
COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 27

S
oftware component tech-
nology has emerged as a key
element in the development
of complex software sys-
tems. As systems have
grown larger, more complex

and more interdependent, the char-
acteristics of cohesion and coupling
have become important drivers in
the design and deployment of these
systems. While the concept of soft-
ware components has been well
known virtually since the beginning
of software, the practical aspects and
challenges have been more fully
evolved over time.

For the purposes of this overview,
the following definition of compo-
nent will be used: “A software com-
ponent is a physical packaging of
executable software with a well-
defined and published interface.”
This abbreviated definition is formed
from several other published defini-
tions. For example, D’Souza and
Wills define component as “A coher-
ent package of software artifacts that
can be independently developed and
delivered as a unit and that can be
composed, unchanged, with other
components to build something
larger” [1].

Similarly, Szyperski provides the

following definition: “A software
component is a unit of composition
with contractually specified inter-
faces and explicit context dependen-
cies only. A software component can
be deployed independently and is
subject to composition by third par-
ties” [3].

Other authors form similar defin-
itions, with the focus on the inter-
face and physical packaging.
Previously, the definition of compo-
nent was broad to include virtually
any artifact of the software develop-
ment process, such as documents,
tests, source code, and parameter
files. The definitions given here
focus on the deployment aspect of
components and their ability to be
combined to form larger systems. In
particular, the emphasis on well-
defined interfaces, separate from
their implementation, is critical to
the success of components in loosely
coupled systems.

Software developers have long
held the belief that complex systems
can be built from smaller compo-
nents, bound together by software
that creates the unique behavior and
forms of the system. Ideally, a new
system can be built using mostly pre-
defined parts, with only a small

component
Primer

�
Jon

Hopkins
�

Laying the

foundation.

F

http://crossmark.crossref.org/dialog/?doi=10.1145%2F352183.352198&domain=pdf&date_stamp=2000-10-01

number of new components required. However,
there are two engineering drivers in the develop-
ment of a component-based system:

• Reuse. The ability to reuse existing components
to create a more complex system.

• Evolution. By creating a system that is highly
componentized, the system is easier to maintain.
In a well-designed system, the changes will be
localized, and the changes can be made to the
system with little or no effect on the remaining
components.

There are several caveats to the
two forces mentioned. First, that
there exist components to reuse.
There must be a ready supply of
well-built, applicable compo-
nents that can be discovered,
licensed, and easily used. There
must also be a component model
that can support the assembly
and interaction of compo-
nents—there must be a standard
“backplane” in which the com-
ponents can exist and communi-
cate. Finally, there must be a
process and architectures that
support component-based devel-
opment.

The notion of a component is
a refinement of the concepts that
have been taught as part of adopt-
ing object-oriented techniques—Meyer calls them a
“natural extension” of the object model [2]. A com-
ponent is a physical manifestation of an object that
has a well-defined interface and a set of implementa-
tions for the interface. The component itself may or
may not have been created using OO tools and lan-
guages. For example, it is perfectly possible to write a
well-formed component in C, providing an interface
and packaged implementation. However, practition-
ers often find the whole exercise of thinking about a
system from a component perspective is most natu-
rally modeled in an OO paradigm.

Object Models and Component Models
In order for component-based systems to work, it is
necessary to have a component model on which to
base the deployment and communication of the
components. Two components can communicate
only if they share a mechanism for finding each
other and sending messages. In most operating sys-
tems, the common mechanism is some version of a

common calling sequence for procedures, allowing
procedures written in different languages to call each
other. Like the object models found in various
development tools and platforms, components need
to have a reference model they can assume for pur-
poses of interface definitions, message passing, and
data transfer. There are currently several component
models that have gained commercial support. In
each case, the component models specify a means
for components to publish their interface, send mes-
sages, and pass data.

