:12. https://doi.org/10.4230/OASlcs.FMBC.2020.4

Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Cheng-
nian Sun, Huizhong Li, and Yan Cai. 2021. Empirical Evaluation
of Smart Contract Testing: What is the Best Choice?. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 566-579.
https://doi.org/10.1145/3460319.3464837

Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi.
2018. Sereum: Protecting Existing Smart Contracts Against Re-
Entrancy Attacks. CoRR abs/1812.05934 (2018). arXiv:1812.05934
http://arxiv.org/abs/1812.05934

Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Mat-
teo Maffei. 2020. ethor: Practical and provably sound static anal-
ysis of ethereum smart contracts. In Proceedings of the 2020 ACM

[34]

[35]

[36]

Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz.

SIGSAC Conference on Computer and Communications Security. 621—
640. https://doi.org/10.1145/3372297.3417250

Tezos protocol developers. 2014-2022. Michelson: the lan-
guage of Smart Contract in Tezos. Retrieved 2022-03-21 from
https://tezos.gitlab.io/active/michelson.html

Tezos protocol developers. 2020-2022. Michelson Reference. Retrieved
2022-03-21 from https://tezos.gitlab.io/michelson-reference/

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Buenzli, and Martin Vechev. 2018. Securify: Practical se-
curity analysis of smart contracts. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 67-82.
https://doi.org/10.1145/3243734.3243780

[37] Jiaming Ye, Mingliang Ma, Yun Lin, Yulei Sui, and Yinxing Xue.

2020.  Clairvoyance: Cross-Contract Static Analysis for Detecting
Practical Reentrancy Vulnerabilities in Smart Contracts. — Associ-
ation for Computing Machinery, New York, NY, USA, 274-275.
https://doi.org/10.1145/3377812.3390908


https://doi.org/10.4230/OASIcs.FMBC.2020.4
https://doi.org/10.1145/3460319.3464837
http://arxiv.org/abs/1812.05934
https://doi.org/10.1145/3372297.3417250
https://tezos.gitlab.io/active/michelson.html
https://tezos.gitlab.io/michelson-reference/
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3377812.3390908

	Abstract
	1 Introduction
	1.1 Blockchains and Smart-Contracts
	1.2 Motivating Example
	1.3 Related Work
	1.4 The MOPSA Static Analyzer
	1.5 Contribution

	2 Michelson Value Analysis
	2.1 The Michelson Language
	2.2 Dynamic Translation into Variables
	2.3 Michelson Data-Types
	2.4 Addresses

	3 Execution Model and Analysis
	3.1 Execution Context
	3.2 Operation List
	3.3 Multiple Calls Analysis

	4 High-Level Domains
	4.1 Symbolic Expressions
	4.2 Equality Domain
	4.3 Symbolic Maps

	5 Experimental Results
	6 Conclusion
	References