The DCOM (Distributed Component Object
Model) model from Microsoft has
gone through several iterations
and continues to evolve. While
adapters to other component
models exist, DCOM compo-
nents are largely confined to the
Windows platform (but are also
implemented in several other
environments by companies such
as Hewlett-Packard).

The CORBA (Common
Object Request Broker Architec-
ture) model defined by the Object
Management Group (OMG) is a
language- and platform-indepen-
dent specification, but has numer-
ous language bindings and
implementations on virtually all
of the common platforms.

The Enterprise JavaBeans—or
EJB specification—from Sun

Microsystems provides a rich infrastructure for the
execution of Java components.

While all three models share much in common,
they are different enough that the selection of
which component model to use in a project or
enterprise is still strategic. In all three cases, there
is an issue of platform dependencies. An alterna-
tive is to connect components through XML
(Extensible Markup Language). Perhaps the most
likely scenario will be that there will be a variety of
component models suited to different platforms
or environments, but they will be integrated
through XML and transported over a variety of
transport mechanisms. A component can then
implement a single interface that accepts XML
messages, and the component is then dependent
only upon the format of the XML messages. This
solution is suitable primarily for low-frequency,
high semantic content exchanges, such as passing
purchase order information, patient records, or
complex requests.

28 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

An important
aspect of components

is specificity.

Modeling Components
The size and complexity of systems built using com-
ponents necessitates some form of modeling. This is
needed in order to comprehend the systems, com-
municate the design to others and to help manage
the development process. The Unified Modeling
Language (UML) has made explicit provisions for
components in its metamodel. In particular, the
component view allows architects to specify the
component system that will realize a particular sys-
tem or subsystem. The UML also supports the trace-
ability between the class model, the component
model, and the deployment model capturing the
logical to the physical to the runtime. As multiple
development groups build more systems from a vari-
ety of third-party components, or in collaboration,
architects will spend more time considering the
assembly of components, whether new or reused,
and their interaction.

Ideally, most of the application developer’s time is
spent integrating components. This means the supplier
of a component must provide accurate, detailed UML
models of the component, particularly the interface,
the state model, and the use cases the component sup-
ports (depending upon the granularity of the compo-
nent). Without an accurate model, developers require
source code to derive the equivalent information.
Additionally, the models must specify extension points
for the component to detail how the behavior of the
component can be augmented, if at all.

One of the most important distinguishing factors
in component-based development is the separation
of the interface and the implementation. The inter-
face itself can be registered and subsequently identi-
fied in searches. The interface is realized, or
implemented, by one or more components, as
shown in the figure appearing here.

Components and Distributed Systems
Distributed systems, those systems that rely on the
aggregate behavior of loosely coupled subsystems, are
becoming more common. The Internet has intro-
duced a transport mechanism that allows various dis-
parate components to interact with each other to
provide more complex, complete business behavior.
System architects are now thinking at a higher level
of abstraction, one that treats the individual compo-
nents as the target platforms. The interactions
between them form the dynamic behavior of the sys-
tem. It appears the Net-based systems will depend
upon a large set of services, manifested as interfaces,
implemented in widely distributed components, sup-
ported by specialized vendors. An important
enabling technology is the ability to interconnect the

components in a platform-independent fashion.
Rapidly evolving XML standards will provide a
mechanism for components to share information.
The messaging can take place over any number of
different transports (IP, HTTP, RMI, and so forth).

Component Granularity
Component design decisions are driven by a variety
of factors—foremost are several design constraints
that help define the range of component granularity.
Typically, intercomponent communication is fairly
expensive in terms of time and platform resources.
Thus, components are encouraged to be larger rather
than smaller. However, larger components by nature
have more complex interfaces and represent more
opportunity to be affected by change. The larger the
component, the less flexible is the structure of the
system. So a balance is struck, depending upon the
level of abstraction, likelihood of change, complexity
of the component, and so forth. The principles of
cohesion and coupling are the factors. Minimizing
the coupling of the system tends to work against
good cohesion.

Considerable examples of small components
include many of the available GUI components (or
“widgets”) that are available from many small devel-
opment shops. They are often implemented as
ActiveX components or Java components because of
the widespread nature of the component models,
and because GUI components are typically execut-
ing on a client. Fewer components are designed for
the CORBA environment because many of these are
destined for commercial, proprietary systems.

Components can also be as large as whole appli-

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 29

Example interface implementation.

Component A

Component B

Interface

cations, such as Excel or PowerPoint. These applica-
tions, often thought of as standalone programs, rep-
resent the set of services that make up the whole
concept of spreadsheets or presentations, respec-
tively. Existing applications that are to be integrated
in a component architecture are usually “wrapped”
in a component layer. The wrapper maps the exist-
ing interface, which can range from a well-organized
API to raw file transfer, to an interface consistent
with the enclosing architecture.

An important aspect of components is specificity.
How specific is the component to a particular task?
Clearly, the more closely a component matches the
design, the less modification is required. Naturally,
the number of components increases as they become
more specific. To address this issue, component ven-
dors must offer a family of solutions that capture the
subtle variances from a basic design but that work in
context of a larger framework. The differences
between the components may be small, but the
value to the designer is greatly enhanced. The cost to
the original developer to produce the variant is dra-
matically smaller than the cost of developing the
component from scratch by a consumer.

Markets for Third-Party Components
It is logical to conclude a market for components
would develop, as the number of suppliers increase,
and the number of consumers building systems
increases. Components are potentially reusable
assets, but it is not guaranteed that a component will
be used simply because it exists. Myriad issues slow
the growth of a third-party component market,
including the following:

Platforms. A given component may often be
usable on only one operating platform, limiting
its use to the domain of that platform, or requir-
ing multiple implementations for each target
platform.

Architecture. Components are typically useful only
within the context of a larger, unifying frame-
work that provides structure and semantics. If a
system is not component-based, or has no identi-
fiable architecture, available components will be
less valuable, and in some cases may be more
awkward as the system attempts to conform to
the interface of the component.

Specificity. A constant tension exists for any com-
ponent that at once forces it to be general in
design, but specific in function. As a result, many
designers attempt to build a small number of
general components that are highly parameter-
ized. Instead, a selection of components that cap-

ture the subtle distinctions between various uses
is required, arranged in a carefully designed
taxonomy.

Versioning. Frequently referred to as “DLL Hell,”
incompatible versions of components necessarily
exist, and may compete with themselves. Two
clients may depend upon the same interface, but
not upgrade simultaneously to the new version of
the component. See [3] for a complete discussion
on this.

Quality. The components originate with third-
party sources and can only be tested on a compo-
nent-level basis, not within the context of the
complete system. This means that the coupling
between components must be much more care-
fully designed. Component that rely on state
information passed in to the component will be
much more susceptible to errors of corruption,
even if thorough checking of preconditions is
performed.

Summary
Component-based software development represents
an important stage in the maturation of the field of
software engineering. It shifts the focus from new
software development to the integration of existing
components to perform new tasks. At the same time
it addresses the issues of large-scale system develop-
ment in the areas of coupling, distribution, and
multiple platforms. As the component marketplace
forms, it becomes one of so-called “increasing
returns” whereby the components become more
valuable as more become available, precisely because
they start to realize the potential of the component-
based ideal.

References
1. D’Souza, D. and Wills, A.C. Objects, Components and Frameworks with

UML: The Catalysis Approach. Addison Wesley, Reading, MA, 1999.
2. Meyer, B. The significance of components. In Beyond Objects, SD

Online (Nov. 1999).
3. Szyperski, C. Component Software: Beyond Object-Oriented Program-

ming. Addison Wesley Longman Ltd, 1998.

Jon Hopkins (jhopkins@blueprinttech.com) is the chairman and
chief technology officer at Blueprint Technologies, in McLean, VA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/1000 $5.00

c

30 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

